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AN OPTIMAL LINEAR-TIME PARALLEL PARSER FOR
TREE ADJOINING LANGUAGES*
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Abstract. An optimal parallel recognition/parsing algorithm is presented for languages generated by
tree adjoining grammars (TAGs), a grammatical system for natural language. TAGs are strictly more powerful
than context-free grammars (CFGs), e.g., they can generate {a"b"c"ln>-O}, which is not context-free.
However, serial parsing of TAGs is also slower, having time complexity O(n6) for inputs of length n (as
opposed to O(n3) for CFGs). The parallel algorithm achieves optimal speedup: it runs in linear time on a
five-dimensional array of n processors. Moreover, the processors are finite-state; i.e., their function and
size depends only on the underlying grammar and not on the length of the input.
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1. Introduction. Language recognition and parsing are important problems that
arise in many applications, e.g., compiler construction, natural language processing,
and syntactic pattern recognition. Much of the work in this area has centered on
context-free languages (CFLs) and its subclasses. Although many subclasses of CFLs
can be parsed in linear time, the fastest known practical parsing algorithms for general
CFLs (Cocke-Younger-Kasami’s and Earley’s algorithm) have time complexity O(n3)
for inputs of length n [AHO72], [HOPC79]. An asymptotically faster algorithm that
runs in O(M(n)) time has been given by Valiant [VALI75], where M(n) is the time
to multiply two n x n Boolean matrices. Currently, the best-known upper bound on
M(n) is O(I/2"376) [COPP87]. However, the constant of proportionality in Valiant’s
algorithm is too large for practical applications.

Recent research has sought to decrease the time bound for CFL recognition and
parsing by introducing parallelism. The parallel recognition of CFLs was first con-
sidered by Kosaraju in [KOSA75], where he showed that CFLs can be recognized by
two-dimensional arrays of finite-state machines in linear time. His construction is a
parallelization of the Cocke-Younger-Kasami (CYK) dynamic programming
algorithm for recognizing the strings generated by a context-free grammar in Chomsky
normal form (CNF). Later, Chiang and Fu [CHIA84] extended this result to the
parsing problem (i.e., if the string is in the language, output a parse tree of the string).
Their algorithm that performs both recognition and parsing is a parallel implementation
of Earley’s algorithm (that does not constrain the grammar to be in CNF) and runs
in linear time on a two-dimensional systolic array of O(n2) processors. Unfortunately,
for the parsing phase of the algorithm, the processors are no longer finite-state because
they store and manipulate log n-bit numbers. A fully finite-state linear-time parallel
parser (based on the CYK algorithm) was later given by Chang, Ibarra, and Palis in
[CHAN87].
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In 1975, Joshi, Levy, and Takahashi [JOSH75] introduced a grammatical system
called tree adjoining grammar (TAG) that is strictly more powerful (in terms of
generative capacity) than context-free grammars. For example, TAGs can generate
{a"b"c"ln >-_ 0}, which is not context-free. Although initially studied for their mathe-
matical properties, TAGs have recently been rediscovered as a good grammatical
system for natural language [KROC85]. It was not until recently that it has been shown
that tree adjoining languages (TALs) generated by TAGs are polynomial-time parsable
[VIJA86]. However, the serial parsing algorithm is much more complicated and runs
slower than that for CFLs, having time complexity O(n6) for inputs of length n
[VIJA86].

In this paper, we present a parallel recognition and parsing algorithm for TALs.
Our algorithm achieves optimal speedup: it runs in linear time on a five-dimensional
array of n processors. Moreover, the processors are finite-state, i.e., their function
and size depend only on the underlying grammar and not on the length of the input
string.

The paper is divided into five sections, in addition to this section. Section 2 briefly
introduces TAGs and presents the serial parsing algorithm given in [VIJA86]. Section
3 discusses the array model. The parallel recognition algorithm is described in 4, and
its extension to parsing is discussed in 5. Section 6 ends the paper with some
concluding remarks.

2. Tree adjoining grammars. In this section, we define tree adjoining grammars
and present the sequential recognition algorithm given in [VIJA86]. We also define
what constitutes a parse tree of an input string and describe how it can be recovered
by a simple extension to the recognition algorithm.

2.1. Definition of TAGs. Unlike context-free grammars that are defined in terms
of rewriting rules on symbols over a finite alphabet, TAGs are defined in terms of an
operation called adjunction on labeled trees. Formally TAG is a 5-tuple G-
(N, E, I, A, S), where

N is a finite set of nonterminal symbols,
X is a finite set of terminal symbols disjoint from N,
I is a finite set of labeled initial trees,
A is a finite set of labeled auxiliary trees,
S N is the distinguished start symbol.
Initial and auxiliary trees are called the elementary trees of the grammar. All

internal nodes of elementary trees are labeled with nonterminal symbols. In addition,
every initial tree is labeled at the root by the start symbol S and has leaf nodes labeled
with symbols in X u {e} (where e is the empty string). An auxiliary tree has both its
root and exactly one leaf node (called the foot node) labeled with the same nonterminal
symbol. All other leaf nodes are labeled with symbols in X u {e}, at least one of which
has a label strictly in X.

An operation called adjunction composes trees of the grammar as follows. Let y
be a tree containing some internal node labeled X, and let fl be an auxiliary tree whose
root is labeled with the same symbol X. (See Fig. 2.1 but ignore the Ci’s for the
moment.) Then adjoining into y at the node labeled X results in the composite tree
a. Informally, the subtree of 3, rooted at the node labeled X is excised, fl is inserted
in its place, and is attached to the unique foot node of ft. The resulting tree is a.

In general, the formalism allows the possibility of constrained adjunction at a
node, i.e., we can associate with every node a corresponding subset of auxiliary trees
that can be adjoined at that node. This subset is denoted as the constraint associated
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FIG. 2.1. The adjunction operation.

with the node; adjunction of an auxiliary tree at the node is allowed only if the node’s
constraint set contains the auxiliary tree. Constraints may be of two types" selective or
obligatory. The former case corresponds to selectively adjoining zero or one of the
auxiliary trees in the constraint set, whereas the latter corresponds to necessarily
adjoining one of the trees from the set. Constraints are represented as tuples of the
form (type, subset) where the type can take values "SA" or ’OA" denoting selective
or obligatory adjunction, respectively, from the specified set. In constrained adjunction,
the constraint changes at the node where the adjunction took place, as indicated by
the Ci’s in Fig. 2.1. More precisely, this node gets the constraint of the root of the
auxiliary tree that is adjointed at the node.

In the subsequence, we assume that elementary trees of the grammar are assigned
unique tree numbers and that within a tree, nodes have unique positional indices. We
adopt the convention that if F and A are in the same tree then index (F)< index (A)
if and only if a postorder traversal of the tree visits F before A. Thus, each node is
represented as a tuple (tree-number, index, label, constraintS. Node A is adjoinable at
node O if and only if A is the root node of some auxiliary tree a, label (A) label (0),
constraint (0) (type, S, and a S.

Tree a elementary derives tree/3 (denoted a -> fl) if and only if/3 results from a

by adjoining an auxiliary tree at some node in a. a derives fl (denoted a -* fl) if and
only if there is a sequence of zero or more trees starting with a and ending in/3 such
that every tree in the sequence elementarily derives its successor./3 is called a derived
tree if and only if a ->*/3 for some elementary tree a; in particular, if a is an initial
(auxiliary) tree, then/3 is called a derived initial (auxiliary) tree. The frontier of a tree
is defined as the left-to-right ordered sequence of leaf nodes of the tree. The yield of
the tree is the corresponding string of labels of the frontier nodes. It can be verified
that every initial tree of a TAG derives trees whose yields are strings of terminal
symbols. Accordingly, the tree adjoining language (TAL) L(G) generated by a TAG G
is defined as follows:

L(G) {w Z*lw is the yield of a derived initial tree that does not
contain any nodes with constraints of type "OA"}.
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For example, consider the TAG G ({S}, {a, b, c}, t, fl, S) shown in Fig. 2.2(a).
If the auxiliary tree fl is adjoined into the initial tree a at its root node, the derived
tree y results (see Fig. 2.2(b)). Adjoining/3 into y at the node indicated by the arrow
produces a new derived tree 3’2. This process can be continued producing larger derived
trees. It can be shown that all such derived trees have yields ofthe form aibic i. Moreover,
the trees have no nodes with constraints of type "’OA.’" Thus, L(G)= {anbncnln>-O}.
Note that L(G) is not context-free.

The sequential algorithm described in the next section makes certain assumptions
about the structure of the tree adjoining grammar; in particular, it is assumed that the
TAG is in normal form. A TAG is in normal form if and only if every internal node
of every elementary tree has exactly two children. The normal form for TAGs is
analogous to the Chomsky Normal Form for context-free grammars. It can be shown
that an arbitrary TAG G can be converted to an equivalent TAG G2 in normal form
in time proportional to O(IG,I), where G, =the number of nodes in all elementary
trees of [G,[ [VIJA87].

2.2. Sequential recognition of TALs. We now describe the sequential recognition
algorithm for TALs given in [VIJA86]. For a TAG G, define a rule to be a tuple of
the form (cony, node, node, nodeA), where cony {0, 1, 2, 3}. If cony 0 (called a leaf
rule), then node is a leaf node of some elementary tree of G, and node2-- node3-- A.
LEAF(1) denotes the set of leaf rules whose node is labeled/. If conv {1, 2, 3}, then
node is an internal node; such rules are formed by applying the following convolution
operations ("-" denotes a "don’t care" value)"

(-, r, -, -) ,, (-, a, -,-)= (1, t9, r, a)

if and only if A is adjoinable at F, and 19 is identical to F except that constraint (19)=
constraint (A),

(-, r, -, -) (-, a, -, -): o, r, a)

if and only if 19 is the parent of F and A, F is to the left of A, and constraint (F) and
constraint (A) are both type "SA,"

(-r, -, -) , (-, a, -, -) (3, t9, r, a)

if and only if 19 is the parent of F and A, F is to the left of A, and constraint (F) and
constraint (A) are both type "SA."

Note that "2 and *3 are actually the same operation except that the cony field of
the resulting rule has value two or three, respectively. It is convenient to define these
two convolutions separately as they simplifythe parsing process.

The convolutions can be extended to sets S and S of rules, i.e., S ,i $2
{R R R1 * R2, for some R1 S and some R $2}. We assume that for any set S,
S , * S . Finally, for any set of rules S, we define CLOSURE(S) to be the
value returned by the following function:

function CLOSURE(S);
repeat

S<-S;
S= SU[LEAF (e)"2 S]U[S "3 LEAF (e)];

until S S;
return (S);
end CLOSURE;
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The function CLOSURE is used later to obtain chains of nodes in elementary trees
that have children labeled e. The number of such nodes is bounded above by the size

GI of the grammar; hence, the loop is iterated at most G] times.
Given a TAG G in normal form and an input string aa2"" an, n >-1, the

Vijayashanker-Joshi dynamic programming algorithm [VIJA86] constructs a four-
dimensional recognition matrix A whose elements (or items) are sets of rules. Item
A(i,j, k, 1), O<=i<=j<=k<=l<=n, has the property that (see Fig. 2.3):

(-, 19, -,-) A(i, j, k, 1) if and only if 19 is a node in a derived tree y and the
subtree of y rooted at 19 has a yield given by either ai+l"’’ajYak+’’’a/
(when j < k) or ai+l a/ (when j k).

FIG. 2.3. (-, (R), -) A(i,j, k, 1).

The recognition matrix is computed as follows. Initially, all items are set to the
null set . Then, items A(i, i, i,i+l) and A(i,i+l, i+l, i+ 1) for 0=<i=< n-1 are
set to CLOSURE (LEAF (ai+)), A(i, i, i, i) for 0<= <_- n are set
to CLOSURE (U yNU) LEAF Y)), and A(i,i,j,j) for O<=i<j<=n are set to
CLOSURE (LJ yu LEAF (Y)). The rest of the matrix is computed according to the
following equation.

(2.1) (1) Al(i,j, k, l)= U [A(m,j, k, p) ,l A(i, m, p, /)],
i<=m<_j

(2) A2(i,j, k,/)= U [B(i, m),zA(m,j, k, 1)],
i<=mj

(3) m3(i,j k, l)= U [A(i,j, k, p) *3 B(p, 1)],
k<_p<_l

(4) A(i,j, k, 1)= CLOSURE (A,(i,j, k, I)U m2(i,j, k, 1)U A3(i,j k, I))

where B(0: n, 0: n) is an auxiliary matrix such that B(q, s) U q<=,<= A(q, r, r, s).
Note that in (2.1), the occurrence of A(i,j, k, l) in the right-hand side of some

equation (e.g., A(m,j, k, p) with m and p l), respresents the initial value . We
refer to pairs of items occurring in the right-hand side of any of the equations (e.g.,
[A(m,j, k, p), A(i, m, p,/)]) as the convolving pairs of A(i,j, k, l).
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Sequentially, (2.1) is computed as follows:

for l=0to n do
for downto 0 do ]*SPAN l- i*[

for j to do I*LEFTSPAN =j-i.
for k downto j do I*RIGHTSPAN l- k*]
compute steps (1)-(4) of (2.1).

The input string aa2...a, L(G) if and only if there exists a rule (-, (R),-, -) in
B(0: n) such that O is the root node of some initial tree of G, and constraint (O) is
not of type "OA."

The annotated variables SPAN, LEFTSPAN, and RIGHTSPAN are shown in
Fig. 2.4. The main point to note is that for a fixed SPAN, we progressively decrease
the gap (SPAN- LEFTSPAN + RIGHTSPAN]) dominated by the foot node until
it becomes 0, and the nodes under consideration dominate subtrees with terminal
yields. One can also verify that items having the same l, SPAN, and gap do not depend
on each other and hence can be computed in any order.

2.3. Sequential parsing of TALs. We now describe a parse (derivation) tree of a
string in the tree adjoining language. Suppose that (-, 19,-,- is the rule obtained in
B(0, n) at the end of the recognition algorithm; i.e., 19 is the root node of some initial
tree a of the grammar. Let/31, ,/36 be auxiliary trees with root nodes A, , A6,
respectively. Consider the following derivation of a certain string from a:

(1) A1,’", A3 are adjoined at nodes F,..., F3, respectively, in c.

(2) m4 is adjoined at node 1-’4 in ill.
(3) m5, m6 are adjoined at nodes Fs, 1‘6, respectively, in/33.

Then, given that index (F) < index (F2) < index (I’3) in a, and index (Fs) < index (1’6)
in/33, we can pictorially describe the derivation as a tree of rules resulting from the
adjunctions (see Fig. 2.5).

a+ a ak+l a

q SPAN

FIG. 2.4. Dynamic programming parameters for A( i, j, k, 1).

Informally, the root of the parse tree is labeled with the rule (-, O, -, -) represent-
ing the root node of initial tree a. The children of the root correspond, in left-to-right
order, to the adjunctions performed on the initial tree in order of increasing indices
of the nodes where the adjunctions take place. For the children of other parse tree
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FIG. 2.5. Parse tree of a TAG derivation.

nodes, the left-to-right order has the same connotation except that adjunctions are
now performed on the nodes of the auxiliary tree, whose root is represented by the
fourth field (i.e., the Ai’s) of the rule. A postorder traversal of this parse tree results
in a sequence of adjunction rules that we shall call the bottom-up inside-out parse (or
simply parse) of the input string. For the given example, the parse corresponds to

(1, 04, r4, a4)(1, 0,, r,, A,)(1, 02, r2, A2)(1, 05, Fs, As)(1, 06, r6, a6)
(1, 03, F3, A>(-, O, -, -).

Note that the structure of the derived initial tree that yields the input string can be
fully recovered from the parse described above.

If the input string is valid (i.e., in L(G)), a parse of the string can be recovered
by searching back through the recognition matrix A and "marking" rules representing
adjunetions (i.e., cony 1). The details are given in procedure SEARCH-FOR-PARSE
below (function REDUCE "unravels" the closure of the A(i,j, k, 1) computed in step
(4) or (2.1)).

Note that only adjunctions (cony= 1) are included in PARSE. That this list
corresponds to a bottom-up inside-out parse is justified by the following proposition.

PROPOSITION 2.1. Let PARSE contain the sequence 11, I2," ", I,, at the end of the
algorithm. For any Iv (iv,L, kv, lp, (-, Or,-,-)) in this sequence, let SPANp and
FRONTIERv denote the values of (lv iv) and [(L- iv)+(lv-kp)], respectively. Then
for every pair, Iv and Iq, 1 <=p < q<= m, in the sequence, either one of the following
statements hold:

(1) v < lq, or
(2) lp lq, SPANv <= SPANq and FRONTIERp < FRONTIERq.
The proposition is proved quite easily by induction on the length of the parse

sequence and from the fact that every adjunction creates trees with longer yields (i.e.,
there are at most n adjunction rules in PARSE). This proposition will be used later
in the description of the parallel parsing algorithm. Note that if the indices i, j, k, and
were left out of the items of the parse sequence, then we would obtain the bottom-up

inside-out representation described earlier.
function REDUCE (i, j, k, 1, (cony1, O1, F1, A1));
if (convl=O, 1) then return ((cony1,01, I’l, A1));
(cony, O, F, A) (COnVl O1 F1 al);
done =false;
repeat

if F is in LEAF (e) then
find a rule R (-, A,-,-) in A(i,j, k, l)

else
if A is in LEAF (e) then

find a rule R (-, F, -, -) in A(i, j, k, l)
else done- true;

if not (done) then
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(cony, @, F A R:
until done;
return ((cony, @, F,
end REDUCE;

procedure SEARCH-FOR-PARSE i,j, k, l, (cony1, @1, F, A));
(cony, O, F, A)= REDUCE (i,j, k, l, (cony,, 0,, F,, A,));
case
ov O: return;
cony 1:

for -< m _-<j and k _-< p _-< do
if (-, F,-,-) is in A(m,j, k, p) and (-, A,-,-) is in A(i, m, p, l) then

SEARCH-FOR-PARSE (m, j, k, p, (-, F, -, ->);
SEARCH-FOR-PARSE (i, m, p, l, (-, A, -, ));
append (i,j, k, l, (cony, (R), F, A>) to the end of PARSE;
return;

endif;
corlv 2:

for k<-p<=l and p<=m<-I do
if (-, F,-,-)isinA(i,j, k, p)and (-, A,-,-) is in A(p, m, m, 1) B(p,/)then

SEARCH-FOR-PARSE (i, j, k, p, (-, F, -, -));
SEARCH-FOR-PARSE (p, m, m, l, (-, A,-,-));

endif; return;
cony 3:

for i<=m<--j and i<=p<-_m do
if (-, F, -, -) is in A(i, p, p, m) B(i, m) and (-, A, -, -) is in A(m,j, k,/)then

SEARCH-FOR-PARSE (i, p, p, m, (-, F, -, -));
SEARCH-FOR-PARSE (m, j, k, l, (-, A,-,-));
return;

endif;
endcase;
end SEARCH-FOR-PARSE;

[*MAIN*I
initialize a global variable PARSE to the empty sequence (list);
let (cony, O,-,-) be the rule in B(0, n) found in the last step of the recognition
algorithm;
find an item A(O,j,j, n) B(0, n) containing (cony, @,-,-;
call SEARCH-FOR-PARSE (O,j,j, n, (cony, @,-,-));

3. The processor array model. The parallel machine model is a five-dimensional
array of processors numbered P(0, 0, 0, 0, 0) through P(n, n, n, n, n) (where n is the
length of the input). Processor P(a, b, c, d, e) is directly connected to other processors
via a set of unidirectional links L= {[Aa, Ab, Ac, Ad, Ae]lAa,..- Ae {-1, 0, 1}}. Link
[Aa, Ab, Ac, Ad, Ae] connects P(a, b, c, d, e) to P(a + Aa, b+ Ab, c+ Ac, d + Ad, e+ Ae);
data through this link can only flow from the former processor to the latter. Moreover,
the delay along the link is d ([Aa[ + IAbl / [Ac[ / lad[ + IAel). That is, a data item sent
out of the former processor at time arrives at the latter processor at time (t + d). The
assumption that all links in the set L are available to each processor is only made to
simplify the presentation of the parallel algorithm. At the expense of additional control
logic, L can be reduced to the set of nearest-neighbor links {[+1,0,0,0,0],
[0, + 1, O, O, 0], [0, O, + 1, O, 0], [0, O, O, + 1, 0], [0, O, O, O, + 1 ]}.
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We assume that the processors operate at discrete time steps by means of a global
clock. The input to the array is a string of the form ala2"" an$, where ala2"" an
represents the string to be parsed. It is fed serially to processor P(0, 0, 0, 0, 0) beginning
at time 0; i.e., is received at time 0, ai at time i, and $ at time (n + 1).

The parallel algorithm is divided into two distinct phases" recognition and parse
recovery. These phases have the property that in the former, data flows only toward
higher-numbered processors, while in the latter, data flows only toward lower-numbered
processors. For this reason, it is convenient to describe the computation of the array
in terms of forward and reverse sweeps that we now define.

Let ds(a,b,c,d,e)-(a+b+c/d/e) denote the distance of processor
P(a, b, c, d, e) from processor P(0, 0, 0, 0, 0). Then, P(a, b, c, d, e) is said to be at

forward sweep s with base-time to if and only if the processor is currently at timestep
(s / to+ dj(a, b, c, d, e)). Intuitively, the base-time is the timestep at which processor
P(0, 0, 0, 0, 0) "signals" the start of a sequence of computation steps Co, C, etc., that
are to be performed by all processors of the array. Computation step Cs is performed
by every processor at forward sweep s. However, forward sweep s represents different
time steps for different processors, as it is defined in terms of the processor’s distance
from P(0, 0, 0, 0, 0). In particular, if tl is the timestep corresponding to forward sweep
s of processor P1, then for a higher-numbered adjacent processor P2, forward sweep
s corresponds to timestep t t / d, where d is the delay along the link connecting
the two processors. Thus, the result of computation step Cs in P can affect computation
step C in P, since the result in the former can be sent to the latter just in time to
take part in the latter’s computation. Fig. 3.1 illustrates forward sweep s with base-time
0 for the subarray of processors (P(a, b, c, d, e)lO<= d, e<-_ b. Observe that a forward
sweep is not a "snapshot" of the subarray at a specific timestep since processors are
viewed at different times. Moreover, for each processor the next forward sweep (s / 1)
corresponds to the next timestep.

One advantage of the sweep notion is that certain computations on the array can
be described as occurring during one particular forward sweep, as opposed to occurring
over a sequence of several time steps. As an example, in Fig. 3.1, suppose that at the
start of some forward sweep s, every processor P(a, b, c, d, e) holds an item v(d, e).

P(a,b,c,O,b)

P(a,b,,b,b)

+ b + 2b- + 2b

FIG. 3.1. Forward sweep with base-time 0 for {P(a, b, c, d, e)10_- d, e- b}.
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Then, during the same forward sweep, the union v(d) of all items v(d, e) in row d
can be computed at processor P(a, b, c, d, b) by sending the items along the horizontal
direction. Each processor receives a value from its left-neighboring processor (if it
exists), takes the union of this value and the item it holds, and sends the result to the
right. The values will be ready at the rightmost processors also at forward sweep s.
The operation can be extended to higher dimensions. For example, each processor in
Fig. 3.1 can instead receive values from the processors above it and to its left, take
the union of these values and the item it holds, and send the result downward and to
the right. The union v of all items in the subarray will thus be ready at P(a, b, c, b, b)
also at forward sweep s. Because this operation will be used quite frequently in the
subsequent sections, we shall refer to it as the union operation.

Analogously, a reverse sweep can be defined as follows. Let dr(a, b, c, d, e)=
5n-(a+ b+ c+ d + e) be the distance of processor P(a, b, c, d, e) from P(n, n, n, n, n).
Then, P(a, b, c, d, e) is said to be at reverse sweep s with base-time to if and only if the
processor is currently at timestep (s+ to+dr(a, b, c, d, e)). In other words, a reverse
sweep is similar to a forward sweep except that it is initiated from P(n, n, n, n, n).
Moreover, lower-numbered processors are viewed at later timesteps t,han higher-
numbered processors.

We end this section with a description of the organization of a processor in the
array. Each processor P(a, b, c, d, e) is divided into two processing elements (PEs)
denoted Po(a, b, c, d, e) and P(a, b, c, d, e). Each PE has its own small local memory
and operates independently of the other. The local memory of each PE consists of a
number of data and accumulator registers as shown in Fig. 3.2. The data registers come
in pairs and are partitioned into three register banks labeled R1, R2, and R3. The
register-pairs within each bank are named as shown in the figure. The left (right)
register of a register-pair is referred to by appending the suffix ".left" (".right") to the
register-pair name, e.g., R 1[0, O].left refers to the left register of register-pair R 1[0, 0].
In addition, there are two accumulator registers named A and B. A few temporary
registers are also assumed to be available. The functions of the registers are described
in the next section.

RI[0o0] R1[0ol]

R111o0] R111ol]

I_ : J

1210]

R211]

A B

n[o]

FIG. 3.2. Local memory of a PE.
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A processor P(a, b, c, d, e) is called primary if and only if b d e. PEs of primary
processors are called primary PEs. Primary processors are distinguished in that items
of the recognition matrix are computed only in these processors (one in each PE).
Note that there are only O(n3) primary processors.

4. The recognition phase. The recognition phase computes the items of the recogni-
tion matrix A and determines whether the input is a valid string of the tree-adjoining
grammar. It consists of (n +2) consecutive forward sweeps 0 through (n + 1), each
with base-time to =0. With respect to P(0, 0, 0, 0, 0), these correspond to timesteps 0
to (n + 1) during which it reads the input string. The recognition matrix is constructed
incrementally; that is, for each new forward sweep only a small new portion of the
matrix is computed. Moreover, the computed items are ultimately stored only at the
primary processors. As there are only O(n3) primary processors and O(n4) items to
be computed, every primary processor is assigned O(n) items. The primary processor
COl.’,.putes these items at different forward sweeps. Thus, each item is actually mapped
onto a specific processor and a specific forward sweep. This processor-sweep mapping
is described in the next section.

4.1. The processor-sweep mapping. Items A(i, j, k, l), 0_-< =<j -_< k _-< _-< n, of the
recognition matrix are mapped onto processors and sweeps as stated in the following
theorem.

THEOREM 4.1. A(i,j, k, l) is computed and stored in register A of primary PE
Px(a, b, c, b, b) at forward sweep s, where

s=l, a=(l-i), b-(j-i)+(1-k),

[c,x]=[(l-k),O] if (j-i)<--(1-k),
[[(j-i),l] if (j-i)>-(l-k).

We refer Pc(a, b, c, b, b) as the target primaryPE (or simply target) of A(i,j, k, 1).
Every A(i,j, k, l) has exactly one target, except when (j-i)= (l-k) in which case it
has as targets both Pc(a, b, c, b, b), x {0, 1}. It is easy to verify that in the latter case,
2c b. Several items may have the same target; however, they are computed by the
target at different forward sweeps. For example, A(0,1,1,3), A(1,2,2,4), and
A(2, 3, 3, 5) have the same target Po(3, 3, 2, 3, 3), but are computed at forward sweeps
3, 4, and 5, respectively.

Theorem 4.1 implies that at forward sweeps s, only PEs Pc(a, b, c, b, b) for which
0_-<. b _-< a _-< s and [b/2] _-< c-<_ b are active (i.e., compute items). Moreover, they compute
only items A(i, j, k, l) for which s. Figure 4.1 illustrates the active primary PEs and
the items they compute for forward sweeps 0 through 4.

Items B(q, s), 0 <- q =< s -< n, of the auxiliary matrix are also mapped onto PEs and
sweeps as stated below.

TrEOREM 4.2. B(q,s) is computed and stored in register B of primary PEs
Pc(a, a, a, a, a), x {0, 1 }, at forward sweep s, where a (s-q).

B(q, s) is easy to compute. To see this, suppose inductively that Theorem 4.1
holds for items in the set [A(q,r, r,s)[q<-r<-s}. Thus, their values are available at
forward sweep s in the contiguous block of primary processors {P(a, a, c, a, a)la
(s-q) and [a/2]-< c_-< a}. By performing a union operation over these values at
forward sweep s, their union B(q, s) can be computed and stored in both PEs of
processor P(a, a, a, a, a) during the same sweep.

Computing the A(i,j, k,/)’s is also simple. Suppose that Px(a, b, c, b, b) is the
target of item A(i, j, k, l). In order to compute this item, the algorithm makes sure that
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(o,o,o,o)

3
A(I,I,4,4) A(I,I,3,4)

1,1,4,4) ,qI,2,4,4)

0,0,4,4) A(0,0,3,4)

A(0,0,4,4) A(0,I,4,4)

c..0

s-2

A(o,z,z,2) A(o,o,o,)

x(o,z,z,) .,.(0,2,2,2)

s-3

x(o,z,z,3) A(o,o,o,3)

A(o,2,2,3)

A(2,3,3,4)

A(2,3,3,4) (2,4,4,4)

S-4

/4:0,1,3,4) A(0,0,2,4)

A(0,,3,4) A(0,2,4,4)

A(|,2,2,4) A(I,1,1,4)

A(|,3,3,4) A(!,4,4,4)

A(0,I,2,4) A(0,0,1,4)

A(0,2,3,4) A(0,3,4,4)

c-0 -1 -2 c-I c-2 3 c=O c=l-- b=o ., b-2 T
b.,

FIG. 4.1. Items computed by primary processors for forward sweeps 0 to 4.

A(0,2,2,4) A(0,I,I,4) A(0,0,0,4)

A(0,2,2,4) A(0,3,3,4) A(0,4,4,4)

c=3

d.

at forward sweep s l, all convolving pairs of A(i, j, k, l) are already available in the
subarray of PEs Px(a, b, c, *,*)={Px(a, b, c, d, e)ld, e<-b}. During the same sweep,
the required convolution operations are performed by each PE on its local convolving
pairs, then the union of the partial results is obtained (via a union operation) and
stored in primary PE Px(a, b, c, b, b). The resulting value is $

A(i,j, k, 1)[.J A2(i,j, k,/)U A3(i,j, k, l) (see equation (2.1)). A(i,j, k, l) is then simply
CLOSURE(S).

The tricky part is how to "distribute" the convolving pairs of A(i, j, k, l) among
the PEs of subarray Px(a, b, c, *, *). We first give an informal description. The convolv-
ing pairs of A(i,j, k, l) can be naturally subdivided into the convolving pairs of its
partial items Ar( i, j, k, l), 1 <- r <= 3.
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First consider A(Lj, k, 1) U i=m-j U k-p- A(m,j, k, p) * A(L m, p, 1). Construct
a matrix Q(i:j,k:l), such that Q(m,p) contains the pair of items
[A(m,j, k, p), A(i, m, p, 1)]. Now "fold" Q along the center row (or between the two
center rows if the number of rows is even). Fold Q once more, this time along the
center column. Figure 4.2 gives an illustration for the case A(i,j, k, I)= A(1, 4, 5, 7).
The folding results in a [(j-i)/2] + [(l-k)/2] matrix Q’, as shown in Fig. 4.2. Now,
index the rows and columns of Q’ from 0, 1, 2, etc. Then the elements of this matrix
are mapped onto the PEs of subarray Px(a, b, c, *, *) such that every pair in Q’(v, w)
appears in PE Px(a, b, c, b v, b w). For example, since the primary PE of A(1, 4, 5, 7)
is PI(6, 5, 3, 5, 5), (then the convolving pairs in Q’(1, 0) would appear in P(6, 5, 3, 4, 5).

There is a natural correspondence between the convolving pairs mapped onto a
specific PE and the register-pairs R l[y, z] of this PE. Each convolving pair can be
identified with the "quadrant" yz, y, z {0, 1}, it belonged to in the original unfolded
matrix Q, where the quadrants are those induced by the lines where the folding
took place (see Fig. 4.2). For example, pairs [,4(2, 4, 5,5),,4(1,2,5,7)],
[A(2, 4, 5, 7), A(1, 2, 7, 7)], [A(3, 4, 5, 5), A(1, 3, 5, 7)], and [A(3, 4, 5, 7), A(1, 3, 7, 7)]

quadrant O0 quadrant O1

[A(1.4,5.5),A(1,1,5,7)1

[A(2.4,5,5).A(1.2,5,7)]

[A(3,4,5,5),A(1,3,5,7)1

[A(4,4,5,5),A(1,4,5,7)]

[A(1,4,5,6),A(1,1,6,7)]

[A(2.4,5,6).A(1,2,6,7)]

[A(3,4,5,6),A(1,3,6,7)]

[A(4,4.5,6).A(1.4.6.7)]

[A(1,4,5,7),A(I,I,7,7)]

A(2,4,5,7),A(1,2,7,7)]

[A(3.4,5.7),A(1,3,7.7)]

[A(4.4.5,7).A(1,4,7.7)]

quadrant 10 quadram II

Q’ (0,0) Q" (0,1)

Matrix

[A(I,4,5,5),A(1,1,53)] [A(I,4,5,7),A(1,1,7,7)]
[A(4,4,5,5),A(1,4,5,7)] [A(4,4,5,7),A(I,4,7,7)]

[A(2,4,5,5),A(1,2,5,7)l [A(2,4,5,7),A(1,2,7,7)]
[A(3,4,5,5),A(1,3,5,7)] [A(3,4,5,7),A(1,3,7,7)]

[A(I,4,5,6),A(I,1,6,7)] [A(1,4,5,6),A(1,1,6,7)]
[A(4,4,5,6),A(1,4,6,7)] [A(4,4,5,6),A(1,4,6,7)]

[A(2,4,5,6),A(I,2,6,7)] [A(2,4,5,6),A(I,2,6,7)]
[A(3,4,5,6),A(1,3,6,7)] [A(3,4,5,6),A(1,3,6,7)]

Matrix

Q’ (1,0) ’(1,1)

FIG. 4.2. Mapping the convolving pairs ofA(i,j, k, 1) A1(1 4, 5, 7).
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of Q’(1, 0) are in quadrants 00, 01, 10, and 11, respectively. (By convention, if a pair
lies on the boundary of.two or more quadrants, it is assumed to be in all such quadrants;
e.g., [A(1, 4, 5, 6), A(1, 1, 6, 7)] is in quadrants 00 and 01.) The rule for mapping
convolving pairs onto register-pairs is as follows: a pair in quadrant yz is mapped
onto register-pair R l[y, z] (with obvious interpretation that the left and right terms of
the convolving pair goes into the left and right registers, respectively, of the register-
pair). For example, in Fig. 4.2, the convolving pairs in Q’(1, 0) are mapped onto PE
P(6, 5, 3, 4, 5) such that [A(2, 4, 5, 5), A(1, 2, 5, 7)] is stored in register-pair RI[0, 0],
A(2, 4, 5, 7), A(1, 2, 7, 7) in register-pair R 1 [0, 1 ], etc.

The mapping for the convolving pairs of partial item A2(i,j,k, l)=
_Ji<=rn<=j B(i, rn)*2A(m,j, k, l) is illustrated in Fig. 4.3. A linear array R(i:j) is con-
structed such that R(m) contains the pair [B(i, m), A(m,j, k,/)], which is then folded
along the center column to yield a new array R’. If the rows of R’ are indexed 0, 1,
2, etc., then pairs occurring in R’(u) are mapped onto PE Px(a, b, c, b- u, b) such that
the pair coming from half y {0, 1} of R is assigned to register-pair R2[y] of this PE.

half 0 half I

[A(I,4,5,5),B(5,7)] [A(I,4,5,6),B(6,7)] [A(1,4,5,7),B(7,7)] Array R

R" (0) R’(1)

[A(1,4,5,5),B(5,7)] [A(1,4,5,7),B(7,7)] [A(1,4,5,6),B(6,7)] [A(1,4,5,6),B(6,7)] Array R"

FG. 4.3. Mapping the convolving pairs of A2(i,j k, 1)= A2(1 4,5, 7).

The mapping for the convolving pairs of the third partial item A3(i,j, k, l)=
[..J k<_p<=l A(i,j, k, p) *3 B(p, l) is similar (see Fig. 4.4). The linear array S(p:l) such that
S(p) contains [A(i,j, k, p), B(p,/)] is folded to yield a new array S’. Then, convolving
pairs occurring in S’(w) are mapped onto PE Px(a, b, c, b, b- w), with the pair coming
from half z {0, 1} of S assigned to register-pair R3[z] of the PE.

The mapping described above is formalized in the following lemma.
LEMMA 4.1. At forward sweep s, the convolving pairs of A(i,j, k, l) are stored in

subarray P,( a, b, c, *, *) such that
(1) [A(m,j, k,p),A(i, m,p, /)] is in register-pair Rl[y,z] of PE P(a, b, c, d, e),
(2) [B(i, m), A(m,j, k,/)] is in register-pair R2[y] of PE P(a, b, c, d, b),
(3) [A(i,j, k, p), B(p, /)] is in register-pair R3[z] of PE P(a, b, c, d, e),

where

s=l, a:(1-i), b=(j-i)+(l-k),

[c,x]={[(l-k), O] if (j-i)<-(1-k),
[(j-i),l] if (j-i)>-(1-k),
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half 0

[B(1,1),A(1,4,53)] [B(I,3),A(3,4,5,7)] [B(1,4),A(4,4,5,7)] Array S

s’(o) s’(1)

[B(I,I),A(I,4,5,7)l [B(I,4),A(4,4,5,7)] [B(I,2),A(2,4,5,7)] [B(I,3),A(3,4,5,7)] Army

FIG. 4.4. Mapping the convolving pairs ofA3(i, j, k, I) A3(1, 4, 5, 7).

[(j-m)+(l-k),O]
[d, y]

[(m-i)+(l-k),l]

[e, z] [(J- i)+(l-p), 0]
I.[(j-i)+(p-k), 1]

ifO<-_2m<-(i+j),

if 2j >- 2m >- +j),

if O <= 2p <- k + l),
if21>-_2p>-(k+l).

Observe that because of the folding, some data registers of a PE may store the
same item. It can be shown that this happens only for certain "special" PEs. In
particular, we have the following fact.

FACT 4.1. Let Px(a, b, c, d, e) be a PE. Then at any forward sweep,
(1) If (x--0 and 2d=b+c) or (x-1 and 2d--2b-c), Rl[O,z].t=Rl[1, z].t

and R2[0].t R2[1].t, where {left, right};
(2) If (x --0 and 2e 2b-c) or (x 1 and 2e b+ c), Rl[y, 0].t Rl[y, 1].t and

R3[0].t-- R3[1].t, where {left, right};
(3) If 2c-- b, every data register r of Px(a, b, c, d, e) has the same contents as data

register r of P(a, b, c, d, e).
Thus, within each PE, the data registers form equivalence classes depending on

the PE’s indices. Moreover, if 2c b, every data register of the PE is equivalent to the
corresponding data register of the other PE sharing the same indices. (Note that a PE
may satisfy more than one of the relations listed above.) For a data register r of PE
P, we denote by eq(P, r) (or simply eq(r) if P is understood) the set of data registers
equivalent to r.

4.2. The routing scheme. We now describe how items are routed through the
processor array such that the data registers of each PE are properly updated according
to Lemma 4.1.

The routing scheme is embodied in the roUting table shown in Table 4.1. A copy
ofTable 4.1 is stored in every processor ofthe array. Each data register has an associated
set of links that defines the directions along which items stored in this register are
received and forwarded. Each link [Aa, Ab, Ac, Ad, Ae] represents both an input link
[-Aa,-Ab,-Ac,-Ad,-Ae] from which the item is received, and an output link
[+Aa, +Ab, +Ac, +Ad, +Ae] through which the item is forwarded. Observe that the
flow of data is only from lower-numbered to higher-numbered processors. This is a
consequence of the "folding" technique used in Lemma 4.1.
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TABLE 4.1
The routing table.

PEo PE
Register Links Links

RI[0, 0]- left [1, 1, 1, 1, 1] [1, 1, 0, 1, 1]
[1, 1, 0,0, 1] [1, 1, 1,0, 1]

RI[0, 1]- left [1, 1, 1, 1, 0] [1, 1, 0, 1, 0]
[1, l, 0, 0, 1] [1, 1, 1,0, 1]

RI[1, 0]. left [1, 1, 1, 1, 1] [1, 1, O, 1, 1]
[1, 1, 0, 1, 1] [1, 1, 1, l, 1]

RI[1, 1]- left [1, 1, 1, 1, O] [1, 1, 0, l, O]
[1, 1,0, 1, 1] [1, l, 1, 1, 1]

gl[0, 0]- right [0, 1, 1, 1, 0] [0, 1, 0, 1, 0]
[0, 1, O, 1, 1] [0, 1, 1, 1, 1]

RI[0, 1]- right [0, 1, 1, 1, 1] [0, 1, 0, 1, 1]
[0, 1, O, 1, 1] [0, 1, 1, 1, 1]

RI[1, 0]- right [0, l, 1, 1, 0] [0, l, 0, 1, 0]
[0, 1, 0, 0, 1] [0, 1, 1, 0, 1]

RI[1, 1]- right [0, 1, 1, 1, 1] [0, 1, 0, 1, 1]
[0, l, 0, 0, 1] [0,1, 1, 0, 1]

g2[o] left [1, 1, 1, 1, 1] [1, 1, O, 1, 1]
[1, O, O, O, O] 1, O, O, O, O]
[0, 1, O, 1, 1] [0, 1, 1, 1, 1]

R2[1] left [1, 1, 1, l, 1] [1, 1, 0, 1, 1]
1, O, O, O, O] 1, O, O, O, O]

[0, 1, O, O, 1] [0, l, 1, 0, 1]
R2[0] right [1, 1, 0, 0, 1] [1, 1, l, 0, 1]
R2[1]. right [1, 1,0, 1, 1] [1, 1, 1, 1, 1]
g3[0] left [1, 1, 1, 1, 1] [1, 1, 0, 1, 1]
g3[1]- left [1, 1, 1, 1, 0] [1, 1, 0, 1, 0]
g3[0] right [1, 1, 0, 1, 1] [1, 1, 1, 1, 1]

[1, O, O, O, O] [1, O, O, O, O]
[0, 1, 1, 1, 0] [0, 1, 0, l, 0]

R3[1] right [1, 1, 0, 1, 1] [1, 1, 1, 1, 1]
[1, 0, 0, 0, 0] [1,0, 0, 0, 0]
[0, 1, l, 1, 1] [0, l, 0, 1, 1]

Each item is routed as a tuple of the form (v, r, x), where v is the value of the
item, r is the name of the register from which it originates, and x ( -0 to 1) indicates
the PE within the processor where register r is located. Procedures UPDATE-
REGISTERS and ROUTE-REGISTERS below describe how the updating and routing
of data registers are carried out.

UPDATE-REGISTERS. To update a data register, say Rl[O,O].left of PE
Po(a, b, c, d, e), the PE first checks whether from any of input links [-1, -1, -1, -1, -1]
and [-1,-1, 0, 0,-1] associated with this register, there is a tuple of the form
(v, RI[0, O].left, 0). If such a tuple exists, the PE puts the value in all registers in the
same equivalence class as register RI[0, O].left. A PE may receive more than one tuple
targeted for the same register; however, the values associated with the tuples will
always be the same.

ROUTE-REGISTERS. To route the value stored in a data register, again say
RI[0, O].left of Po(a, b, c, d, e), the PE first creates the tuple (v, RI[0, O].left, 0), then
sends it out via the associated output links [+1, +1, +1, +1, +1] and [+1, +1, 0, 0, +1].
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If in the routing table, an output link is labeled "+", the PE "waits" one clock cycle
before sending out the tuple, e.g., by first storing it into a temporary register. (Intuitively,
tuples sent out via links labeled by "+" reach the destination PE one forward sweep
later.)

The routing table guarantees that items reach the right data registers at the right
times, as specified by Lemma 4.1. The interested reader is referred to the Appendix
for the derivation of the routing table.

For the routing scheme described above to work properly, procedures UPDATE-
REGISTERS and ROUTE-REGISTERS should only be executed by active PEs (i.e.,
PEs that store items as specified by Lemma 4.1). The following fact is easy to verify.

FAC’r 4.2. PE Px(a, b, c, d, e) is active at forward sweep s if and only ifthe following
conditions hold:

(1) b<-_a<-_s;
(2) b <- 2c<- 2b;
(3) Ifx=0thenb+c<-_2d<-2band2b-c<=2e<=2b;
(4) Ifx=l then2b-c<-2d<-2band b+c<-_2e<-2b.

Inactive PEs do not participate in any computation or routing of items. The routing
table may in fact forward items from active to inactive PEs (we found this necessary
to make the routing table uniform for all processors). However, by definition, inactive
PEs receiving items simply discard them.

4.3. The algorithm. Procedure RECOGNIZE below specifies the steps performed
by every active PE at each forward sweep. Each call to the procedure represents one
clock cycle.

procedure RECOGNIZE Px a, b, c, d, e ).
if (active) then

case
I’Compute boundary items.*l
P(O, O, O, O, O) receive input symbol "a" and send it to P,(1, 1, 1, 1, 1) with

a sweep delay;
Ye(NU{e}) /

P,(a, O, O, 0,0), a > O" A - CLOSURE ( YeN’J LEAF (Y));
Px(1, 1, 1, 1, 1):receive input symbol "a" from P(O, O, O, O, 0),

A - CLOSURE (LEAF (a));
otherwise:

l’Compute other items.*[
UPDATE-REGISTERS
l’Compute partial results and perform union operation.*[
I*Ar, =< r-< 3, are temporaries.*[

AI - t_J Rl[y, z].left *l Rl[y, z].right;
y,z{0,1}

A2- t_J R2[y].left , R2[y].right;
y{O,1}

A3 U R3[z].left ,3 R3[z].right;
z{0,1}
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A- Ar[A of p(a,b,c,d-l,e)]t_J[A of Px(a,b,c,d,e-1)];
r_<--.3

if a primary PE then A CLOSURE (A);
endcase;
if not a primary PE then

send A to Px(a, b, c, d + 1, e) and P,(a, b, c, d, e + 1)
else

I’Prepare newly computed A-item for routing.*l
eq(Rl[O, 1].left) A;
eq(Rl[1, O].right) A;(1) eq(R2[O].right) A;
eq(R3[1].left)- A;
l’Compute B-item and prepare for routing.*l
if P(a, a, c, a, a) then

B-AU[B of P(a, a, c-l, a, a)];
send B to P(a, a, c + 1, a, a);

endif;
if P, (a, a, a, a, a) then

B - B U [B of P(a, a, a, a, a)];
if x 0 then

(2) eq(R3[O].right) - Belse
eq( g2[1].left) - B;

endif;
endif;
ROUTE-REGISTERS
clear all data registers and accumulators;

endif;
end RECOGNIZE;

The assignment statements labeled (1) and (2) update the data registers that are
supposed to hold the A or B item, respectively, computed at the PE (initially, all such
registers would contain ). This is done so that these newly computed items can be
forwarded to other PEs by procedure ROUTE-REGISTERS.

At forward sweep (n + 1) processor P(0, 0, 0, 0, 0) sends a "completion" signal to
all other processors. When the signal reaches P(n, n, n, n, n), this processor checks
whether in B(0, n) (stored in the B register of either of its PEs) there is a rule (-, O, -, -)
such that O is the root node of some initial tree of the grammar and constraint (O) is
not of type "OA." If there is such a rule, it initiates the parse recovery phase described
in the next section; otherwise, it sends back a "reject" signal to P(0, 0, 0, 0, 0) and the
computation halts.

If the input string is valid, the recognition phase ends in processor P(n, n, n, n, n)
at forward sweep (n + 1). In terms of clock cycles, this corresponds to timestep (6n + 1),
which is linear in the length of the input string.

4.4. A finite-state implementation. It is clear that only a finite amount of informa-
tion is stored in the local memory of each PE since each register stores sets whose size
depends only on the underlying grammar and not on the length of the input string.

Similarly, processor indices need not be stored as there are only a finite number
of different processor (or PE) "types" that need to be distinguished. These include
the processors specifically referred to in procedure RECOGNIZE (e.g., P(a, O, O, 0, 0),
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P(1, 1, 1, 1, 1), P(a, a, c, a, a), primary processors, etc.), as well as those whose indices
satisfy the relations given in Fact 4.1. These processors can be "marked" during the
zeroth forward sweep by propagating appropriate "control signals" through the array.
For instance, to mark all primary processors (i.e., P(a, b, c, d, e) such that b- d e),
the following steps can be performed. When P(0, 0, 0, 0, 0) receives input symbol , it
marks itself as primary. It then sends a signal to all processors {P(a, 0, 0, 0, 0)} via the
[1, 0, 0, 0, 0] links, and in turn each P(a, 0, 0, 0, 0) sends the signal to processors
{P(a, b, O, b, b)} via the [0, 1, 0, 1, 1] links. Finally, each P(a, b, O, b, b) sends the signal
to processors {P(a, b, c, b, b)} via the [0, 0, 1, 0, 0] links. All processors.receiving the
signal mark themselves as primary. Similar schemes can be used to mark other processor
types.

Activating PEs at the right times (see Fact 4.2) can be done in a similar way.
Observe that a PE Px(a, b, c, d, e) satisfying conditions (2)-(4) of fact 4.2 first becomes
active at forward sweep a, and remains active till the end of the recognition phase.
Thus, it is only necessary to mark such processors at the first sweep they become active.
Informally, this can be accomplished as follows. During the zeroth forward sweep,
mark all PEs (say by "*") satisfying conditions (2)-(4) of Fact 4.2 using a scheme
similar to the one described in the previous paragraph. In addition, perform the
following steps. When P(0, 0, 0, 0, 0) receives at forward sweep zero, mark this
processor by "#." From P(0, 0, 0, 0, 0), send "#" to all processors {P(a, O, O, O, 0)}
via the [1, 0, 0, 0, 0]/ links (the "+" indicating a sweep delay). Thus, processor
P(a, 0, 0, 0, 0) receives "#" at forward sweep a. Finally, during the same sweep when
P(a, 0,0,0,0) receives "#," send "#" to all other processors in the subarray
P(a, *, *, *, *). PE’s marked both "*" and "#" are labeled active.

Processor P(n, n, n, n, n) can also be determined without knowing n. This is
because P(n, n, n, n, n) is the only processor of the form P(a, a, a, a, a) (which is
specially marked) that becomes active and receives the "completion" signal (discussed
in the previous subsection) in consecutive forward sweeps.

Finally, the neighboring processors of P(a, b, c, d, e) can be reduced to those in
the set [P(a+ 1, 0, 0, 0, 0), P(0, b+ 1, 0, 0, 0),- -, P(0, 0, 0, 0, e+ 1)} as follows: to
send data via link [Aa, Ab, Ac, Ad, Ae], the data is instead sent via the sequence of
links [Aa, 0, 0, 0, 0], [0, Ab, 0, 0, 0],- , [0, 0, 0, 0, Ae]. The delay is the same in either
case, namely, (Aa + Ab + Ac+Ad + Ae).

5. The parse recovery phase. A parse of a valid input string can be recovered in
linear time by executing the parse recoveryphase. This phase is initiated upon completion
of the recognition phase, i.e., once PE P(n, n, n, n, n) has determined that the input
string is valid. Recall that this happens at forward sweep (n + 1), or equivalently, at
timestep (6n+ 1). Starting at this timestep, PE P(n, n, n, n, n) starts a sequence of
(n + 1) reverse sweeps 0 through n, during which adjunction rules that make up a parse
of the input string are "marked."

The parse recovery phase consists of three concurrent subphases: regeneration,
marking, and outputting. Each subphase begins at reverse sweep 0 and ends at reverse
sweep n.

The marking subphase is a parallelization of procedure SEARCH-FOR-PARSE
described in 2; i.e., it searches back through the recognition matrix A and "marks"
the parse rules. However, since the recognition phase builds A incrementally, only a
small portion of the the matrix (in particular, {A(i,j, k,/)[ n}) would actually be
present in the primary processors of the array at the start of the parse recovery. Thus,
the "lost" items should somehow be recovered to proceed with the marking process.
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This can be done in a simple way: the idea is to "regenerate" the configurations of
the array (i.e., contents of the processor registers) at forward sweeps 0, 1,- ., n in
reverse order. That is, given the array configuration at the end of forward sweep n, we
regenerate, in one reverse sweep, its configuration at the end of forward sweep n- 1,
then from this its configuration at the end of forward sweep n 2, etc. The regeneration
subphase accomplishes this task.

5.1. The regeneration subphase. The regeneration subphase is carried out during
reverse sweeps 0 through n. During reverse sweep s, 0 =< s =< n, the array "reconfigures"
itself so that the values of the data registers of every processor are the same as those
at the end of forward sweep (n-s). (Note that forward sweep n+ 1 does not affect
the data registers of the processors.) This is accomplished by routing the items stored
in the registers in the reverse of the directions they took during the recognition phase
(i.e., the data flows from higher-numbered to lower-numbered processors).

We now examined in detail how to make the above scheme work. Consider the
sets of data registers Sll=[Rl[y, z].left}, Sta={R2[y].left}, and S3 {R3[z].left} of
some PE P. From Table 4.1 observe that a register in any of these sets is routed to an
output link with superscript "+". The extra delay associated with this link implies that
if the value of the register is routed at forward sweep s, then it reaches the destination
PE at forward sweep (s+ 1). That is, we have Fact 5.1.

FACT 5.1. Let v be the contents of an Sl-register, 1, 2, 3, of PE P at forward
sweep s. Then, at forward sweep (s + 1), there is a copy of v in some Sl-register of a
PE adjacent to P.

Fact 5.1 implies that given the value of the Sl-registers at forward sweep (s + 1),
their values at forward sweep s can be regenerated by simply reversing the directions
of the routes specified by the routing scheme.

Consider now the sets S={Rl[y,z].right}, S={R2[y].right}, and S=
{R3[z].right}. From the routing Table 4.1, it is clear that because of the absence of
the superscript "+" in the output links for any register in these sets, the value of the
register at forward sweep s reaches the destination PE also at forward sweep s. In
other words, the register’s value is effectively lost in the next forward sweep. Thus, it
should somehow be stored before the next forward sweep is executed. We make the
following observations.

FACT 5.2. For every PE P P, (a, b, c, d, e)"
(1) The contents of an S-register of P at forward sweep s has copy in. some

S-register of a PE in subarray P(a, a, *, *, *) at forward sweep s.
(2) The contents of an S-register of P at forward sweep s has a copy in some

S-register of a PE in subarray P(s, *, *, *, *) at forward sweep s.
(3) The contents of an S-register of P at forward sweep s has a copy in some

S-register of a PE in subarray P(s, s, *, *, *) at forward sweep s.
Fact 5.2 reveals how the register values should be stored. In particular, Facts

5.2(2) and (3) require us to store only the contents of the S_-registers of PEs in subarray
P(s, *, *, *, *) and the S-registers of PEs in subarray P(s, s, *, *, *) at the end of
forward sweep s. This is enough to guarantee that the contents ofthe S- and S-registers
of all other PEs active at forward sweep s will be remembered since they have copies
in these PEs. Observe that, during the recognition phase, PEsin these subarrays first
become active at forward sweep s so that the PEs in effect "know" when to store the
register values. More precisely, each PE of the form P,(s, b, c, d, e)(P,(s, s, c, d, e)) has
duplicate S (S)-registers (see Fig. 5.1). When the PE first becomes active, it copies
the contents of its S (S)-registers into the corresponding duplicate registers. The
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(case 2)

(case 3)

P(s,b,c,d,e)

Forward sweep s:

dS
2

duplicates

P(s,s,c,d,e)

Forward sweep s:

dS
3

duplicates

FIG. 5.1. At forward sweep s, processors P(s, b, c, d, e)(P(s, s, c, d, e)) copy updated contents of register
S’(S’) into duplicate registers dS(dS).

contents of the duplicate registers then remain unchanged until the time when forward
sweep s needs to be regenerated during parse recovery (which happens at reverse
sweep n- s). At that time, the original registers can be restored from the duplicates
and their values routed in the reverse of the directions specified by the routing scheme.

The situation described by Fact 5.2(1) is somewhat more complicated in that every
PE of the form P,,(a, a, c, d, e) must store the contents of its S-registers at forward
sweeps a, a + 1,..., n starting from the sweep at which it first became active. Thus,
the above technique would not work.

For each PE P,(a, a, c, d, e), define the sequence of PEs P,(a, a, c, d, e), Px(a +
1, a, c, d, e),..., P,(n, a, c, d, e) as the chain at P(a, a, c, d, e). Clearly, there are
n-a + PEs in the chain; this number coincides with the number of forward sweeps
during which P(a, a, c, d, e) is active. Moreover, the only PE in the chain for which
the first two indices are the same is Px(a, a, c, d, e). Hence, it is the only PE in the
chain that needs to store its S-registers. It should be evident that the chain can be
used to store the S-registers of P,,(a, a, c, d, e) in successive forward sweeps. Each
PE in the chain has duplicate S-registers to be used for this purpose. When
P,,(a, a, c, d, e) first becomes active at forward sweep a, it copies the contents of its S
registers into the corresponding duplicate registers. In succeeding sweeps, the contents
of the duplicate registers of every PE in the chain are shifted into the duplicate registers
of the next PE in the chain. The new values of the S-registers of P,(a, a, c, d, e) can
then be copied into its (now vacant) duplicate registers. These steps are illustrated in
Fig. 5.2. The direction of shifting is simply reversed during regeneration, thus restoring
the S-registers of P,,(a, a, c, d, e) to their proper values. These values can then be
reverse-routed to other PEs during the reverse sweep.
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P(a,a,c,d,e)

1__i

Forward sweep a

a+l

P(a+l,a,c,d,e)

Indicates active processor

FIG. 5.2. The chain of processors P(a, a, c, d, e), P(a+ 1, a, c, d, e),. ., P(n, a, c, d, e) is used to

remember the contents of the S registers ofprocessor P(a, a, c, d, e) at forward sweeps a to n.

From the above discussion, it is clear that the data registers of all PEs are properly
updated at each new reverse sweep. For primary PEs, we would also like that their A
registers be properly updated. Moreover, for primary PEs computing B-items (i.e.,
PEs of the form Px(a, a, a, a, a)), we would require updated values of their B registers.
These can be accomplished by reversing the assignment statements labeled (1) and (2)
in procedure RECOGNIZE, i.e.:

(1) If the PE is a primary PE, then A-eq(Rl[O, 1].left)Ueq(Rl[1, O].right)U
eq(R2[O].right) U eq(R3[1].left).

(2) If the primary PE is of the form Px(a, a, a, a, a), then B eq(R3[O].right) if
x =0, else B eq(R2[1].left).

Finally, we observe that in regenerating forward sweep s from forward sweep
(s+ 1), PEs in subarray P(s+ 1,*,*,*,*) should cease becoming active. This can be
done by reversing the order of activations of PEs during the recognition phase (see 4.4).

From the above discussion, we thus have the following.
THEOREM 5.1. The configuration (contents of data registers, plus accumulator reg-

isters specified in (1) and (2) above) of each PE at reverse sweep s, 0 <- s <= n, is identical
to its configuration at the end offorward sweep (n- s).

5.2. The marking subphase. Concurrently with the regeneration phase, the pro-
cessor array executes a marking subphase during which it searches and marks adjunc-
tion rules that make up a parse of the input string. In the following discussion, we
assume that during each reverse sweep, the marking process is performed only after
the regenerated values of the data registers have "settled."

Let v=(conv,(R),F,A) be the rule found by processor P(n, n, n, n, n) (in the B
register of one of its PEs) at the end of the recognition phase. At reverse sweep 0, the
marking subphase starts with P(n, n, n, n, n) marking the rule v in the B registers of
both its PEs. (In practice, a set of rules can be stored as a bit vector, one bit per rule;
marking a rule then simply translates to marking the bit corresponding to the rule.)
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Now, consider a processor of the form P(a, a, a, a, a) and suppose that at reverse
sweep (n- s) it has a marked rule v in either of its B registers. One can verify that
v B(q, s), where q (s a). During the same reverse sweep, P(a, a, a, a, a) sends v
to the sequence of processors {P(a, a, c, a, a)lc <= a} via the [0, 0, -1, 0, 0] links. Let
P be the first processor in this sequence such that the A register of one of its PEs
contains v. This processor then marks the occurrence of v in A and "disables" the
search in the remaining processors by no longer sending v to the next processor in
the sequence. Informally, the steps just described has the effect of "decomposing"
B(q, s) into its component items {A(q, r, r, s)lq<= r<= s} and choosing one item contain-
ing v as the item from which a convolving pair of v is to be searched.

The marking process continues from every primary PE P,(a, b, c, b, b) that finds
a marked rule v’ in its A register. The PE first executes function REDUCE (v’) (see
2.3) to obtain a (possibly) new rule v (cony, O, F, A). It then checks the cony field

of v to determine the subarray of PEs from which to search a convolving pair of v. If
cony 0, then no search for a convolving pair is needed. If cony 2, P,(a, b, c, b, b)
sends v to PEs {P,,(a, b, c, d, b)ld -< b}. Let P be the first PE in this sequence such that
for some register-pair R2(y), there are rules vl R2[y].left and v2 R2[y].right
such that v= vl "2 v2. This PE marks all occurrences of 1) (I)2) in eq (R2[y].left)
(eq (Rz[y].right)). The search is then disabled for the remaining PEs in the sequence.
If cony=3, the same steps are carried out except that v is sent to the subarray
{P,,(a, b, c, b, e)le<= b} and the register-pairs examined are those in the set {R3[z]}.

The case when cony 1 is slightly more complicated. Here, we wish to find exactly
one processor in the two-dimensional subarray {P,(a, b, , d, e) ld e <= b} such that for
some register-pair Rl[y, z] there are rules vl Rl[y, z].left and v2 Rl[y, z].right such
that v vl "1 v2. A naive extension of the linear search described above to two
dimensions would not work since convolving pairs in PEs the same distance away
from Px(a, b, c, b, b) would be marked at the same time.

The problem can be solved by introducing the following modification to the
recognition phase. While performing the union operation during a forward sweep,
each PE in the "rightmost column" of the subarray (i.e., PEs {P,,(a, b, c, d, b)ld <- b})
collects from all PEs in the same row, the rules resulting from adjunctions (cony 1)
and stores the set of rules in a temporary register, say temp. Each rightmost PE performs
this step at every forward sweep. However, in order not to lose the values of temp
during previous forward sweeps, the rightmost PE, say P,,(a, b, c, d, b), shifts the
previous values of temp along the chain of PEs Px(a, b, c, d, b), P,,(a+l, b+
1, c, d, b),..., P(n, b + (n-a), c, d, b). (The steps are similar to those shown in Fig.
5.2.) This way, during the regeneration phase, the proper values of temp can be restored
by performing the shifts in the reverse direction.

The two-dimensional search for-a convolving pair can now be reduced to two
linear searches as follows (see Fig. 5.3). From primary PE P(a, b, c, b, b), the marked
rule v is sent to the rightmost column of PEs in the subarray. Each rightmost PE
receiving v first checks whether v is in register temp. If it is, then the rightmost PE
"knows" that a convolving pair of v is in some PE in its row. The PE then disables
the search in the succeeding rows and initiates a linear search for a convolving pair
of v among the PEs in its own row, marking only the first convolving pair that is
encountered.

The regeneration subphase that runs concurrently with the marking subphase
eventually brings rules marked in the data registers to the A registers of primary PEs
or the B registers of PEs of the form P(a, a, a, a, a) (recall that these registers are
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FI. 5.3. To-diesioa! search accomplished by two linear searches.

updated as described in 5.1). From these PEs the search-and-mark process is repeated.
Thus, at the end of reverse sweep n (after all forward sweeps have been regenerated),
all rules that make up a parse tree of the input string have been marked. From among
these rules, only those indicating adjunctions (cony 1) actually need be output. 1"he
outputting process is described in 5.3.

5.3. The parse outputting subphase. The parse outputting subphase carries out the
process of systematically outputting adjunction rules that are marked during the
marking subphase. This subphase runs concurrently with the regeneration and marking
subphases and is completed at the end of reverse ,sweep n.

Proposition 5.1 below follows directly from Proposition 2.1 and states the order
in which the rules should be output.

PROPOSITION 5.1. A parse of the input string can be obtained by outputting the
adjunction rules marked during the marking subphase in the following order:

(1) Rules marked at reverse sweep s are output before those at reverse sweep s- 1.
(2) For a fixed reverse sweep s, marked rules in subarray P(a, *, *, *, *) are output

before those in subarray P(a + 1, *, *, *, *).
(3) For a given reverse sweep and afixed a, marked rules in subarray P(a, b, *, *, *)

are output before those in subarray P(a, b + 1, *, *, *).
For example, consider Fig. 5.4, showing a sample parse tree for a string of length

n-9. The entries A(i,j, k, l) shown in brackets next to the parse tree nodes (rules)
indicate that .the rule belongs to the corresponding matrix entry. Thus, for instance,
rule R1 belongs to A(1, 2, 4, 6). During the marking subphase, the rules would be
marked in the PEs listed below the figure, at the specified reverse sweeps. According
to Proposition 5.1, these rules are output in the order R2, R1, R3, R, that is also the
order they are output by the sequential algorithm SEARCH-FOR-PARSE (see Proposi-
tion 2.1).

We now state the following fact that allows us to perform the routing required to
output,the rules in the desired order.

FACT 5.3. In any reverse sweep and for fixed a and b:
(1) There is at most one marked adjunction rule in the subarray of primary

processors P(a, b, *, b, b).
(2) If there is a marked adjunction rule in subarray P(a, b, *, b, b), then there are

no marked adjunction rules in subarrays {P(a’,b’,*,b’,b’)la’<a,b’>-b} and
{P(a’, b’,*, b’, b’)[a’> a, b’<-b}.

Fact 5.3(1) implies that if in any reverse sweep s there is a marked adjunction
rule in primary processor P(a, b, c, b, b), this rule canbe sent to processor P(a, b, O, b, b)
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R [A(0,4,4,9)]

R1 [A(1,2,4,6)] R3 [A(6,8,9,9)]

R2 [A(1,1,4,6)]

Sample parse: R2, R1, R3, R.

Re [A(0,4,4,9)] is in P0(9,9,5,9,9) at reverse sweep 0

Rle [A(1,2,4,6)] is in Po(5,3,2,3,3) at reverse sweep 3

R2e [A(1,1,4,6)] is in Po(5,2,2,2,2) at reverse sweep 3

R3e [A(6,8,9,9)] is in P1(3,2,2,2,2) at reverse sweep 0

FIG. 5.4. A sample parse tree for a string of length n--9.

via the [0, 0,-1, 0, 0] links without "colliding" with any other rule (since there is at
most one).

Now consider the rules reaching processors {P(a, b,O, b, b)lO<-b<-a<-_s} at
reverse sweep s. By Fact 5.3(2), the rules in these processors can only have the pattern
shown in Fig. 5.5. In particular, if the processor labeled "*" contains a marked

a

0

2

4

5

0 1 2 3 4 5

X

X X

X

FIG. 5.5. Interpretation of Fact 5.3(2).
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adjunction rule, then there can be no marked rules in the shaded areas. This implies
that there can be at most one rule in any column of the subarray and the rule, when
read from left to right, satisfies Proposition 5.1 (2) and (3).

The following steps can thus be performed. At each reverse sweep s, every processor
P(a, b, O, b, b) containing a marked adjunction rule sends the rule to processor
P(0, b, 0, b, b) via the [-1, 0, 0, 0, 0,] links, then to processor P(0, b, 0, 0, 0) via the
[0, 0, 0, -1, -1] links. Processor P(0, b, 0, 0, 0) in turn outputs any marked adjunction
rule it receives. The rules output by the linear subarray P(0, b, 0, 0, 0)[0 -< b-< n} thus
satisfies Proposition 5.1(2) and (3) when read off starting from P(0, 0, 0, 0, 0) to
P(0, n, 0, 0, 0).

For example, in the case of the parse tree of Fig. 5.4, rule R3, which is marked
in processor P(3, 2, 2, 2, 2) at reverse sweep 0, is first routed P(3, 2, 0, 2, 2), then to
P(0, 2, 0, 2, 2), and finally to processor P(0, 2, 0, 0, 0) where it is output. The other
rules are routed in a similar way. Fact 5.3 guarantees that each rule reach its final
destination without colliding with any other rule.

Finally, if the outputs of the subarray {P(0, b, 0, 0, 0) 10=< 0<= n} are listed in reverse
order of sweeps, (i.e., insert the rules output in reverse sweep s before those output
in reverse sweep s- 1), the resulting sequence of rules constitutes a complete parse of
the input string (see Proposition 5.1(1)).

Remark 5.1. With an additional number of linear steps, the rules output by the
subarray can in fact be pipelined so that they are output in the desired order from
processor P(0, 0, 0, 0, 0). Intuitively, this can be done because although we are observing
O(n 2) outputs from the subarray, there are at most n marked adjunction rules that
actually appear and the rest are dummy outputs. We omit the details, as the technique
is similar to that described in [CHAN87].

Counting the time for the recognition phase, the total time complexity of the
parallel algorithm is easily shown to be (12n + 1)= O(n), where n is the length of the
input string.

6. Conclusion. We have presented an optimal linear-time parallel parsing
algorithm for tree adjoining languages, a class that properly includes all context-free
languages. The parallel model is quite simple in that it consists of finite-state processors
whose function and size are independent of the length of the input.

We also mention that TALs can be shown to be NC2) (=class of languages
recognizable by O(log2 n)-time bounded and O(log n)-space bounded alternating
Turing machines (ATMs)) by extending the CFL recognition algorithm on an ATM
given in [RUZZ80]. However, just like the latter, converting the ATM to a uniform
Boolean circuit or a PRAM results in an inordinate increase in the number of processors
(n 2 processors in O(log2 n) time seems the best so far). The same is true in fact for
CFLs for which the best known PRAM algorithm operates in O(log n) time using n6

processors [RYTT85].
It is thus an interesting open question whether TALs (or even CFLs) can be

recognized in sublinear parallel time using a near-optimal number of processors.

7. Appendix. In this appendix we sketch the procedure for deriving the routing
table (Table 4.1), and show that procedures UPDATE-REGISTERS and ROUTE-
REGISTERS (that make use of the table) properly update and route the values of
data registers of every active PE. To do this, it is convenient to state the "inverse
mapping" of Lemma 4.1.

DEFINITION. For integers s, a, b, c, d, e, and x, y, z {0, 1}, define

I=s-a,x{O, 1},
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Mxy lS_ a b + c

s+b-c-e

Pxz s+c-e
s-b+e

s-a+b-c ifx =0,
]x

s-a/c ifx= 1,
s c if x 0,

Kx= s-b+c ifx=l,
Lx=s, xs{O, 1},

s-a+b-d ifxs{O, 1}andy=.O,
s-a-c+d if x=Oand y= l,

if x= 1 andy 1,
if x 0 and z 0,
if x 1 and z 0,
if x s {0, 1} and z 1.

LEMMA A1 (Inverse Mapping of Lemma 4.1). Atforward sweep s, the data registers
of an active PE Px(a, b, c, d, e) have the following values:

(1) gl[y, z].left A(Mxy, Jx, Kx, Pxz),
(2) gl[y, z].right A(Ix, Mxy, Pxz, Lx),
(3) g2[y].left B(I,,, Mxy),
(4) g2[y].right A(Mxy, Jx, Kx, Lx),
(5) Ra[z].left A(Ix, Jx, Kx, Pxz),
(6) ga[z].right B(Pxz, Lx).
DEFINITION. Link [Aa, b, Ac, Ad, Ae] ([ha, Ab, Ac, Ad, Ae]+) is said to cover data

register r of PE Px(a, b, c, d, e) if and only if the value stored in this register is the
same as that stored in register r of Px(a- Aa, b- Ab, c- Ac, d- Ad, e- Ae) at forward
sweep s (s 1).

The routing table (Fig. 4.1) is essentially a list of links that cover the data registers
of a PE. We now show how this can be derived. We only illustrate the derivation for
data registers Rl[y, z].left; the links covering other data registers can be obtained
similarly.

Consider data registers Rl[y, z].left of an active PE Px(a, b, c, d, e), such that x,
y, z {0, 1}. Suppose that x =y z 0. Then by Lemma A1, at forward sweep s => a,
register RI[0, O].left of Po(a, b, c, d, e) contains A(Moo, Jo, Ko, Lo). We wish to find
an active PE Po(a Aa, b Ab, c Ac, d Ad, e Ae) such that at forward sweep s As,
register RI[0, O].left of this PE also contains A(Moo, Jo, Ko, Lo). By Lemma A1, it
should be the case that

Moo= s- a + b- d (s-As)-(a-Aa)+(b- Ab)-(d-Ad),
Jo s-a+b-c=(s-As)-(a-Aa)+(b-Ab)-(c-Ac),
Ko=s-c=(s-as)-(c-ac),
Poo s+ b c- e (s- as) + (b ab) -(c- ac) -(e- ae),

or equivalently,

As Aa + Ab Ad 0,
As Aa + Ab Ac =0,
As -Ac =0,
As +Ab-Ac -Ae=0,

where As,..., Aes{0, 1} but not all zero.
The solutions (As, Aa, Ab, Ac, Ad, Ae) to the above system of equations are

(1,1,1,1,1,1), (1,0,0,1,1,0), and (0,1,1,0,0,1) that correspond to links
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[1, 1, 1, 1, 1]/, [0, 0, 1, 1, 0]/, and [1, 1, 0, 0, 1], respectively (recall that a superscript
"+" denotes a sweep delay).

Each of the above links covers register RI[0, O].left of an active PE Po(a, b, c, d, e)
only if the adjacent PE associated with the link is also active (otherwise, the latter by
definition cannot route items stored in its registers). We now determine under what
conditions this property holds.

Consider first link [1, 1, 1, 1, 1] / that represents data being forwarded from PE
Po(a 1, b 1, c 1, d 1, e 1) at forward sweep s 1 to PE Po(a, b, c, d, e) at forward
sweep s. If both PEs are to be active, then by Fact 4.2 it should be the case that

(1) (b<-a<-s)(b-l <-a-l <-_s-1),
(2) (b <-2c_2b)=:>(b- 1 _-<2c-2_-<2b-2),
(3) (b+c<=2d_-<2b)(b+c-2<-2d-2_-<2b-2), and
(4) 2b-c<-_2e<-2b)==>(2b-c-1<-2e-2<-2b-2).

It is easy to see that conditions (1) and (3) are always true. On the other hand, (2) is
true except when 2c b and (4) is true except when 2e 2b-c. It follows that link
[1, 1, 1, 1, 1]+ covers register RI[0, O].left of PE Po(a, b, c, d, e) except when 2c- b or
2e=2b-c.

Similarly, it can be shown that link [0, 0, 1, 1, 0]/ covers the register except when
s a or 2c= b, b+l or 2d-b+c or 2e=2b-c. Observe, however, that anything
covered by this link is also covered by 1, 1, 1, 1, 1]+. Thus, [0, 0, 1, 1, 0]+ is redundant
and can be eliminated. Finally, [1, 1, 0, 0, 1] covers the register except when b- c or
b d. Thus, the two links {[ 1, 1, 1, 1, 1]+, 1, 1, 0, 0, 1]} together cover the register except
when (2c b or 2e= 2b-c) and (b c or b d), or equivalently, (b c=0) or (2c b
and b d) or (2e-2b-c and (b c or b-d)).

Proceeding in exactly the same manner, one can determine the links covering all
other data registers Rl[y, z].left of Px(a, b, c, d, e) for other values of x, y, and z, and
under what conditions the coverings hold. These are summarized in Table A1. Observe
that (except for the last column) Table A1 is exactly the routing table given in
Table 4.1.

The exceptions in the last column of Table A1 imply that certain data registers
of certain PEs may in fact be not covered by any of their associated links. However,
recall that procedure UPDATE-REGISTERS operates in such a way that any item
targeted for data register r of PE P is placed in all registers r’ eq(P, r). Thus, it is
sufficient to show that for any data register, there is some register in the same equivalence
class that is covered by some link. The register equivalence classes are given in Fact
4.1, which we restate here for quick reference.

FACT 4.1. Let Px(a, b, c, d, e) be a PE. Then at any forward sweep:
(1) If (x=0 and 2d=b+c) or (x=l and 2d-2b-c), Rl[O,z].t=Rl[1, z].t

and R2[0]. R2[ 1]. t, where { left, right}.
(2) If (x =0 and 2e =2b-c) or (x 1 and 2e b+c), Rl[y, 0].t Rl[y, 1].t and

R3[0]. R3[ 1 ]. t, where { left, right}.
(3) If 2c b, every data register r of Px(a, b, c, d, e) has the same contents as data

register r of P(a, b, c, d, e).
For convenience, we shall call a PE satisfying condition (i) above as a type (i) PE.
First observe from Table A1 that regardless of its type, an active PE Px(a, b, c, d, e)

satisfying b c 0 does not have acovered register. However, since d, e <- b these PEs
are necessarily of the form P(a, 0, 0, 0, 0) and hence are PEs that compute boundary
items (see procedure RECOGNIZE) and do not require data from adjacent PEs.
Similarly, Table A1 states that register R 110, 1].left of any PE satisfying b- d- e (a
primary PE) is not covered. However, for a primary PE, RI[0, 1].left is the register
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TABLE A1
Links covering registers Rl[x, y].left of PE P.(a, b, c, d, e).

Po(a,b,c,d,e)

Register Links Exceptions

RI[0, 0]. left [1, 1, 1, 1, 1]
[1,1,0,0,1]

RI[0, 1]. left [1, 1, 1, 1, 0]
[1, 1,0,0, 1]

gl[1,0], left [1, 1, 1, 1, 1]
[1, 1,0, 1, 1]

gl[1, 1]. left [1, 1, 1, 1,0]
[1, 1,0, 1, 1]

(b= c=0)+2. (b c)+2. (b d)+3. (b=d)

(b=c=O)+(b=d=e)+3 (b=d)

(b c =0)+ 2+ 3+2. (b=c)

(b c =0)+ 3+ (b=e)

P,(a, b, c, d, e)

Register Links Exceptions

RI[0, 0]. left [1, 1, 0, 1, 1]
[1,1,1,0,1]

RI[0, 1]. left [1, 1, 0, 1, 0]
[1,1,1,0,1]

RI[1, 0]. left [1, 1,0, 1, 1]
[1,1,1,1,1]

RI[1, 1]. left [1, 1, O, 1,0]
[1, 1, 1, 1, 1]

(b=c=O)+2.3+2.(b=d)

(b=c=O)+(b=d e)+3. (b=e)

(b c=0)+ 2+ 1. (b c)+2 3

(b c--0)+ (b c)+ (b e)+3. (b=e)

Legend:
l=(x=0andb+c=2d) or(x=l and2b-c=2d)
2=(x=0 and 2b-c=2e) or (x= and b+c=2e)
3--(2c=b)

assigned to the A-item computed by this PE during the sweep and hence should not
be covered.

The rest of the exceptions listed in Table A1 can be handled by considering PEs
of different types and applying Fact 4.1. For instance, suppose that the PE is type (1).
Then, from Table A1, registers to RI[0, z].left, z {0, 1}, of the PE are not covered.
However, by Fact 4.1(1), RI[1, z].left is equivalent to RI[0, z].left, which is covered.
Since UPDATE-REGISTERS places the value targeted for a register in all registers
in the same equivalence class, it is clear that for a type (1) PE, registers RI[1, z].left
would also be updated. A similar analysis can be carried out for other PE types.

To summarize, using Fact 4.1, the following proposition can be proved.
PROPOSITION A1. Let P Px(a, b, c, d, e) be an active PE. For every data register

r of P, there is at least one register r’ eq(P, r) such that some link in the routing table
covers r’, except for the following cases:

(1) If P is such that b c d e- O, then no data register of P is covered.
(2) If P is such that b=d-e, then data registers in the sets eq(Rl[O, 1].left),

eq(Rl[1, O].right), eq(R2[O].right), and eq(R3[1].left) are not covered.
(3) IfPis such that a b c d e, then data registers in the sets eq(R3[O].right)

if x O) or eq R2[ 1 ]. left) if x 1 are not covered.
Part (1) corresponds to PEs computing boundary items; such PEs do not receive data
from adjacent PEs. Part (2) corresponds to primary PEs; the value stored in the registers
listed is the A-item computed within the PE during the sweep. Finally, (3) corresponds
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tO PEs of the form Px(a, a, a, a, a) that compute B-items; the value stored in the
registers listed is the B-item computed within the PE. (See procedure RECOGNIZE
for details.)

Proposition A1 implies that the procedures UPDATE-REGISTERS and ROUTE-
REGISTERS properly updates and routes the data registers of every active PE. We
also mention the fact that ROUTE-REGISTERS may actually forward items from an
active PE to an inactive PE. However, since by definition an inactive PE does not
participate in any computation or data routing, items received by inactive PEs are
simply discarded.
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COMPLEXITY AND UNSOLVABILITY PROPERTIES OF NILPOTENCY*

I. R. HENTZEL" AND D. POKRASS JACOBS$

Abstract. A nonassociative algebra is nilpotent if there is some n such that the product of any n
elements, no matter how they are associated, is zero. Several related, but more general, notions are left
nilpotency, solvability, local nilpotency, and nillity. First the complexity of several decision problems for
these properties is examined. In finite-dimensional algebras over a finite field it is shown that solvability
and nilpotency can be decided in polynomial time. Over Q, nilpotency can be decided in polynomial time,
while the algorithm for testing solvability uses a polynomial number of arithmetic operations, but is not

polynomial time. Also presented is a polynomial time probabilistic algorithm for deciding left nillity. Then
a problem involving algebras given by generators and relations is considered and shown to be NP-complete.
Finally, a relation between local left nilpotency and a set of natural numbers that is 1-complete for the class

1-I2 in the arithmetic hierarchy of recursion theory is demonstrated.

Key words, nonassociative algebra, nilpotent, solvable, NP-complete, power associative, arithmetic
hierarchy, recursively enumerable, recursive, 1-complete
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1. Introduction. A nonassociative algebra (or simply an algebra) over a field F is
a set A together with two binary operations, and /, such that (A, /) is a vector space
over F,

(1) x* (y+z) =x* y+x* z,

(2) (y+z), x=y, x+z, x,

(3) a(x * y) (ax) * y x * (ay)

for all x, y, z A, and a F. The operation * is not necessarily associative. Throughout
this paper we shall suppress the by writing, for example, xy instead of x y.

If B and C are arbitrary sets in a nonassociative algebra A, then by BC we usually
mean the subspace spanned by all elements in {bclb B, c C}.

For each integer n -> 1 let us denote by A the subspace spanned by all products
of n (not necessarily distinct) elements in A, in all (1/n)(2,n_-2) associations. Let us
now define A()= A>= Ata= A. We then define, for each n => 1,

A(n+l) A(n)A(n) A<n+l> A<n>A + AA<n>, Atn+l] AAIn

It is clear that the A and A<n> are descending chains of ideals, the AIn] is a descending
chain of left ideals, and the ACn is a descending chain of subalgebras.

If for some n, A" {0}, we say A is nilpotent. In this case, the minimal such n for
which A is zero is the index of nilpotency. If AIn]= {0}, A is left nilpotent, and if
ACn ={0}, A is solvable. (The reader will note that, unfortunately, in this paper
"solvability" carries two quite different meanings, one being the above algebraic
definition and the other being from logic.) The index of left nilpotency and index of
solvability are defined in an analogous manner to the index of nilpotency. It is easy
to see that for all => 1

Ai) A[i] A

* Received by the editors January 20, 1988’ accepted for publication (in revised form) March 9, 1989.
t Department of Mathematics, Iowa State University, Ames, Iowa 50011.
t Department of Computer Science, Clemson University, Clemson, South Carolina 29634-1906.
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and so nilpotency implies left nilpotency, which implies solvability. It is also easy to
show that for each i_-> 1,

(4) A2’-’_ A Ai.
The second containment in (4) follows by induction on since A<> A<->A + AA
Ai-A+AA- A. The first containment in (4), namely A2’-’_ A<, is also obtained
by induction on i. When i= 1, in fact, equality holds. Assuming we have
for some >- 1, consider now any x A:’. Then x is a linear combination of a finite
number of products pq where p s A and q At, for some s and in which s + 2i.
Either s _-> 2- or t_>-2- In the first case, we have pq ASA c A2’-IA A<OA
In the second case we have pq AA<i>

_
A<i+>, and hence A2’ _.c A(i+1, completing the

proof.
An algebra is called power associative if each element generates an associative

subalgebra. In such an algebra we say an element x is nil if there exists some k,
depending on x, such that xk= 0. A power associative algebra is called nil if each
member is nil. This is equivalent to saying that the subalgebra generated by x is
nilpotent. Note that in power associative algebras, nillity is implied by solvability, and
hence by nilpotency and left nilpotency.

Nilpotency and its related properties are important to the theory of algebras, since
the radical of an algebra, under suitable conditions, is nilpotent. These properties have
received thorough mathematical investigation.

The theory of complexity has been applied to both associative and nonassociative
algebras [4], [9]. The purpose of this paper is to investigate the complexity and degree
of unsolvability of certain questions about nilpotency. Our paper is organized so that
the computationally easier questions are studied first. For example, the next section
deals with questions about finite-dimensional algebras that can be answered by
algorithms performing a number of operations polynomial in the dimension of the
algebra. We then consider a probabilistic approach to nillity and nilpotency. The next
section deals with an NP-complete question. Finally, our last section classifies an
unsolvable problem by proving it to be 1-complete for the class 1-I2 in the arithmetic
hierarchy of recursion theory.

2. Polynomially answerable questions. In this section all algebras are assumed to
be finite-dimensional over a fixed field F. We assume that F is either a finite field or
is Q, the field of rationals.

Given a finite-dimensional algebra A over F, multiplication on A is usually
described by specifying a basis v, , v and then giving a table that gives the product
of any two basis elements. The table consists of all 8k such that vv k= kVk. The

tk’S are called structure constants. Given these, the multiplication of two vectors from
A can be computed by applying laws (1), (2), and (3) to arbitrary linear combinations
of the basis vectors.

Each instance of an n-dimensional algebra is therefore encoded by a sequence of
n 3 constants. In the case of an algebra over Q we assume that the rational constants
are given as pairs of relatively prime integers. Now let P be an algorithm for solving
a decision problem for finite-dimensional algebras encoded in this way. If x is a string
that encodes an algebra.we let ]x] denote the length of x. Usually the complexity of P
is measured as a function T(n), indicating the maximum running time of P over all
encodings of length n. Initially, in the algorithms described in Theorems 1 and 2 below,
we deviate from this approach in two ways.

First, for the two algorithms that follow, we measure their running times as a
function of the dimension of the algebra A. Note that for algebras over a finite field,
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Ixl is always O(rt 3) where n is the dimension of the algebra that x encodes. However
for Q this is not true since arbitrarily long strings can encode algebras of the same
dimension.

Second, we initially calculate the running time of an algorithm by estimating the
number of arithmetic operations (addition, subtraction, multiplication, or division)
that occur in F. We caution that this is somewhat misleading since, as we will see,
over Q it is possible for an algorithm to perform only a polynomial number of
operations, and yet require an exponential amount of time as a function of its input
length. However when we use the term polynomial time we use it in its usual sense
and we will carefully distinguish between a polynomial time algorithm and one for
which merely the number of arithmetic operations is polynomial.

Let us now make the following observations. If vi and v are basis elements of an
n-dimensional algebra, and/3 F, then computing vivj takes n multiplications in F.
If w is an arbitrary vector, say w Y.= avi, then multiplying vw Y= avvi takes
n 2 multiplications and at most n 2 additions, and so O(n 2) operations in all. Finally,
if u=Y av and w=fl.jv. are arbitrary vectors then uw== aviw takes O(n 3)
arithmetic operations. It follows that, in general, k arbitrary vectors can be multiplied,
regardless of the association, by using O((k-1)n3) operations.

The algorithm described below will serve as a template throughout this section.
THEOREM 1. Solvability of an n-dimensional algebra A can be decided using O( n6)

arithmetic operations.
Proof Assume A is solvable. Then if A(;) {0} we must have A(+) properly

contained in A) and so dim (A(+)) < dim (A().). Hence an n-dimensional algebra is
solvable if and only if A(n+)= {0}. The following algorithm computes a basis B for
A(n+). As the loop finishes each iteration for 2,. ., n + 1, a basis for A() has been
found.

Initialize B to the basis for A.
fori:= 2 to n+

(1) Let C ={bb’lb and b’ B}.
(2) Redefine B to be a basis for the span of C.

Note step (1) in the loop involves at most n 2 multiplications of arbitrary vectors. Since
each such vector multiplication takes O( n 3) operations, step 1 takes O( n 5) operations.
In step (2) the basis for C can be found by reducing an m x n matrix, where m-<_ n 2,
to row canonical form. This can be done with O(n4) operations, and so step (1)
dominates the loop. Since the loop iterates n times, the algorithm performs O(n6)
operations.

THEOREM 2. Nilpotency of an n-dimensional algebra can be decided in O(n)
operations.

Proof By relation (4), an algebra is nilpotent if and only if A= {0} for some i.
By a dimensionality argument similar to the one used in the case of solvability, it
suffices to compute a basis B for A+. An algorithm to compute B can be obtained
from the previous algorithm by replacing its step (1) with

(1) Let C {bvi, vblb B}

where the v are assumed to be the original basis elements of A. The construction of
C involves the multiplication of at most 2n vectors. This time, however, the multiplica-
tion involves a full vector b with a basis element v, a process taking only O(n2) field
operations and so constructing C takes O(n4). The remainder of the analysis is similar
to that of the previous algorithm. 13
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There are some important distinctions between the two algorithms presented so
far. First, the algorithm of Theorem 1 can be easily modified to compute the index of
solvability of A. Indeed the algorithm need only check for the first for which C is
zero. On the other hand, while the algorithm of Theorem 2 can be modified in a similar
way to detect the minimal for which A= {0}, it apparently cannot tell the minimal
for which A= {0}.
A second distinction between the two algorithms concerns their computational

complexity. As noted earlier, for finite fields the length of an input string x is always
O(n3) where n is the dimension of the algebra that x encodes. Furthermore, for a
finite field the operations each are bounded by a constant amount of time. Since the
algorithms of Theorems 1 and 2 are dominated by the time spent performing arithmetic
operations, Theorem 3 follows.

THEOREM 3. Over a finite field, nilpotency and solvability can be decided in poly-
nomial time. In the latter case, the index ofsolvability can also be calculated in polynomial
time.

Let us now consider what happens in the above algorithms when F Q. In the
first algorithm, testing for solvability is performed by repeatedly "squaring" the sub-
algebra A(, n times. Since squaring a number (represented in base 2, say) approxi-
mately doubles the length of its representation, structure constants of length k can
produce coefficients of about length k2". The following simple examples illustrate this.
For a given n, consider the n-dimensional algebra with basis v, v2,’", v, where
vv 2v with all other products zero. The first algorithm is easily seen to experience
exponential growth since the encodings of its numbers become exponentially long.

Next, consider the algorithm of Theorem 2. We will prove that for F= Q its
complexity is bounded by a polynomial in the length of its input. However first let us
make the following simplifying observation. IfA is an algebra having structure constants
{6Ok} and 0 c Q, define A to be the algebra with the same basis, but having structure
constants {C60k}. It is easy to show that A is nilpotent if and only if Ac is nilpotent.
Consequently, by multiplying all structure constants of A by a common multiple of
their denominators, we achieve an algebra A in which all structure constants are
integers. If x is a string which encodes A and x is a string encoding A, then we have
[x =< Ix[, and so there is no loss in assuming all algebras have integer structure contents.

If w is a vector in an algebra over Q with basis {v v,}, and w=" nvgi=1

where the F are integers, let us agree that  ll- max {lil}, the largest absolute value
of the coefficients.

LEMMA 1. Let A be an n-dimensional algebra over Q with integer structure constants

{0} and let rn =max {[[}. Let be the product of 1 factors, each a basis element.
Then

Proof This follows immediately from two observations" First, for each basis
element vi, [Ivill=l. Second, for arbitrary vector u and w we have

THEOR 4. For finite-dimensional algebras over Q, nilpotency can be decided in
polynomial time.

Proof We claim that the algorithm of Theorem 2 runs in time polynomial in its
input length when F Q. Let A be an algebra represented by a string x. If A has
dimension n, then n <Ix]. By the observation above we may assume all structure
constants of A are integers. Let max be the largest absolute value of all such integers.
The algorithm repeatedly executes steps (1) and (2), n < Ix[ times. Therefore it suffices
to show each of these steps requires only a polynomial in Ix[ amount of time. Note
that the members of C in step (1) are all products of at most n + basis elements. By
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Lemma 1 .the absolute value of their coefficients are bounded by tl
2n max and hence

have length

O(log (n2n maxn)) O(n log (n)/ n log (max)) <- O(]x]2).
Note that step (2) need not change the values of coefficients. It can be accomplished
by selecting a maximal linearly independent subset of C. This can be done by consider-
ing the members of C as rows and forming the matrix of all such rows. We then reduce
this matrix to a "row canonical form," but without interchanging any rows. The nonzero
rows that remain will be a basis for the row space. Moreover the original rows
corresponding to these nonzero rows will also be a basis. This requires applying
Gaussian elimination to an m x n matrix, where m <2n2, and all coefficients have
length O(Ix12). Now, we can show there exists a polynomial p(m, n, s) of three variables
such that any m x n matrix with rational coefficients all of length less than or equal
to s can be reduced in time p(m, n, s). Hence our step (2) can be performed in time
roughly p(2n2, n, ]x]2), which is bounded by a polynomial in ]x].

Note that the index of left nilpotency can be computed by replacing step (1) from
Theorem 1 with

(1) Let C={vblb B}.

By an argument identical to that of Theorem 4 we have Theorem 5.
TIaEORE 5. Over either afinitefield or Q, left nilpotency can be decided in polynomial

time and the index of left nilpotency can be computed in polynomial time.
Recall that the O(n) algorithm of Theorem 2 decided nilpotency, but it did not

compute the the index of nilpotency. For some additional running time, we can also
compute the index.

THEOREM 6. Over either afinitefield or Q, the index ofnilpotency ofan n-dimensional
algebra can be computed with O(n7) operations and in polynomial time.

Proof. We construct a list of sets B1, B2,’’ ", B+I where each Bi is a basis for
Ai. The algorithm will successively calculate Bi using the previously calculated Bj’s
where j < i.

Initialize B1 to the basis for A.
for i:= 2 to n/l

(1) Find all products in B1Bi-1, BEBi-2, Bi-IBI
(2) Find a basis Bi for all these vectors.
(3) If B {0} then exit.

Here BjBk means the finite set of vectors formed by multiplying each member of Bj
by a member of Bk. Step (1) involves at most n- 1 products BjBk each calculable in
O(n 5) operations, and so it takes O(n6) operations. Step (2) involves reducing at most
tl vectors to a basis and can be done in O(n5) operations. The loop iterates at most
n times and so the algorithm needs only O(tl7) operations. Finally, the argument that
the algorithm runs in polynomial time, even over Q, is similar to the argument of
Theorem 4.

3. Nillity, left nillity, and a prolalfilistic approach. In this section we consider
algorithms for deciding nillity. Recall that our definition of a nil algebra applied only
to power associative algebras. Suppose we are given a power associative algebra, and
we wish to decide if it is nil. Note that in an n-dimensional power associative algebra,
an element x is nil if and only if x+1 0. For if x is nil, then it generates an associative
nilpotent finite-dimensional subalgebra, and its index of nilpotency is at most n + 1.
It follows that xn+l= 0. A remarkable theorem by Dedkov, however, states that if A
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is any finite-dimensional power associative algebra over a field of characteristic not
equal to 2, 3, or 5, having a nil basis, then A is nil [2]. This leads to an efficient test
for nillity" For each basis member x, merely check if xn/= 0.

What is the best way to compute xn+? If x is an arbitrary vector, then it is most
efficient to compute a power of x by repeated squarings"

2
X2, X X

since only about log (n) squarings are required, each taking O(n3) arithmetic
operations. However, if x is a basis element, then it is slightly faster to compute x"+

using the formula

x"+’= x(. x(x(xx)) ).

Here each multiplication involves a vector with a basis element, an O(n2) operation’.
Since there are n such operations, the cost is O(n3), rather than log (n)n 3. Finally,
since there are n basis elements to consider, we have Theorem 7.

THEOREM 7. In an n.dimensional power associative algebra over any field having
characteristic not equal to 2, 3, 5 nillity can be tested with O(n4) arithmetic operations.

Recall that an alternative algebra is one that satisfies the identities

(5) (xx)y-x(xy) =0,

(6) (yx)x-y(xx) =0

for all x and y. These algebras form an important generalization of associative algebras.
Although alternative algebras are not in general associative, the subalgebra generated
by any two elements is associative 10]. This implies that alternative algebras are power
associative, and therefore it is meaningful to speak of alternative nil algebras. If A is
an alternative (or, in particular, an associative) finite-dimensional nil algebra, then A
is nilpotent 10]. This property, namely that nil finite-dimensional algebras are nilpotent,
also holds for many other classes of algebras including Jordan algebras over fields of
characteristic not equal to two and others (see [10], [8]).

In associative algebras the concepts of solvable, left nilpotent, and nilpotent, are
obviously equivalent. However, as a matter of note, in alternative rings, the concepts
of nilpotent and left nilpotent are equivalent, but there exist solvable alternative rings
(which cannot be regarded as finite-dimensional algebras) that are not nilpotent [3].

It follows from Theorem 7 that for alternative algebras, Jordan algebras, and the
like, after ruling out a few bad characteristics, testing nilpotency takes O(n4) arithmetic
operations, an improvement over the O(n5) method of Theorem 2.

Unfortunately, when we are presented with an algebra, we do not know that it is
alternative or power associative, and so we cannot necessarily use Dedkov’s result.
The property of alternativity can be checked efficiently since it involves only two
defining identities of fixed size. But power associativity seems hard to check since it
says that for every x and for every k, all associations of k x’s are equal.

Let us therefore reformulate the concept of nil so that its definition does not
depend on power associativity. For any x, define Xtl]’- X and for -> 1 define X[i+I]’-

xxti. We now will call an n-dimensional algebra left nil if for each x e A, we have
xC"+ 0. It is clear that when A is power associative the notion of left nil coincides
with nil.

Assume now that A is any n-dimensional algebra over Q with basis {vi}, i=
1,..., n. We wish to decide if A is left nil. Since A may not be power associative, we
cannot rely on Dedkov’s result. The problem, therefore, appears hard. In the remainder
of this section we will demonstrate an efficient Monte Carlo algorithm.
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(7)

We first consider the identity

x"+ x( (x(xx)) o.
This equation holding for all x is equivalent to A being left nil. Now let a,..., an
be indeterminates and let us write x i= aivi to stand for a generic element in A.
We replace x in (7) by i= aivi, and multiply the expression. Using the structure
constants for A, we can simplify this to an expression of the form Yi=l 7-ivy. Here each
7-i is a degree n + polynomial in the variables eel,..., ten, with each term having
some combination of n + 1 a’s and a coefficient in Q. The algebra A is then left nil if
and only if each polynomial 7-i is zero.

Note that the monomials of a’s in each 7-i are those we would obtain were
we to simplify, using commutativity and associativity, the multivariate polynomial
(al +" "+ a,)n+ This polynomial has 2nn+) distinct terms. Therefore, explicitly con-
structing the polynomials 7-i in the manner described above, in order to decide left
nillity, is not efficient. Instead, we describe how’ each 7-i can be shown to be probably zero.

LEMMA 2. Let 7" be a polynomial over Q in n variables, c > O, and let I be a subset
of Q for which [II >-- c. deg (7"). Then if 7" is not identically zero, the number of elements
in I which are ,zeros of 7- is at most c-llI .

Proof See Corollary 1 of [11, p. 702] for the proof. Iq

Using the technique of Schwartz [11], we arrive at a probabilistic algorithm for
deciding if a polynomial 7- is identically zero as follows: First choose I to be any set
of elements from Q of cardinality 2 deg (7-) 2(n + 1). We then select a random n-tuple
Y (Y, ",Yn) from I I . x/, assign each Yi to ai, and then evaluate a polynomial
7". This procedure is repeated at most N times. If any of the evaluations produces a
nonzero result, then 7" is not identically zero. On the other hand, if all evaluations are
zero, then by Lemma 2, with c 2, 7" is identically zero with probability at least 1 -2-u.

In our situation, we really are interested in deciding if all n ofthe ’i’s are identically
zero. Hence we apply the above algorithm to each 7"i. After selecting a random n-tuple
Y (Yl, ",Yn) we can evaluate 7"(Yl, , Yn) as follows. Let x "=1 yv. Now form
the sequence

X, X
[2]

X[n+l]

Then 7"(y,..., Yn) is the coefficient of vi in xt"+J. This is done up to N times for
each 7"i. If any one of the evaluations is nonzero, then (7) fails and the algorithm is
terminated. Otherwise, each 7" is identically zero with probability at least 1-2-u.

Now let e > 0 be some fixed small number (say 2-40o). For a given algebra of
dimension n, we choose N> log (n/e). We then test for left nillity in the manner
described above. If no nonzero vector is found for the 7-i’s then each 7-i is nonzero with
probability at most 2-u. The probability, therefore, that at least one of the 7"’s is
nonzero is at most n/2 u. By choice of N this is less than e.

Each of the N evaluations takes n multiplications of n-dimensional vectors, where
each multiplication takes about O(n3) operations. Hence for each 7"i, only O(N. n4)
or O(log(n)n4) operations are required. This is done for each 7"i, so altogether
O(log (n)n 5) operations are required. Finally, this algorithm runs in polynomial time.
The argument is straightforward and uses Lemma 1. Theorem 8 follows.

THEOREM 8. In an n-dimensional algebra over Q left nillity can be decided prob-
abilistically in polynomial time using O(log (n)n) operations.

4. An NP-complete problem. In this section we briefly consider the complexity of
problems involving algebras described by generators and relations. We assume in this
section our algebras are associative. Let G- {a,. , an} be a finite set of generators.
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Let W be a set of finite sequences of elements of G. That is, W consists of (associative)
words on G. We let ASC (G, W) denote the associative algebra generated by G subject
to the relations

(1) For all we W, w-0.
(2) For each any product containing two ai’s is zero.

It is clear that ASC (G, W) is nilpotent since the product of any n + 1 generators must
contain two ai’s for some i. Moreover, ASC (G, W) is a finite-dimensional algebra
since it is spanned by all words of length n + or less. Let G* denote the set of strings
over G. Now consider the following decision problem, which we call ASC:

INSTANCE. A finite set G, a finite set of relations W G* as above, and a positive
integer k.

QUESTION. Is the index of nilpotency of ASC (G, W) greater than k?
THEOREM 9. ASC is NP-complete.
Proof. It is clear that ASC is in NP since answering yes requires finding a sequence

of k + 1 distinct generators, no subsequence of which is zero by the relations imposed
by W. Recall that the problem DIRECTED HAMILTONIAN PATH asks, for a given
directed graph, whether there exists a path which visits each vertex exactly once. This
problem is NP-complete [5]. We now transform DIRECTED HAMILTONIAN PATH
to ASC. Let D V, E) be a directed graph with n vertices. We map this to an instance
ofASC in which G V, W {aa (aaj) is not E }, and k n. It is then straightforward
to verify that the algebra has index of nilpotency greater than k if and only if the
directed graph has a Hamiltonian path.

5. Unsolvability and local left nilpotency. In recursion theory the arithmetic
hierarchy is defined as follows. Let Eo be the class of all recursive subsets of natural
numbers. For n-> 1, En is the class of all sets that are A-recursively enumerable for
some A En-1. That is, a set B is a member of Zn if there is an oracle program that
can enumerate all members of B by making queries of the form "n A?," for some
set A Xn-1. For each n we also define the class of complements IIn {N A[A
(See [1] or [12].)

Recall that a reducibility is a transitive reflexive binary relation. An important
example is 1-reducibility, a relation on the class of subsets of the natural numbers. If
A and B are sets of natural numbers we say A is 1-reducible to B (written A --<1 B) if
there exists a 1.1 recursive (i.e., computable) function f on N such that n A if and
only if f(n) B. If F is a class of sets we say that B is 1-complete for F if B F and
A --<1 B for all A F. The purpose of this section is to describe a 1-complete set for
the class H2 and explain its connection to nilpotence.

For the remainder of this section we assume that F is a fixed field, either finite or
countably infinite. If F is infinite we assume that its elements and operations can be
described effectively. That is, we assume that there is a 1-1 correspondence that encodes
the elements of F with the natural numbers, and there exists an algorithm (on the
encoded elements) to compute each field operation. Clearly, a finite extension of Q
has this property. From here on, we shall identify a member of F with the number
that encodes it.

Next, let g be any 1-1 onto recursive function from N to the set of all finite
sequences in F:

g(m)=(ao," ", an), aiF.
Also let (x, y) be any recursive 1-1 onto map from N x N to N for which x, y _-< (x, y).
(For example, (x, y)= 2’(2y + 1)- 1 will do.) The maps g and (x, y) are thought to be
fixed.
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Let us now fix a countably infinite set of indeterminates V {vi}, 0, 1,. , to
serve as a basis for the vector space A over F of all linear combinations of finitely
many vi’s. Let f be a partial recursive function on N. Then f defines a partial function
from V V to A in the following way. For each and j .for which f((i,j)) is defined
we may let

(8) vv
k=l

where g(f((i,j)))= (Cro,.’’, ,or,). This mapping is not necessarily 1-1. For example, if
g(ml) (a, ), g(mE) (a,/3, 0), (il,j) m, (iE,jE) mE, then v,,vj, v2vj2. If f is
recursive, this defines a multiplication table for an infinite-dimensional algebra with
basis V.

We call an algebra with basis V computable if it can be obtained from some
recursive function f in the above manner. Note that for multiplication to be defined
on all pairs of basis elements it is necessary that f be recursive and not just partial
recursive. We shall write Ay for this algebra.

Now let bo, b,. be a standard numbering of the partial recursive functions
on N. (Each bi is the partial recursive function computed by the ith Turing machine.)
We write b,(j)’ to mean b,(j) is undefined, and we write b,(j)$ to mean it is defined.
Also, we write bn.(j)$ to mean that the nth Turing machine computes bn(j) in less
than or equal to steps.

An algebra is called locally left nilpotent (lln) if every finitely generated subalgebra
is left nilpotent. That is, for each subalgebra B generated by a finite set, there exists
a k, depending on B, such that XI(X2( (Xk_lXk) )) 0 for all xi B. We now define

LLN { n lb is recursive and A6,, is lln}.

Our goal is to classify LLN in terms of the arithmetic hierarchy.
Let W(X1, X2,’", Xt) be a nonassociative word involving variables, and let

f--b be a partial recursive function. Since f may not be recursive, we must clarify
what we mean by the product of v’s computed by f:
(9) W(v,, v2," v,).
The word (9) is expanded in the usual way by starting with the innermost pairs of v’s
and applying equation (8). Whenever a product

i=0 =0

must be computed, (8) is only applied to numbers (i, j), 0 and O. This procedure
defines a partial mapping that we call the product computed by f. We now formally
define the number of computational steps taken by f to compute the product (9). If
deg (W) 1, then f requires zero steps to compute (9). If deg (W) 2 then (9) is of
the form v vi2, and the number of steps f requires is the number of steps the nth Turing
machine requires to compute b((il, i2)). For deg (W)> 2, we write (9) as

R (vii, vi:," ", vi,) S(vi,, vi2," ", vi,).
Assume R(ve, v: v,) is defined and equal to Y" ...,

i=0 aivi, and S(vi, ve, vi,) is
defined and equal to Yjo/3jv. Then the number of steps required by f to compute (9)
is the sum of the number of steps to compute R(vi,, vi:,’", vi,) plus the number of
steps to compute S(vi,, v2,..., v,) plus the number of steps to compute vv for all
ai O and/3.0.
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Given these formal definitions we now define a predicate P(n, k, m) on N x N x N
as follows.

There is some t, 2<=t<=m, such that each right associated product
vil(vi2(. (vi,_,v,). )), where all ij =< k, is (1) computed by , in at most rn steps
and (2) equals zero.

Note that since there are only a finite number of such left associated products to check,
P(n, k, m) is a recursive predicate.

LEMMA 3. LLN {n Ifor all k, there exists an m, such that P(n, k, m)}.
Proof. Let n LLN and set f= ,. Then f is recursive and Ay is locally left

nilpotent. Let k be given. Let B
_
Ay be the subalgebra generated by Vo,’", Vk. By

assumption, B is left nilpotent. This implies Btt]= {0} for some t. Consider all left
associated products having factors from {Vo,"" ", Vk}. Each can be computed by f
in a finite number of steps. Define rn to be the largest of all such numbers. Then
P(n, k, m) is true.

Conversely, assume n is a member of the right side of the equality. We claim
n LLN. First note that f= is recursive: for any k we may find and j such that
k=(i,j). By assumption, there exists an rn such that P(k,m,n). Hence
v(v(... (vvj)...)), since i, j =< k. This implies f(k),. Second, we claim Ar is lln. For
let B

_
Af be the subalgebra generated by bl, , br. Each b is a linear combination

of finitely many vi’s. Let k be the largest such subscript. Let B1 be generated by
Vo,’", Vk. Then B__. B1. Since P(k, m, n) for some m, B1 is lln. Hence B is lln
also. El

THEOREM 10. LLN is 1-complete for 1-I2.
Proof. To prove this it suffices to show (1) LLN II2, and (2) A _-< LLN for some

set A already known to be 1-complete for II2. By a well-known characterization of the
arithmetic hierarchy (see [1]), a set is in II2 if it can be written in the form

{n Ifor all y, there exists a z, P(n, y, z)}

where P is a recursive predicate. By Lemma 3, LLN I/2. Now let TOT= {nl,, is
recursive}. It is known that TOT is 1-complete for II2. We will show TOT-<1 LLN,
which will finish the proof. For each n N define the algebra R so that for all i, j

0 if ,.j(i),
) V

v+j otherwise.

That is, vvs is zero if the nth Turing machine halts, within j steps, with input i.

Otherwise, viv is v/. Clearly, each R is a computable algebra. It is also clear we
have a 1-1 recursive map n F(n) such that for each n N, R. A6.,,. It now suffices
to show that n TOT if and only if F(n) LLN (i.e., R is locally left nilpotent).

Assume first that n TOT so that is recursive. Let {x} be a finite set of elements
from R. We claim this set generates a left nilpotent subalgebra. Each x is a finite
linear combination of v’s. Let s be the greatest subscript in all such linear combinations.
Then it suffices to show that the subalgebra generated by {vl," ’, v.} is left nilpotent.
Since b, is recursive we may choose large enough so that

,,t (0),, &,,t (1),[,"" ",(n,t(S)$.

Now consider any left associated product of t+ 1 elements among {Vo,’’ ", v.}, say

vi,+(v,. (vi(v). ). If the right factor is not zero the product becomes vi,/, v where
k j= ij >- and i,+1 -s. Then b,,(i,+1)$ and so the final product is zero. This shows
R, is locally left nilpotent.
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Conversely, assume n is not a member of TOT (i.e., bn is not recursive). By
assumption on n, there exists an such that hn,j(i)’ for all j. Then any left associated
product in R, of vi’s is vt.i. Hence, R, is not locally left nilpotent.

6. Summary and further work. The theme of this paper was to consider one idea
from nonassociative algebra, nilpotency, and study it with various computational tools.
The ideas from 2 and 3 suggest several questions. For example, although we were
able to decide nilpotency in polynomial time, we were not able to decide solvability
in polynomial time, at least for finite-dimensional algebras over Q. Can this be done?
If not, for what classes of algebras can it be done? Of course, in the case of associative,
alternative, Jordan, etc., finite dimensionality and solvability imply nilpotency, and so
the problem is solved. But a class of algebras yielding a nontrivial algorithm would
be of interest.

In 3 we noted that in some sense the power of Theorem 7 is wasted unless there
is an efficient way to recognize the property ofpower associativity. It is easy to recognize
certain properties that imply power associativity (associativity, alternativity, etc.), but
a deeper investigation of power associativity is warranted.

Which of the decision problems in P are also in NC?
The Monte Carlo technique described in 3 seems powerful enough to handle

more general problems. For example, consider the problem in which we are given an
algebra A over Q, and an arbitrary nonassociative polynomial f: w.e wish to decide if

f is identically zero in A.
The material in 5 suggests looking for other unsolvable problems (sets) from

nonassociative algebra that are complete for various classes of the arithmetic hierarchy.
In particular, it would be nice to identify a problem from nonassociative algebra that
is 1-complete for the class of recursively enumerable sets (that is, recursively isomorphic
to the halting problem), perhaps something akin to the word problem from group theory.

Finally, a main focus of our work is on the following problem. Let us fix a variety
V of nonassociative algebras over a field F, defined by a set of defining identities. For
example, V might be the class of alternative algebras over F defined by identities (5)
and (6). For each nonassociative polynomial f we wish to decide if f is identically
zero for each algebra in V. Assuming that F can be described effectively, this problem
is decidable. If the nonassociative polynomials are encoded in a reasonable (i.e., sparse)
way, however, there does not seem to be any way to solve the problem with a polynomial
amount of space. Despite this apparent intractability, much of our work has been to
look for better ways to decide if a nonassociative polynomial f is an identity. Here
the degree off is usually small, say at most 10. This problem is quite rich in structure,
and offers good opportunity to use many interesting algorithmic and mathematical
tools including group representation theory, graph theory, and dynamic programming
(see [6], [7]).
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THE COMPLEXITY OF VERY SIMPLE BOOLEAN FORMULAS
WITH APPLICATIONS*
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Abstract. The concepts of SAT-hardness and SAT-completeness modulo npolylogn time and linear size
reducibility, denoted by SAT-hard (npolylogn, n) and SAT-complete (npolylogn, n), respectively, are intro-
duced. Regardless of whether P NP or P # NP, it is shown that intuitively

Each SAT-hard (npolylogn, n) problem requires essentially at least as much deterministic time as,

and

Each SAT-complete (npolylogn, n) problem requires essentially the same deterministic time as

the satisfiability problem for 3CNF formulas.
It is proved that the _-<, satisfiability, tautology, unique satisfiability, equivalence, and minimization

problems are already SAT-complete (npolylogn, n), for very simple Boolean formulas and for very simple
systems of Boolean equations. These completeness results are used to characterize the deterministic time
complexities of a number of problems for lattices, propositional calculi, combinatorial circuits, finite fields,
rings Zk (k =>2), binary decision diagrams, and monadic single variable program schemes. A number of
these hardness results are "best" possible.

Key words, complexity, NP-completeness, SAT-completeness, decision problems, Boolean formulas,
finite fields, modular arithmetic, binary decision diagrams, program schemes, finite and distributive lattices,
fault detection
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1. Introduction. We study the deterministic time complexity of computational
problems for very simple Boolean formulas and for very simple systems of Boolean
equations. In particular, we study the fundamental problems of =<, satisfiability,
tautology, unique satisfiability, equivalence, and minimization. There are two reasons
for this study.

First, the problem instances we consider are so simple that they can be expected
to be encountered in any application area. In contrast, a result derived from complex
problem instances might be dismissed in some application areas on the grounds that
the formula instances used in the hardness proof are not of the form encountered in
practice. In general, proofs obtained from simple instances are better evidence of
hardness than proofs obtained from general instances.

Second, hardness results for them are more easily extended to other problems.
For example, we obtain results for very simple monotone formulas (formulas without
not) and these results easily generalize to many lattices including all nondegenerate
finite lattices.

Although our basic technique is to find reductions from the Satisfiability Problem,
we will derive results that are sharper than NP-completeness. The disadvantage of
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merely showing NP-completeness is that, for all e > 0, there are NP-complete problems
that can be solved in time 2 (n). Even 2 nl/3 algorithms should be considered practical,
even though "NP-complete" has become associated with "intractable."

Unless explicitly stated otherwise, a Boolean formula is a well-formed formula
made up of parentheses, variables, and the operators and, or, and not. A monotone
Booleanformula is a Boolean formula without occurrences of not. A literal is a variable
or a complemented variable. A 3CNF formula is the conjunction (ands) of clauses
where each clause is the disjunction (ors) of at most three literals. 3DNFformulas are
defined analogously.

Henceforth, we abbreviate both the satisfiability problem for 3CNF formulas and
the set of satisfiable 3CNF formulas by SAT. The sharper technique we use here is to
use reductions from SAT that are npolylogn in time and linear in size (output is linear
in input). This leads us to the concepts of SAT-hardness (npolylogn, n) and SAT-
completeness (npolylogn, n) introduced in 2. In 2 we see that "SAT-complete
(npolylogn, n)" means "takes essentially the same deterministic time as the satisfiability
problem for 3CNF formulas."

Our key complexity result obtained here concerns the set of formula pairs (F, G)
satisfying F =< G, where F and G are such that

(1) No variable occurs more than once in F or more than once in G,
(2) F is a monotone CNF formula,
(3) G is a disjunction of monotone CNF formulas.

We show that this set of formula pairs has essentially the same deterministic time
complexity as SAT (i.e., is SAT-complete (npolylogn, n)). As corollaries of this basic
result, we characterize the deterministic time complexity of a number of basic problems
for all finite nondegenerate lattices. Additional applications are presented to logic,
circuit analysis and testing, binary decision diagrams, and monadic single variable
program schemes. As one corollary, we prove that the recognition of the set of uniquely
satisfiable 3CNF formulas requires "essentially the same deterministic time as" SAT.
This problem has been extensively studied in the literature (see [30]).

A brief outline of this paper follows. In 2 we introduce the concepts of npolylogn
time and linear size reducibility, SAT-hardness (npolylogn, n), and SAT-complete-
ness (npolylogn, n). We also show that two important reduction procedures can be
performed on npolylogn time and linear size bounded Turing machines. In 3 we
present our main deterministic time complexity results for the _-<, satisfiability,
tautology, unique satisfiability, equivalence, and minimization problems for very simple
Boolean equations and for very simple systems of Boolean equations. Theorem 3.3
and Corollary 3.4 are of special importance to the remainder of the paper. In 4 we
use the results and techniques of 2 and 3 to characterize the deterministic time
complexities of a number of basic problems (see Fig. in 4.1) for each nondegenerate
finite lattice. Additional applications are presented to logic and to circuit analysis and
testing. In 5 we use the results and techniques of 2 and 3 to characterize the
deterministic time complexities of a number of basic problems for each finite field,
each ring Z (k_-> 2), binary decision diagrams, and monadic program schemes.

The remainder of this section consists of definitions, notation, and basic results
about complexity theory, lattices, and Boolean algebras used in this paper. We assume
that the reader is familiar with the complexity classes P, NP, and eoNP, polynomial
reduciblity, NP-hardness and NP-completeness, and eoNP-hardness and NP-complete-
ness; otherwise, see 18]. We denote the set of natural numbers by N. Throughout this
paper by "Turing machine," we mean "multiple-tape Turing machine."

The following problems for Boolean formulas are considered:
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(1) The <-problem, i.e., the problem of determining, for Boolean formulas F and
G, if F <- G, i.e., if G equals whenever F equals 1.

(2) The satisfiability problem, i.e., the problem of determining if a Boolean formula
F is satisfiable.

(3) The tautology problem, i.e., the problem of determining if a Boolean formula
F is a tautology.

(4) The unique satisfiability problem, i.e., the problem of determining, for a Boolean
formula F, if there exists exactly one assignment v of values from {0, 1} to the variables
of F such that F takes on the value 1 under v.

(5) The equivalenceproblem, i.e., the problem of determining, for Boolean formulas
F and G, if F and G denote the same function.

(6) The minimization problem, i.e., the problem of finding, given a Boolean formula
F, an equivalent Boolean formula G such that the number of occurrences of symbols
in G is minimal.

THEORZM 1.1 [15], [18]. The set of tautological 3DNFformulas is coNP-complete;
and the set of satisfiable 3CNF formulas is NP-complete.

DEFINITION 1.2. An algebraic structure S is a nonempty set S, called the domain
of the structure, together with a nonempty set of operations of various arities on S. S
is said to be nondegenerate if ISI--> 2. S is said to be finite if IS <, and in addition
if S has only finitely many operations, each of finite arity.

DEFiNiTiON 1.3. A lattice S= (S, v, ^) is an algebraic structure with domain S
such that v and ^ are commutative, associative, and idempotent binary operations on
S such that, for all x, y S, x v (x ^ y) x ^ (x v y) x. A distributive lattice S (S, v, ^
is a lattice such that, for all x, y, z S, x v (y ^ z) (x v y) ^ (x v z) and x ^ (y v z)
(x ^ y) v (x ^ z). A lattice S (S, v, ^ is finite if IS[ <

Let S (S, v, ^ be a lattice. Let <- be the partial order on S defined by x <- y if
and only if x v y y. An element a of S such that a <- b for all b S is said to be the
minimal element on S and is denoted by 0. An element a of S such that b <- a for all
b S is said to be the maximal element of S and is denoted by 1. Let S (S, v, ^) be
a lattice with minimal element 0. An element b of S such that 0 < b on S but there
exists no c S for which 0 < c < b on S is said to be an atom of s. A lattice S (S, v, ^)
is said to be a finite depth lattice if there exists k N such that

X <" < X2 < X on S implies <- k.

A Boolean Algebra has operators ^, v, and and constants 0 and 1 where ^, v,
and ---, behave as set intersection, union, and complement, respectively, 0 behaves as
the empty set, and 1 behaves like the universal set. Formal axioms can be found in
[1], [7], and [43]. We let BOOLE be the two-element Boolean algebra of everyday
logic. We let BIN be the two-element distributive lattice, namely, BOOLE without the
negation (or complement) operator.

THEOREM 1.4 [7]. (1) Let L S, v, ^) be a nondegenerate distributive lattice. Let
F and G beformulas on L involving only variables, parentheses, v, and ^. Then, F <- G
on L if and only if F <- G on BIN; and F G on L if and only if F G on BIN.

(2) Let L S, v, ^, ---, O, 1) be a nondegenerate Boolean algebra. Let F and G be
formulas on L involving only variables, parentheses, v, ^, ---, O, and 1. Then, F <- G on
L if and only if F <-_ G on BOOLE; and F G on L if and only if F G on BOOLE.

The importance of Theorem 1.4 is that hardness results concerning formulas
on BIN immediately generalize to arbitrary nondegenerate distributive lattices and
results about BOOLE immediately generalize to arbitrary Boolean Algebras.

In general, formulas over an algebraic structure on domain S will involve variables,
operators, and some notation for elements in S. We generally focus on "constant-free"
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formulas involving only variables and operators. The distinction between operators
and constants can be blurred by the presence of zero-ary operators (such as 0 and 1
in Boolean algebras). We call formulas with these zero-ary operators "constant-free"
since they can be interpreted as formulas independent of the domain.

Restricting ourselves to constant-free formulas does not weaken hardness results
since we certainly expect them to be included among formulas encountered in practice.
We seek results on constant-free formulas that apply to the class of all algebras with
the specified operators. Classes of formulas with domain specific constants can some-
times be harder than constant-free formulas due to the complexity of manipulating
constants.. The complexity of manipulating constants (i.e., the complexity of arithmetic)
is not a topic of this paper.

In the case of finite algebraic structures S, the domain of the structure can be
specified by giving distinct names to its elements. The complexity of arithmetic on
such a structure S is not an issue, since S’s operators can be specified by tables and
have constant cost.

DEFiNiTION 1.5. Let S be an algebraic structure with domain S. By a representation
of S, we mean a set of sI distinct constant symbols denoting the elements of S.

The algebraic structures we use here are Boolean algebras, lattices, logics, and
rings, which have standard infix notation for formulas. In general, the results apply
to any of the easily parsed formula notations. By the size of a formula F denoted by
IIFII, we mean the number of occurrences of symbols in F, where each occurrence of
a variable, operator, constant, or parenthesis is treated as a single occurrence. For
example, I1(x135 or x321)11 5. The size of an equation or a system of equations is defined
analogously. This is the natural measure since variables and constants are the objects
on which reductions are defined. When considering the time of a reduction on a Turing
machine, however, we will take into account the fact that the infinite variable set must
actually be represented by strings on some finite alphabet.

We like to measure time complexity as a function of input size rather than input
length. When doing this, we use the symbol w instead of the traditional n. Thus we
use L DTIME (F(llw[I)) to mean the time required to test string w for membership
in L is F(llwll) or fewer Turing machine operations. It is assumed that a reasonably
efficient encoding of variables into strings is used when a formula is presented to a
Turing machine. Specifically, we assume the length of the Turing machine input is at
worst O(11 w log w II),

Let F be a formula on an algebraic structure S with domain S. Let v be an

assignment of values from S to the variables of F. We denote the value taken on by
F under v by v[F].

2. Preliminary results. Here we present our hardness concepts and prove their
implications for complexity. The objective is to establish stronger relationships than
NP-hardness. We close the section with efficient time and size bounded Turing machine
algorithms for two basic transformations that serve as subroutines in later sections.

In what follows, let Y and A be finite nonempty alphabets; and let L and M be
languages over E and over A, respectively.

DEFINITION 2.1. We say that L is npolylogn time and linear size reducible to M
if there exists an integer k -> 1 and a function f: E* A* computable by an O(n(log n)k)
time-bounded deterministic multiple tape Turing machine such that:

(i) For all x E*, x L if and only iff(x) M; and
(ii) There exists c > 0 such that, for all x E*, IIf(x)ll-<- c, Ilxll.
DEFINITION 2.2. We say that L is SAT-hard (npolylogn, n), read "L is SAT-hard

modulo npolylogn time and linear size reducibility," if SAT is npolylogn time and
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linear size reducible to L (in which case L is also NP-hard) or unSAT (the set of
unsatisfiable 3CNF formulas) is npolylogn time and linear size reducible to L (in
which case L is coNP-hard). We say that L is SAT-complete (npolylogn, n), read "L
is sat complete modulo npolylogn time and linear size reducibility," if L is SAT-
hard (npolylogn, n), and L is npolylogn time and linear size reducible to either SAT
or unSAT.

We will use the term Turing-SAT-complete (npolylogn, n) if the above conditions
hold for Turing reductions instead of many-one reductions, where npolylogn is the
time spent to create a bounded number of problem instances of linear size.

The basic deterministic time hardness properties of SAT-hard and SAT-
complete (npolylogn, n) languages are summarized in Proposition 2.3. Part (1) of the
proposition applies if P-NP and says that, in the case of SAT-completeness, the
complexity of L and SAT are bounded by the same polynomials. Part (2) applies if
the NP-complete problems take exponential time and says, that in the case of SAT-
completeness, the complexities of L and SAT have similar polynomials in their
exponents. Thus, intuitively, this proposition says that:

(1) If L is SAT-hard (npolylogn, n), then L requires "essentially at least as much
deterministic time as SAT," and

(2) If L is SAT-complete (npolylogn, n), then L requires "essentially the same
deterministic time as SAT."
We note that each SAT-hard (npolylogn, n) language is either NP- or coNP-hard, and
that each SAT-complete (npolylogn, n) language is either NP- or coNP-complete.

PROPOSITION 2.3. Let L be a language and let T( n be any increasingfunction such
that, for all k, T(n)>-_ n(log n) k for almost all n:

(1) If L is SAT-hard(npolylogn, n) and LeOtime(T([Iwll)) then SATe
Dtime(T(cllwll)) for some constant c.

(2) If L is SAT-complete (npolylogn, n), then Le Dtime (T(cllwll)) for some

if and only if SATe Dtime (T(c=llwll)) for some c2.
(Statement 2 also applies to Turing-SAT-complete (npolylogn, n) problems.)
Proof. If L can be done in time T(llwll), then the reduction permits SAT to be

done in time O(npolylogn) + T(O(n)), which is O(T(cllwll)) for some constant c. This
proves Part (1). If L is complete, there is a corresponding reduction back to SAT and
Part (2) is proved. These remarks apply equally well to Turing reductions.

If, as we suspect, SAT requires deterministic time 2nk) for some k, the SAT-
hard(npolylogn, n) problems will also take at least 2nk) time. Complete problems
will have the property that Le Dtime (2 (llwllk)) if and only if SATe Dtime (2(llwll)).
If P NP and SAT only requires time O(nk), then the hard problems will also require
time O(n k) and complete problems will have the property that Le Dtime (o(llwll ))
if and only if SATe Dtime (o(llwll )).

The next proposition is used extensively in this paper.
PROPOSIITION 2.4. Let 19 be any nonempty finite set of Boolean operators. Then

there exists a constant c>0 and a deterministic O(npolylogn) time-bounded Turing
machine T such that, when given a system of Boolean equations S involving operators
from 19 and the constants 0 and 1 as input, T outputs a 3CNF formula Fs such that

(1) Ilfsll -< c. IlSll, and
(2) The number of satisfying assignments of Fs equals the number of satisfying

assignments of S.
Proof. This reduction can be done by standard techniques using the principles

from [6] and standard compiling techniques. We outline the reduction as a sequence
of steps with the expectation that the reader can verify that each step can be carried
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out by a Turing machine in the required time and satisfying conditions (1) and (2) of
the proposition. In practice, the ideas can be fit into a one-pass algorithm.

Step 1. The system S can be thought of as a list of formula pairs where the two
formulas in each pair are to be made equal. Replace each operator occurrence 19 in
the input formulas with a pair (19, v), where v is a variable distinct from the input
variables and the other new variables associated with other operator occurrences.

Step 2. Translate the string into a sequence of equations where the left-hand
formula has no operators and the right-hand formula has at most one operator. For
each pair (19, v) in the input to this step, there will be an equation v O(Xl" Xk)
where t9 is k-ary and Xl"’’Xk are variables or constants representing the operands
associated with the occurrence of O in the input. For each formula pair of $, the output
will have equation x =y where x and y are the variables (or constants) representing
the two formulas.

Step 3. For each equation, there is a 3CNF formula that expresses the same
Boolean relationship as the equation. The output of the procedure is the conjunction
ofall these formulas.

Because O is a finite set of Boolean operators, we are dealing with a finite set of
transformations of individual equations into 3CNF. Therefore this last step is linear
size bounded.

The next proposition asserts the existence of a subroutine for marking variable
occurrence quickly on a Turing machine.

PROPOSrrION 2.5. There is a deterministic npolylogn time-bound Turing machine
that, given a sequence F of symbols and variables as input, replaces each variable x by
a pair (x, k) where k is the integer such that (x, k) is the replacementfor the kth occurrence

ofx in F.
Proof. The set of integers {1, 2,..., n}, when denoted by their binary numerals,

can be sorted deterministically in npolylogn time on a Turing machine using a standard
merge-sort algorithm. The Turing machine of the statement of the proposition uses
such an npolylogn time sorting algorithm as a subroutine. Let k be the number of
variable occurrences in F and let the ith occurrence be xj,. This machine, given F as
input, executes the following five steps"

Step 1. Extract the string F1 (xj,, 1) (xk, k) from F.
Step 2. Sort the pairs in F1 according to the index ofthese variables (and preserving

the original order among occurrences of the same variable). Call the result F2.
Step 3. Make each pair (x, i) of F2 into a triple (x, i, l) where (x, i) is the /th

occurrence of xin F2. This can be done in npolylogn time because Step 2 has made
the occurrences of x adjacent. Call the result F3.

Step 4. Sort the triples in F3 according to the second component. This restores
the variable occurrence to the original order of F. Call this result F4.

Step 5. Take the triples from F4 and attach the third component to the correspond-
ing occurrence in F. This is the desired output.

We note that, after executing Step 2 of the algorithm immediately above, the
Turing machine of the proof can be modified to output in npolylogn time and in order
of increasing variable subscript both the variables of F and the numbers of times they
occur in F.

3. Hard problems for very simple formulas and systems of equations. We study the
deterministic time complexities of the =<, satisfiability, unique satisfiability, tautology,
equivalence, and minimization problems for Boolean formulas and systems of Boolean
equations. More specifically, we describe very simple formulas and systems for which
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these problems are hard. In each case, the results are on the boundary of NP in that
the obvious further simplifications result in problems in P. Some of the results, most
notably Theorem 3.3, say that two "easy problems" can be combined in simple ways
to get problems that are "hard as they can be."

In the first theorem, the satisfiability problem for 3CNF formulas with -<3
repetitions per variable is considered. The NP-hardness of this problem is known and
is mentioned in [18]. To put this hard problem into the framework of SAT-complete-
ness (npolylogn, n), we must show that reductions exist with the required time and
size bound. No reduction is cited in [18].

THEOREM 3.1. The Satisfiability Problem is SAT-complete (npolylogn, n) for CNF
formulas with <-_3 literals per clause and <=3 repetitions per variable. The Tautology
Problem is SAT-complete (npolylogn, n) for DNF formulas with -<3 literals per term
and <=3 repetititions per variable.

Proof. To verify that these two problems are SAT-hard (npolylogn, n), it suffices
by duality to give an npolylogn time and linear size reduction from the 3SAT to 3SAT
for CNF formulas with -<3 repetitions per variable. The following reduction can be
used to reduce any Boolean formula f to a Boolean formula f such that

(a) No variable occurs more than three times in f, and
(b) f is in SAT if and only iff is in SAT.

Let x,..., x, be the variables occurring more than one time in f. Let il,"" ", i be
the number of occurrences of x, , x, respectively, in f. For 1 -<j -< n and 1 -< k -< i,
let the variables X,k be distinct variables. Let fl, F, and f2 be the Boolean formulas
defined as follows:

(i) fl is the CNF Boolean formula that results from f by replacing, for 1 -<j -< n
and 1 -< k -< i, the kth occurrence to the variable x in f by the variable X,k. Variables
appear in f only once.

(ii) For 1 -<j -< n, let g tj, and.., and t,! where tj,k--(Xj,k or (not X,j,k+I) for
k < i and t,!= (Xz or (not x,)). Formula g is true if and only if each t,k is true,
which can happen if and only if all the variables with first subscript j have the same
value. These variables appears appear in g only twice.

(iii) Let F be the CNF formula gl and g and.., and g. Each variable appears
in F two times.

(iv) f2 is the Boolean formula (F and fl).
The formula F is true if and only if, for all assignments v of values from {0, 1},
V[Xi]=V[X,k for all i, j, k. Thus, it is easily seen that the formula f satisfies the
assertions a and b immediately above. Clearly, IIAII- IIFII/ IIfll/3 O(llfll). Aso
clearly when f is a CNF formula, so is f2. Finally, by using the .deterministic npolylogn
time-bounded Turing machine of Proposition 2.5 as a subroutine, it is easy to see that
the reduction can be carried out on a deterministic npolylogn time-bounded Turing
machine. [3

We note that the reduction of the proof of Theorem 3.1 is parsimonious, i.e.,
preserves the number of satisfying assignments.

There are two obvious ways the satisfiability problem of Theorem 3.1 can be
simplified. One is to allow only two literals per clause and the other is to restrict
variables to at most two occurrences. By the results of Cook [15] and Tovey [51]
respectively, both these problems are in P. The next result shows that we can get hard
problems with only two repetitions if we consider formulas more complex than CNF.
However, we do not need to go beyond the conjunction of DNF formulas to get
problems that are as hard as they can be.
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THEOREM 3.2. Consider the set of Boolean formulas f such that
(i) f is a conjunction of DNF formulas:
(ii) Each variable offoccurs exactly once complemented and once uncomplemented.

The satisfiability problem for formulas in this set is SAT-complete (npolylogn, n) and
NP-hard.

Proof. Let f be a CNF formula with -<_3 literals per clause and -<_3 repetitions per
variable. Formula f can be reduced to a simpler problem if some variable appears
only uncomplemented. Just replace the variable by the constant and simplify. A
similar simplification can be done if a variable appears only complemented. Therefore,
without loss of generality, we may further assume the following:

(1) Each variable of f appears both complemented and uncomplemented.
(2) No variable of f occurs twice complemented (by replacing a variable by its

complement a varaible that appears twice complemented and hence once uncomple-
mented can be converted into a once complemented variable).
Let x,..., Xk be the variables off that occur three times in f For l_-<j_-< k, let y
and Ye be distinct variables. Let f’ be the Boolean formula that results from f by
replacing, for -<j --< k,

The first uncomplemented occurrence ofx infby yj, the second uncomplemented
occurrence of x in f by Ye, and the occurrence of . in f by 37 and .92.

Under this transformation, the clauses of f become DNF formulas and f’ is the
conjunction of DNF formulas. Thus condition (i) is satisfied and it is easy to see that
(ii) is also satisfied. Also, clearly [If’ll- o(llfll). We claim the following:

(3.2.1) f is satisfiable if and only if f’ is satisfiable.

(3.2.2) f’ is constructible from f on a deterministic npolylogn time-bounded Turing
machine.

The correctness of claims (3.2.1) and (3.2.2) implies the theorem.
It is obvious that a satisfying assignment for f can be made into a satisfying

assignment for f’. Therefore, to prove the correctness of claim (3.2.1), it suffices to
show the following:

If there exists an assignment v of values from {0, 1} to the variables of f’ such
that v[f’] 1 and such that v[y] v[y2] for some j with 1 _-<j_-< k, then there
exists an assignment w of values from {0, 1} to the variables of f’ such that
w[f’] and, for 1 <=j <= k, w[y] w[yj2].

For each such assignment v, let w be the assignment that is the same as v accept that,
for 1 =<j =< k, if v[y] riyal.I, then w[y] w[ye] 1. Since f’ is a Boolean formula
monotone in literals, 1 v[f’] <= w[f’]. Finally, the correctness of claim (3.2.2) follows
from the proof of Proposition 2.5 (using literals instead of variables).

We might imagine, intuitively, that the "hard" problem instances must be construc-
ted in a series of steps, each of which combines problems that are slightly less hard.
Our next result shows that such intuition is wrong, and we can construct problems
that are as hard as they can be by combining two "easy problems" with a single binary
operator. In this case, the easy problems are monotone Boolean formulas that are the
disjunctions of CNF formulas and that do not have variables occurring more than
once. These are "easy problems" in that they are always satisfiable, are never tautologies,
and their solutions can be counted quickly.

THEOREM 3.3. Let F and G be Boolean formulas such that
(i) No variable occurs more than once in F or more than once in G,
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(ii) F is a monotone CNF formula,
(iii) (7 is the disjunction of monotone CNF formulas.

Then, the following problems are SAT-complete (npolylogn, n):
(1) Determining if F <- (7,
(2) Determining if the formula (F and (-(7)) is satisfiable,
(3) Determining if the formula ((7 or (.F)) is a tautology,
(4) Determining if the formula (F(7) is a tautology, and
(5) Determining if the system of equations F 1 and G 0 has a solution.

Problems (2) and (5) are also NP-hard and Problems (1), (3), and (4) are oNP-hard.
The problems remain hard if

(ii’) F is the conjunction of monotone DNF formulas, and
(iii’) G is a monotone DNF formula.
Proof. For all Boolean formulas F and (7, the following are obviously equivalent:
(1) F G,
(2) The formula (F and (-G)) is not satisfiable,
(3) The formula ((7 or (-F)) is a tautology,
(4) The formula (FOG) is a tautology, and
(5) The system F- 1 and G-0 has no solution.

Thus to prove the theorem, it suffices to prove that the problem of (1) is SAT-
complete (npolylogn, n) for monotone Boolean formulas F and G satisfying conditions
(i)-(iii) of the theorem.

Proof of (1). To prove SAT-hardness (npolylogn, n) and coNP-hardness, we give
an npolylogn time and linear size reduction that maps a formulaf monotone in literals
to an inequality (_-<) of monotone Boolean formulas such that f is a tautology if and
only if the output inequality holds. When applied to formulas that are the disjunction
of CNF formulas where each variable appears exactly once complemented and exactly
once uncomplemented, the procedure will output F and G satisfying conditions
(i)-(iii). Thus by the dual of Theorem 3.2 and the transitivity of npolylogn time and
linear size reducibility, we can conclude that the problem of (1) is SAT-hard (npoly,
logn, n) for formula F and G satisfying conditions (i)-(iii) of the theorem. Given this,
the SAT-completeness (npolylogn, n) of the problem follows immediately from Propo-
sition 2.4.

Let f be a Boolean formula monotone in literals. Let x,..., xn be variables
occurring in f. Let y, , y, be distinct variables other than x, , x,. Let f’ be the
monotone Boolean formula that results fromf by replacing, for 1 _-< _-< n, the occurren-
ces of (not xi) infby yi. Let Fn be the monotone Boolean formula (x ory) and. and
(x, or y,). Clearly, the formulas f’ and F, are constructible from f determinstically in
linear time. Clearly f’ and F are monotone. We claim that

(3.3.1) f is a tautology if and only if F. =<f’.
To prove (3.3.1), assume z, is an assignment of values from {0, 1} to variables

x,..., x such that v[f]- 0. Consider the assignment w to Xl, y,"" ", x, yn, such
that w[xi] v[x] and w[y] not v[x] for all _-< n. Clearly, w[f’] 0 since f and f’
are identical formulas after their respective substitution of values for variables and
literals. Also wiFe] 1 because w[x or ?,] 1 for all i_-< n by construction. Therefore
w[F > w[f’] and F _-<f’ fails.

To prove (3.3.1) in the reverse direction, consider an assignment w of values from
{0, 1} to x, y,. ., x, yn such that wiFe] 1 and w[f’] 0. Consider the assignment
v from {0, 1} to xl,"’,x such that v[x]= w[xi] for all i. A key fact is that this
assignment also satisfies v[] _-< w[y]. This fact follows from w[xi or y] 1 (because
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w[F,] 1) and v[xi] w[xi] (by construction). Again consider the formulas f and f’
after substitution for variables and literals. The resulting expressions are identical
except that certain occurrences of 1 in f’ may be 0 in f. (The reverse situation is
prevented by the "key fact.") Because the expressions are monotone, w[f’]>= v[f].
But since w[f’] =0, ,[f] 0 and f is not a tautology. Thus (3.3.1) is proved.

Finally, we must verify that no variable is repeated in f’ or F,, whenf has variables
appearing once complemented and once uncomplemented. But clearly f’ has exactly
one occurrence of each xi and exactly one occurrence of each yi. F, is constructed to
have only single occurrences independently of f.

The statements about NP-hardness and coNP-hardness are evident from the proof.
To prove the result for alternative conditions (ii’) and (iii’), observe that F =< G implies
--G-<---F. Applying DeMorgan’s laws and replacing variables by their complements
then gives result (1) and the others follow as above.

Although parts (1)-(5) of Theorem 3.3 are really five ways of saying the same thing,
they have different applications. Part (1) is a statement involving only ^, v, and ->

and it can thus be viewed as a statement about distributive lattices. Part (4) can be
viewed as a statement about logics without a negation operator. Parts (2) and (3) say
Boolean formulas become hard the very first time tractable formulas are combined.
Part (5) addresses systems of equations in which the constants 0 and 1 are available.

The "cause" of hardness in Theorem 3.3 is the two levels of or in G allowed by
condition (iii) or the two levels of and in G allowed by condition (ii’). If G has only
one level of ors and F only one level of ands, 1; <= G becomes easy, even under the
following circumstances"

(a) F is the disjunction of CNF formulas, not necessarily monotone, in which
each CNF formula has no repeated variables.

(b) G is the conjunction of DNF formulas, not necessarily monotone, in which
each DNF formula has no repeated variables.

To see this, observe vCNFi =< ^DNF if and only if CNFi_-<DNFj for all and j if
and only if (-qCNFi v DNFj) is a tautology for all and j. Under DeMorgan’s laws,
(CNFi v DNFj) becomes a DNF formula in which no variable occurs more than
twice, and the tautology problem for such formula is known to be in P.

The following corollary shows that the equivalence of monotone formulas is also
hard in simple cases:

COROLIAR 3.4. Testingf gforformula is coNP-hard and SAT-complete (npoly-
logn, n) even if

(1) f is a monotone CNF formula, and
(2) g is the disjunction of monotone CNF formulas.
Proof The proof follows from part (1) of Theorem 3.3, since F =< G if and only

if F=F^ G. 71
The next result extends Theorem 3.3 to questions about unique satisfiability:
THEOREM 3.5. Thefollowing problems are NP-hard and SAT-hard (npolylogn, n):
(1) Determine ifa system oftwo monotone Boolean equations has a unique solution,

even if no variable occurs more than three times.
(2) Determine if a 3CNF formula has a unique solution, even if no variable occurs

more than three times.

Proof. We first show problem (1). Let F and G be monotone Boolean formulas
such that no variable occurs more than once in F and more than once in G. Let
x,...,x be the variables occuring in F or in G. Let y,...,y, be n additional
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variables. Then, the following are equivalent:
(i) The system of equations

F=I, G=0

does not have a solution, and

(ii) The system of equations

(XlAyl) V" (X, Ay,) V G=0, Fv (Yl A" Ay,) 1

has a unique solution.
To see the equivalence note that Xl xn 0 and Yl yn 1 is a solution of
the two equations of (ii). Any other solution of the equations of (ii) is a solution of
the equations of (i); and any solution of the equations of (i) can be extended to an
additional solution of the equations of (ii) by setting Yl y 0. Since (ii) can
be obtained from (i) in npolylogn time and (i) is NP-hard and SAT-hard (npolylogn, n)
by part (5) of Theorem 3.3, we have part (1) of this theorem. Problem (1) is reduced
to Problem (2) by the procedure of Proposition 2.4. (It is easily verified that this
procedure preserves the "at most three repetitions" property.)

We next show that the unique satisfiability problems of the previous theorem
have "essentially the same hardness" as SAT. In this case we will be using a Turing
reduction instead of a many-one reduction so we have a result for Turing-completeness
instead of completeness. Actually the reduction is a simple norm 2 truth-table reduction.

PROPOSITION 3.6. The problems of Theorem 3.5 are Turing-SAT-complete (npoly-
logn, n).

Proof We need only consider the unique 3CNF problem (problem (2) of Theorem
3.5) since the first problem has already been efficiently reduced to the second in the
proof of Theorem 3.5.

Let f be a 3CNF formula. Let xl,’’’, x, be the variables occurring in f Let
Yl, , Y, be additional variables. Then, f is uniquely satisfiable if and only if

f is satisfiable, and the Boolean formula f(xl," ", x,) ^f(Yl," ", Yn) ^(xl@yl v v x,O)y,) is not satisfiable.

Thus unique satisfiability can be solved by solving satisfiability twice. Each of these
formulas is linear in the size of the original.

It is already known that unique SAT is coNP-hard and can be solved in polynomial
time using NP twice as an oracle (see [24], [8]). Our proofs imitate some of the past
techniques, verifying the time and size of the reductions and applying them to the
special case of limited variable occurrences.

Consider the class of Boolean formulas where no variable appears more than
twice. We have a polynomial time algorithm that decides whether such a formula has
a unique solution. (We provide this algorithm in the Appendix.) Theorem 3.2 thus
tells us that this is a class of formulas where satisfiability is NP-complete and unique
satisfiability is polynomial. Furthermore, if P NP, there can be no polynomial par-
simonious reduction from satisfiable Boolean formulas to this set, for this would
contradict Theorem 3.5(2).

Now we consider minimization for very simple Boolean formulas. We show that
the problem is "essentially at least as hard as" SAT. Since minimization is not a
language recognition problem, this characterization cannot be expressed in tems of
SAT-hard (npolygon, n). However the principle is the same. Any solution to the
minimization problem can be used to solve some SAT-hard (npolylogn, n) problem in
essentially the same time.
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THEOREM 3.7. Consider the problem of finding the minimal Boolean formula
equivalent to a monotone formula in which no variable occurs more than twice. Let T( n
be any increasing function such that, for all k, T(n)>- n(log n)k for almost all n. Suppose
that T([ w[[) bounds above the deterministic time complexity of this problem in terms of
formula size. Then SATe Dtime T(cllwll)) for some constant c.

Proof We will show how a minimization procedure can be used to solve problem
(1) of Theorem 3.3. Let F and G be monotone Boolean formulas in which no variable
occurs more than once in F or more than once in G. Let z be a variable that is not
in F or G and consider the formula H (F ^ z) v G. The value of H is independent
of z if and only if F-< G. But the minimum formula for H will have variable z if and
only if H depends on z. Therefore F=< G can be solved by scanning the minimum
formula for H for the presence of variable z. [3

We note that the proof of Theorem 3.7 goes through if the statement of the theorem
begins "Consider the problem of finding the minimal monotone Boolean formula

The results in this section are close to the best possible in that further simplifications
almost always give problems that are known to be polynomial.

Finally, direct analogues of the theorems in this section hold for Boolean formulas
involving operators other than and, or, and not. The next result lists a number of cases
where hard formulas can be constructed using variables which appear no more than
twice.

COROLLARY 3.8. The satisfiability and tautology problems are SAT-complete
(npolylogn, n) for Boolean formulas F that involve only variables, parentheses, and one

of the following five possibilities:
(i) The nand operator and the constant 1,
(ii) The nor operator $ and the constant O,
(iii) The implication operatorsand the operator not,
(iv) The implication operatorand the constant O, or

(v) The exclusive or operator 03, the and operator o, and the constant 1.
This statement remains true when F is restricted so that no variable occurs more than two

times in F. Furthermore, the <-_ problem is SAT-complete (npolylogn, n) for pairs F, G
of such Boolean formulas such that no variable occurs more than once in F and more
than once in G.

Proof Recall the following logical identities:
(1) not a=all=a$O=aO=a(R)l,
(2) a or b=(a[l)[(b[l)=(a,b),O= not ab=(aO)==>b,
(3) a and b=(alb)l=(a$O)$(b$O)= not (anot b), and
(4) a==>b= l[(lb)* a].
Because the quantities a and b appear once on each side of these identities, the

identies can be used to linearly transform expressions written with {and, or, not} into
expressions ofthe five types described in the corollary. Furthermore, this transformation
will preserve the number of occurrences of each variable. The corollary then follows
directly from Theorems 3.2 and 3.3 [3

4. Applications to lattices, logic, and circuits. We use the results and proof tech-
niques of 3 to show that a number of basic problems are SAT-hard (npolylogn, n)
and/or SAT-complete (npolylogn, n) for a wide collection of lattices. These problems
include the _-<, equivalence, and minimization problems for formulas, and the satisfiabil-
ity and unique satisfiability problems for systems of equations. These lattices include
all finite, finite-depth, atomic, and distributive lattices. Such lattices appear throughout
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discrete mathematics and computer science, especially in logic [36], [43], [44], com-
binatorics and geometry [2], [7], [53], and the design, analysis, and testing of combina-
tional logic circuits [11], [12], [19]-[21], [38], [46], [50]. Several applications are
presented to logic and to circuit analysis and testing.

4.1. SAT-hard and -complete problems for lattices. We first show that very close
analogues of the complexity results in 3 for monotone Boolean formulas hold for
each finite lattice.

THZOREM 4.1. Let L (S, v, ^) be a finite lattice. Let R be a representation of L.
Consider the problems of Fig. 1 for L and R.

(1) Problems 1-10 of Fig. are SAT-complete (npolylogn, n).
(2) Problems 11 and 12 of Fig. 1 are Turing-SAT-complete (npolylogn, n).
(3) Let T(n) be any increasing function such that, for all k, T(n)>= n(log n) k for

almost all n. Suppose that T(llwll) bounds above the deterministic time complexity of
Problem 13 of Fig. 1. Then SATe Dtime (T(cllwll)) for some constant c.

Proof. Let L and R be as specified in the statement of the theorem. The proof
has two parts.

Part 1. Proof of indicated lower bounds. It suffices to prove that Problems 2, 4,
6, 8, and 11 of Fig. 1 are SAT-hard (npolylogn, n) and that claim (3) of the statement
of the theorem holds for Problem 13 of Fig. 1. Let a S be an atom of L. Let a be the
constant symbol of denoting the element a. Let F and G be monotone Boolean
formulas such that

No variable occurs more than once in F and more than once in G.

Let F’ and G’ be the formulas on L and that result from F and from G, respectively,
by replacing

Each occurrence of and by ^,
Each occurrence of or by v, and
Each occurrence of a variable, say x, by (x ^ a).

1. The =<-problem for formulas F and G on L and .
2. Problem restricted to the case where no variable appears more than once in F or more than once in

G.
3. The equivalence problem for formulas on L and .
4. Problem 3 restricted to the case where no variable appears more than once in F or twice in G.
5. Determining if a system of equations on L and has a solution.
6. Problem 5 restricted to the case of two equations in which no variable appears more than twice, once

in each equation.
7. Determining if a set of equations fl gl, ,fk gk implies an equation f g for formulas on L and .
8. Problem 7 restricted to the case fl c implies f= c on L where c and c are constants of and no

variable occurs more than once in f or once in f.
9. Determining if a Boolean combination of equations of the form f= g where f and g are formulas on

L and , is satisfiable on L and .
10. Determinig if a Boolean combination of equation of the form f= g, where f and g are formulas on L

and , is true for L.
11. Determining if a system of equations on L and has a unique solution.
12. Problem 11, even if the system has only three equations and no variable occurs more than four times

in the system.
13. Given a formula F on L and in which no variable occurs more than twice, finding an equivalence

formula H on L and of minimal size.

FIG 1. Problems that are hard for finite lattices.



COMPLEXITY OF SIMPLE BOOLEAN FORMULAS 57

Then, the following are equivalent.
(a) F_-< G.
(b) F’ _-< G’ on L.
(c) F’^G’=G’ onL.
(d) The system of two equations.on L and

F’=a and G’=O

has no solution.
(e) G’= 0 implies F’=0 on L.
(f) Let xl,’ ’, and xn be the variables occuring in F or in G. Let yl,

yn be n additional variables. The system of three equations on L and

((xl ^ y) v’’’ v (x,, ^ y,)) v G O,

and

Fv(y^... ^y,) =a,

(x1vyl) A... ^ (x, vy,) =a
has a unique solution.

(g) Let z be a variable not occurring in F’ or in G’. Let H’ be the formula
(F’ ^ z ^ a) v G’. A formula on L and equivalent to H’ of minimal size does not have
an occurrence of the variable symbol z in it.
This equivalence is obtained by arguments closely similar to those of the proofs of the
Theorems 3.3, 3.5, 3.7, and Corollary 3.4. To see this, it suffices to observe that

and
{b^albS}={O,a}

Letting v’ and ^’ be the restrictions of v and ^ of L, respectively, to (0, a}, the
structures ((0, a}, v ’, ^ ’) and BIN are isomorphic distributive lattices.

In part (f), the third equation restricts the xi and yi to {0, a}. Thus by Theorem 3.3,
Problems 2, 4, 6, 8, and 11 of Fig. are each SAT-hard (npolylogn, n) and claim (3)
of the statement of Theorem 4.1 holds.

Part 2. Proof of indicated upper bound. To prove the upper bounds on Problems
1-10 of Fig. 1 claimed by the theorem it suffices to prove that Problem 9 of Fig. 1 is
npolylogn time and linear size reducible to SAT. The reduction is a fairly direct
extension ofthat ofthe proof of Proposiion 2.4 and is illustrated in Fig. 2. The reduction
of equations on L to SAT uses well-known encodings of finite structures into the
two-element Boolean algebra. I3

The =<, equivalence, and minimization problems for formulas on a finite lattice
were shown to be eoNP-hard in [26]. The reductions used to prove this are highly
nonlinear in size. For example, for distributive lattices the reductions are already of
size )([[W[[2). For nondistributive lattices, the reductions are significantly less size
efficient.

Part (1) of the proof of Theorem 4.1 can be easily generalized so as to apply to
many additional lattices as follows. Let L (S, v, ^) be a lattice with elements b, a s S
such that a covers b. Then, {(c v b)^ ale S} {b,.a}. Also letting v’ and ^’be the
restrictions of v of ^ of L, respectively, to {b, a}, the structures ({b, a}, v ’, ^ ’) and
BIN are isomorphic distributive lattices. Let b and a be distinct constant symbols
denoting b and a, respectively. Then, Problems 1-12 of Fig.1 are SAT-hard (npoly-
logn, n) for formulas and for systems of equations on L, where the only allowable
constant symbols are b and a. The minimization problem for such formulas on L is
also "as .hard as" SAT in the sense of claim (3) of Theorem 4.1.
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Boolean combination of equations:

(--.(f g,) or (/2 g2)) and ((f g3) or ""(f2-- g3))

3CNF formula for equation f= g:

(t.orvg) and (v.torg) and {3CNF formula forf} and {3CNF formula for g}

3CNF formula for the Boolean combination of equations:

{3CNF formula forfl gl} and
{3CNF formula for f2 g2} and
{3CNF formula forf g3} and
{3CNF formula forf2 g3} and
{3CNF formula for wl "( vft vg)} and
{3CNF formula for wz (v.t- Vg2)} and
{3CNF formula for w (v./i vg3)} and
{3CNF formula for w4 "(vj vg3)} and
{3CNF formula for (w or w2) and (w3 or w4)}

FIG. 2. Sample reduction: Boolean combinations of equations to 3CNF formulas.

Finally, the generalized satisfiability and tautology problems, for a formula F on
a lattice L with 0 and 1, are the problems of determining

If there is an assignment v of values from the domain of L to the variables of F
such that V[F] 1,

and if, for all assignments v of values from the domain of L to the variables of F,

v[F]= 1.

Both problems are decidable deterministically in polynomial time, whenever
constant expressions on L can be evaluated deterministically in polynomial time (e.g.,
L is a finite lattice). This is easily seen by noting the folllowing. Let v and v2 be the
assignments of values from L to the variables of a formula F on L such that, for all
variables x, v[x]=0 and Vz[X] 1. Then, F= 1 on L if and only if Vl[F]= 1 on L.
Also, there is an assignment v of values from L to the variables of F such that v[F] 1
if and only if v2[F] 1.

4.2. Distributive lattices with an application to logic. By Theorem 1.4 the lower
bounds of Theorem 4.1 also hold for each distributive lattice. In particular, Problems
1-4 of Fig. 1 are SAT-complete (npolylogn, n) for constant-free formulas on any
distributive lattice. In the next two propositions, we show how each distributive lattice
with 1 can naturally be extended so as to have a SAT-hard (npolylogn, n) generalized
tautology or generalized satisfiability problem. In the first proposition, the extension
is obtained by appending an "implication" operator such that AB means "B is
more true than A." In the second, we append a "negative" operator such that some
lattice element represents "not true."

PROPOSITION 4.2. Let L’= (S, v, ^, 3) be a nondegenerate algebraic structure such
that

(i) The structure L (S, v, ^) is a lattice;
(ii) There exists 1 in S such that, for all x S, x <- on L; and
(iii) The operator is binary and, for all x, y S, (xy) 1 on L’ if and only if

x<-_yon L.
Then, the set

{(F, G)IF and G are formulas on L such that F <- G on L}
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is linear size reducible to the set

{(FOG)IF and G are formulas on L; and (FOG)= 1 on L’}.
In particular, if L is a distributive lattice, then the set

{(F G)[F and G are constant-free formulas on L such that no variable occurs
more than once in F and more than once in G; and (FOG)= 1 on L’}

is SAT-complete (npolylogn, n).
Proof For arbitrary L, the conclusion follows immediately from (iii). For distribu-

tive L, the additional conclusion follows from (iii), Theorem 1.4, and Theorem 3.3.
PROPOSITION 4.3. Let L’= (S, v, ^, ---) be a nondegenerate algebraic structure such

that
(i) The structure L (S, v, ^) is a distributive lattice,
(ii) There exists 1 in S such that, for all x S, x <-_ 1 on L, and
(iii) The operator is unary, ---1 1 on L’, and there exists b Sfor which ---b

on L’.
Then, the set

{(F ^ (---G))I F and G are constant-free formulas on L such that no variable
occurs more than once in F and more than once in G;
and there exists an assignment v of values from S to the variables such that
v[(F ^ (---G))] 1 on L’}

is SAT-complete (npolylogn, n).
Proof By Theorems 1.4 and 3.3, it suffices to prove that

There exists an assignment v of values from S to the variables such that v[(F ^
(---G))] 1 on L’ if and only if it is not the case that F <= G on L.

The proof consists of two cases.
Case 1. If F <_- G on L, then v[(F ^ (---G))] 1 on L’ implies that v[F] v[ G]

---v[ G] 1 on L’, contradicting (iii).
Case 2. Suppose it is not the case that F_-< G on L. By Theorem 1.4 it is not the

case that F_<- G on BIN. Hence, it is not the case that F =< G on the distributive lattice
({b, 1}, v’, ^’) where v’ and ^’ are the restrictions of the operators v and ^, respectively,
to {b, 1}. Thus, there is an assignment v of values from {b, 1}, and hence from S, to
the variables such that v[ G] b and v[F] 1. Hence, v[(F ^ (---G))] using (iii).

A number of the lattice-theoretical models of propositional calculi studied in the
literature of algebraic logic [7], [43], [44] are known to satisfy the conditions of
Propositions 4.2 and/or 4.3 [43]. Thus, there are many formula theories such that
Proposition 4.2 implies that the logical validity and/or decision problems are SAT-
complete (npolylogn, n) for simple formulas. These theories include the propositional
calculi of classical two-valued logic in the logical theories L, L1, L2, L3, and L4 in
[36], of positive logic [23], of intuitionistic logic [22], the modal logic $4 [32], and for
m_->2, the m-valued logic of Post [42]. Intuitively, these theories are in a class of
theories where suitable and, or, and implication operators can be defined by suitable
formulas and the axioms and theorems evaluate to "true" in all associated models.
Formalizing this class of theories is beyond the scope of this paper.

4.3. Some applications to circuit analysis and testing. Theorem 3.3 has a number
of immediate applications to circuit analysis and testing, including computing signal
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probability [41], [40], computing signal reliability [39], determining the testability of
stuck-at faults 19], [38], [46], [50], and detecting the presence of static hazards 11 ],
[12], [16]. To apply the theorem, we first give some definitions and observe some
equivalences.

Let F and G be Boolean formulas with principle connectives and and or,
respectively, and let z be a variable not occurring in F or G. (The principle connectives
do not really matter but they are drawn as and and or in Fig. 3(a).) Let the combinational
circuits CI[F, G], C2[F, G], and C3[F, G] be constructed from fan-out free monotone
circuits for F and for G as shown in Fig. 3.

Given a set of variables, we let eq be the probability distribution on assignments
that result when each variable is independently assigned the value with probability
one half. For any predicate P, we let preq{P} be the probability that P is true if the

X X

(a)

Z X Xn Z Xl Xn

(b) (c)

FIG. 3. Circuits definitions for 4.3. (a) The circuit C[F, G]. (b) The circuit C2[F, (3]. (c) The circuit
C3[ F, (3].
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variables in P are assigned values randomly according to distribution eq.
Given the above definitions, the following statements are equivalent:

(i) F<=G.
(ii) preq{F and G= 1}=preq{F= 1}.
(iii) preq{F or G= 1}=preq{G= 1}.
(iv) preq{ G 1] F 1} 1.
(v) preq{the output of C[F, G] is correct, when the gate labeled a is stuck-at-one

and all other gates are correct} 1.
(vi) The gate labeled a in CI[F, G] is not testable for a stuck-at-one fault.
(vii) The circuit C2[F, G] does not have a static 0-hazard, when input z is

indeterminant.
(viii) The circuit C3[F, G] does not have a static 1-hazard, when input z is

indeterminant.
The equivalence of the first four statements is obvious. The others require some

explanation since we are not giving the formal definitions of stuck-at faults and static
hazards. The fault detection problem is to determine, by setting circuit inputs and
observing circuit outputs, whether a specified circuit gate is performing properly. In
Fig. 3(a), we would like to test if the gate labeled a always gives output one (i.e., is
stuck at 1) instead of behaving (as it should) like an or-gate. To test this, we must set
the variables so that the gate output should be 0 (i.e., G is false) and the output of
circuit G is true. This cannot be done if and only if F =< G. With this explanation, the
equivalence of (v) and (vi) to (i) should be apparent.

Static hazards are defined formally in terms of a three-valued logic with values
0, 1/2, 1 where 0 and 1 behave as FALSE and TRUE and 1/2 behaves as "undetermined."
In Fig. 3(b), making z underdetermined (assigning z value 1/2) causes (by definition)
the output of the and-gate (which is input to the or-gate) to be undetermined. This
indeterminancy will pass through the or-gate (by definition) if and only if the other
input to the or-gate is 0 or 1/2. But this can happen for determined assignments to

Xl x, if and only if F or G is not a tautology and hence not F =< G. The equivalence
of (i) and (vii) should now be apparent and equivalence to (viii) becomes apparent
with a dual argument.

From the above equivalences, the following result is immediate.
THEOREM 4.4. Let F and G be monotone formulas satisfying the conditions of

Theorem 3.3. Let the three-level monotone circuit C[F, G], and the simple combinatorial
circuits C2[ F, G] and C3[ F, G] be constructuredfrom F and G as in Fig. 3. Thefollowing
problems are SAT-complete (npolylogn, n):

(1) Determining ifpreq{F and G 1} preq{F 1},
(2) Determining ifpreq{F or G 1} preq{ G 1},
(3) Determining if preq{G 1 F 1,
(4) Determining ifpreq{ the output of Cl[ F, G] is correct, given that the gate labeled

a is stuck-at-one and all other gates are operating correctly} 1,
(5) Determining if the gate labeled a in C[F, G] is testablefor a stuck-at-onefault,
(6) Determining if the circuit C2[F, G] has a static O-hazard, when input variable

z is indeterminant, and
(7) Determining if the circuit C3[F, G] has a static 1-hazard, when input variable

z is indeterminant. 7]

Conclusions (1)-(5) of Theorem 4.4 show that, even when two easy cases are
combined, computing signal probability, computing the probabilities of joint or of
conditional events, computing signal reliability, and determining the testability of
stuck-at faults are "as hard as" the satisfiability problem for 3CNF formulas. (Recall
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that preq{H--1} can be computed deterministically in polynomial time, when H is a
Boolean formula without repeated variables. Also, recall that the testability of single
stuck-at faults can be determined deterministically in polynomial time, for combina-
tional circuits without fanout.) Conclusion (5) strengthens the result of [50] that the
testability problem for single stuck-at faults is NP-complete for three-level monotone
circuits.

Finally, we point out how testing techniques in the literature can be interpreted
in our algebraic context. From [46] it can be inferred that

Determining the testability of a multiple stuck-at fault in a combinational circuit
is npolylogn time and linear size reducible to determining if a system of equations
over the four element Boolean algebra has a solution,

and from [12] it can be inferred that

Determining if a combinational circuit has static 0- or 1-hazards, when a particular
input variable is indeterminant, is npolylogn time and linear size reducible to
determining if a system of equations on the three elements DeMorgan lattice L3
has a solution.

In both cases, the later problem is SAT-complete (npolylogn, n). Thus, both determining
the testability of single stuck-at faults and determining the presence of static 0- and
1-hazards in the very simple combinational circuits of the statement of Theorem 4.4
are "as hard as" the respective problems for arbitrary combinational circuits.

5. Applications to finite fields, modular arithmetic, binary decision diagrams, and
program schemes. We use the results and proof techniques of 3 to show that several
basic problems are also SAT-hard (npolylogn, n), for finite fields, rings Zk (k_-> 2) of
integers modulo k, binary decision diagrams (bdds) [5], and monadic single variable
program schemes [35]. Our new results strengthen and simply NP- and coNP-hardness,
results, for rings in [29], [9], and [27] and for bdds and monadic single variable
program schemes in [25] and [17]. Assuming P NP, a number of the results obtained
are "best" possible.

5.1. Finite fields and modular arithmetic. In [9] the equivalence problem is shown
to be coNP-hard, for formulas on each finite field and on each ring Zk (k-> 2). Here,
we use Theorem 3.2 to show, for each of these rings, that the equivalence problem is
both eoNP-hard and SAT-hard(npolylogn, n) for formulas involving only the
operations +, -, o, and exponentiation by constants in which no variable occurs more
than two times. As a corollary of the proof, we also show, for each of these rings R,
that

Determining if a system of equations on R in which no variable occurs more than
once in each equation

is both NP-hard and SAT-hard (npolylogn, n). This last result strengthens results in [27].

By exponentiation by constants, we mean that we are allowed to denote a formula F F (n _-> 2
F’s) by F". For such formulas F", the number of occurrences of a variable in F" equals the number of
occurrences of the variable in F (rather than, n times the number of occurrences in the variable in F).
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THEOREM 5.1. The following problems are both coNP-hard and SAT-hard (npoly-
logn, n)"

(i) For all finite fields F, determining if a formula on F, involving only variables,
parentheses, +, -, o, exponentiation by constants, and one in which no variable occurs
more than two times, is equivalent to 0 on F.

(ii) For all k >= 2, determining if a formula on the ring Zk, involving only variables,
parentheses, +, -, , exponentiation by constants, and one in which no variable occurs
more than two times, is equivalent to 0 on

Proof (i). Let S be the domain of F. Let k ISI. Recall that, for all a S, a k-1 1,
if a 0, and ak-= 0, if a 0 [34]. Let fo, fl, f2, and f3 be the functions on S defined
by

fo(a)=a k-l, fl(a)=l-a, f(a,b)=l-[(1-a)*(1-b)], f(a,b)=ab.

Let f, f2, and f3 be the restrictions of fl, f2, and f3, respectively, to {0, 1}.
The structure ({0, 1},f2,f3,fl, 0, 1) is isomorphic to the two-element Boolean

algebra. Thus, the claim of the theorem for (i) follows by a direct simulation of the
proof of Theorem 3.2 by replacing each occurrence of a variable, say z, by z k-l, each
occurrence of or by f2, each occurrence of and by f3, and each occurrence of not by
fl. Since the formulas for expressing fl(a), fz(a, b), and fa(a, b) on F have the same
number of occurrences of a and of b as the formulas not a, a or b, and a and b,
respectively, this replacement can be accomplished in deterministic linear time.

(ii) The proof follows that of Corollary 4.3 of [9, pp. 897, 898]. Let S be the
domain of Zk. There are two cases.

Case 1. k =pm for some integer m _--> 1 where p is a prime. The proof is the same
as that for (i) above except that the function fo on S is defined by fo(a)= a p

Note that by Euler’s theorem, fo(a) 1, if p / a, and fo(a) 0, if p
Case 2. k =pmn where p 2 is a prime, m is an integer _->1, and pX n. By the

Chinese Remainder Theorem, Zk is isomorphic to Zp,,, Zn, where the isomorphism
I is given by, for all a S, I(a) (al, a2) where al a mod pm and az------ a mod n. Let
A={x[O<-_x<pmn, and,,,p_,[x},(p and let /=I-1((1,0)). Let fo be the functiOnm on S
defined by fo(a)=(na) p -1). If a cA, then p divides a, and hence, p n divides
fo(a). Thus, fo(a) 0. If a S- A, then gcd (ha, p ") 1. Thus by Euler’s theorem
(na)P ,(p-l)__ modp m. Also, (na) p ’(P-1)=0mod n. Thus, I((na) p ’(P-I))--(1, 0),
and hence, fo(a)= ft. Let fl ,f2, and f3 be the functions on S defined by

fl(a) =/3 a, f(a, b) =fl(a + b), f3(a, b) =/3 -fz(fi a,/3 b).

Since p 2, 2fi S A. Thus, fl maps {0,/3 } to {0,/3 } and f2 and f3 map {0, fl } {0, fl }.
Let f, f, and f; be the restrictions off, f, and f3, respectively, to {0,/3}. Then, the
structure ({0, fl},f,f’3,f, O, fl) is isomorphic to the two element Boolean algebra.
As in the proof for (i) above, the formulas for fl, f2, and f3 do not have repeated
variables and a linear time transformation of problems can be accomplished.

COROLLARY 5.2. Let R be any finite field or ring Zk (k >= 2). Then, determining if
a system of two equations on R of the form

Cl, f2--C3

has a solution on R is both NP-hard and SAT-hard (npolylogn, n), wheref andf are

formulas on R involving only varibles, parentheses, exponentiation by constants, and one
in which no variable occurs more than once in f and more than once in f2 and Cl and c
are constant symbols denoting elements of R.



64 H. B. HUNT III AND R. E. STEARNS

Proof In each case, the theorem follows by a direct simulation of the proof of
Theorem 3.3 using the replacement given in the proof of Theorem 5.1. [3

5.2. Binary decision diagrams and program schemes. The Executability problem
(EP) for a class C of program schemes is the problem of determining, given a scheme
S in C and a label A of S, if there exists an interpretation I of S such that the statement
labeled by A in S is executed during the computation of S under I. In [25] the EP
has been shown to be NP-complete for the class Sw of monadic single variable program
schemes without loops consisting only of predicate tests and halt statements. Theorem
3.2 can easily be combined with the proof of [25] to prove the significantly stronger
result that the EP is both NP-complete and SAT-hard (npolylogn, n), for the classes
of program schemes S in Sw such that no predicate test occurs more than two times
in S.

One easy and immediate corollary is the following.
THEOREM 5.3. The isomorphism, strong equivalence, weak equivalence, containment,

totality, and divergenceproblems are already SAT-hard (npolylogn, n),for monadic single
variable program schemes S such that no predicate test occurs more than two times in S.

Any monadic single variable program scheme in which no predicate test occurs
more than once is free. Thus Theorem 3.3 yields a simple, immediate, and direct proof
of the following result.

THEOREM 5.4. The weak equivalence and containment problems are coNP-complete
and are SAT-hard (npolylogn, n), for the free monadic single variable program schemes.

Proof Let F and G be monotone Boolean formulas, each without repeated
variables. As shown in Fig. 4, the monadic single variable program schemes SF and
Sc can be constructed from F and G, respectively, in deterministic npolylogn time.
Clearly, the sizes of Sv and Sc are linearly bounded in the sizes of F and G, respectively.
Since no variable is repeated in F or in G, no predicate test occurs more than once
in S= and more than once in Sy. Thus, S: and Sc are both free. Let S and S be
the free monadic single variable program schemes in Fig. 5. It can easily be seen that
the following statements are equivalent:

(1) F_-< G;
(2) For any interpretation I such that the statement labeled A in S is executed

during the computation of S- under I, the statement labeled A in Sb is executed
during the computation of Sb under I;

(3) S- is weakly equivalent to S; and
(4) S is contained by Sb.
Each monadic single variable program scheme in Sw can also be viewed as a

binary decision diagram. Thus a number of strengthened hardness results for bdds can
be read off from Theorems 3.2 and 3.3 and the proofs of Theorems 5.3 and 5.4. For
example, the following holds.

THEOREM 5.5. The tautology, satisfiability, and equivalenceproblems are both coNP-
complete, and SAT-complete (npolylogn, n) for bdds in which no variable occurs more
than two times. Moreover, the <- problem is both coNP-complete and SAT-
complete (npolylogn, n) for bdds in which no variable occurs more than one time.

Finally, let F(Xl,’’’, x,) be a Boolean formula denoted by a bdd DF in which
no variable occurs more than one time along any path. A straight-line program, to
compute the value ofp{F 1 } from the values ofp{x 1 } 1 <= <- n for any independent
probability distribution p, can be constructed from D deterministically in polynomial
time. Let F and G be two such formulas. Let PF and Pc be the associated straight-line
programs computed from bdds Dv and De. Then, PF and Pc are equivalent for all
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Sxi is Pi(x)

A.True B.False

S(F F2) is

S(F and F2) is

A1.True

A2.True

SF

A.True B.False

A1.Tr! SF

SF

B2.FalseA2.True

A.True B.False

FIG. 4. Program schemes for proof of Theorem 5.3.
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SF’ SF

AF.True

A.True

BF.False

x--f(x) False

SG SG

A.True Bo.False

x---f(x)

A.True B.False

FIG. 5. Program schemes for proof of Theorem 5.4.

assignments of values from {x is a real l0 =< x <- 1} to their variables if and only if F G
if and only if Pv and Pc are equivalent for all assignments of values from the reals to
their variables. Using the RP algorithm in [29] for the Inequivalence Problem for
straight-line on infinite integer domains, we obtain an alternative proof for the following
theorem from [10].

THEOREM 5.6. There are RP algorithms for the inequivalence problem for bdds in
which no variable occurs more than once along a path and for the strong equivalence
problem [35] for free monadic single variable program schemes.

6. Conclusion. The concepts of npolylogn time and linear size reducibility, SAT-
hard (npolylogn, n), and SAT-completeness (npolylogn, n) have been introduced. Each
SAT-hard (npolylogn, n) problem has been shown to require essentially as much
deterministic time as SAT; and each SAT-complete (npolylogn, n) problem has been
shown to require essentially the same deterministic time as SAT.
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Extending our earlier work in [28], we have proved that the <_-, satisfiability,
tautology, unique satisfiability, equivalence, and minimization problems are already
SAT-complete (npolylogn, n), for very simple Boolean formulas and systems of Boolean
equations. In particular in Theorem 3.3, the _-< problem has been shown to be SAT-
complete (npolylogn, n), for very simple monotone Boolean formulas F and G such
that no variable occurs more than once in F or more than once in G. This problem,
or equivalent variants of it, has been shown to be directly and naturally npolylogn
time and linear size reducible to a number of problems for lattices, logics, combinatorial
circuits, finite fields, modular arithmetic, monadic single variable program schemes,
and binary decision diagrams. Thus, each of these additional problems is also SAT-
hard (npolylogn, n).

Assuming PC NP, a number of the hardness results of this paper are "best"
possible. In [13] it is shown that there is a deterministic polynomial time algorithm to
convert a Boolean formula

Involving only variables, parentheses, the operators or, and, not, and @, and the
constants 0 and 1 in which no variable occurs more than once

into an equivalent ordered bdd 17]. In 17] the equivalence problem for ordered bdds
is shown to be decidable deterministically in polynomial time. Thus, the equivalence
problem is also decidable deterministically in polynomial time, for pairs of Boolean
formulas (F, G)

Involving only variables, parentheses, the operators or, and, not, @, 3, [, $, and
-=, and the constants 0 and 1 in which no variable occurs more than once in F
and more than once in G.

(Contrast this with Corollaries 3.4 and 3.8.) Moreover, the satisfiability problem is
decidable deterministically in polynomial time, for systems of equations of the form
F e, where F is such a Boolean formula, c {0, 1}, and no variable occurs more than
once in the system. (Contrast this with Theorem 3.3(5).) For Boolean formulas involving
only the operators or, and, and not, more can be said. Namely, two such formulas in
negation normal form (i.e., nots are applied only to variables) are equivalent if and
only if they are identical up to commutativity and associativity of or and of and [28].
One immediate corollary is that, for all lattices L, the equivalence problem is decidable
deterministically in polynomial time for constant-free formulas on L in which no
variable occurs more than once. (Contrast this with Theorem 4.1(1).) Finally, we recall
the remark in 3 that the unique satisfiability result in Theorem 3.5 is best possible
in that the same problem for two repetitions can be solved in polynomial time. As
noted in 3, this means (assuming P NP) that there is no parsimonious reduction
of the satisfiability problem for CNF formulas to the satisfiability problem for Boolean
formulas in which no variable occurs more than twice.

Appendix. The purpose of this Appendix is to prove the following result mentioned
in the discussion after Proposition 3.6.

THEOREM. Let L be the set ofpairs (S, F) such that
(1) S is a set of variables;
(2) F is a Boolean formula using operators {and, or, not}, constants {TRUE,

FALSE}, variables from S, and parentheses;
(3) No variable appears more than twice in F;
(4) Only one assignment to variables in S make F true.

There is a polynomial time algorithm for L.
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Set S must be given as part of the problem so that we can represent the case
where some variable of S occurs zero times in F. If some variable occurs zero times,
then F is not uniquely satisfied.

There are certain simplifications that can be applied to any Boolean formula and
which preserve properties (3) and (4) of the Theorem. DeMorgan’s laws can be used
so that formula F is monotone in literals. Formulas with constants can be simplified
to formulas without constants (or to constant formulas). Pairs of the form (S, x ^ F)can be simplified to (S-{x}, F1) where F1 is F with TRUE substituted for x. Finally,
(S, ^ F) can be simplified to (S-{x}, Fo) where Fo is F with x replaced by FALSE.

The above simplifications can be applied repeatedly until the formula is a constant
or a formula of the form

(G1V H1)A" "A (Gk v Hk)
for some k_-> 1. The constant FALSE is never satisfiable and the constant TRUE is
uniquely satisfiable if and only if the set of variables is empty. We thus only need a
polynomial test for formulas of the form (,).

If formula (,) is uniquely satisfiable, there is an assignment that for each i, makes
Gi or Hi true. We can assume without loss of generality that it is Gi, which is true. If
some variable in S does not appear in any Gi, that variable can be changed without
changing any of the Gi, and (,) is not uniquely satisfiable. Thus each variable of S
appears at least once in some Gi, and therefore the variables can appear at most once
in the formula

(**) H, A’’’A Hk,

and (**) must have a satisfying assignment. Thus if (,) is uniquely satisfiable, that
assignment must make all the Gi and all the Hi true. Changing the value of a variable
x in the assignment must make some Gi v G false, and so x must appear in both Gi
and/-/. From the above considerations, we conclude (,) is uniquely satisfiable if and
only if the following three conditions hold:

(i) All variables of S appear in (,)
(ii) For each i, Gi and Hi have the same variables
(iii) For each i, Gi v Hi is uniquely satisfiable.
Conditions (i) and (ii) are easy to test in polynomial time and we get the main

result if we can test condition (iii) in polynomial time. Each variable in formulas Hi
and Gi occurs only once (by (3) and (ii)) and Gi v Hi will have more than one solution
if either Gi or Hi contains the operator or. We conclude that condition (iii) is equivalent
to the following two conditions:

(iiia) Each Gi and Hi is the conjunction of literals;
(iiib) Gi and Hi have the same literals.

Both these conditions can be tested in polynomial time and the result is proved.
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LOWER BOUNDS FOR THE STABLE MARRIAGE PROBLEM
AND ITS VARIANTS*

CHENG NGt AND DANIEL S. HIRSCHBERGt

Abstract. In an instance of the stable marriage problem of size n, n men and n women, each participant
ranks members of the opposite sex in order of preference. A stable marriage is a complete matching
M {(ml, wi), (m2, wi2),... (m,,, wi,,) such that no unmatched man and woman prefer each other to their
partners in M. There exists an efficient algorithm, due to Gale and Shapley, that finds a stable marriage for
any given problem instance.

A pair (mi, w.j) is stable if it is contained in some stable marriage. In this paper, the problem of
determining whether an arbitrary pair is stable in a given problem instance is studied. It is shown that the
problem has a lower bound of (n2) in the worst case. Hence, a previous k.nown algorithm for the problem
is asymptotically optimal.

As corollaries of these results, the lower bound of (n2) is established for several stable marriage
related problems. Knuth, in his treatise on stable marriage, asks if there is an algorithm that finds a stable
marriage in less than (R)(n 2) time. The results in this paper show that such an algorithm does not exist.

Key words, stable marriage problem, stable pair, analysis of algorithms, lower bounds
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Introduction. An instance of the stable marriage problem involves two disjoint
sets of equal cardinality n, the men denoted by mi’s and women denoted by wi’s. Each
individual ranks all members of the opposite sex in order of decreasing preference. A
matching M {(ml, Wil) (m2, Wi2),’’" (ran, Wi,,)} is a stable marriage if there does not
exist an unmatched man-woman pair (mi, w) such that both prefer each other to their
partners in M. At least one stable marriage exists for any given problem instance. In
most problem instances, there exists more than one stable marriage. Moreover, there
are problem instances of size n where the number of stable marriages are exponential
in n [IL86] [Kn76].

Gale and Shapley [GS62] first demonstrated that stable marriages exist for all
problem instances and gave an algorithm that finds a stable marriage for any problem
instance. The stable marriage obtained with the Gale-Shapley algorithm is male-
optimal; that is, no man can receive a better match in any other stable marriage for
the same problem instance. Moreover, by reversing the roles of men and women, the
algorithm also finds the female-optimal stable marriage.

There are numerous expositions and analyses of the Gale-Shapley algorithm
available in the literature [It78], [MW71], [Kn76]. The algorithm’s worst-case
asymptotic time complexity, (R)(n2), is optimal for the stable marriage problem in the
following sense. To input the description of a problem instance, which includes all
preference rankings, requires f(n 2) time. However, the "computational" component
(omitting time required for input) of the Gale-Shapley algorithm requires O(n log n)
operations on the average [Wi72], despite its (R)(n 2) worst-case complexity.

It is interesting to investigate if there exists a faster algorithm that solves the
problem under a model that ignores the input requirement. We shall elaborate on this
model in the next section. In 1976, Knuth posed this question as one of twelve research
problems in his treatise on stable marriage [Kn76]. Our main contribution in this paper
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is to show that such an algorithm does not exist; that the computational component
of the stable marriage problem has a worst-case complexity of 12(n2). In a related
problem, Gusfield [Gu87] asks if it is possible to determine in o(n 2) time if an arbitrary
complete matching is stable. We also answer this question in the negative by showing
the lower bound of f(n2) for this problem.

We have noted earlier that it is possible to have multiple stable marriages in a
problem instance. We define a man-woman pair (mi, wj) stable if it is contained in
some stable marriage. Consider the problem of determining whether an arbitrary pair
is stable in a given problem instance. Gusfield [Gu87] provides an O(n2) algorithm
that finds all stable pairs, and hence also solves the above problem. Our approach in
this paper is first to show the -(n 2) lower bound for this problem. The other results
follow as corollary.

1. Model of computation. In the introduction, we noted that our lower bound
results must not depend on the time required to read the input for a problem instance.
Hence, our model assumes that all participants’ preferences are available in memory.
It is useful to organize these preferences into two n n integer matrices MP and WP
such that the ith row of MP (WP) gives the preferences of mi (w). For example,
MP[i, j] k if mi’s jth preference is wk.

For maximum generality, we also assume that two ranking matrices, denoted MR
and WR, are available in memory. An entry in the men’s ranking matrix, MR[i, j],
gives the ranking (position of preference) of wj by m. Entries in WR, the women’s
ranking matrix, have similar interpretations.

The preference and ranking matrices are inverses of each other; for example,
MP[ i, MR[ i, j]] =j and MR[ i, MP[ i, j]] =j. Hence, the ranking matrices can be com-
pletely constructed from the preference matrices in O(n2) time. However, an algorithm
may rely on the ranking matrices to determine quickly the ranking assigned to a
participant by another of the opposite sex. Using the preference matrices to obtain
this information can be slower because the algorithm has to search an entire row in
the worst case.

We will use the notations MP, MR, WP, WR only when the problem instance
associated with these matrices can be clearly determined from context. When there is
a possibility of ambiguity, we use the notations MPs, MRs, WPs, and WRs, where S
denotes a specific instance of the stable marriage problem.

Our lower bound is established by counting the number of times an algorithm
must obtain information about the problem instance. In our model, such information
is obtained with two types of queries. Given the identity of a participant and an integer
i, the first type of query obtains the identity of his/her ith preference. Given two
participants of opposite sex, the second type of query finds the ranking of the first
participant in the second’s preference. Each query can be accomplished in O(1) time
via a simple lookup of one of the four matrices.

2. The canonical instance. For every size n, our proofs are centered on a special
instance of the stable marriage problem that we call the canonical instance and denote
by C. An important characteristic of C is that the pair (ran, wn) is stable in it. However,
there exists a large family of problem instances that differ only slightly yet sufficiently
from C such that (m,, wn) is not stable in them. Later we will show how to construct
such a problem instance which we call a minimally noncanonical instance and denote
by --C.

We will show that before any algorithm can correctly determine that (m,, w.) is
stable in C, it must make a certain minimum number of queries on the preference and



LOWER BOUNDS FOR THE STABLE MARRIAGE PROBLEM 73

ranking matrices. Otherwise, it is possible to complete these matrices by giving appropri-
ate values to the remaining entries that are not queried, and obtain a ---C that refutes
the algorithm’s correctness. This is due to the large number of possible --C’s, each
derivable with only minor changes to C. Hence, the algorithm must make a large
number of queries to eliminate all potential C’s, supporting our lower bound claim.

We now define the women’s preference matrix, WPc. Entries in WPc are defined
by the function WPc[ i, j] =j, as illustrated in Fig. 1. Lemmas and 2 give two properties
of WPc.

FIG. 1. Women’s preference matrix, WPc.

LEMMA 1. In a problem instance where WPc is the women’s preference matrix, the
matching S constructed by the following rules is a stable marriage.

(i) When a woman receives a match, she is removed from the preference list of all
remaining men.

(ii) Match m with his highest preference.
(iii) After ml, m2, mi_ are matched, mi is matched with the highest preference

remaining on his list.

Proof Rule (i) ensures that each woman is matched only once. Hence, S is a
proper matching.

If mi prefers w to his match in S, then by rule (iii), w is matched with mk such
that k < i. However, the preferences in WPc show that w prefers mk to mi. Hence, m
and % cannot destabilize S.

LEMMA 2. Regardless of the men’s preferences, any problem instance that has WPc
as the women’s preference matrix yields exactly one stable marriage.

Proof Any stable marriage is represented in WPc by exactly one entry in each
column. In particular, this is true of the male-optimal stable marriage S obtained by
the Gale-Shapley algorithm.

Suppose there exists another stable marriage S’. For every matched pair (m, wj)
in S that has changed partners in S’, m receives a less preferable partner in S’ because
S is male-optimal. Therefore, w. receives a more preferable partner in S’. Otherwise,
(m, w) is an unstable couple in S’.

Hence, every woman either has the same partner in both S and S’, or she has a
more preferable partner in S’ than in S. According to WPc, the subscript of each
woman’s partner decreases or stays the same. However, this requires that some column
in WPc be represented in S’ by more than one entry. We conclude that S’ does not
exist.

Lemma gives us an algorithm that we will use in the proofs of Lemmas 3 and
4. The algorithm finds a stable marriage; it is shown by Lemma 2 to be the only one
available.

We now describe the men’s preference matrix, MPc. Entries in MPc fall into
three groups. The first group, underlined in Fig. 2, includes the first row, last row, and
tridiagonal entries of the remaining rows. The first and last rows consist of the integers
1 to n in increasing order. The tridiagonal entries of row are the integers i, n, and
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n-2
n-1

3 4 i-2 i-1 i+1 i+2 n-4 n-3 n-2 n-1

2 3 4 n-2 n-1

2 3 4 n-1
2 4 n-1

2 i-2 i-1 i+1 n-1

2 n-4 n-2 n-3 n-1
2 n-3 n-1 n-2

1 3 4 n-2 n-1

FIG. 2. Men’s preference matrix, MPc,.

i- 1 in that order. Of the remaining entries, the group left of the tridiagonals consists
of integers 1 to i-2 in increasing order. The group right of the tridiagonals consi
of integers i+ 1 to n- 1 also arranged in increasing order.

LEMMA 3. mn, Wn) is a stable pair in C.
Proof Apply the algorithm of Lemma 1 to C. Scanning the ith row of MPc, note

that all entries to the left of have values less than i. These entries represent those
women matched in previous rows. Hence, mi’s stable partner is wi and
{(ml, wl), (m2, w2),’’", (m,, w,)} is a stable marriage in C.

3. Obtaining noncanonical instances. Starting with C, we obtain a ---C by selecting
a row of MPc such that 3 _-< _-< n 2, and exchanging two special entries, and r, in
that row. All entries left of the tridiagonal are candidates for l, but only those right of
the tridiagonal with values that differfrom by odd numbers are candidates for r. Note
that is equal to its column number, and r’s column number is r + 1.

To formalize the above construction, we define, for each i, two sets of integers

L ={x[ 1-<x=< i-2}, and

R={xli+l-_<x-<n-1 and xi(mod2)}.

Then, for any i, l, and r satisfying 3 -< _-< n 2, L, and r e R; we define MP_c[ i, l] r
and MP_c[i, r+l]=/. All other entries of MP-c and WP_c are equal to their
corresponding entries in MPc and WPc.

LEMMA 4. m., w.) is not a stable pair in C.
Proof Apply the algorithm of Lemma to --C. Figure 3 illustrates the stable

marriage that results.
mk is matched with wk for _-< k_-< i- because these rows are unchanged from

C.
m; is matched with Wr. Note that r (mod 2), which guarantees that there is

an even number of rows between row i+ 1 and row r-1 inclusive.
For + 1 _-< k _-< r- 1, m is matched with w if k (mod 2) and m is matched

with w-2 if k-= i(mod 2). Note that mr-2 is matched with wr_2 and mr-i is matched
with wr-3.

The above discussion shows that wl, wz,. , w_ are matched in rows to i-1;
w, w+,. , wr_z are matched in rows i+ to r-1; and Wr is matched in row i. The
subscripts of these women account for every entry left of the diagonal entry n in row
r. Hence, mr’s partner is wn.

---C has only one stable marriage by Lemma 2. Since w, is married to mr and not
m, in this marriage, (m, w) is not a stable pair.
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2

i-1

i+l
i+2
i+3
i+4

r-2
r-1

2 3 i-2 i-1 i+1 /+2

2
2

2
2

2

2
2
2

r-3 r-2 r-1

r-1 r-2
r-3 r-2 I-if]

FIG. 3. Stable marriage in C.

4. A counting argument. The construction of---C is made possible by the exchange
of appropriate and r values. Until an algorithm has eliminated all possibilities of
such exchanges, it cannot conclude correctly that it is dealing with the problem instance
C. However, the large number of valid choices of i, l, and r gives us the following bound.

LEMMA 5. If n 3k +4 for some integer k >-1, the minimum number of queries
needed to eliminate all possible constructions of "--C’s is k(k + 1).

Proof To eliminate row from participating in the construction of a ---C, the
algorithm must query either all of Li or all of Ri. To eliminate all possible constructions
of---C’s, all rows must be eliminated.

ILi[=i-2<=k< [(2k+ 1)/2]-< [(n-i-1)/2]=lRi
for 3 _<- =< k + 2, and

ILil=i-2>=k+l> [2k/2] -> [(n-i-1)/2]=lR,
for k+3<-i<-n-2.

Therefore the minimum number of queries needed

n-2

E min ([L,I, IRil)
i=3

k+2 -2

ILil+ IRil
i=3 i=k+3

k+2 -2

E (i-2)+ E
i=3 i:k+3

[(n-i-1)/2]

k+2 3k+2

E (i-2)+ E
i=3 i=k+3

[(3k+3-i)/2]

k k

=Ej+E2j
j=l j--1

= k(k+l).

5. Lower bounds results. We are now ready to state our main result.
THEOREM. Determining if an arbitrary pair is stable in a problem instance of size

n requires i2(n 2) time in the worst case.
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Proof Without loss of generality, we may assume that n 3k + 4 for some integer
k-_> 1; otherwise, we extend the problem instance by adding the appropriate number
of men and women.

By Lemmas 3 and 4, it is necessary to distinguish between C and --C in order
to determine if (mn, w,) is stable. By Lemma 5, any algorithm that distinguishes between
C and ---C must make at least k(k+ 1)=((n-4)/3)(((n-4)/3)+ 1) queries. Hence,
the number of queries necessary is f(F/z). [3

COROLLARY 1. The asymptotic time complexity for determining if an arbitrary pair
is stable in a problem instance of size n is 6)(n2).

Proof The theorem provides an 12(n 2) lower bound. Gusfield’s algorithm provides
an O(n 2) upper bound.

COrOLLAR 2. The asymptotic time complexity for finding a stable marriage in a
given problem instance of size n is (R)(n2).

Proof We noted earlier that the Gale-Shapley algorithm runs in O(n 2) time. The
only stable marriage in C is different from the only stable marriage in --C, and 12(n 2)
queries are required to distinguish between them.

COROLLAg 3. The asymptotic time complexity for determining if an arbitrary
complete matching is a stable marriage in a given problem instance of size n is 6)( n).

Proof An obvious algorithm that solves this problem in O(n2) time exists. The
matching {(ml, wl), (m2, w2),""", (m,, w,)} is a stable marriage in C but not in --C,
and -(F/2) queries are required to distinguish between them.

Historical note. The problem in Corollary 3 was raised by Gusfield [Gu87, p.
127]. He gives an algorithm that requires only n(n 1) + 2n queries. By Lemma 5, we
show that at least (n-4)(n- 1) queries are needed.

6. Conclusions. We have shown that the lower bound of l(n2) holds for three
stable marriage-related problems. This lower bound is fundamental to stable marriage
and holds for other variants of the stable marriage problem, including the following
class of optimization problems. Given an instance of the stable marriage problem X,
we define a real-valued function V, whose domain is the set of stable marriages in X.
The problem of finding a stable marriage M that maximizes (or minimizes) V(M) has
a lower bound of O(n2), by an argument similar to that of Corollary 2. By varying the
definition of V, we can formulate different variants of the stable marriage problem.
We give three such problems that have been studied in the literature.

Suppose (mi, w) is a pair in a marriage. The regret of mi is the ranking he gives
to w, which equals MR[i, j]. Similarly, the regret of w equals WR[j, i]. The regret
of a marriage M is the maximum regret among all the participants. The minimum

regret stable marriage problem is to find a stable marriage with the minimum regret.
Gusfield [Gu87] gives an algorithm that solves this problem in O(n 2) time, which is
asymptotically optimal.

The Gale-Shapley algorithm favors one set of participants heavily over the other.
It is often desirable to obtain a stable marriage that treats both sexes more equitably.
The egalitarian stable marriage problem is to find such a marriage M, one that minimizes
(,,i,_w)4 MR[i,j]+ WR[j, i]. An algorithm that solves the egalitarian problem in
O(n log n) time is given in [Fe89].

A weighted version ofthe egalitarian problem is the optimal stable marriageproblem.
In this problem, the rankings are replaced by general "unhappiness" functions um(i, j)
and uw(j, i) for every possible pair (mi, w). The goal is to find a marriage M that
minimizes (,. w,)M um(i, j)+ uw(j, i). An algorithm that solves the optimal problem
in O(n4 log n)i’time is given in [ILG87].
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An important generalization of the stable marriage problem that has received
substantial attention is the stable roommate problem. This problem involves only one
set of participants. Using a similar definition for stability, the goal is to find an
assignment (a partition of the participants into pairs) that is stable. For every variant
of the stable marriage problem described in this paper, there is a corresponding stable
roommate variant that is similarly defined. Moreover, the f(n2) lower bound applies
to these variants. This claim is supported by the observation that every instance of the
stable marriage problem is also an instance of the stable roommate problem having
the same solution structure. We refer readers to [Gu88, p. 767] for a general discussion
of this relation.

Variants of the stable roommate problem that have O(n2) algorithms include the
following: determining whether an arbitrary pair is stable [Gu89]; determining whether
an assignment is stable; finding a stable assignment [Ir85]; and the minimum regret
problem [Ir86]. Obviously, no asymptotic improvement is possible with these problems.
Feder has shown that the egalitarian stable roommate problem--and by implication,
the optimal stable roommate problem--is NP-complete [Fe89].

Acknowledgments. We thank Dan Gusfield and an anonymous referee for many
helpful suggestions that have improved the presentation of this paper.
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A REWRITING SYSTEM FOR CATEGORICAL COMBINATORS
WITH MULTIPLE ARGUMENTS*

HIROFUMI YOKOUCHI? AND TERUO HIKITA$

Abstract. Categorical combinators have been derived from the study of categorical semantics of lambda
calculus, and it has been found that they may be used in implementation of functional languages. In this

paper categorical combinators are extended so that functions with multiple arguments can be directly
handled, thus making them more suitable for practical computation. A rewriting system named CCLM/3 is
formulated for these combinators. This system naturally corresponds to the type-free A/3-calculus. The
relationship between these two systems is established, and as a result of this, the Church-Rosser property
of CCLM/3 is proved. A similar relationship is also established between the original CCL/3 by Curien and
the type-free A/3-calculus with product. Finally the embedding theorem of CCLM/3 into CCL/ is shown.

Key words, categorical combinator, Church-Rosser property, combinator, functional programming,
lambda calculus, rewriting system
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1. Introduction. Categorical models of lambda calculus have been extensively
studied. See, e.g., [4], [5], [10]-[13], [18], [19] and the bibliographies therein. (See
also [16].) Curien [4], [5] introduced categorical combinators from such categorical
semantics of lambda calculus, and he formulated rewriting systems for them, such as
CCL/3 and CCL/3r/SP. In this paper, extending CCL/3, we propose a new kind of
system called CCLM/3 and establish a natural correspondence between CCLM/3 and
A-calculus as rewriting systems.

It is well known that A-calculus and Cartesian closed categories (CCC) are
essentially the same. This correspondence involves explicit products in A-calculus.
Certainly the structure of products is expressed by A-terms in the type-free A-calculus,
but, to give a strict correspondence between the two systems, the A-calculus needs to
have explicit products. For the computational aspect of A-calculus, products are not
so important; we may want to have a CCC-like structure that strictly corresponds to
A-calculus without products.

In the correspondence between A-calculus and CCC, the product in CCC plays
two different roles: one is handling variables in A-terms, and the other is handling the
product itself. Let M be a A-term with free variables zl," -, zn. Then M is regarded
as an n-ary function. In CCC, M is interpreted as an arrow from the product of the
objects corresponding to the free variables Zl," ", zn. Access of the free variables in
M is represented by projections in CCC. The structure of the product in CCC is
defined in a general form, and consequently the corresponding A-calculus has the same
general structure of product. This is why the A-calculus needs explicit product for the
strict correspondence between A-calculus and CCC. If we separate these two uses of
product, we may obtain a more natural correspondence between A-calculus without
product and a CCC-like structure.

Obtutowicz and Wiweger [17], based on functorial semantics of algebraic theory
[14], introduced another kind of categorical models of A-calculus, called Church
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algebraic theory. They have shown that models of the pure type-free A-calculus without
product are essentially the same as Church algebraic theory. This result is a model
theoretic one, that is, the correspondence, between Church algebraic theory and A-
calculus is examined as equational systems. In this paper, however, we discuss syntac-
tical rewriting systems for categorical structure of A-calculus. Using Obtulowicz and
Wiweger’s idea, we extend categorical combinators by Curien and propose the rewriting
system CCLMfl.

The key idea of CCLM/3 is arities of functions. In CCLM/3, every term has its
fixed arity, say n, and the term intuitively represents an n-ary function. In the original
system CCL/3, the arity of the function represented by a term of CCL/3 is determined
according to the context in which the term appears. The system CCLM/3, moreover,
has an operator that constructs n-tuples, and projection p’ that directly gives the ith
member of an n-tuple. The projections are used in access of variables when a A-term
is interpreted in CCL/3.

We show a natural correspondence concerning reduction between the pure type-
free Aft-calculus and CCLM/3. Through this correspondence, various properties of
A-calculus can be transferred to CCLM/3. In particular, we show that CCLM/3 satisfies
the Church-Rosser property using that of A-calculus.

Incidentally, the systems of categorical combinators have a strong resemblance
to the functional-style language FP of Backus [1]. Categorical combinators have been
used in implementation of functional languages [3]. (See also [15].) Our system is
suited for practical computation where multiple arguments prevail. Moreover, our
system may be applied to partial computation (or often called partial evaluation),
which is a method of computing a function with more than one argument by supplying
values to only a specified part of the arguments. It has many applications such as
compiler generation [7]. With the mechanism of arities, the operation of currying and
application are naturally extended to "partial currying" and "partial application" in
CCLMfl.

In 2 the new categorical combinators are introduced, and the rewriting system
CCLM/3 is formulated for these combinators. In 3 some derived combinators are
introduced that will be useful in practical computation. In 4 we briefly state the
model theoretic aspects of the system. In 5 the translation algorithms are introduced
between CCLMfl and A-calculus, and in 6 theorems on the relationship concerning
reduction between these two systems are established. In 7, the Church-Rosser property
of CCLM/3 is proved using the results in 6. In 8, we deal with the original system
CCL/ without arities and show similar results to those for CCLM/. Finally, in 9,
we show that CCLM/3 can be embedded into CCLfl.

We assume the reader has basic knowledge of A-calculus (e.g., [2]). The acquaint-
ance with categorical combinators [4], [5] is desirable, but this paper is self-contained
and makes no use of previous results about them.

Recently, Curien [6] further extended the results of this paper.

2. Rewriting system CCLMfl. We extend the original categorical combinators by
Curien [4] and introduce the formal system named CCLM/3. Before presenting its
formal definition, we explain the intuitive meaning of the new combinators.

We design CCLM so that arities of terms are explicitly specified. First consider
the operation that means function composition. Let f be an n-ary function, then the
right-hand side of f (m) must be a multivalued function whose value is an n-tuple.
We introduce an operation that constructs an n-tuple of functions. For n functions
fl,""" ,fn of equal arity, say k, the angular bracket (f,... ,fn) means a multivalued



80 H. YOKOUCHI AND T. HIKITA

function of arity k, the ith value of which is the value off. Function composition is
defined only in the form f o(f,... ,f,) for an n-ary function f and an n-valued
function (f,... ,f,). We assume that every term is a single-valued function. By this
assumption, (f,... ,f,) itself is not a term, so that compound expressions such as
(g, (fl, ,f,), g2) are disallowed. Moreover, we introduce combinator p’], <= <- n,
that means the ith projection of an n-tuple. The combinators p’ are extensions of Fst
and Snd of the original categorical combinators.

For currying operation A, we specify the arities of functions. For n =>0, the
operation A applies to a function with n + arguments and means currying. More
precisely, for a function f of arity n+ 1, A,(f) means the curried function whose
arguments correspond to the first n arguments off Informally, A,(f) is represented as

A(z, z,) (Ax" f(z, z,, x))

in a A-calculus-like notation. To cope with this extension of the currying operation,
App is also extended. In our definition, App receives two arguments, and the composi-
tions of App appear only in the form App (f,f2). The first argument of App is
regarded as a curried function and App applies the first argument to the second one.
In a A-calculus-like notation, App is represented as A(x, y).xy.

Now we formally give the definition of terms of CCLM/3.
DEFINITION. We define terms of CCLM/3 with nonnegative integer called arity.

A term with arity n is called n-ary term. For every constant its arity is uniquely specified.
We assume that there are special constants: p’ of arity n for all pairs of n and such
that n >_- and <= i-< n, and App of arity 2. The other constants are called nonspecial
constants. Then the terms of CCLM/3 are defined as follows:

(1) Every constant is a term.
(2) For m, n-> 0, if F is an m-ary term and G,..., G,, are n-ary terms, then

Fo (G1,.--, G,,), is an n-ary term.
(3) For n_>-0, if F is an (n+l)-ary term, then A,(F) is an n-ary term.
In the following, terms are denoted by F, G, F, etc. We write F G when F and

G are syntactically the same. We almost always omit the subscript n of
F (G,. , G,,), and A,(F). Note that F (), is a term of arity n for 0-ary term F.
Note also that n-tuples in themselves are not terms; they always appear as part of
composed terms.

Now we present the rewriting rules of the formal system CCLM/3.
DEFINITION. We define the binary relation --* among the terms of CCLMfl by

the following rules"
(1) (Fo(G,. G))oI4,,. ., I-I,)

(2) p7 (F,, ., F,) F.
(3) c p’, , p,") -- c, where c is an n- ary constant.
(4) A(F)

k+l\

where F is (n+ 1)-ary, and G,..., G, are k-ary.
(5) Appo(A(F),G)--Fo(p’,...,p,,G), where F is (n+l)-ary, and G is

n-ary.
(6) IfF F’, then Fo (G,,..., G,) F’o (G,,.-., G,,).
(7) If Gi-- GI for some (l_-<i -< m), then F (G,..., Gi,..., G,,)--

F (G1, ai,
(8) If F F’, then A(F) A(F’).
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We denote by -% the reflexive and transitive closure of-->. Note that arity is
invariant under the relation (and -%).

Example. We give an example of computation in CCLMfl. Let plus (x, y, z)=
x+y+z be a function with three arguments giving their sum. In CCLMfl,
Axyz. plus (x, y, z) is translated to the following (the translation algorithm will be given
in 5)"

A(A(A(plus (p3, p2 p33)))).

Now, we give only one value 2 to its first argument, and partially compute it using
App. In the below, 2" means the constant-valued function with n arguments giving 2
as its result:

appo (A(A(A(plus (pl p3, p33)))), 2o)
----> A(A(plus (p31, p32, p)))o (2) (by rule (5))

A(A(plus (p, p, p))o (2o )1, P])) (by rule (4))

--> A(A(plus (p3, p3, p))o (2’,

A(A((plus (p3, p23, p33))o (2io (p2), Pl (p2), p22))) (by rules (4), (8))

-% A(A((plus (p3, p3 p33))o (22, pZl, p22)))

-% A(A(plus (22, p2

3. Auxiliary combinators. For application of CCLM/3 to practical situation, it is
convenient to define more combinators. We introduce here several derived combinators
and rewriting rules in a more general form. They are helpful to understand the
mechanism of arities in CCLM/3, too. However, they will not be used in the succeeding
sections.

DEFINITION.
(1) For n _-> 0, define Id" (p’, ., p,).
(2) For m _-> 0 and n _-> 0, define P’’" (p+",
(3) For an n-ary term F and m such that 1 _-< m =< n, define the (n m)-ary term

Am(F) by AI(F) A(F) and Am+I(F) A(A’(F)).
(4) For m=>l and n-ary terms F, GI," "’, Gin, define the n-ary term

APP" {F, G1," ", G,} by

APP { F, G1} App F,

APPm+l {F, G1,’’’, Gin, G,,+I}---Appo (APP" {F, G1,’’’, G,,},
m+l +1(5) For m > 1, define App APP" {p,+l, P2 ", P,+I}.

LEMMA 3.1.
(i) A"(A"(F))-= Am+"(F).
(ii) APP {APP {F, G1," ", G,}, HI,’’’, Hm}

-= APP/+m {F, G1, ", Gt, HI," ", H,,}.
(iii) Appmo (F, G1,’’’, G,,)-% APP {F, G1,’’’, G,,}.
Proof The proof is straightforward and therefore is omitted.
The auxiliary combinator Id behaves like the identity function for n-tuples. But

Id is not a term of CCLM/3 because it is an n-valued function. Rule (3) of CCLMfl
is extended to the following derived rule.

PROPOSITION 3.2. F Id" -% Ffor every n-ary term F.
Proof The proof is by induction on the definition of F.
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The auxiliary combinators A" and App" are extensions ofA and App, respectively.
For rn -> 1, the operator A"(m) means currying rn times. Thus, for an (rn + n)-argument
function f, A"(f) is the n-argument function defined by

A"(f)-= A(A(... (A(f))...)).
times

Informally, in a A-calculus-like notation, A"(f) means

A(z1,""" Zn) (AXI""" AXm f(zl, Zn, Xl, x")).

Likewise, for rn _-> 1, App" receives m + 1 arguments and applies the first argument to
the other m arguments. It is informally represented by

h Z, X x" zx Xm

Rules (4) and (5) of CCLM/3 have natural extensions for A" and App".
PRoeosrrioN 3.3. Let F be rn + n )-ary and let G1, , G, be k-ary, where m >- 1.

Then,

A"(F)o(G1 G,,)- Am(F (G, pk,m, G, pk’m k+" k+,.. ,Pk+l ,Pk+))"

Proof The proof is by induction on m. When m this is identical to rule (4).

Am+I(F)<G1,...,

--A(A"(F) o<G, pk,1 G. oPk’I k+l
,’" ,Pk+l>) (by rule (4))

_A(A(F o<(G1 oPk,1) oPk+1, (G. oPk’I)
k+ pk+l," k+l+" k+l+pk+ll Pk+2 Pk+l+))) (by induction hypothesis)- A+’(Fo <GI p’+’ G, pk,+, k+"+,

,’" ,Pk+1 ,’",Pk++1>)-

LEMMA 3.4. Let Fbe m + n )-ary, and let G1, , (3,, be n-ary, where m >- 1. Then,

APP" {A"(F), G1,’", G"}-% F <p’,...,p, G1,’’-, G">.

Proof The proof is by induction on.re. When rn 1 this is rule (5).

APP+I {A+I(F), G1," ", (3m, Gin+l}

--Appo <APP {A"+’(F), GI,’’’, G=},- Appo<A(F)o<p’,... ,p, G,,-.., G,,>, G"+I> (by induction hypothesis)

-- Appo <A(Fo <p’ ,,1 n,1op ,. ..,pop
,+l\a G"+ (by rules (4) (7))G, pn,1, G" pn,1, p.+,/),

n+l +1 pn,1- Appo (A(F (Pl p G1o ..., Go p,,1, p+l+1)), Gm+l>

-o (F (p,+l n+l pn, n,1 n+,..., p, GI ,..., (3,.0 p

<pr;,..., p,, Gin+l> (by rule (5))
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PROPOSITION 3.5. Let F be m + n )-ary, and let G1, , Gm be n-ary, where m >- 1.
Then,

App" (A"(F), G1," ", G,) - F o(p’,. ., p,, G1," ", Gin).

Proof The proof is immediate by combining Lemma 3.1(iii) and Lemma 3.4. [3

Example. We give an example of computation in CCLM/3 with the auxiliary
combinators. Let us use the same function plus (x, y, z) x + y + z, and give two values
2 and 3 to Axyz. plus (x, y, z):

App2o (A3(plus (p3, p3, p33)), 2o, 3o)- A(plus (p3, pEa, p33))o (2o, 3o) (by Proposition 3.5)

-> A((plus (p3, p3, p))o (20 )1,300 )1, P11)) (by rule (4))

A(plus (2’, 31,

4. On models of CCLMfl. Before we examine the properties of CCLMfl as a
rewriting system, we digress and make a brief discussion about models of CCLM/3 as
an equational system in Cartesian closed categories (CCC). Those who are interested
only in the operational aspects of the system may skip this section.

Let C be a CCC. We say that an object U of C is reflexive, when there exists a
pair of arrows b:U Ut and 0:U t: -- U such that b 0 idt: U. This means that
U t: can be embedded into U. It is known that CCC’s with rettexive object are essentially
the same as A-algebras (models of A-calculus [2]). See, e.g., [11]. Similarly, CCC’s
with reflexive object characterize models of CCLMfl. We can naturally interpret terms
of CCLMfl in C with reflexive object U. An n-ary term of CCLM/3 is interpreted in
the set C(U", U) of arrows from U" to U. Here U denotes the product

lxUx...xU

times

where 1 is the terminal object of C.
The interpretation of terms in C is the following. For each n-ary term, we define

the arrow [[F]] from U" to U in C as follows. Here we assume that for every nonspecial
constant c of CCLM/3, c]] is already specified.

(1) PT]] l,u,...,u (the (i + 1)th projection from U to U)71-i+
(2) App]] ev’ (c ida), where ev’ U U--> U is the evaluation map.
(3) liFo (G1,’ , G,)]] =[[F]] (G1]],’"", G.]]).
(4) A(F)]]=0o(F]] rl"’t)*, where h*" U"--)U t is the transpose map of

h" U’x U--> U.
Based on this interpretation we can prove that if F G in CCLMfl as an equational

system, then F]]- [[G]] in C. That is, C is a model of CCLMfl.

5. Translations between CCLMfl and lambda calculus. In this section we define
translation algorithms for both directions between CCLM/3 and lambda calculus, and
we establish the natural relationship between the terms in these two systems. The
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lambda calculus we are concerned with is, more specifically, an extension of the
type-free A/3-calculus, that we will denote by A/3m. The system A/3m has constants with
nonnegative integer called arity, just like CCLM/3. Since we intend to establish the
relationship between CCLM/3 and A/3m, we assume that there is given a one-to-one
correspondence between the nonspecial constants ofCCLM/3 and the constants of I/3m.

DEFINITION. Terms of a/3m are defined as follows:
(1) Variables are terms.
(2) If c is an m-ary constant and Nl," ", Nm are terms, then e(N1," , Nm) is

a term.
If M and N are terms, then MN is a term.
If x is a variable and M is a term, then Ax. M is a term.
rewriting rules of A/3m are exactly the same as the ordinary Aft-calculus.

(3)
(4)
The
We. provide notation for A/3m. Terms of A/3rn are denoted by M, N, M1, etc., and

variables are denoted by x, y, z, x, etc. When reduction M-- N is derived from the
rewriting rules of A/3m, we sometimes write M L) N. For terms M, N,..., N,, of

A/3m, we denote by M[x,’’’,Xm:-N,’’’, Nm] the term obtained from M by
simultaneously substituting N,..., Nm for free occurrences of variables xl,..., Xm
in M. We write M-= N, when two terms M and N of A/3rn are the same except for
bound variables.

Now we describe the translation algorithm from A/3rn to CCLM/3.
DEFINITION. Let (z,. ., z,) be a sequence of distinct variables (n >= 0). For each

term M of A/3rn whose free variables are contained in the set {z,..., zn}, we define
the n-ary term [A(z,..., z,). M] of CCLM/3 as follows:

(1) [A(z,’’’ ,z,,)" zi]=-p’[, l<-i<--n.

(2)
..,z,). Nm]), where c is an m-ary

[h(z,,..., z,). c(N,, Nm)]
c ([h(z,, z,)" N],..., [h(z,,

constant.
[h(z,,..., z,). M, M2]= Appo ([h(z,..., z,). M1], [h(z,..., z,). M2]).
[h(z,..., z,). (hx. M,)]--A([A(z,,..., z,,x’). Ml[x:= x’]]), where x’-=x
if x is not in {z,..., zn}, otherwise x’ is a new variable.

(3)
(4)

In the following discussions, whenever we mention [h (z, , z,) M], we assume
that the variables z,..., z, are distinct and that all the free variables in M are
contained in {z,..., z,}.

Next we give the translation algorithm from CCLM/3 to h/3m.
DEFINITION. For each n-ary term F of CCLM/3 and terms N,. ., N, of h/3m,

we define the term F*[N1,..., N,] of A/3rn as follows"
(1) (p’)*[N,..., N,,]=- Ni, l <-i<-n.
(2) App* [N, N2]-= NN2.
(3) c*[N,..., N,]=-c(NI,..., N,) for each n-ary nonspecial constant c.
(4) F G, Gm))*[N

F*[ G*[NI,. ", N, ], , G’m[ N,," ", N, ]].
(5) (A(F))*[N,’’ ", N,,]=-Ax" F*[NI,’’ ",N,,,x], where x is a variable not

free in N,..., N,.
An n-ary term F of CCLM/3 means an n-ary function. Thus F is intuitively

represented by a A/3rn term M with free variables Xl,"" ", x,. In the above definition,
F*[N, , Nn] means M[x, , x,, :- N, , N,J. Thus,this notation, consists of
two parts" translation of F into a term of A/3m with n free variables, and substitution
for the free variables. Actually, we can verify that

F*[NI,’’’, N,] =- (F*[x,,’’’, x,])[x,’’’, x, := N, N,].
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Now we return to the former translation algorithm and give basic lemmas concern-
ing it. To distinguish reductions in CCLM/3 and A/3m, we write F .. G when the

CCLM/3
reduction is derived in CCLM/3. In particular, when F CCL) G is derived without
rule (5) for App, we write F

SUBM
G. Rule (5) corresponds to the/3-rule of A-calculus.

isThe other rules have various good properties For example, the relation
SUBM

noetherian; namely, there is no infinite sequence F1, F2,’’’ of terms such that
F1 SUBM F2 SuaM "’’" We refer to [8], which deals with a subsystem of CCL/3/SP.
See also [6]. Moreover, when we examine the properties of the above translation
algorithms, it is convenient to separate rule (5) from the other rules. This is the reason
for introducing SUBM as a subsystem of CCLM/3.

LEMMA 5.1.

(i) [h(zl z,).M][h(z’,.. z’.>.M[z, z.::z’,, ,z’.]].

(ii) [h(xl, x,, zl, z,). M]o (pl+’+" +,,+, ,+m+, ,+m+
,""" ,P ,Pl+m+l, ,Pl+m+nn)

"*" [ (xl, ", x, y, ", y,,, z, ", z,) M].
SUBM

(iii) [A(Xl,’",x,,)’M]([A(z,’",z,)’N],’",[A(z,"’,z,)’Nm])

[tZ ," Zn)" M[xl ," ", X := Nl ," ", Nm]].
SUBM

Proof The proof of (i) is easy and therefore is omitted.
(ii) The proof is by induction on the structure of M. We treat only the essential

case" M-= Ax. M. The other cases are straightforward. By (i) we can assume that x
is not contained in {xl, , x,y,. ,ym, Z, ,

l+m+n ll+m+n l+m+n l+m+n[A(X,,’" Xt, Z,, Zn) (AX" m,)]o(p, ," P Pt+m+ Pt+m+n)
l+m+n l+m+n l+m+n l+m+nA([/ (X """ Xl5 Zl "’, Zn5 X) M1]) (Pl ,’’’, Pl Pl+m+l Pl+m+n)

;A([A(x x z z, x)’m]SUBM

(pll+m+n+l pll+m+n+l /+m+n+l l+m+n+l l+m+n+l\],Pt+.,+ Pl+m+n Pl+m+n+l/,

A([a(x,. ., x, y,. ., Yn, Z," ", Zn, X)" M]) (by induction hypothesis)
SUBM

[X(Xl," ", x,, Yl Ym, Z, ", Z,,) (XX" M,)].

(iii) The proof is by induction on the structure of M. When M-= Xx. M,

[h (x,, , x,,). (hx. M,)]o ([h (z, ,. ,, Zn)" N,],’" ", [h (z, ," ", Zn)" Nm]

SUBM
A([A(x, "’’, Xm, X) M,]

A([ (X15" "5 Xm5 X)" M,] [/ (215" ", Tn, x)" N1],.SUBM

..,[A(Zl,...,z,,x).Nm],[,(z,,...,z,,x).x])) (by(ii))

A([AZ Z X)" M,[x x := N1 Nm]])SUBM

(by induction hypothesis)

JAZZ15 Zn)" (AX" M)[x, ", X :--" N ,o ., Nm]].
The other cases are straightforward.

6. Relationship between CCLMfl and Afire. Now we are in a position to state the
theorems that describe the relationship between the terms and reductions of the two
systems CCLM/3 and A/3m, in terms of the two translation algorithms of the previous
section.
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First, we show that the two translation algorithms preserve the reduction relations
in CCLMfl and Afire.

THEOREM 6.1. IfM N, then [A(zl,. zn)" N].a., ... ,z.) M]
Proof The proof is by induction on the cletlnition of M N. We treat only

the fl-rule. The other rules are clear:

[h(Zl,’’’,zn)’(hx" M1)M2]
-=Appo (A([/(zl,..., z,, x). M]), [h(Zl,..., z,). M2])

’cCL [A(Z,,’" ", Z., X)" M,]o(p’,...,p.", [a(z,,’" ", z.)" Mz])

-= [a(z,,’’ ", z,, x)" M1]o ([a(z,,’’ ", z,)" Zl],’" ",

[. (Zl,""" Zn)" Z.], [h (Z ,’’’, Zn)" M])

>[h(z z,>.ml[x:=M]] (byLemma5.1(iii)).
SUBM

TrEORE 6.2..Let F and G be n-ary terms of CCLM/3. If F - -.eL*t;G then
G thenF*[N1,. ", N,] G*[N,..., Nn]. In particular, if F

stJa
F*[N,..., N]--- (3*IN1,..., N].

Proof. The proof is by induction on the definition of FLt (3.
n+l n+lCase 1. F-- A(H) (Hi,..., n,,) -- G-= A(H (n (Pl ," ", P,

H,, (p,+l p,,+),p,+
F*[N,..., Nn]-- hx. H*[H*I[N,..., N,],..., H*,,[N,..., N,], x]

=- G*[N
Case 2. F =- App (A(H,), H) G H, (p,...,p,], H).

F*[N1,’’’, N.]= (hx. H*[N,..., N., x])(H*z[N1,’’’, N.])

at,. H*[N,, , N., H*[N,, , N. ]]

-= G*[N,. ., N.].
The other cases are similar and omitted, l-1
Next we examine the situation where a term of h/3m is translated into CCLM/3

and then the resulting term is translated back to hflm.
THEOREM 6.3. [h(zl, ’’, z,)" M]*[z, ", z,]-- M.
Proof The proof is by induction on the structure .of M. When M---hx. M,
[h(z,,’’’, zn)" M]*[z,’’’, z.]- (A([h(z,

-= hx" [h(z,,"’, z., x)" M]*[Zl,’ "’, z., x]
hx" M1 (by induction hypothesis).

The other cases are similar and omitted.
Using this theorem we can show the converse of Theorem 6.1.
COROLLARY 6.4. M’ ate,: N if and only if [A(zl, z,,).M] CLM*

[h (z,, z.) S].
Proof The only-if part is Theorem 6.1. For the if part, suppose the latter reduction.

Then, by Theorem 6.2, we have

[h<zl z.)’M]*[z, z.]---[h(z,,’’’ z.>’N]*[z,,’’" z.].
hm

Therefore, by Theorem 6.3, M t,, N.

7. Church-Rosser lrolerty. In this section we prove the Church-Rosser property
of CCLM/3 as an application of the results in the previous sections.
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First, we examine the translated term [A(zl,." ", z,). M] in CCLM/3. This term
is of a special form. It contains no subterms of the following forms:
(Fo (G1,..., G,,))o (H,..., H,), A(F) o(G,..., G,,), and P7 o(F,..., F,). But,
it may contain subterms of the forms" App (p2, p2) and c (p’,..., p",), where c is
an n-ary nonspecial constant. These two subterms are generated only by

[A<Z1, Z2)" Z1Z2] Appo (pl2, p2)
and

[/(21, Zn)" C(21, Zn)] C (p,""", pnn>
respectively. If we replace subterms App (p, p2) and c (p’,..., p) by App and c,
respectively, the resulting term F is in SUBM-normal form. Namely, there is no G
such that F G.

SUBM
These observations bring us to the following definitions and theorems.
DEFINITION. For each term F of CCLMfl, we define F as the term obtained

from F by replacing all occurrences of subterms Appo (p2, p2) and c (p’,...,
by App and , respectively, where c is an n-ary nonspecial constant.

Although we define F for all F, our interest is in the special case where F is
[A(z,..., z,). M]. All the lemmas and theorems in 5 and 6 are still valid, even
when we replace A (---) --] by A (--) __]o. In particular, we get the following theorem,
an extended version of Corollary 6.4.

THEOREM 7.1. M A,m’* N if and only if [h(zl z) M]
CCLM/3

[/(71,""" Zn)" N].
Using the translation algorithms between CCLM/3 and Afire, and the operation

(--), we can define an algorithm that finds the SUBM-normal form of each term of
CCLMfl.

DEFNIaON. For each n-ary term F of CCLM/3, we define the term norm (F) by

norm (F)--[A(z,..., z). F*[z,...,z,]].
,* )norm(F)THEOREM 7.2. F sua

Proof. The proof is by induction on the structure of F.
Case 1. F =- App.

norm (App) [A (z, z:). zz:]- (App (p, p22))

Case 2. F =- H G
H o(G,. .,

UBM> norm (H)o (norm (G),

SUBM

--- App.
norm (G,,)) (by induction hypothesis)

..,z,],...,G*[z,,...,z,]]]

(by the extended version of Lemma 5.1(iii))

=norm (H <G1, , G,,>).

Case 3. F A(H). By induction hypothesis, we have

A(H) Su> A(norm (H))= norm (A(H)).

The other cases are similar. Iq
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By Theorem 7.2, F norm (F), and by definition, there is no G such that
CCLM/

norm (F) G. Moreover, if F H then H norm (H)--norm (F)
SUBM SUBM SUBM

by Theorems 7.2 and 6.2. These mean that norm (F) is the unique SUBM-normal form
ofF.

Finally we establish the Church-Rosser property of CCLM/3.
Tog 7.3. If Fc. G and F cce Gz, then there exists H such that

G1 H and G2 .... H.
CCLM8 CLM
Proof First note that h/3m satisfies the Church-Rosser property as well as the

ordinary h/g-calculus. Suppose F CC[M G1 and F cCMt3G2. Assume that F is n-ary;
so G1 and G2 are also n-ary. By Theorem 6.2 we have

G2*[zl,""F*[z z,]G*[z,, z,] and F*[z,, z,]
A,,

By the Church-Rosser theorem of h/3m, there exists M such that

G* [z z,] m and G*z [Z z,] -- m.
,3rn

By Theorem 7.1,

and

By Theorem 7.2,

norm (G,) cCLMt3 [h(Z, Z,) M]

’* ’[h(z, ’’’,z.)’M]norm (G2)
CCLM/3

norm(G2)G SUBM
norm (G) and G2 SUBM

Therefore, if we take [h(z,..., zn)" M] for H, we get

H. [3G1 .* H and G2 CCLM/3CCLM/3

8. The system CCL/3 for original categorical eombinators. In this section, we return
to the original system CCL/3 introduced by Curien, and establish the relationship
between CCL/3 and h-calculus with product in a similar method of the previous
sections. The system CCL/3 does not satisfy the Church-Rosser property, but there
are various subsets D on which CCL/3 satisfies the Church-Rosser property [20], [9].
These facts have been proved directly without help of the Church-Rosser theorem of
h-calculus. Here, we show that a similar result with regard to the Church-Rosser
property for CCL/3 is immediately derived from the relationship between CCL/3 and
the h-calculus.

First we present CCL/3 following [4].
DEFiNiTiON. We assume that constant symbols are specified in CCL/3. In par-

ticular, they always include special constants: Fst, Snd, Id, and App. Terms of CCL/3
are defined as follows:

(1) Every constant is a term.
(2) If F and G are terms, then F G and (F, G) are terms.
(3) If F is a term, then A(F) is a term.
DEFINITION. We define the binary relation -- among the terms of CCL/3 by the

following rules"
(1) (Fo (3)0 H Fo (Go H).
(2) Fst (F, G) - F.
(3) Snd (F, G) G.
(4) IdoFF.
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(5) F Id ---> F.
(6) A(F) G ---> A(Fo {Go Fst, Snd)).
(7) Appo (A(F), G) F {Id, G).
(8) If F-G, then H oFHoG, FoHGoH, (F, H) G, H),

(H,F)--->(H, G), and A(F) A(G).
When F--> G is derived from the rules of CCL/3, we write F

ccL
G. In

particular, if F--> G is derived without rule (7) we sometimes write F-----> G.
SUB

We provide notation to represent various terms of CCL/3.
Notation.
(i) F1 F2 F,_I Fn is an abbreviation for E (F (Fn_ fn)’’ ").
(ii) (F1, F2, F3," ", Fn) is an abbreviation for (. ((F, F), F3)," ", Fn). When

n 1, we define (F)-- F.
(iii) For n => 1, define the term Fst of CCL/3 by

Fst Fst Fst Fst.

times

In particular, when n 0, we define F Fst- F for each term F.
(iv) For n _-> 0 and 0_-<i-< n, define the term r’ of CCL/3 as follows:

oo Id,

ro=Fst ifn=>l,

ifl_<i=<n.7ri Snd Fstn-i

(v) For n => 0 and a term H, define the term I-In(H) of CCLfl by Ho(H)= H and
1-In+,(H) -= <l-In(H) Fst, Snd).

Next we provide a formal system for A-calculus corresponding to CCLfl. Extending
the ordinary Aft-calculus, we define a rewriting system called Aflc.

DEFINITION. We assume that constant symbols are specified in Aflc. In particular,
they always include special constants: fst and snd. Terms of Aflc are defined as follows:

(1) Every variable is a term.
(2) If x is a variable and M is a term, then Ax. M is a term.
(3) If M and N are terms, then MN and (M, N) are terms.
(4) If c is a constant symbol and M is a term, then c(M) is a term.
The rewriting rules for Aflc are those for the ordinary A/3-calculus, together with

the following two"

fst ((M,, M2) M,, snd ((M1, M2) -- M2.

When M-- N is derived in A/3e, we write M N.
A/3c

In a similar way to those for CCLM/3 and A/3m of 5, we define a pair of
translation algorithms between CCL/3 and A/3c. We assume, as before, that there is
given a one-to-one correspondence between the nonspecial constants of CCL/3 and A/3c.

DEFINITION. Let (Zo,"" ", zn) be a nonempty sequence of distinct variables. For
each term M of A/3c whose free variables are contained in the set {Zo,"" ", zn}, we
define the term [A(Zo,." ", zn)" M] of CCL/3 as follows"

(1) [a(zo,..., Zn)" zi] 77", O <- n.
(2) [A(Zo,’’’, Zn)" MM2]=-Appo ([A(Zo,’’’, Zn)" M], [A(Zo,’’’, zn)" M2]).
(3) [A(Zo,"" ",Zn)" (AX" M)]--A([A(Zo,’’ ",Zn, X’)" MI[X:=X’]]), where x’=-x

if x is not in {Zo,""", zn}, otherwise x’ is a new variable.
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(4) [,(Zo, ", z,). c(ml)]-- e [h(Zo, ", z,). M1], where c is a nonspecial con-
stant.

(5) [,(Zo,’’’, z,). fst (M)]-- Fsto [(Zo,’’’, z,). M,],
[X(Zo," ", z,). snd (M,)]=- Sndo [h(Zo," ", z,). M,].

The above translation algorithm is essentially the same as M]]a defined by
Koymans [11, p. 314], and also as MoB(yo....,y,) defined by Curien [4, p. 201]. More
precisely, M]](,,,...:,,,.> of the former corresponds to [h(z, x,..., Xm)" M], where z is
a variable distinct from x, , x,,. But Koymans treats the translation more semanti-
cally. Similarly, MB(yo....,y,, coincides with [h (z, y,,. , Yo) M]. Note that the order
of variables yo,’",y, is reversed, because Mon(yo,...,y,,) is based on De Bruijn’s
notation. The significant difference of our translation algorithm from M]]a and
Mon(yo,...,y,, is shown by the following examples"

[h (z) z]--- Id, [z]]<z>=- zo(z)=- Snd,

[h(z) (hx" z)] -= A(Fst), hx" z]]<z> =- (hx" z)o()=- A(Snd Fst).

Neither M]] nor MDB(yo,...,y.) can express Id, A(Fst), and so on.
Conversely, we define a translation algorithm from CCL/3 to hc.
Dyvvoy. For each pair of a term F of CCL/3 and a term N of he{c, we define

the term F*[N] of hc as follows:

(1) Id*[N]-=N.

if N (N,, N2)
(2) Fst*[N]-=

fst (N) otherwise.

if N (N, N2),
(3) Snd*[N]=

snd (N) otherwise.

N2 if N -= (N, N),
(4) App*[N]-=

fst (N) snd (N) otherwise.

(5) c*[N]--c(N), where e is a nonspecial constant.

(6) (F, F)*[N]=-(F*[N], Fz*[N]).

(7) (A(F))*[N]--hx. F*[(N, x)], where x is a variable not free in N.

(8) (Fo Fz)*[N]-= F*[F*z[N]].
The following are basic properties of [h(Zo,..., z,). M], similar to Lemma 5.1.
LEMMA 8.1.

(i) [h(Zo,’’’,z,)’M]-=[h(z,’’’,z;)’M[zo,’’’,z,:=Z’o,’’’,z,]].

(ii) [h(Xo, X,,...,xt, z,...,z,).m]orI,(Fstm)
..* ,[,(Xo, Xl xt, y y,, Zl z,).M]SUB

(iii) [,,X(Xo,...,x,,).M]o([,(Zo,...,z).No],...,[,(Zo,...,z,).N])
’", [h (Zo zn)" M[xo x :--- NO Nm]].SUB

(iv) [h(Zo,’’’,z,,x,’’’,x,,)’M]

=-[h(z,x,,’’’ ,Xm)" M[Zo,’’", z, := (7r)*[z],’’’, (7r,)*[z]]].

Proof The lemma is easily proved by induction on the structure of M.
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Now we can present equivalence theorems between CCL/3 and h/3c, similar to
the results between CCLM/3 and h/3m.

THEOREM 8.2.

,[h<Zo,’’’,z,>.N],_(i) IfMN, then [h(Zo,’..,zn).M] cce
(ii) If F.cCe G, then F*[N]c G*[N]. In particular, if F G then

F*[N] G*[N].
Proof. (i) The proof is by induction on the definition of M N. We treat only

h/3c
the/t-rule. The other rules are clear:

[h(Zo,""", zn>" (hx" M1)M2]

--Appo (A([h(Zo,’’’, z,, x)" M]), [h(Zo,’’’, z,)" M2])

cce’’> [h(Zo,""", z,,x)" M] (Id, [h(Zo,""", z,). M2])

-= [,<z, x> M,[zo,""", z, := (Tr)*[z],..., (Tr,])*[z]]]

([h(z> z], [h(z> M2[zo,’’’, z, := (7r)*[z], (7r,)*[z]]]>

(by Lemma 8.1(iv))

,[,(z)’(M,[x::Mj)[Zo z,:=(Tr)*[z],... (7r)*[z]]]
SUB

(by Lemma 8.1(iii))
--[,(Zo,..., z). M[x:= MJ] (by Lemma 8.1(iv)).

(ii) The proof is by induction on the definition of F, *, G. When F
App (A(F1) F2) and G-= F (Id, F2),

CCLfl

(Appo (A(F,), F2))*[N] (hx. F*I [(N, x)])(F*[N])

(F*[(N, x)])[x := F*[N]]

FI*[(N, F2*[N])]
A/3c

-= (F1 (Id, F)))*[N].

Here note that, in general, (G*[M])[y := M’] G*[M[y := M’]], which is easily
A/3c

proved by induction on the structure of G.
The other rules are similar and omitted.
Theorem 6.3 is somewhat complex in the case of CCL/3 and hc. As an abbreviation

of terms (... ((N, N2), N3),""", N,,) of Aflc, we sometimes write
(N1, N2, N3,’’’, N,,). When m we define (N)-- N1. It is certain that

[h<Zo z,,)" M]*[<Zo z,,)]----- M.
x/3c

But, unfortunately, [h(Zo,’’ .,z). M]*[(Zo,...,z,)] and M are not generally
identical. For example,

[h(z). fst ((z, z))]*[z]- z.

This is due to the following two different origins of the special constants fst and snd
of hc appearing in [h (Zo," ", z). M]*[(Zo, ., zn)]" (1) originally contained in M,
and (2) newly introduced.

We can overcome this difficulty of distinguishing these two kinds of fst and snd
by extending CCLfl and hc. We define the extended CCLfl by adding two constants
Ft and Sfid, and two rewriting rules: Ft (F, G) F and Sfid (F, G) G. Similarly,
the extended h/3c is defined by adding two constants ft and sfid, and two rewriting
rules" ft ((M, N)) M and sfid ((M, N)) N. The translation algorithms between
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the extended CCL/3 and Aflc are defined so that Fgt and Sfid correspond to fgt and
sfid, respectively. The difference between Fst and Fgt affects only the translation
algorithm (n)*[__]. For example, Fst*[(N1, N2)]-- N1 but Fgt* [(N1, N2)]-=
fgt ((N1, N2)). For each term M of Aflc, we define M as the term obtained from M
by replacing fst and snd by fgt and sfid,respectively. Then, we get the following theorem.

THEOREM 8.3. [A(Zo,’’’, Z,)" M]*[(Zo,’’’, z,)]--=
Proof The proof is similar to that of Theorem 6.3.
From Theorems 8.2 and 8.3, we get the following corollary.
COROLLARY 8.4. M

xtSc
N if and only if

[A(Zo, ", z,) N].
Proof The proof is similar to that of Corollary 6.4. Note that Lemma 8.1 and

Theorem 8.2 still hold for the extended CCL/3 and A/3c.
Next we examine the Church-Rosser property of CCLfl. In 7, we defined (n)

and norm () on terms of CCLM/3. Similar operations can be defined for CCL/3.
DEFINITION. For each term F of CCLfl, we define F as the term obtained from

F by replacing every subterm c Id in F by e, where e is a constant.
DEFINITION. For each term F of CCLfl, we define the term norm (F) of CCL/? by

norm (F)--- [A(z) F*[z]].
For a term M of A/?e, each subterm c Id appearing in [A(Zo,’’ ", zn)" M] is

generated only by [A(Zo) C(Zo)]-- e Id. Similarly to the case of CCLM/3, Lemma 8.1,
Theorems 8.2, 8.3, and Corollary 8.4 still hold, even when we replace [A(). m] by
[(--).--]o.

Theorem 7.2 is troublesome. Unfortunately, the reduction F norm (F) does
SUB

not generally hold in CCL/3 and A/?c. For example,

norm (A(Id))-- A((Fst, Snd)).

We can only prove that F Id norm (F) if App in F appears only in the form
App (F, F2). However, this cannot be used to prove the Church-Rosser property of
CCL/3, and actually CCL/3 does not have the Church-Rosser property. The following
theorem shows that CCL/? satisfies the Church-Rosser property if we restrict terms to
a certain subset.

THEOREM 8.5. Let F be a term that satisfies the condition" F’ norm F’) forCCLfl
any F’ such that F *. F’. IfF Gl and F G2, then there exists H such

CCL/3 CCLfl CCLfl
that G ccc H and Gz ccc H.

Proof The proof is similar to that of Theorem 7.3.
This theorem suggests that norm (F) is the key to examining the Church-Rosser

property of CCL/3. Actually, norm (F) can be defined directly, and the Church-Rosser
theorem on restricted terms for CCL/3 is proved without using the theorem for
A-calculus [20]. In [20], various sets of terms that satisfy the condition of Theorem
8.5 are concretely defined. We shall present a set of such terms in 9.

9. Embedding of CCLMfl into CCLfl. We show that CCLM/ is characterized as
a subsystem of CCL/. First we examine the relations between Aflm and A/c. Then,
using the results in the previous sections, we translate these relations to those between
CCLM/ and CCLfl. In this section, we treat four systems A/m, A/c, CCLMfl, and
CCL/3, and assume that nonspecial constants are given in common with these systems.
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To start with, we define a pair of translation rules single (--) and multi (n)
between A/3m and A/3c, and show that /3m is embedded into /3e. Here we arbitrarily
choose a closed term # of /3c that satisfies the following conditions and fix it such
as, for example, #--x.x:

(1) # is in normal form,
(2) # contains no constants, and
(3) # does not contain operator ((--), (n)).
DEFNXOr. For each term M of A/3m, we define the term single (M) of /3c as

follows:
(1) single (x) -- x,
(2) single (MM2) single (m) single (M2),
(3) single (x. M)=- Ax. single (M),
(4) single (e(N,..., Nm))-- c((#, single (N),..., single (Nm))), where c is an

n-ary nonspecial constant.
The resulting term by the translation single (m) has a special shape, that is

characterized by the following definition.
DEFINITION. A term M of A/3e is said to be stable when M satisfies the following

conditions:
(1) M does not contain fst nor snd.
(2) Every constant c in M appears only in the form e((#, N,. ., N,,)).
(3) The operator ((), (m)) appears only in the form of (2).
Note that single (M) is always stable for every term M of A/3m.
DEFINITION. For every stable term M of /3e, we define the term multi (M) of

A/3m as follows:
(1) multi (x) x,
(2) multi (MM2)= multi (m) multi (m2),
(3) multi (x. m)-= x. multi (M),
(4) multi (e((#, N,..., Nm)))=- e(multi (N1),""’ ,multi (N,,)), where e is a

nonspecial constant.
The following are basic properties ofthe translation rules single (--) and multi (--).
LEMMA 9.1.
(i) single (multi (M))-- Mfor every stable term M of Ac.
(ii) multi (single (N))-= Nfor every term N ofrn.
(iii) Let M N. IfM is stable then so is N.c
(iv) Let M and N be stable terms of Afle. Then, M N if and only if

multi (M) --multi (N).
A/3m

(v) M N if and only if single (M)- single (N)
A3c

Proof. Theproof is simple and therefore is omitted.
Next, using the above translation rules between A/3rn and A/3e, we define a pair

of translation rules between CCLM/3 and CCL/3.
DEFINITION. For each term F of CCLM/3, we define the term single (F) of CCL[3

by

single (F)--- [A(Zo, z,, , z,). single (F*[z, ., z,])].
The translation rule for the inverse direction from CCL/3 to CCLM/3 is defined

on a restricted set of terms of CCL/3. The following definition characterizes terms of
CCL/3 that correspond to stable terms of

DEFiNiTiON. Let n be a nonnegative integer, and let Zo," ", zn be distinct vari-
ables. A term F of CCL/3 is said to be n-stable when F satisfies the following conditions:

(1) F*[(Zo,’’ ", z,)] is stable in Aflc, and
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(2) F*[(Zo,"" ", z,)] does not contain Zo.
DEFINITION. For each n-stable term F of CCL/3, we define the n-ary term

multi. (F) of CCLM/3 by

multi, (F)-= [A(z,, z,>. multi (F*[(Zo, z,,..., z,>])].
Note that F*[(Zo, zl,’’’, z,)] does not contain Zo so that the right-hand side

expression is well defined.
The following theorem shows that multi, (n) and single (m) preserve reductions

in CCLM/3 and CCL/3.
THEOREM 9.2.
(i) Let F be an n-stable term of CCL/3. If F G, then G is n-stable and

CCL/3
multi. (F) ccM multi. (G).

(u) IfFccL G, then sngle (F) CCL single (G).
Proof (i) Suppose that F is n-stable and that F G. Then, by Theorem

8.2(ii),
CCL

F*[<Zo z, z,)]-- G*[(Zo Z1 Zn)].
h/3c

So, G is n-stable, too:

F*[(Zo Zl z,)]--G*[(Zo, Zl,"" z,)]
h/3c

:multi (F*[(Zo z, z.)]) multi (G*[(Zo Zl z.)]) (by Lemma9.1(iv))
A/3rn

:> multi, (F) multi, (G) (by Theorem 7 1)
CCLM

(ii) F CCL G

F*[z z,]G*[z z,] (byTheorem6.2)

single(F*[z z,])single(G*[z z,]) (byLemma9.1(v))

single (F) single (G) (by Corollary 8.4) H
CCL

Now we further examine the properties of n-stable terms and show that
F norm (F) for any n-stable term F of CCLB. Therefore, n-stable terms satisfy

SUB
the condition of Theorem 8.5, and CCLB satisfies the Church-Rosser property on
n-stable terms. For the proof, we use a translation norm* () on terms of CCLB,
which is introduced in [20]. Moreover, norm* () coincides with () defined in [9].

DEFINITION. For each term F of CCL we define the term norm* (F) as follows:

(1) norm* ((F F2)o H)= norm* (F (F2 H)).

(2) norm* (A(F) H)= A(norm* (F1 (H Fst, Snd))).

(3) norm* (<F,, F2)o H)= <norm* (F, H), norm* (F2 H)>.

(4)
H

norm* (Fst H)= Fst
Fst norm* (H)

if norm* (H) (H,,
if norm* (H) Id,
otherwise.

H: if norm* (H)-= (H1,
norm* (Snd H) Snd if norm* (H) Id,

Snd norm* (H) otherwise.
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(6) norm* (Id H)= norm* (H).

(7)
C

norm* (c H)=
c norm* (H)

if norm* (H) Id,

otherwise,

where c is a nonspecial constant or App.

(8) norm* (A(F,))=A(norm* (F,)).

(9) norm* ((F1, F2)) (norm* (F1), norm* (F2)).

(10) norm* (c)= c, where c is a constant.

The above definition is due to transfinite induction. Let nl, r/2, tl3 be the numbers
of subterms in the form A(H), (H, H2), and H H2 appearing in F, respectively. Let
n4 be na (F), where na (--) is defined as follows. For each term G, if G is in the form
(G G2) G3, then na (G) na (G G2) + 1, otherwise na (G) 0. The above
definition of norm* (F) is by transfinite induction on 03. nl + 02. n2 + o. r/3 + n4 up
to (.0

4

If we write the definition of norm (F) directly, it resembles norm* (F). The
difference is in the cases where F-- A(F) and F-- Appo H. When F- A(F), we have
norm (F) -= A(norm (F1 (Fst, Snd))). When F-= App H and norm (H) is not Id nor
in the form (H,H2), the term norm(F) is not Apponorm(H) but

.*.. norm* (F), whileApp (Fst norm(H),Snd norm(H)) Note that F
stB

F norm (F) is not generally true.
SUB
LEMMA 9.3. If F is a k-stable term of CCL/3 for some k, then

norm* (F)-= [a(Zo, z,)- F*[(Zo,..’, z,)]]

for every n >= O.
Proof. By definition, norm* (F) must be in the form c c, H, where

c,..., c,, are constants and H is either a constant, A(H1), or (H, H2). Since
F---z-- norm* (F) by Theorem 8.2(ii) we have F*[N]--=(norm* (F))*[N] for any

SUB
term N of A/3c. Thus, by condition (1) of k-stability, App in norm* (F) appears only
in the form Appo (H, H2). Assuming only this and condition (2) of k-stability, we
will prove the lemma. The proof is by induction on the structure of norm* (F).

Case 1. H is a constant. Then norm* (F) is in the form c Cl 7.l-/k, where
1 _-< <- k, m k / i, and c, , Cl are constants other than App and Id. This implies
the lemma.

Case 2. H =- A(H1). Then cl," ", c,, are constants other than App and Id:

[, (Zo,""", z,,)" F*[(Zo,""", z,,)]]

c, c,,o A([h(Zo,’’’, z,, x)" H*[(Zo,’’’, z,, x)]])

1 m A(norm* (H)) (by induction hypothesis)

-= norm* (F).

Note that H is (k + 1)-stable, since F is k-stable.
Case 3. H--(H, HE). Then c,..., Cm-1 are constants other than App and Id,

and Cm is either a nonspecial constant or App:

[h(Zo,’’’, z.>" F*[(Zo,’’’, z.>]]
_= Cl CmO <[/ <gO, gn H*[<Zo, z,>]],

[a<Zo,’"", z.). *[<Zo,.-., z.>]])
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=- c Cm (norm* (H), norm* (Hz)) (by induction hypothesis)

norm* (F). 13

THEOREM 9.4. IfF is an n-stable term of CCLfl for some n, then F norm (F)
SUB

Proof By definition, F norm* (F). So, by Lemma 9.3, we have
SUB

F norm (F)SUB
As explained in 7, every term F of CCLM/3 has the unique SUBM-normal form

norm (F). From Theorem 9.4, similarly, it follows that every n-stable term G of CCL/3
has the unique SUB-normal form norm (G).

Finally, we establish the relationship between single (--) and multi, (m).
THEOREM 9.5. (i) For every n-ary term F of CCLMfl, single (F) is n-stable and

multi, (single (F)) norm (F).
(ii) For every n-stable term G of CCLfl, single (multi, (G)) norm (G).
Proof (i) Since single (F*[z, ., z,]) does not contain the special constants fst

and snd, by Theorem 8.3 we have

(single (F))*[(Zo, z,..., z, )] single (F*[z,..., z,]).

So single (F) is n-stable, and multi, (single (F)) can be defined. Moreover,

multi, (single (F))= [A(z,..., z,). multi (single (F*[z,..., z,]))]

---[A(z,,...,z,).F*[z,,...,z,]] (byLemma9.1(ii))

norm (F).

(ii) Since (multi, (G))*[z, ., z,] multi (G*[(Zo, Zl," ", Zn)]) by Theorem
6.3, we get

single (multi, (G)) -= [h (z0, z,. ., z,). single (multi (G*[(Zo, z,. ., z,)]))]

(by Lemma 9.1(i))

norm (G) (by Lemma 9.3).

Theorem 9.5 means that the equivalence classes generated by on n-ary terms
SUBM

of CCLM/3 exactly correspond to the equivalence classes generated by -----> on n-stable
SUB

terms of CCL/3 through the maps single (--) and multi, (--). From this and theorem
9.2, we conclude that CCLM/3 is embedded into CCL/3 by single(--).
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Abstract. A set of new formulae for the inverse of a block Hankel (or block Toeplitz) matrix is given.
The formulae are expressed in terms of certain matrix Pad6 forms, which approximate a matrix power series
associated with the block Hankel matrix.

By using Frobenius-type identities between certain matrix Pad6 forms, the inversion formulae are shown
to generalize the formulae of Gohberg-Heinig and, in the scalar case, the formulae of Gohberg-Semencul
and Gohberg-Krupnik.

The new formulae have the significant advantage of requiring only that the block Hankel matrix itself
be nonsingular. The other formulae require, in addition, that certain submatrices be nonsingular.

Since effective algorithms for computing the required matrix Pad6 forms are available, the formulae
are practical. Indeed, some of the algorithms allow for the efficient calculation of the inverse not only of
the given block Hankel matrix, but also of any nonsingular block principal minor.

Keywords. Hankel matrix, Toeplitz matrix, Pad6 fraction, power series, Pad6 form, Yule-Walker
equation
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1. Introduction. Let

(1.1)
am-n+l am

tt,,,
am am+n-1

be a nonsingular block Hankel matrix with coefficients from the ring of p x p matrices
over a field. The special structure of Hankel matrices has resulted in a number of
closed formulae for the inverse of H,,n.

When p 1 (the scalar case) well-known formulae of Gohberg and Semencul 14]
give H-1 in terms of only the first and last columns of the inverse. Gohberg and
Krupnik [15] give a formula for the inverse in terms of the last two columns of H-1

Ben-Artzi and Shalom [3] give a series of inverse formulae, including one for determin-
ing the inverse once two adjacent columns, along with the last column, of the inverse
are known.

When p > 1, additional problems are encountered in obtaining a closed formula
for the inverse of a block Hankel matrix. When the coefficients of H,,,, come from a
noncommutative algebra there are closed formulae due to Gohberg and Heinig [16].
These are given provided the first and last columns together with the first and last rows
of the inverse are known.

All of the above formulae depend on the ability to perform certain bordering
operations that lend themselves well to matrices with a Hankel structure. However,
these bordering operations require the imposition of certain additional restrictions on

* Received by the editors January 14, 1988; accepted for publication (in revised form) May 24, 1989.

" Department of Computing Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
$ Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1.
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H 1. The

research of this author was partially supported by Natural Sciences and Engineering Council of Canada
grant A8035.

All results hold, with minor modifications, for block Toeplitz matrices.
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Hm, For the Gohberg-Krupnik formula, the matrix H,._,._ must also be nonsingular;
whereas, for the Gohberg-Semencul and Gohberg-Heinig formulae, the matrix
must be nonsingular. Inverse formulae are then also given for the relevant submatrices.

In the case ofthe scalar Gohberg-Semencul formulae, there is a standard technique
for overcoming the extra requirements, When H,.,. is nonsingular but H,.,._ is singular,
a larger nonsingular Hankel matrix, H,.+, is created. An inverse formula is then
obtained by using the formulae of Gohberg-Semencul for H,.,. and H,.,.+ (cf. Gohberg
and Semencul [14], or Iohvidov [19]). For the nonscalar case, however, there is no
known similar method for overcoming the added restriction in the Gohberg-Heinig
formulae.

The primary contribution of this paper is a set of new closed formulae for H-By avoiding bordering techniques, we require only that H,,, be nonsingular, When
p 1, one of the formulae agrees with that obtained by Choi [12].

The representations for H-1 depend on the concept of a matrix Pad6 form (Labahn
and Cabay [22]) for the matrix polynomial

(1.2) A(z)= E aiz’.
i=0

These matrix Pad6 forms are determined from solutions to equations of a Yule-Walker
type. Central to our approach are commutativity relationships that are shown to exist
between certain matrix Pad6 forms. These commutativity relationships allow us to
overcome the traditional limitations imposed when using bordering techniques. Indeed,
the conditions that we impose are both necessary and sufficient for the existence of
an inverse.

When we add the condition that H,,n_ also be nonsingular, certain Frobenius-type
identities for matrix Pad6 forms are used to show that our formulae yield the formulae
of Gohberg and Heinig. On the other hand, when we add the condition that H,,_,,_
be nonsingular, a different set of Frobenius-type identities applied to our results yields
inverse formulae, which in the scalar case corresponds to the Gohberg-Krupnik
formulae. Finally, using somewhat different techniques, we show how our inverse
formulae provide natural generalizations of the results of Ben-Artzi and Shalom to the
nonscalar case.

A major advantage of a closed inverse formula is that it allows for efficient
algorithms to calculate the inverses of Hankel matrices. This efficiency comes both in
the cost complexity of calculating the inverse and also in the amount of storage required
for the final result.

When our inverse formulae are used in conjunction with the MPADE algorithm
of Labahn and Cabay [22], we obtain an algorithm for calculating H- This algorithm
has many advantages for our situation. It is successful without any preconditions
placed on the original power series. As a by-product, we obtain inverses for all the
principal minors of H.,. that are nonsingular. Also, it is iterative on n, allowing cost
savings in implementation. The complexity of the MPADE algorithm is generically
O(p3n2), although there are pathological cases where it can be as high as O(p3n3)
(for example, when all the principal minors of H,. are singular). This compares with
other nonscalar methods (cf. Akaike [1], Watson [31], Rissanen [27], Bose and Basu
[5]) that are also of complexity O(p3n:’), but that succeed only when all principal
minors are nonsingular, in the scalar case, however, the cost complexity of MPADE
is O(n), regardless of the types of singularities found in H,.,.. This compares favorably
with the method described by Rissanen [28] that is of complexity O(n2) and succeeds
in the degenerate case. The O(n) methods of Trench [30], Watson [31], Zohar [33],
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and Kailath, Kung, and Morf [20], on the other hand, fail whenever a principal minor
of H,,.n is singular:

When fast polynomial multiplication methods are available, in the scalar case,
the required Pad6 forms can be calculated by the off-diagonal algorithm of Cabay and
Choi [11] with a complexity of O(n log2 n). The algorithm is also iterative on n and
produces the inverses of some of the nonsingular principal minors as a bi-product. As
a result of this, and some other factors, the performance is better than the O(n log n)
method of Brent, Gustavson, and Yun [6] and Sugiyama [29], both of which also
succeed in the degenerate case. The O(n log2 n) methods of Bitmead and Anderson
[4], Ammar and Gragg [2], and de Hoog [18], on the other hand, succeed only in the
nondegenerate case.

In the nonscalar case, fast algorithms can also be used to calculate the required
Pad6 forms, but under some restrictions. If the block matrix is positive definite (or,
more generally, if the associated power series is nearly-normal (cf. [21])), for example,
and fast polynomial multiplication is allowed, then the inverse formulae can be
calculated using the fast algorithm of Labahn [21] with complexity O(p3" n log n).
This algorithm is also iterative and calculates the inverses of some of the nonsingular
principal minors as a bi-product. The algorithm of Bitmead and Anderson, generalized
to the nonscalar case using the formulae of Gohberg and Heinig, is also of complexity
O(p3" n log2 n), but works only in the normal case.

For purposes of presentation, we adopt the following notation. We let D denote
the noncommutative ring of p p matrices over a field.2 The domain of formal power
series with coefficients over D and indeterminate z is denoted by D[[z]]. For any
A(z) D[[z]], A(z) is formally represented by

(1.3) A(z)= aiZi,
i=0

where the coefficients ai 6 D are always written in lower case. The domain of poly-
nomials (finite power series) over D with indeterminant z is denoted by D[z]. Any
polynomial P,,(z) D[z] is represented formally by

(1.4) P (z) piz i,
i=0

where again the coefficients pi D are written in lower case. The degree of P,,(z) (i.e.,
the largest such that pi 0) is denoted by O(P,,(z)).

2. Matrix Pad6 forms. The inversion formulae derived in 3 and 4 depend on
the concept of a matrix Pad6 form for a matrix power series. This is a multidimensional
generalization of scalar Pad6 forms (cf. Gragg [17]). Let

(2.1) A(z)= 2 aiz’ D[[z]]
i=0

be a formal power series with coefficients from the ring D of p p matrices over some
field. For nonnegative integers rn and n, let

(2.2) U,(z)= uiz i, Vn(z)= viz D[z]
=0 =0

be p p matrix polynomials.

All the results of this paper can be presented in the more general setting where D is an arbitrary
noncommutative algebra.
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DEFINITION 2.1 (Labahn and Cabay [22]). The triple (Urn(z), Vn(z), W(z)) is
defined to be a Right Matrix Pad Form (RMPFo) of type (m, n) for the power series
a(z) if

(I) 0(Urn(z)) <= m, O(Vn(z)) <= n,
(II) a(z) V,(z)- Urn(z) z"+"+ W(z), where W(z) D[[z]], and
(III) The columns of V,(z) are linearly independent over the field.

The matrices Urn(z), V,(z), and W(z) are called the right numerator, denominator, and
residual (all of type (m, n)), respectively. I2

There is an equivalent definition for a left matrix Pad6 form (LMPFo). In condition
(II), multiplication on the right by V,,(z) is replaced by multiplication on the left. In
addition, condition (III) is replaced by

(III) the rows of V,,(z) are linearly independent over the field.
Condition (II) can be written as follows:

(2.3) I a_,am:_ ..... amaOl IVnlIUOIvo Um

and

(2.4)
am am+l am+n Do "0

Here ai 0 for < 0. The matrix polynomial V,(z) can be determined by solving (2.4),
and then U,,(z) can be obtained from (2.3).

THEOREM 2.2 (Existence of Matrix Pad6 Forms). For any matrix power series A(z)
andfor any pair of nonnegative integers m, n), there exists an RMPFo and an LMPFo
of type m, n ).

Proof The result follows from (2.3,) and (2.4) by comparing the number of
equations with the number of unknowns. For details see [22].

To distinguish between matrix Pad6 forms of different types, we introduce the
following notation. For a given pair of positive integers (m,n), the triples
(Urn(Z), Vn(z), W(z)) and (U*m(Z), V*,(z), W*(z)) denote an RMPFo and an LMPFo,
respectively, of type (m, n) for A(z). For the same (m, n), an RMPFo and an LMPFo
oftype (m 1, n 1) for A(z) are represented, respectively, by (P,,_t(z), Q,_(z), R(z))
and (P*_(z), Q*,_(z),R*(z)). For these Pad6 forms, collectively, condition (II)
becomes

(2.5)

(2.6)

(2.7)
(2.8)

A(z) Vn(z)- Urn(Z)= Z
m+"+ W(Z),

V*,(z)A(z)- U*m(Z)= z"+"+1" W*(z),
a(z)Q,_(z)- P,,,_(z) z"+"- R(z),

Q*_(z)a(z)- P*m-(Z) Z
m+"-’ R*(z).

In 3, in the case that Hm, is nonsingular, the inverse is given in terms of these four
matrix Pad6 forms.

THEOREM 2.3. For a pair of positive integers (m, n), the following statements are
equivalent:

(2.9) det (Hm,,) # 0,

When the leading term Vo is nonsingular, then in [22] a RMPFo is called a Right Matrix Pad6 Fraction
(RMPFr).
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(2.10) det (ro) # 0 and det (Vo) 0,

(2.11) det (ro*) # 0 and det (Vo*) 0.

Proof. That (2.9) implies (2.10) and (2.9) implies (2.11) was proved in [22], and
so we show only the converse here. To see that (2.10) implies (2.9), let X (x, , xn)
be a vector of length np and suppose that

(2.12) X. Hm, O.

We shall show that X =0. We accomplish this by showing that (2.12) implies that
x. 0 and

(2.13) (0, x, ,..., x._,) H.,,. 0.

By repeated application of this property, it then follows that x._ x =0, and
so X=0,

First observe that equating coefficients of z , for rn + 1-<_ i-< rn + n, in (2.5) yields

(2.14) H.,,. Vo
1)1 am+n

where Vo is invertible since we are assuming statement (2.10). Similarly, equating
coefficients of z i, for rn -_ =< m + n 1, in (2.7) yields

0

(2.15) H,... t
qo

ro

where, by assumption, ro is invertible. From (2.12) and (2.15), it follows that

0

(2.16) x." ro X. ) X. H,.,. 0.

qo
ro

Since ro is invertible, it then follows that x, 0.
Having shown that x, =0, (2.12) then yields

(2.17) (xl,""", x._) =0.

am am+n-2

But, from (2.12) and (2.14), we have

(2.18) (x,,’.’, x._,, 0)
am+n

Since vo is invertible, (2.18) implies that

(2.19) (x,, ,Xn_l)

am+n-I

Vo -X. Hm,. =0.
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Equations (2.17) and (2.19) imply that

(2.20) (xl," ",Xn-)"
L
am-n+2. am+l.

---0,
a am+n_

which is equivalent to (2.13).
Thus, we have shown that (2.10) implies (2.9). A similar argument shows that

(2.11) implies (2.9). [3

Theorem 2.3 has important computational significance since the singularity of
H,,,n can be detected simply by recognizing a singular ro or a singular Vo. If both ro
and Vo are nonsingular, then we have Theorem 2.4.

THEOREM 2.4. If det (H,,,,) # 0, then the matrix Padforms identified by (2.5)-(2.8)
are unique, except for the specification of the nonsingular matrices Vo, V*o, to, and r*o.

Proof We refer the reader to Theorems 3.2 and 3.3 in [22] for a detailed proof
of this result. [3

As a consequence of Theorem 2.4, it can be assumed without loss of generality that

(2.21) Vo Vo* ro ro* L

This nonrestrictive assumption simplifies the presentation of subsequent results.
The key relationship between matrix Pad6 forms that enables the presentation of

the inverse of H,,,, in 3 and 4, is given by Lemma 2.5.
LEMMA 2.5. Let det (Hm.,) # O. Then the matrix Paddforms identified by (2.5)-(2.8)

and normalized according to (2.21) satisfy

(2.22)
V*n(Z) U*,,,(z) V,(z)

(2.23) [ U.,(z)
V.(z) Pm_,(z)].[Q*._,(z)Q,_l(Z) -v*,(z)

R*(z)
(2.24) _z2W,(z) -Q.*_,(z)] [ V.(z)

v*.(z) zW(z)

Q,_,(z) 0

-P*,*,-l(Z)] =z,,+,_[I 0]U*,,,(z) 0 I’

R(z) I

V*,(z) I
[ V.(z) Q,,_,(z)] [ R*(z)

(2.25) Lz2 w(z) R(z) -z2 W*(z)

Proof Multiplying (2.5) on the left by Q*_(z) and (2.8) on the right by V,(z),
and subtracting the first from the second, we obtain

Q*_,(z) u,,,(z) P_,(z) Vn(z) z "-’ (R*(z)V.(z) 2 .m+
--Z Qn_I(Z) W(z))

(2.26) z"+"- ro* Vo
zm+n-lL

In (2.26), we have used the normalizing condition (2.21) and the fact that the left-hand
side, and consequently the right-hand side, is a matrix polynomial of degree at most
re+n-1.

Multiplying (2.5) on the left by V*(z) and (2.6) on the right by V,(z), and
subtracting the second from the first, we obtain

v*._,(z). U(z) + u*(z). V.(z) z+"+’. (v*.(z) W(z)- W*(z) V.(z))
(2.27)

--0.
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In (2.27), the last equality is true because the left-hand side, and consequently the
right-hand side, is a matrix polynomial of degree at most m + n.

In a similar fashion, (2.7), (2.8), and (2.21) yield

Q*_,(z)P,,_,(z)- P*,,_,(z)Q,_,(z)= zre+n-’. (Q*,_,(z)R(z)- R*(z)Q,_,(z))
(2.28)

=0;

whereas, (2.6), (2.7), and (2.21) give

-v*.(z)Pm_,(z)+ ty*(z)O._,(z)= zm+"- (V*.(z)R(z)-zW*(z)O._,)
(2.29)

zm+n-l I.

Equations (2.26)-(2.29) together comprise (2.22). Equation (2.23) follows directly
from (2.22), since matrix inverses are two sided.

Equations (2.26) also gives

(2.30) zm+"-’ (R*(z) V,(z)- zZO*,_,(z) W(z)) zm+"-’ I,
from which we obtain

(2.31) R*(z) V,(z)- zZO*_,(z) W(z) I.

Similarly, from (2.27), we obtain

(2.32) V*(z) W(z)- W*(z) V,(z)=0.
From (2.28), we obtain

(2.33) O*n_,(z)R(z) R*(z)O,_,(z) O,
and (2.29) gives

(2.34) V*(z)R(z)-z2W*(z)Q,_,= I.

Equations (2.31)-(2.34) comprise (2.24). As before, (2.25) follows from (2.24), since
matrix inverses are two-sided. El

3. The off-diagonal inverse formula. The main result of this paper is Theorem 3.1.
TH.ORFM 3.1. Let Hm, be the block Hankel matrix (1.1). If there are RMPFos

and LMPFos of type rn 1, n 1) and m, n) for A( z) satisfying the normalizing
condition (2.21), then Hm, is nonsingular with inverse

(3.1)

or, equivalently,

(3.2)

qo* 0

Proof Using

Um(z)O*n_,(z)- Pm-,(Z) V*(z)
which is from (2.23), we can equate coefficients of Z , m < < m+ n-1, to obtain

(3.3) IU""’U’-n+ll... Um: Iq*n_ 1.. .... q.,q*Ol Pm--l" IV,..... v,V,11": =I.
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Similarly,

< (z)O*._,() O_,(z) v*. (z) o,
also from (2.23), yields

(3.4) .." .. .-"
)n Vl q*-l q,-1 qo

Now, from (2.7), we obtain

Pro-1 Pm-n
(3.5) Hm ," ."

q0

0 Pro-1

Hm_n,
qn-1 qo

Observe that, for 1-< i, j<-n, the (i, j) component in (3.5) is obtained by equating
coefficients of z re+i-j-1 in (2.7). Similarly, (2.5) yields

l)n )0 l"tm "Um + )n

(3.6) Hm, ." .., -Hm_n,n .."
DO Um Dn D

(3.7)

Combining (3.5) and (3.6) and using (3.3) and (3.4), it then follows that

Vn--1 VO q*,-1 q*o qn-2 qo 0
v*.... V*l

Hm, ." .. ." ".

VO q*n-1
qo ",
0

v,,

qn-1 qo V*n

=L

Thus, H,,, is nonsingular with the inverse given by (3,1).



106 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

The second formula (3.2) for the inverse is proved using (2.6), (2.8), and the
second column of (2.23). V1

Remark 1. In the scalar case, (3.1) was first obtained by Choi [12].
Remark 2. The assumptions of Theorem 3.1 can be equivalently replaced by the

requirement that we obtain solutions to

(3.8)

(3.9)

(3.1o)

(3.11)

Hm,n" [qn-1 ,’’’, q0] ’= [0,..., 0, I]’,

[qn*-I ,’’’, qo*]" Hm, --[0,’’’, 0, I],

Hm,n" [vn, vii t-- -[am+,,""", am+n-,,

[v*,""", vl*]" Hm, =-[am+,,’’’, am+n-l,

where am+n can be any p p matrix. EquatiOns (3.10) and (3.11) are block versions
of the Yule-Walker equations.

4. The antidiagonal inverse formula. Theorem 3.1 provides inverse formulae for
the block Hankel matrix Hm,, in terms of RMPFo and LMPFo of type (m- 1, n- 1)
and (m, n) for the associated matrix polynomial A(z). There are some algorithms (cf.
[6], [24], [29]) that calculate Pad6 forms along an antidiagonal, rather than along an
off-diagonal path of the Pad6 table. For this reason, it is useful to provide inverse
formulae in terms of RMPFos and LMPFos of type (m-1, n) and (m, n-1) for A(z).

Let (Era(z), Fn_l(z), G(z)) and (E*m(Z), Fn*_l(Z), G*(z)) be an RMPFo and an
LMPFo, respectively, of type (m, n 1) for A(z). Also, let (Bm_l(Z), Cn(z), D(z)) and
(B*m_i(z), C*.(z), D*(z)) be an RMPFo and an LMPFo, respectively, of type (m 1, n)
for A(z). Then, the following equations are satisfied:

(4.1) A(z)F,_I(z)-Em(Z)= zm+nG(z),

(4.2) F*_l(z)A(z)- E*m(Z) zm+nG*(2),

(4.3) A(z)C,(z)- Bm_l(Z zm+"D(z),

(4.4) C*,(z)A(z)- Bm_l(Z) zm+nD*(z).

COROLLARY 4.1. Let Hm, be the block Hankel matrix (1.1). Then the following are
equivalent:

(4.5) det (H.,..) 0,

(4.6) det(em)0 and det(c,)0,

(4.7) det (e*) 0 and det (c.*) 0.

If any (and therefore all) of (4.5), (4.6), or (4.7) hold, then the inverse is given by

(4.8)

or, equivalently,

(4.9) H-’

fn*-I f*

1 o

fLi
0
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where we have normalized the Pad6 forms so that

(4.10) em=e=Cn=C*=L
Proof Let a--a2,,-i, for 0 -< i=< m + n, and define a truncated power series

m+nAe.(z)=i=o az. Observe that, if

am-n+l am
(4 11) He.m,n

a am+n_

then

(4.12)

where

He. J"m,n

Equating coefficients of z , for rn < < m + n 1, in (4.1), we obtain

1 i
fn-I

(4.13) H,,.

From (4.12) and (4.13), it then follows that

(4.14) e./-/,,,, )
f. em

Thus,

(4.15) Q._(z)= 2 f.-+zi
i=0

is a right denominator of type (m-1, n-1) for Ae.(z). Similarly, (4.2) yields

[fo* fL]H =[0,"" 0, e*],(4.16)

and so
n-1

(4.17) Q.*_(z)= E f*n-l+ig
i=0

is a left denominator of type (m-1, n-1) for
Next, from (4.3), we obtain

(4.18) H,.,.
Co am

and so (4.12) then gives

(4.19)
Co am+l

H e.

Cn-1 am+n

Cn

Cg
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Thus,

(4.20) V,(z)= c,_iz
i=0

is a right denominator of type (m, n) for A(z). Similarly, (4.4) can be used to obtain

(4.21) [Co*," ,c,* 1]H =c*,[am,n m+l a m+n],

and so

(4.22) V,*(z)= c*,_,z’
i=0

is a left denominator of type (m, n) for A(z) Since det (H )#0 if and only if
det (Hm,n)O the equivalence of (4.5)-(4.7) now follows from the equivalence of
(2.9)-(2.11).

To prove (4.8), normalize according to (4.10) and substitute (4.15), (4.17), (4.20),
and (4.22) into (3.1) to obtain

(4.23)
C C fo f*.__,

c, fo*

By using (4.12), (4.8) follows immediately from (4.23). In a similar fashion, (4.9) can
be obtained using (3.2). [3

5. The Gohberg-Heinig inverse formulae. In this and the next section, we compare
our inverse formulae (3.1) and (3.2) with other similar well-known formulae. In terms
of matrix Pad6 forms of type (m 1, n 1) and (m, n- 1), the inverse of Hm,, is given
by Corollary 5.1.

COROLLARY 5.1. Let the matrix Padd forms identified by (2.7), (2.8), (4.1), and
(4.2) be given. Then the following statements are equivalent:

(5.1) det(Hm,,_l)#0 and det(Hm,,)#0,

(5.2) det (ro) # 0 and det (fo) # 0,

(5.3) det (r*o) # 0 and det (fo*) -# 0.

In addition, ifany (and therefore all) ofconditions (5.1), (5.2), or (5.3) are satisfied, then

(5.4)

H-I=m,n

fo qn-1

where the Paddforms have been normalized by

(5.5) ro= r*o fo=fo* I.
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Proof We first show that (5.1) implies (5.2). Since det (Hm,,)# 0, Theorem 2.3
implies that det (ro) # 0. Since det (Hm,,-1) 0, Theorem 2.3 also implies that det (fo) #
0. Therefore (5.1) implies (5.2). In a similar fashion, (5.1) implies (5.3).

To show that (5.2) implies (5.1), let

(5.6) Urn(z) E,.(z) z. Pm_l(z)r-lgo,

(5.7) V.(z) F._I(z)- z" Q._l(z)rl go

Then, 0( Um (z)) <- rn and 0( V. (z)) <= n, Also,

A(z) V(z)- Urn(Z) {A(z)F._I(Z)- Era(z)}- z{A(,z)Q._l(z) Pm_l(z)}rl go

(5.8) 2m+n{G(2)- R(z)rlgo}

=z"+"+W(z)
where

(5.9) W(Z) z-l{ G(z) R(z)r-l go} E D[[z]].

Finally, the columns of V,(z) are linearly independent since from (5.7) vo=fo, and
by assumption fo is nonsingular. Thus, (Urn(Z), V,(z), W(z)) is an RMPFo of type
(m, n) for A(z), satisfying det (Vo)#0. From Theorem 2.3, it follows that Hm,, is
nonsingular since both det (ro)# 0 and det (Vo)# 0. To see that Hm,,-1 is also non-
singular, observe that

(5.10) I I
I f.-1 am-n+1"’" am-1 e.

i
am-n+l am

". am-n+2 am

am "’’am+n-1 O" 0 fo am am+n-2

where the last column is determined by equating coefficients of z i, for rn < <= rn + n 1
in (4.1). Thus, det (Hm,) 0 and det (fo),# 0 implies that det (Hm..-l) O. Thus, (5.2)
implies (5.1).

In a similar fashion, by defining

(5.11) U*m(Z) E*m(Z)-zg*or*o-lp*m_l(Z),

(5.12) v*.(z) .*_,(z) O._,(z),

it can be shown that (5.3) implies (5.1).
To obtain the inverse formula, substitution of (5.6), (5.7), (5.11), and (5.12), after

normalization by (5.5), into equation (3.1) gives

H-l= ...
m,t’l o Oo oO

"*-1
qo
0

(5.13)
qn-2 qo 0

+ (go-g*o) ".qo
0

But, (4.1) and (4.2) imply that

(5.14) E*m(z)F._l(Z) F*._l(z)Em(z) zm+"{F*._l(Z)G(z) O*(z)F._l(z)}.
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Consequently,

(.)

and, in particular,

F*._,(z)G(z) G*(z)V._(z) 0

(5.16) go= g*o

Thus, (5.13) is exactly (5.4), since the last product cancels.
Remark 1. Corollary 5.1 can be proved directly from (2.7), (2.8), (4.1), and (4.2).

Indeed, using the same arguments as in Lemma 2.5, we can obtain

[ r*o-Q*,_l(Z) -r*o-lp*_(z)] [ E,,(z)f P,,_,(z)r] [ 0](5.17) ,-1, E*m(Z) F,_(z)f Q,_,(z)r I-f( Frl-1(7 fo*-

and the commutative relationship

[E,,,(z)f P,,-l(z)r-dl]["*-It3*."0 X,n_ Z) r*-’’*]o/"m--l(Z) re+n- [I 0](5.18) F,_(z)f O,_l(z)r -J*-l,_ (z) fo*-E*(z)
z

0 I

Consequently, we can normalize our Pad6 forms according to (5.5) and the formulae
will follow in a fashion similar to the proof of Theorem 3.1.

The actual proof, in addition to being simpler, serves to illustrate the existence
of Frobenius-type relationships (generalized from the scalar case (cf. Gragg [17]) to
the matrix case) between matrix Pad6 forms of types (m, n), (m, n- 1), and (m- 1,
n- 1). These relationships, which exist under the assumptions of Corollary 5.1, are
given by (5.6), (5.7), (5.11), and (5.12) (see also [7]-[9]).

Remark 2. From (5.17), it follows from equating coefficients of degree rn + n- 1
that

(5.19) e*mq,-1 fo* ro
and

(5.20) q*,_le,, r*ofo.
Thus, if the conditions of Corollary 5.1 are satisfied, then e*,,, q,-1, q,*-l, and e,, are
all nonsingular. Normalizing (2.7), (2.8), (4.1), and (4.2) by setting

(5.21) ro= r*o em e*= I,

rather than by (5.5), we obtain

(5.22) H,,.,. [qn-1,’’’, qo] ’= [0,""", 0, I]’,

(5.23) [q,*- "’’,q0*]’H,,, =[0,’’" 0, I],1, ,l’l

(5.24) H,,,,,. [f,_,,... ,fo]’= [I, 0,..., 0]’,

(5.25) [fn*-l,""" ,fo*] H,,. [I, 0,..., 0].

These conditions, together with the requirement that det (q,_) # 0 and det (q,*_) # 0,
are exactly the conditions given by Gohberg and Heinig [16] in deriving the inverse
formula (5.4). Because of the different normalization requirement, their formula

#-1includes the term q:i between the first two matrices and q,_ between the last two
matrices. This is permissible because of (5.19)-(5.21). In the scalar case, this is the
well-known formula of Gohberg and Semencul [14].
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Remark 3. The assumptions of Corollary 5.1, which are equivalent to conditions
(5.22)-(5.25) of Gohberg and Heinig, are far more restrictive than the assumptions of
Theorem 3.1, which are equivalent to (3.8), (3.9) and the block Yule-Walker equations
(3.10) and (3.11). The formula of Gohberg and Heinig has the additional requirement
that q,-1 and q,*_l be nonsingular (which is equivalent to H,,,n- being nonsingular).
Thus, for example, (3.1) can be used to obtain the inverse of

(5.26) 82,3 0 0 I
0 I 0

whereas, (5.4) cannot be applied.
Remark 4. Since the assumptions of Corollary 5.1 require that not only H,,,n but

also H,,,,-1 be nonsingular, it should be possible to express the inverse of H,,,,_ in
closed form as well. Indeed, by deriving Frobenius-type identities similar to (5.6),
(5.7), (5.11), and (5.12) (cf. Bultheel [7]-[9]), the matrix Pad6 form oftype (m 1, n -2)
can be expressed in terms of matrix Pad6 forms of type (m, n- 1) and (m- 1, n- 1).
Then, substituting the Pad6 forms of type (m, n 1) and (m- 1, n -2) into (3.1) (with
n replaced by n- 1) and simplifying, we obtain as another corollary to Theorem 3.1
the second inverse formula of Gohberg and Heinig, namely,

(5,27) g-1

fo q,*-i qo f,*-

Here, we have again normalized according to (5.5). We also note that the Gohberg-
Heinig formulae given here are both determined from (3.1). Additional formulae, based
on (3.2) rather than (3.1), can also be derived.

Remark 5. Gohberg and Heinig prove their formulae with the coefficients over a
noncommutative algebra. Our formulae and results also carry over with minor altera-
tions. In particular, Theorem 2.3 and Corollary 5.1 would both require that (2.9) be
equivalent to (2.10) and (2.11), simultaneously.

6. The inverse formulae of Gohberg-Krupnik. Let (L,,_2(z), M-2(z), N(z)) and
(L*,,_2(z), M*,_2(z), N*(z)) be an RMPFo and an LMPFo, respectively, of type (m-
2, n- 2) for A(z). These matrix Pad6 forms then satisfy

(6.1) A(z)M._z(z)-L.,_(z)= z’+"-3N(z),

(6.2) M*_(z)A(z)- L*.,_(z) z’+"-3N*(z).

The inverse of H.,,. in terms of matrix Pad6 forms of types (m -2, n -2) and (m 1, n
1) is given by Corollary 6.1.

COROLLARY 6.1. Let the matrix Pad forms identified by (2.7), (2.8), (6.1), and
(6.2) be given. Then, the following statements are equivalent:

(6.3) det (H.,.) 0

(6.4) det (no) 0,

(6.5) det (no*) 0,

and det (H,,_,,_1) # 0,

det (qo) 0, and det (ro) 0,

det(qo*)0 and det(ro*)0.

In addition, if any (and therefore all) of the conditions (6.3), (6.4), or (6.5) are satisfied,
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then

qn.-. qo

iom,n

m*n- m* 1q-d ,
m’n-2

mn-3 mo 0 0

(6.6)

[!o
q*-1

iq -ll+ q-l[q*-l,’’’, q*o].
qo

Here, the matrix Paddforms have been normalized so that4

(6.7) no no* ro ro* I.

Proof To prove that (6.3) is equivalent to (6.4), it follows directly from Theorem
2.3 that det (H,,,,) # 0 implies that det (ro) # 0, while det (Hm-l,n-1) 0 implies that
det (no) 0 and det (qo) # 0. Conversely, suppose that (6.4) holds. Again, from Theorem
2.3, we have that det (no)# 0 and det (qo) 0 implies det (Hm_l,n_l)7 O. But, then

am-n+l am
(6.8)

I q am_ "’’am+n_2am am+n-1
0 0 qo am am+n-1 0

together with the assumption that det (ro)# 0, implies that also det (Hm,n)7 O.
A similar argument shows that (6.3) is equivalent to (6.5).
To prove (6.6), we first establish some identities. Observe that, under the normali-

zation condition (6.7), (Lm.2(z), Mn_2(z), U(z)), (L*m_2(z), M*_2(z), N*(z)),
--1 --1(Pm-l(z)q 1, Q,_(z)qg 1, g(z)qo ), and (qo*- P_l(z), q*o Q*_l(z), q*o- g*(z))

satisfy the conditions of Lemma 2.5, with (m, n) replaced by (m- 1, n- 1). Here, (2.25)
becomes

(6.9) [On-(z)ql Mn-2(z)][ N*(z) -M*_2(z) ]=[I O]z2R(z)q N(z) -zq*o-R*(z) :--1qo Qn-l(z) 0 I

and, in particular,

(6.10) {R(z)ql}N*(z) N(z){q*o-lR*(z)}.

Note that the constant and linear terms in (6.10) yield

(6.11) qo q*o

and

(6.12) q*o-l(n*l r*l (n- rl)q-1.

Rather than normalizing with ro ro* 1, it is equally proper to normalize with qo q 1.
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For later purposes, also observe the identity

q-I qo q*,,- q*o

qo q*-

(6.13)

q[q*-l,’" ",q*o],
qo

which follows using (6.11).
Next, we proceed as in Corollary 5.1 by constructing right and left matrix Pad6

forms of type (m, n) for A(z). Set

(6.14) Urn(z {Pm_l(2)[I -- (tl rl)z Lm_2tz)zZ}qg

and

(6.15) Vn(z) {Q,_,(z)[I + (n,- r,)z]- mn_2(z)z2}q

Then, Urn(z) and V,(z) provide an RMPFo of type (rn, n) for A(z). To see this, note
that the degree requirements are clearly satisfied. In addition, the columns of Vn(z)
are linearly independent since, in (6.15), Vo =/. Finally,

A(z) Vn(z)- Urn(Z)= {[a(z)Qn_l(Z)- Pm-l(Z)][I -t-(n,- r,)z]

-1z2[A(z)M-2(z)- Lm-2(z)]}qo

(6.16) {z re+n-1 R(z)[ I + n rl)2 Z
re+n-1 N(z)}q-1

,,+,-, }}q-=z {(ro no)+(r+ro(nl-r)-n,)z+z2{
m+n+l --1=z {’" "}qo

since no ro L
Similarly, it can be shown that

(6.17) U*m( Z) q*o -’ {[ I + n* r*l )Z]P*m-,( z) L_z(Z)z2},

(6.18) V* z) q*o -’{[ I + (n’l- r*l )Z]Q*_l( Z) M*,_z(Z)Z2}

provides an LMPFo of type (m, n) for A(z).
Note that (6.15) and (6.18), respectively, yield

v,,_ Vo q,,-1 qo.. .. q+
qO

Vo qo
0

(6.19)
mo 0 0

o

/ o .." qo

k 0

qo 0

(n-r)q’
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and

(6.20)

q*-, q*t

q*o -’ "’"
0

m*n-2 m* 1m’n-2
where m*_ =0. Substituting (6.19) and (6.20) into (3.1), and rearranging terms, we
obtain

(6.21)

But, using (6.12) and (6.13), it is easy to see that (6.21) is exactly (6.6). V!

Remark 1. The inverse formula (6.6) can also be determined by bordering tech-
niques. Indeed, (6.8) can be further manipulated to obtain

m,n 0 0
+ q-l[qn*-,’"", qo*].

qo

Equation (3 1) applied to H- along with simplification using Lemma 2.5 convertsm--l,n--1

(6.22) to (6.6).
The present proof takes its cue from the approach of 4 and 5. In each case,

the inverse formula is obtained from (3.1) using Frobenius-type identities for matrix
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Pad6 forms The Frobenius-type identities (6.14), (6.15), (6.17), and (6.18) used here

can be found in [8] (see also [22]).
Remark 2. Note that, if the matrix Pad6 forms (2.7), (2.8), (6.1), and (6.2) satisfy

the conditions of Corollary 6.1 and are normalized according to (6.7), then
0 0

(6.23) H,,,," .n n=

I qo 0

nl

Thus the second last column of H-1 is a combination of the coefficients of mn_2(Z
and Q._(z). Similarly, we can obtain the second last row of H-,... as a combination
of the coefficients of M.*_2(z) and Q*._(z).

Conversely, suppose X [x._, , Xo]’ and Q [q._, , qo]’, respectively,
represent the second last and last block columns, of the inverse of H.,... Then, if
det (qo)# 0, we have that

0

Xn-1 qn-1

(6.24) H,,,, qxo 0

Xo qo I

qfflX0
so that

0

(6.25) H,,_,,,_ qxo
Xl q

This implies that

(6.26) M,_2(z) z-{X(z)- Q,,_(z)qxo}
is an RMPFo denominator of type (rn- 2, n- 2) for A(z). Similarly, we can obtain an
LMPFo denominator of type (m-2, n-2) when we have the last and second last
block rows of the inverse of Hm,,. Then substitution into (6.6) yields

X* Xo*
o

n-I

H- ... q
Oo"" qo

0

(6.27)

[Xn,_2 o.X0 0

qn.-2 q0 0

o
oO qd’(X*o Xo)q*o -1

q*-, q*o
Oo

qn-1
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q-[q*.-1 *+ ,’" ",qo];
qo

whereas, substitution into (3.1) gives
q,,-2" "qo x*_" "Xl Xn_2" "Xo q*-" q*

(6.28) H’_,,,_- ." q qo*-
qo x*_ Xo

Remark 3. In the scalar case, if X=[x,_,,...,Xo]’ and Q=[q,_,...,qo]’
represent the second last and last columns of the inverse of H,,,, respectively, and
qo 0, then (6.27) and (6.28) reduce to

qn.-2 qo

,., q;-

(6.29)
Xn-2 "XO

X0
0

and

Hnl_l,n_l =ql ."

qo x_

.." x "..
Xo q_

These are the original formulae of Gohberg and Krupnik [15].
Remark 4. Following the approach of 4, we can also obtain conditions and

inverse formulae for Hm-l,.- and H,.,. when the first and second block column, along
with the first and second block row, of the inverse of Hm, is given (cf. Iohvidov 19]).
Here, conditions and inverse formulae for Hm-l,.-1 and H,. are stated in terms of
matrix Pad6 forms of type (m, n- 1) and (m + 1, n- 2). Additional formulae, based
on (3.2) rather than (3.1), can also be given.

7. The inverse formulae of Ben-Artzi and Shalom. As mentioned in 3, the assump-
tions of Theorem 3.1 can be equivalently replaced by the requirement that we obtain
solutions to

(7.1) H,.. [q.-1,’", qo] ’= [0,..., 0, I]’,
(7.2) [q_ ,., ,qX] m [0, ,0, I]

(7.3) Hm.." Iv.,’", v]’=-Jam+l,""", a+._, am+.]’,
(7.4) [v,’’’, v]" H,. =-[a+,..., am+._, am+.]

where a+. can be any p x p matrix. It is possible to alter the right-hand sides of (7.3)
and (7.4) and still obtain inverse formulae for H,.. In particular, we may replace the
right-hand sides by linear combinations of the rows and columns of H+l,..
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LEMMA 7.1. Let Hm,. be the block Hankel matrix (1.1). Suppose there are solutions
to (7.1) and (7.2) along with solutions to

(7.5) Hm,,, [x.-1,’"", Xo]’= Hm+,,. [y.-,,""’, Yo]’,
and

(7.6) [x*.-1 ,’" ", X*o H.,,. [y*._ ,’’ ", Y*o Hm+l,n,
with Yo and y*o nonsingular. Then Hm.. is nonsingular with inverse

(7.7)

or, equivalently, the inverse is given by

qo qn-1

(7.8)

(7.9)

Proof Since

am-n+l

am

y*_, x*,_2 y* x*o

Y y X ""
y*o

Xn
.-2-Yn-1 yg

Xo-- Yl Xn-2 Yn-1 Xn-1

y*o

q*-2 q*o

q*o ""
0

am+n-1 Xo am+l am+n

am-n+l am

am am+n-1

am+l 1+ Yo,

am+n

L Y

we get that

(7.10) Yn..-1 X..-2 y
Vl

LY L Xol
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is a solution to (7.3). Similarly,

(7.11) v,*, , v*] Yo*-’’ ([0, y,*_,, , y*] [Xn_l Xn_2, X0])
is a solution to (7.4). Substituting (7.10) and (7.11) into (3.1) gives (7.7), while
substituting into (3.2) gives (7.8).

Let E (i) denote the n x 1 block matrix having the p x p identity matrix as its ith
block row, and zeros elsewhere. Similarly, let E *(i) be the 1 x n block matrix having
the p xp identity matrix as its ith block column, with zeros elsewhere. Theorem 7.2
shows how to construct the inverse of a block Hankel matrix, knowing only the last
block column and row, along with two successive block columns and rows ofthe inverse.

THEOREM 7.2. Let Hm, be the block Hankel matrix (1.1). Suppose there are solutions
to (7.1) and (7,2), along with solutions to

(7.12) H,. [x_,..., Xo] t= E,
(7.13) H,. [y_ ,..., yo] t= E+,
(7.14) [x_,..., x]. H, E*i),
(7.15) [Y-I,’’’, Y]" H,, E*+.
i in addition, Yo and y are both nonsingular, then H,, is nonsingular with inverse
given by

Yo

qo 0 --1 x-2-Y-i x-y

(7.16) +
/ 2, Y-’ "’" "’" x_-y_,

X_

[0
[q-2 qo 0

q-l’’’q
or, equivalently, the inverse is given by

".. ...
qo’’’ qn-I L Y

x._ [q_’ q 0

Ix._ y._l

[
(7.17) + ... yg’

XO Yl Xn-2 Yn Xn

qn-1 [

q’-2 qO"

qo q.-
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Proof Equation (7.13) implies that

(7.18) Hm+l,. Y E(i)+ E(")" c

where

(7.19) c-- am+ Yn-1 +" + am+n" YO.

Therefore

(7.20) H,,,, (X + Q. c)= Hm+l,, Y,

and similarly we can show that

(7.21) (X*+ e*. Q*).H,,,,,, Y* H,+I,,
where

(7.22) c* Yn*-I am+l +’’" + Y*O am+n.
Therefore, using Lemma 7.1, Hm, is nonsingular with inverse given according to (7.7)
or (7.8) applied to equations (7.1), (7.2), (7.20), and (7.21). For example, substituting
these expressions into (7.7) and expanding, we obtain the inverse of H,,, as

(7.23)

To obtain formula (7.16), we note that

y* E (i)Y#n
Y*’H.,,,," X
Y* {Hm/,, ,Y- Hm,,," Q. c}

Y* {Hm+l,, Y-E)" c}
(7.24)

Y*" Hm+,n" Y-y. c

Y*Hm,," [0, y,_,,’’’, y]’+ e*yo-y e

E*(+). [0, y,_,. , y]’+ c*yo-y e

Y,-i + c*yo-y e.

Therefore

(7.25) (y- c*-c. y)= y-l (Y-i-Y,-) Yg.
Substituting (7.25) into (7.23) gives (7.16). Formula (7.17) is verified in a similar
manner. S
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Remark 1. In the scalar case, Theorem 7.2 gives the inverse of H,,,, in terms of
the last column along with an additional two successive columns of the inverse. In
this case, (7.16) gives H-1

m,n as

yl Xo
qn-1

Yo
(7.26)

Formula (7.26) is due to Ben-Artzi and Shalom [3] (in its Hankel formulation). Equation
(7.17) reduces to an alternate formula in the scalar case.

Remark 2. Let S be the n x n shift matrix having l’s along the superdiagonal,
and O’s elsewhere. Suppose in the scalar case there is a solution Q, to (7,1) along with
a solution to

(7.27) H,,..Z=S.H.,..Y
where Yo 0. Then, there is also a solution to (7.5) since

(7.28) Hm, (Z-l- O c) Hm+,,n Y

where c is given by (7.19). Since Yo 0, Lemma 7.1 implies that H,,,, is nonsingular,
with inverse given by (7.7). After simplification, this inverse formula is

[Y’,-1-z,-: Yl-Zo Y

Iq,,_l qo
.." ..y-

yl Zo
q,-

Yo
(7.29)

q,-_ qo 0 z,_l z,-2-y,- Zo-y...,,. "..
qo z,,_2 y,_
0 Zn-I

This is the main inverse formula of Ben-Artzi and Shalom [3] in the scalar case. They
use this formula to give simple derivations of their own scalar formula (7.26), along
with other inverse formulae including the formulae of both Gohberg-Krupnik and
Gohberg-Semencul.

8. Conclusions. The Frobenius-type relationships given in this paper are but a
small sample of similar recurrence relationships that exist between matrix Pad6 forms
that have been developed by Bultheel [7]-[9]. All the relationships require the existence
of inverses of certain coefficients in the Pad6 forms involved. These requirements are
always satisfied for normal matrix power series (where Hm,, is nonsingular for all m
and n). For this restricted class of power series, many of the recursive relationships
provide directly algorithms for the computation of Pad6 forms. Depending on the path
(within the Pad6 table) determined by the recurrence, Bultheel observes that most
previous algorithms [1], [5], [13], [23], [25]-[27], [32] that explicitly or implicitly
compute the inverse of Hankel or Toeplitz matrices are equivalent to using an appropri-
ate recurrence formula.
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For a subset of these relationships, this paper shows that each recurrence yields
a separate closed formula for the inverse of a block Hankel matrix. Algorithms based
on recurrences that specify computations along an off-diagonal path (e.g., [1], [5],
[27], [32]) yield closed formulae expressed by (3.1), (3.2), and (6.6). Those that specify
computations along a staircase (e.g., [13], [23], [25]) yield formulae (5.4) and (5.27);
whereas, those that specify computations along an antidiagonal path yield (4.8) and
(4.9). Additional closed formulae can be derived corresponding to other recurrences
given by Bultheel.

Formulae (5.4), (5.27), and (6.6) are equivalent to those given by Gohberg and
Heinig and Gohberg and Krupnik, whereas (3.1), (3.2), (4.8), and (4.9) are new. A
major advantage of the new formulae is that the underlying assumptions are far less
restrictive than they are for (5.4), (5.27), and (6.6). Whereas, the new formulae require
only that H,,., be nonsingular, the latter also require that an additional submatrix be
nonsingular. In addition, necessary and sufficient conditions for the existence of H21n
are directly available from the coefficients of Pad6 forms. This provides a significant
computational advantage.

Relaxed conditions provide little computational gain, however, if the available
algorithms can function only under the more severe restrictions of normality. Unfortu-
nately, this is true for most algorithms that compute nonscalar Pad6 forms or decompose
block Hankel matrices. One exception in this regard is the MPADE algorithm of
Labahn and Cabay [22]. This algorithm is based on a recurrence relationship between
Pad6 forms at successive nonsingular nodes along an off-diagonal path of the matrix
Pad6 table (or, by reversing coefficients, along an antidiagonal path). When the power
series is normal, or, less restrictively, when all principal minors of the associated
Hankel matrix are nonsingular (e.g., when the block Hankel matrix is positive definite),
all the nodes along the path are nonsingular and then their recurrence relationship
reduces to (6.15), which is one of many given by Bultheel. The methods based on this
relationship are special cases of the MPADE algorithm

For purposes of expressing the inverse of Hm, in terms of the new formulae (3.1),
(3.2), (4.8), and (4,9), the MPADE algorithm is particularly suitable. Singularity is
detected with no additional effort. When H,,., is nonsingular, the necessary Pad6 forms
(i.e., the solutions of the associated block Yule-Walker equations) appearing in the
formulae are simultaneously available on termination. The algorithm has no restrictions
of normality. In addition, intermediate results enable the computation of the inverses
of any nonsingular principal minors.

Using classical polynomial arithmetic, the cost of the MPADE algorithm is
typically O(p3n2), but can reach a complexity of O(p3n3) in pathological cases (e.g.,
when all the principal minors are singular). When the power series is normal, this cost
is the same as that of previously mentioned algorithms.

Using fast polynomial arithmetic in the normal case, Bitmead and Anderson [4]
indicate that their scalar algorithm, based on a divide-and-conquer partitioning of the
Hankel matrix, can be generalized to the nonscalar case with a cost complexity of
O(p3n log2 n). Under somewhat relaxed normality conditions (i.e., near-normality),
Labahn [21] also gives an algorithm, an adaptation of MPADE, with the same
complexity.

In the scalar case, one call of an algorithm given by Cabay and Choi 11] can be
used to construct the inverse formulae (3.1), (3.2), (4.8), or (4.9) with cost complexity
O(n log2 n) under no restrictions of normality. This is also true of other methods (cf.
Sugiyama [29] for a survey) and, in particular, this is true of the method of Brent,
Gustavson, and Yun [6]. They use two calls of a fast antidiagonal GCD algorithm,
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EMGCD, to determine the two Pad6 forms required by the Gohberg-Semencul formula
(5.4). The algorithm succeeds immediately if both H,,,n and Hm,n-1 are nonsingular.
If Hm,n-I is singular (but Hm,, is not), then a nonsingular matrix H,,,,+l is first
constructed (it is not clear that this is always possible in the nonscalar case). Two
additional calls of the antidiagonal algorithm are then made to yield the two Pad6
forms required by the second formula (5.27) of Gohberg and Semencul. By computing
the inverse of H,,,, using (4.8) or (4.9), their algorithm can now be altered so as to
only require one call of their antidiagonal algorithm.

The use of (3.1) to express the inverse of Hm, avoids the immediate problem of
potential numerical instabilities inherent when using instead the two formulae (5.4)
and (5.27) according to the status of singularity of relevant minors (cf. Bunch [10]).
However, this does not imply that the algorithm for determining the inverse of
using (3.1) is stable, since this first requires the stable computation of (P(z), Q(z))
and (U(z), V(z)). The question of the stability of the algorithm MPADE for computing
(P(z), Q(z)) and (U(z), V(z)) is an open question currently under investigation.
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A DENSITY THEOREM FOR PURELY ITERATIVE ZERO
FINDING METHODS*

JOEL FRIEDMAN’

Abstract. In this paper a wide class of purely iterative root finding methods is proved to work for all
complex valued polynomials with a positive probability depending only on the method and the degree of
the polynomial. More precisely, if the set of polynomials with roots in the unit ball is considered, then for
fixed degree the area of convergent points in the ball of radius 2 is bouncted below by some constant for
any purely iterative method zi+ Tf(zi), where Tf(z) is a rational function of z and f and its derivatives,
for which (1) oe is repelling fixed point for all f of degree greater than and (2) Tf(z) depends only on z
and f’s roots and commutes with linear maps on the complex plane.

Key words, root finding, iterative methods, Newton’s method, polynomials

AMS(MOS) subject classification. 65H05

1. Introduction. The goal of this paper is to prove a theorem about the density
of points for which a purely iterative root finding method converges to a root.

dFor z C and f(z) i=o aiz consider a map

P(z,f,f’, ,f(l))
(z) a(z,f,f’, ,f())

where P and Q are polynomials over C. For each f, Tf is a map from C {} to itself
which we think of as an iteration in a root finding method. We require that

(1)

zPo(f, zf’, zf", ")
(1.1) Tf(z) z-I Oo(f zf’, zf",
where Po and Qo are homogeneous polynomials of the same degree.

(2) (z) depends only on z and the roots r,..., ra off, and

A(Ty(z)) Taf(az)
for any linear map A" z az + b, where

Af(z) aa(z-ar) (z-Ara)
for

f(z) ad(Z-- rl) (z- rd).

(3) Tf(r)- r, IT)(r)[ < 1 for any root r off
(4) Tf(oo)- oo, T(oo)l > 1 for any f of degree greater than 1.
To measure the density of convergent points for Tf, let Pa denote the polynomials

of degree d with roots in the unit ball. For a polynomial f, let

FT,y {z: T](z) a root of f as n - oe}
where T is the nth iterate of Ty (i.e., F T-,y is the set of points converging to a root of
f under the iteration Ty). Let

AT,f B(O)I,
Then AT,f/4r is the probability that a random point in B(O) converges to a root.

* Received by the editors November 30, 1987" accepted for publication (in revised form) March 7, 1989.
? Department of Computer Science, Princeton University, Princeton, New Jersey 08544 (jf @ princeton.

edu).
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THEOREM 1.1. Let T satisfy (1)-(4). Then for any d there is a c > 0 such that

AT,j> c Vf Pd.
Furthermore, we have

AT,f,r > C Vf Pd, Ir with f(r)=0,

where AT,f,r denotes the contribution to AT,ffrom the root r off
More precisely,

Ar,.f,r ]Fr,.f,,r B2(0)[
where

Fr,y,r {z: TT(z) r as n-}.

The above density theorem was conjectured to hold for Newton’s method by
Smale in [Sma85]. This conjecture was proven in [Fri86]; the proof used some special
properties of Newton’s method and explicit bounds on the constants as a function of
d were given. The above theorem applies to a much larger class of root finding methods,
though no explicit bounds on are given.

Examples of T satisfying (1)-(4) are
(1) Newton’s method, Ts(z)= z-(f/f’).
(2) Modified Newton’s method, Ty(z)= z-h(f/f’) with a constant h, 0<h < 1.
(3) Taylor’s method (see [Atk78])

Ts(z)= z+ h
i=1 dt t=o

where b, (z) solves

db,(z) f(z)
4o( Z) z

dt f’(z)’

with k a positive integer and h a positive number sufficiently small (depending on k).
(4) Incremental Euler’s method (see [Atk78])

T.(z) z + (-hf(z)) k

i=, ki’ g(k)(f(z))

with g =f-, k a positive integer, and h positive and sufficiently small.
(5) Any iterate of a T satisfying (1)-(4). This shows that maps satisfying (1)-(4)

may contain extraneous attractive fixed points. For example, Newton’s method, even
applied to polynomials of degree as low as three, can contain attractive periodic points
of period two. Therefore the second iterate of Newton’s method can have extraneous
attractive fixed points.

To prove Theorem 1.1, take any sequence f,,, Pal; we will show that At,y,, cannot
approach 0 as n tends to infinity. By passing to a subsequence we can assume each
of the f,’s coefficients, or equivalently each of f,’s roots, converge. If AT,y were
continuous in f at the limit of the f,’s, then we would be done; the fact that Ar,y can
be discontinuous at f’s having multiple roots makes the theorem more interesting. If
the limit of f, has at least one isolated root, one would get enough of a contribution
to AT-,y,, from such an isolated root (for large n) to show that AT,Z, is bounded away
from zero. However, if all of f,’s roots tend to cluster into several groups as n o,
we must look at the limiting geometry of each individual cluster to estimate At,y,,. So
fix a cluster, and "blow-up" the picture of the roots at that cluster so that, while they
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remain in some bounded region, they separate into smaller subclusters. Again, if the
blow-up of at least one cluster has as least one isolated root, we are done; the reason
is that the isolated root’s contribution to Fr,,, contains a sequence of balls that, from
the point of view of the subcluster, tend to and whose radii get larger. These balls,
from the point of view of the original scale of the problem, look like a sequence of
balls whose radii get smaller and smaller and whose center converges to the cluster’s
limit point. It is not hard to see that in the original scale of the problem, the largest
ball is of appreciable size, thus bounding Ar,y,, from below.

If none of the clusters has an isolated root, we look at the geometry of each
subcluster, blowing up the picture at each subcluster. Since the blowing-up process
separates a cluster of roots into at least two distinct subclusters, successive blowing-up
eventually isolates the roots. One can then find balls in Fr,,, for each root in the
blow-up of the picture that isolates it, and back up through the blow-ups until reaching
the original scale of the problem, finding balls in each scale of blow-up that lie in
Fr,y,,. The fact that this can be done for each root proves, in addition, the second part
of the theorem.

The basic estimate for the existence of the aforementioned balls is Lemma 2.2,
proved in 2. In 3 we describe the blowing-up process more precisely and show how
Lemma 2.2 can be applied backwards through the blowing-up process.

2. Some preliminary results. Let g: N C U {oe} be a complex analytic map, for
an open N c Ct_J {oo}. Let z N be a repelling fixed point, i.e., g(z) z and Ig’(z)l > 1.

LEMMA 2.1. For any open A C we have that.for n sufficiently large,

gn{B(z)} fl A fg.

Proof Apply Cauchy’s formula for (fgn)’(z), where f is a M6bius function taking
a point in A to ee, and where the contour is a small circle around z.

For our maps T, we have that oe is a repelling fixed point so the lemma can be
applied.

From condition (1)-(4) on T it is easy to see that

Oo(1, a, a(a-1), .)
T’(c) q( d)

Po(1, d, d(d-1), ")

is a rational function of d independent off and that if r is a k-tuple root, then

Po(1, k, k(k-1), .) 1
T(r) Qo(1, k, k(k- 1),...)- q(k)"

For any f we have that for z in a neighborhood of c,

and

Z
Tf( z) +O(1)

q(d)

(2.1) Tfc( z

and T- is defined locally. We have

Ti(z)
Z

q(d)
+0

q( d-) +
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and so for [z[ sufficiently large, we have Zo z, z_, z-2," given by Ts(z_i)= z_i+

has ]z_,[ growing like (q(d) e)" for any e > 0 depending on how large ]z[ is, and thus

(2.2) 1- q(d) q"(d) 1-0
i=0

The mean value theorem and (2.1) yield for, say, r < [z[/2,

(2.3) Ty{Br,(z_,)}c Br(z)

with

(2.4) r’= rq"(d) 1-0
iz_.+, I+’’’+ rq"(d) 1-0

1

Let

Z
lim

the limit existing by virtue of (2.2). For any r <[zl/2, using (2.3) and (2.4), we have

(2.5) T;{Brq’,(a)/2(Sq’(d))}= Br(z)

for n sufficiently large (depending on r).
Next we would like to obtain a version of (2.5) for polynomials close to f in a

certain sense. Fix d, D, and f, and consider the set 5y.,D of polynomials

g(z) (Z- Sl) (Z-- Sd+D)

with sieB(r) for l<-i<-d and [s[> l/6 for i>d.
LEMMA 2.2. For any sufficiently large z and r <[z[/2 there is a c, 6o, and no such

that if 6 < 6o and n > no we have

T{Bq,,(d)/Z(.q’(d))} B(z)

f
C

for all g ’-f,8,D.
Proof Dividing both numerator and denominator by z’-’gaeg(P) in condition (1)

on T yields

zPo(1, z(g’/g), z2(g"/g), .)
Tg(z)

Qo(1, z(g’/g), z2(g"/g), .)"

For [z[ sufficiently large and, say, less than or equal to 1/26 we have

1 1

Z r Z Si j=d+l

1

Si ri

(z-r,)(z-s,) +Ziz_s,l-o +a



128 JQEL FRIEDMAN

Similarly, we have

f(k) g(k)
f g il <...< ikd

1

(z- ri,) (z- ri) (z-s,,)...(z-,)

+ y k
i d+D,i d (z-s,,)...(z-s,)

in the last line we have used the fact that for sufficiently large z and n we have ]z16 < 1
(which follows from the second equation in the statement of the lemma). Thus

f(k) g(k)
Z --Zk

and so

(2.6)
Tg(z) T/(z) + 0 - + 6lz

We caution the reader that the big-O notation above is as the quantity in parenthesis
tends to zero and that the constants in the big-O notation depend on d and D. Now
fix a z sufficiently large and a small e so that Zo z, z_l, Z-z,’ defined as before
grow like a geometric series. Then, using (2.6), we see that for 6 sufficiently small we
have that yo z, Y-l, Y-z,"’ ", Y-. given by Tg(y_i)=Y_i+l grows like a geometric
series, as long as lY-"I < c/6 for c sufficiently small. Then we get

y_,,=z_,, H 1+o +61y_,l =z_. 1+O 6+aly_.l
i=0

Using the chain rule, we have

.-, ))(r)’(w)= I-I r’g(rig(w)) 1+0
,--o (w)l

assuming IT(w)l is sufficiently large and Iwlc/6. The mean value theorem then
implies

T{Br,(Z-n)} Br(z)

where

Hence, as before, we get that for sufficiently large n,

T{Brq,,dV2(Y.q"(d))}c Br(2)

as long as [,lq"(d)< c/3 for c sufficiently small.
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3. Successive normalizations. The difficulty in proving Theorem 1.1 is that AT,y is
not necessarily continuous when f has multiple roots. Let fl,f2, be a sequence in

2Pal, and r, rl, a sequence of respective roots for which

lim AT,f,,,r,,, inf AT,f,r
noo f Pd,f( r)=O

By passing to a subsequence we may assume that

fn(Z) (z-- r) e’ (z-- ro)%O
with

and

el+. .+e=d

r rj Vn, <j < ko.
By passing to a subsequence we can assume

r -> ri as n-->.

If rl is isolated, i.e., e 1, then it would be easy to show that for some 3 > 0 we have

Ba (r’) F,f,,
for all n sufficiently large, and thus

inf Ar,f, > 0
f Pd,f(r) =0

(the details of the argument appear as part of the proof later in this section). If not,
we can assume

r1--r2--. .--rk
and rj rl for j kl. We will now analyze more carefully the way in which r’,. ., r,
converge to

For z,..., z, C not all the same, we define the normalization o z,..., z
centered at zl to be the unique linear map

g(z)=az+b, aR, a>0, bC

such that

E Ig(z,)- g(z)l-- 1,
<j

and g(zl) 0.
By passing to a subsequence we can assume that
(1) the normalizations of r

as n - oo, and
(e)

(3.1)

as n - oo for some a 1/q, 1], where

ql=q ei
i=1

and where [/3J denotes the largest integer _-</3.
Clearly

2 Isi-sj[=l,
i<j
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and so we have

S1 Sk

and sj sl for j > k2, where k2 < kl. In other words, by normalizing we separate the
first k roots into smaller groups. By repeated normalization we will finally separate
r’ from all other r"s. Now we start with the deepest level of normalization and work
up, proving a density lower bound for each level.

Let the deepest level be g, and let

for l <-_i<-_ke

where h11 is the normalization of r,..., rke centered at rl. We have

E It,-tl =1,
<j

t 0, and ti # tl if > 1. Consider

f(z) (z- tl) el’’’ (z- tke)eke.
Since Ty(t)= tl, T(tl)l < 1, and is a repelling fixed point for T-., we have open
sets E, arbitrarily near , such that T{E}- tl as n-. Take a point z large enough
so that Lemma 2.2 holds, with BE(z) converging to tl uniformly under T for some
e > 0 (we can assure uniform convergence by assumption (3) of 1). We have

for m sufficiently large, where is as in Lemma 2.2 and

qe= q( i=l
r centered atLet h’ be the normalization of the -lth level, i.e., of rl, ke_l r l,

and let

We have that

h’(z)=allz+b’,

h,(z)=allz+b11.

an [-Iogq (an/a;,) -.9, a-"7"1gan
as n for some a 1/qe, 1] (at each level we normalize and pass to a subsequence
satisfying a condition analogous to that of (3.1) as well as the preceeding condition).
We want to prove that

(3.2)

for all sufficiently large n, where

Bo(Zo) FT-,h ;,y,,,

for some positive integer M; this will complete the first stage moving backwards
through the normalizations, each time finding a ball of fixed size with respect to the
current normalization in F r.y,, for sufficiently large n. To prove (3.2) first consider

h11f,(z) (z- h11(rT)) e, (z- h11(rr))%e.
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We claim that for n sufficiently large we have

Be(z) c Fr,h,,f,,

To see this, we note that for some small > 0 we have

]Z--tl] = rl:=lry(z)-tl] (1-/x)lz-tl]

by assumption (3) of 1, for some/x > 0, and that for some large N,

TT(B(z)}c Bn/2(tl)
by the uniform convergence. Estimating as in Lemma 2.2 (note that for any 6 we have
hnf, e o%],,o for n sufficiently large and D d- qe) we get that for n sufficiently large

Iz- t,I--< r/=>1 rh,,f,, (z) t,I <- (1 -/x/2)lz- t,l=z Fr,h,,f,,

and that
N {B(z)}= B,(tl)= FT,h,,f,,rh,,Z,,

using hn(r) t and that for any y B(z) we have y, T(y), T(y),...stays away
from the r"s with i> 1. Now we apply Lemma 2.2 to conclude that for m sufficiently
large we have

Thm,,f,,{Beq,/2(qr)} B(z) Fr,h,,f,,

so that

as long as Ifflq’ < c/6 for some c sufficiently small, where 1/6 is a lower bound on
h,(r’) for i> ke. Rescaling by a factor of a/a’ and translating appropriately we get

Beq"e’a,,/(2a,,,)(qran/ an) FT,h[,f,,

if

(3.3) I.lqTan/a’ < c min h’(r’/) < c’.
i> k

Taking

km(n) 10gqe
an

where M is sufficiently large to ensure (3.3) holds, we get that for sufficiently large n,

Beaq-eM/a(-aq- M) Fr,h[,f

the 4 in eaq-M/4 appearing to account for the fact that

an
--Tq
an

approaches, rather than equals, aq-M as n-e. Thus (3.2) is established.
Now that we have a statement of the form

Bo(Zo)
we proceed to get a statement of the form

B,(z,) c
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where h"n is the normalization at the {- 2th level, i.e., the normalization of rl, rke_
centered at z l. To do this, we consider

f(z) (z- tl) e, (z- tke_,)eke-,.
Using Lemma 2.1 we can find an arbitrarily large z with an e so that for some N

T{B/_(z)} Bo(Zo).
Now we repeat the argument of before to conclude

T,,,,,{B(z)}c Bo(Zo)
i.e.,

BE(z) F r,,f,,

(with uniform convergence) for n sufficiently large, and that

(again with uniform convergence) for some m’(n) and fixed e, z.
Repeating the above argument g-2 more times yields that for all n sufficiently

large we have

B(z) =
Hencefor some fixed e and z with z very near r.

lim AT,Z,,r’; > e> 0

and Theorem 1.1 is proven.
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A FAST PARALLEL HORNER ALGORITHM*

MICHAEL L. DOWLING

Abstract. The simple Horner algorithm solves the problem of evaluating a polynomial of degree d with
n indeterminates; in this paper it is shown that its implementation on a parallel computer with O(d)
processors can achieve a complexity of 2 [log2 (d + 1)] ([log2 n + 1). If, in addition, the evaluation of all
partial derivatives is also sought, then the full Hornet algorithm solves this problem on a parallel computer
with O(d ’’+) processors, achieving a parallel complexity of 2 [log2 (d + 1)] ([log2 (d + 1)]+ l-log2 hi+ 1).

Key words, parallel algorithms, algebraic complexity, parallel polynomial evaluation

AMS(MOS) subject classifications. 68C25, 68C05, 68B10

1. Introduction. This article applies a technique for parallelising sequential pro-
grams to the problem of polynomial evaluation. Given a program implementation of
the Horner algorithm, it is shown that sufficient information can be obtained from its
semantics for the program to be reconstructed with a high degree of parallelisability.
The reconstruction process has two phases, the first of which is to find optimal, parallel
hyperplanes in the loops. The possible values that the index variables can take for a
given loop constitute a subset A of integral n-space Nn, where n is the number of
nestings. An optimal hyperplane is an hyperplane in N containing no data dependen-
cies, the details of which are given below, and that has a minimal number of translates
that-contain at least one element of A. Once such an hyperplane H has been found,
the loop is reorganised so that each iteration of the outer most loop corresponds to
iterating over all those indices in A belonging to a translate of H. The result of this
phase is merely to reorder the sequence in which the iterations are performed, but so
that all the inner loops can be executed simultaneously, for each possible value of the
index variable in the outer loop. Since the same operations are being performed, the
result of the first phase has no effect on the numerical stability of the algorithm.
Moreover, the balance between the number of additions and multiplications enjoyed
by the Horner algorithm is preserved, thereby making the transformed code well suited
to execution on a vector computer with separate and independent functional units for
addition and multiplication.

The second phase is to represent the values of the various iterations of the code,
after the hyperplane transformation has been performed, as the solution of a lower
triagonal, linear system of equations. One then applies a variant of the standard,
numerical, cyclic reduction algorithm to solve this system in logarithmic time. Since
the technique used in this paper operates primarily on program code, it has much
wider applicability than merely to polynomial evaluation. With the Horner algorithm,
however, the linear system of equations that one obtains is known explicitly, so that
solutions can be computed very quickly.

Hitherto, the main problem with using vector and parallel computers was that the
Horner algorithm is difficult to parallelise. As a result, much work has been devoted
to finding completely new, parallel algorithms (cf. [2, p. 162]). Although such algorithms
generally achieve logarithmic complexity, it is not usually possible to implement them

* Received by the editors February 16, 1988; accepted for publication (in revised form) April 11, 1989.
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1041301@DBSTU .BITNET).
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efficiently on extant computer hardware. In contrast, the first phase ofthe parallelisation
process presented in this paper is very effective for vector computers, while further
benefit can also be obtained by implementing the second phase for vector computers
with several processors.

Since parallel algorithms are constructed from sequential ones, the objective of
this paper is similar to that in [6], where it was shown that, if a sequential algorithm
requires k operations, then there is a parallel version that requires O(log2 (d) log2 (k))
parallel steps. That result was improved by Valiant et al. in [14], where it was shown
that the same complexity can be achieved with the use of O((kd)) processors for
some constant a, as opposed to the O(kg2d) required by Hyafil. The most efficient
lower bound known is max {log2 d, log2 k} (cf. [2]).

This paper is organised as follows. Section 2 introduces the method of hyperplane
parallelisation for the univariate, full Horner algorithm. Here the degree of program
loop nesting is only two, so that hyperplanes are merely straight lines, thereby making
the basic technique readily comprehensible without introducing unnecessarily compli-
cated terminology. It is this section that also introduces the notion of flow dependence
developed by Banerjee in [1]. The idea of using hyperplanes to parallelise sequential
code originated from 11 ], and was developed further in [3]. Having whole hyperplanes
of iterations execute concurrently is essential to applying the cyclic reduction technique
introduced in 3, which begins with the univariate, simple Horner algorithm, where
the application of cyclic reduction is particularly direct. This section ends by applying
the same procedure to the full Horner algorithm after hyperplane parallelisation has
already been applied. The remaining two sections apply these techniques to the bivariate
case. Unfortunately, Horner evaluation for polynomials with n indeterminates requires
n nested D0-1oops; the idea of treating the bivariate case explicitly while only alluding
to the general case is therefore designed to simplify otherwise excessively complicated
notation. Proofs of the statements concerning arbitrary numbers of indeterminates can
readily be supplied using induction.

2. The hyperplane parallelisation. Recall that if p(x) ao+ alx +" + adX
d is a

polynomial function of the single variable x over the real number field, then the simple
Horner algorithm evaluates p at a point x according to the bracketing scheme:

p(x)=ao+(a,+. .+(ad_z+(ad_l+ad. x) x) .) x.

This can be expressed as a recurrence formula:

bd+ 0 (initialisation),

b aj + b+a x, j= d, ,0.

The full Horner algorithm also evaluates all the derivatives pi(x) at the point x, for
i= 0,. ., d, and amounts to a d-fold repetition of the simple Horner algorithm. The
resulting recurrence formulae are given below"

b-l=a forj=0,1,..., } (initialisation),d+’i =0 fori=-l,0,.., d

and

h(i)b) b)i-4-,+l.x wherej-d,d-1,...,i, andi-0,1,...,d.

Ultimately, i] bl i)= p)(x), where p(x) denotes the ith derivatives of the polynomial
p, and i= 0, 1,..., d; details can be found in [4]. Figure 1 depicts a possible FORTRAN
implementation, where it is presumed that the array B has already been initialised.
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DOi, I=0, D
DO i, J D-i, I,-i

B(I,J) B(I-I,J)+X,B(I,J+i)

FIG. 1. A nai’ve Horner code.

Remark. Since the dependencies amongst the data determine the parallelisability
of a code segment, it is necessary to include an explicit implementation here. If, for
example, the array B(r,J) above were to be coded as B(J), the code would still be
correct. However, the price for memory optimisation quite often is diminished perform-
ance as a parallel algorithm, as in the case in point (cf. [3]).The more redundancy
there is in the representation of the data in a parallel computer, the more ways there
are of addressing them without risk to the data’s integrity.

The loop in Fig. 1 is clearly not amenable to parallel execution as each iteration
requires the values of the previous iterations in order to proceed. It can, however, be
restructured for concurrent execution in 2(d + 1) parallel steps. To show this, the notion
of data dependence is required.

DEFINITION. Two statements, s and t, are said to be flow dependent if s executes
before t, and uses a value computed during the execution of s.

In [1], Banerjee introduced three notions of data dependence, one of which is
that of flow dependence. Since the other two do not occur in the above code, they
shall not be discussed here. The key interest in data dependencies results from a
theorem, due to Banerjee, where it is shown that if the statements of a block of code
were to be permuted in a manner respecting the order of execution of dependent
statements, then both the original and the permuted code will always produce the same
output if given the same input. In particular, where there are no data dependencies
present, the order of execution is immaterial, so that there is no obstacle to concurrent
execution. These data dependencies have been exploited to good practical advantage
(cf. Kuck et al. [10]), and also provide a means of treating parallelisation problems
theoretically (cf. [3]).

If one considers the graph whose nodes correspond to the various iterates of a
loop such as that shown in Fig. 1, and whose directed edges correspond to data
dependencies, then the graph corresponding to the Horner code has nodes labelled
by pairs (i, j), where 0, 1, , d and -<j _-< d, and where there are flow dependence
edges from nodes (i-l, j) to (i, j), and also from (i, j+ 1) to (i, j), whenever these
ordered pairs correspond to nodes. The graph corresponding to a polynomial of degree
five is illustrated in Fig. 2.

From this diagram, it is obvious why the implementation of the Horner code
above does not admit concurrent execution; the nested loop executes down each
column in turn, from left to right. As such, the loop iterates precisely along lines of
data dependencies, so that sequential execution is obligatory. By executing along the
diagonal lines, i-j =const., the obstruction to parallel execution vanishes. In this
simple, two-dimensional case, these lines constitute what more generally shall be called
optimal hyperlines. Transforming the loop so that these diagonal lines are parallel to
the j-axis, say via the unimodular transformation defined by setting k =j- and =j,
circumvents the problem. The resulting code is therefore parallelised. It can readily
be seen that this transformation is indeed optimal in the sense of minimising the
number of parallel steps. The resulting code is given in Fig. 3.

Note that now the inner D0-1oop has been completely freed of data dependencies
so that, for each value of the outer index K, the entire inner loop can be computed in
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FIG. 2. The dependence graph of the full Horner code.

two parallel steps. The first step performs the multiplication while the second uses
the result of the multiplication to compute the sum, and this for all possible values
of L, for the current value of K. Execution is therefore completed in 2(d + 1) parallel
steps, whereas at most d + 1 processing elements are required. This revised code is
exactly equivalent to the original, so that it even yields the same, numerically insig-
nificant digits as the na’l’ve version. It shall soon be seen that this basic idea can be
applied to multivariate polynomials to show that the full multivariate Horner algorithm
also can be programmed with merely linear parallel complexity.

DO :l, K D, O,-.
DO ., L K, D-.

B(L-K,L)=B(L-K-:t,L) + X*B(L-K, U+i)

FIG. 3. A revised Horner code.

3. A logarithmic reduction for univariate polynomials. The linear recurrence for-
mula for the simple, univariate Horner algorithm amounts to solving the bidiagonal
linear system of equations in Fig. 4.

The obvious solution is to observe that bd ad, and bi ai + x. b/l, for each < d.
This is the method used in both the code segments above, but, as before, each iteration
depends upon the value computed during the previous one, thereby precluding any
parallel processing. The solution is to apply the cyclic reduction algorithm for solving
tridiagonal systems in logarithmic time (cf. [8], 13] for details). For bidiagonal systems,
cyclic reduction uses each odd numbered row to eliminate the off-diagonal entry in
the even numbered row immediately below it. The result of this single parallel step is
indicated in Fig. 5.

x
b,i \ ad

ba | aa--x
b _21,..

!i,o!-x

FIG. 4. The simple Homer linear system.
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--X 0

--X 0

b

b

b

b

1o b
o

’d Iad la- Xad
Iad -3 nt- Xad-2

ad -5 +,.. Xad -4
FIG. 5. The first step of cyclic reduction.

Note that now each odd numbered variable can be computed in a single, parallel
step once the even numbered variables are known. These, on the other hand, are
decoupled from the odd numbered variables, and satisfy a bidiagonal system of
equations of half the original size. Repeating the process, one readily sees that
4[log2 (d + 1)] parallel steps are required for the process to terminate, the factor of
four corresponding to the simultaneous multiplications and subsequent subtractions,
and to the fact that [log2 (d + 1)] iterations are required to reduce the system of linear
equations to the trivial system containing only a single unknown. The same number
of iterations are required for the subsequent substitutions, so that the total number of
iterations is 2[1og2 (d + 1)], each requiring two parallel steps. Moreover, the steps
requiring the most processors are the first and the last, both ofwhich require [(d + )/2].

Remark. The application of cyclic reduction above is essentially the binary splitting
algorithm of Dorn (cf. [2, p. 132]).

One notes that, since powers of x accumulate in the off-diagonal entries as the
computation progresses, the cyclic reduction version of the Horner algorithm is only
stable for Ixl--< a. In contrast, the standard procedure will produce better results
whenever the coefficients decrease sufficiently rapidly as the degree increases. On the
other hand, where Ixl < 1, it is not always necessary to continue the recursion until the
bidiagonal system has been reduced to a scalar equation. Once x" has been reduced
to a value smaller than the rounding errors, the bidiagonal system may be regarded
as being diagonal, and so soluble in a single, parallel step.

The revised code for the full Horner algorithm executes the whole lines, j- k,
concurrently, while the input data required for each iteration are computed during the
(k- 1)st iteration. The result is essentially a bidiagonal system, but with vector rather
than scalar unknowns, so that cyclic reduction can now be applied. More precisely,
the revised code can be written in FORTRAN-SX style as follows:

D0 1, K D, 0,
1 B(*-K,*) B(*-(K+I),*) + X*B((*+’I)-(K+I), (*+1)),

where B(,-K,,) corresponds to the (d- k + 1)-dimensional vector B(L-K,L), and
where L=K,... ,D. (B(-’I,K) has the value a.) Let b() and a( denote the (d+
2) -dimensional vectors

b )={the0 value of B(L,K+L) ifif0d-k+l<=l<=d,=<l<-d-k’ and

alk) {ak if 0,
0 otherwise.

Here, k and denote the values of K and L, respectively. The code segment above
corresponds to the following vector recurrence formula

1I k)
Ol_ li(k+l)-" xlIk+l)-[-a(k), k d, d-l, O, l= 1, d-k,



138 MICHAEL L. DOWLING

which in turn can be written in matrix form as in Fig. 6 where I denotes the
(d + 1)(d + 1) identity matrix, and S is the shift operator, given by S(v)i =vi+l for
i< d + 1, and S(va+2)=0. Also, a(k) is the vector whose sole, nonzero component is
a(ok)--ak In particular, (i[bo)i=p()(x), the ith derivative of p.

I

(S+xI) I

-(S + xI)

-(S+xI)

FIG. 6. A bidiagonal system for the full algorithm.

Applying cyclic reduction blockwise, the number of blocks is halved during each
reduction, so that the reduction phase terminates after [log2 (d + 1) iterations. During
the kth reduction, the matrix -(S + XI)2< accumulates in the subdiagonal blocks. This
is the lower triagonal matrix whose rth lower subdiagonal contains the rth term in the
expansion of (x + 1)2k. All of these matrices can be computed in a single, parallel step
from the currently computed entries. The number of nonzero entries in the right-hand
side vector blocks doubles during each iteration so that during the kth iteration,
(S-3I-- x/)Zka(Zk-’)-+-a(2k) requires 2k additions, and hence k parallel steps using cyclic
doubling.

The second phase of the block, cyclic reduction algorithm entails the back substitu-
tion of-(S + xI)-2-’(a(2)) in the 2k-1 blocks; a process that again involves 2k additions,
and hence k parallel steps. Note that the matrix entries of-(S+ xI)- are known,
namely,

-(S+xI)o= i-j-1
x

0

r+.S--i if __-->j,

otherwise.

2(1+2+... + rlog (d + 1)])= rlog (d + 1)](rlog (d + 1)]+ 1)

where the factor of two results from considering both the phases required by cyclic
reduction. Note that the maximal number of processors is [(d + 1)/2J. During the first
step, [(d + 1)/2J additions and multiplications are performed, one for every second
block. Thereafter, the number of blocks is halved during each step, while the number
of additions doubles, until 2 r(d+)/:l additions are performed in a single block. (Identical
blocks do not have to be computed more than once.)

4. The simple, multivariate, Horner algorithm. Evaluation ofpolynomials in several
variables hinges on the fact that any element fE R[xl,’’., x,] can be regarded as an
element of R[xl, , x,_][x], the ring of all polynomials in the single indeterminate,
x,, with coefficients in the polynomial ring R[x,..., x,_]. The preceding discussion
of the univariate case therefore starts an inductive procedure for evaluating multivariate
polynomials. Moreover, this applies equally to the simple algorithm as to the full
Horner algorithm, which additionally computes all the partial derivatives.

The resulting parallel complexity for the full, univariate Horner Algorithm is, therefore,

This follows easily from the well-known formula,

a-1 a-2 b-1
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The simple bivariate Horner algorithm for evaluating the polynomial
d

p(x, y) . aoxiy j,
i+j =0

now corresponds to the linear recurrence formulae:

bo=O for i+j=d+l, ]
bo=ao+x.bi+lj fori=d-j,d-j-1,...,1,

bo b0 + x. bl + y" bo+l,

j=d,d-1,

the computational part of which can be naively implemented as in Fig. 7.

,0,

DO i, J D-i, O, -i
DO 2, I D-J-i, -i

B(I,J) A(I,J) + X*B(l+i,J)
B(0,J) B(0,J) + Y*B(0,J+i)

FIG. 7. The nai’ve, bivariate Horner code.

The data dependency graph for this nested loop has vertices in bijective correspon-
dence with the lower, triangular region {(i,j)[0-< i<=j<=d}, having flow dependencies
from left to right between every pair of adjacent, horizontal vertices, and from top to
bottom between every pair of adjacent, vertical vertices lying on the 0th vertical column.
A corresponding, parallelising procedure similar to that of the full, univariate Horner
can now be applied again. This time, one readily recognizes that the lines +j const.
are devoid of data dependencies, and provide optimal parallelisation in that no other
choice of lines has fewer parallel translates with nonvoid intersections with the vertex
set. A possible, parallelising transformation therefore corresponds to the unimodular
change of variables k +j, and =j. The transformed code now takes the form shown
in Fig. 8.

D0 i, K D, 0, -i
D02, L=0, K

B(K-L,L) A(K-L,L) + X,B(K-L+i,L)
B(0,K) B(0,K) + Y,B(0,K+I)

FIG. 8. The revised, bivariate Horner code.

Note that each iteration of K requires three successive steps: the simultaneous
multiplications, x. bk-+l,, for each value of l, concurrently with the multiplication of
y with bo+l the simultaneous additions of the products to the ak-.l; and finally, the
addition on the last line. In general, where there are n indeterminates, all the multiplica-
tions can still be performed simultaneously, while the n additions can be performed
in logarithmic time. The resultant complexity of the parallelised algorithm is therefore
(d + 1)([log2 n]+ 1]), using d + 1 processors.

The revised Horner code admits another interpretation as a linear recurrence
formula as follows. Define e(k) and a(k to be (d + 1)-dimensional vectors by setting

elk {alues B(L,K-L) if l<k.

otherwise,
and

ak) { aol,k_ if < k,
otherwise.
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Then, for k=d,d-1,...,0,

(k+)+alk) for /=0,1,... k-1el k) xel+

e(kk) k+ + xe(kk + + a (kkfk+l

and

which, in turn, can be represented as a block, tridiagonal system of linear equations,
with the (d + 1)x (d + 1) identity matrices I appearing along the main diagonal, the
diagonal matrices -xI along the first subdiagonal, and with -yEaa along the second
subdiagonaL Here, Eda denotes the matrix whose only nonzero element is a one in
the bottom right-hand corner.

Applying cyclic reduction blockwise, it is not difficult to see that each reduction
gives rise to a new system having half the number of blocks, but with -xkI and
accumulating along the first and second subdiagonals, respectively. The main difference
between the bivariate and univariate cases is that, for the bivariate case, the components
of the ek) are coupled with two others, so that an extra addition is required for the
back substitutions. More generally, evaluating a degree d polynomial in n indetermin-
ates entails an n fold coupling, and hence an additional [log2 n parallel steps during
the back substitution phase.

For polynomials with n indeterminates, the iterations corresponding to values of
the index variables lying on the parallel hyperplanes Hk- {(il,"" ", iq)[q= iq--k}
depend only upon those of the previous hyperplanes Hk+, so that cyclic reduction
applies and reaches completion after 2 [log2 (d + 1)] iterations. Each iteration requires
a single, parallel multiplication step, and n additions. The resulting complexity of the
logarithmically reduced algorithm is therefore 2 [log2 (d + 1)] ([log2 n + 1); at most
O(d n) processors are required.

5. The full, multivariate, Horner algorithm. Computing all the derivatives of the
bivariate polynomial p of the last section corresponds to implementing the following,
linear recurrence formulae"

b a;k

b(i) 0jk

for all 0 _-< j _-< k -< d,

forO<-_j<-k<-d+l, k=0,...,d and for i=-l,j+k=d+l,

and

It is not difficult to show that ilJlblj+)= oi+jp/OxiOy j. The significant section of such
recurrence formulae can be programmed as in Fig. 9.

DOI, I=O,D
DO 2, K O, D-I
DO 2, J D-K, I + , -2 B(I.J.K) B(I-I.J.K) + X,S(l.J+i.K)

DO . J I-i. O. -i
3 B(I.J.K) B(I-I.J.K) + X,B(I.J+I.K) + Y,B(I.J.K+I)

DO i. J O. I-i
DO i. K D-J, I-J,-i

i B(I.J.K) B(I-I.J.K) + Y,B(I.J.K+I)

FIG. 9. The nai’ve, full, bivariate Horner code.
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The vertices of the corresponding data dependence graph correspond to the region
in N bounded by the planes 0, j 0, k 0, j + k d, and j + k- 0. There are
flow dependencies between adjacent vertices from the back to the front, and from the
top to the bottom, and also from the right to the left. The optimal, parallelising
hyperplanes are the hyperplanes j + k r, for some constant 0 <= r <= d. In the general
case, the corresponding hyperplanes are given by the equation q= iq- i= const. The
hyperplane parallelisation procedure reduces the parallel complexity of the full, multi-
variate Horner algorithm to d + 1 iterations, each of which requires [log2 n parallel
additions (cf. Fig. 10 below).

DO i, R D, 0,-1
DO1, S=R, D
DOl, T=O, S

B(S-R,S-T,T) B(S-R-1,S-T,T) + X*B(S-R,S-T+i,T) + Y*B(S-R,S-T,T,T+I)

FIG. 10. The revised, full, bivariate Horner code.

To apply cyclic reduction once again, it is first necessary to represent the values
of B(R,S,T) appropriately as a vector, whereupon one observes that the resulting
linear difference equation is a block banded system, with n subdiagonal blocks, each
of which is a shift operator. Although the details are now unpleasant, it can now
nevertheless be seen that 2 [log2 (d + 1)]( [log2(d + 1)] + [log2 n + 1) parallel steps are
required, while using O(d "+1) processors.

6. Conclusion. The arguments presented here are evidence for the effectiveness
of considering the data themselves as the measure of parallelisability of an algorithm,
and the use of dependence graphs in algorithm analysis. The univariate and bivariate
linearised algorithms were both implemented on the Cray-XMP in Berlin, where, as
predicted, not only were the revised codes fully vectorised, but they also yielded the
same results to the point of replicating the numerically insignificant digits of the nai’ve
code.

The table below shows the timing results of the nai’ve and revised univariate
Horner codes. The former predictably has a quadratic execution time, whereas the
latter is almost linear. Any deviation from linearity is due to the fact that a vector
computer is not a genuine, parallel computer, since it still executes its instructions
strictly sequentially. Since the Cray compiler is not capable of vectorising more than
just the innermost loop, it is not sensible to time algorithms whose codes have a higher
nesting order, with two or more inner loops parallelised. For this reason, the full
logarithmic complexity of the multivariate evaluation algorithm could not be tested.
The times below are given in microseconds.

Degree: 16 32 48 64 80 96 112 128 144 160 178 192

Naive: 67 218 454 776 1183 1676 2253 2916 3665 4500 5419 6432
Revised: 24 49 78 110 149 187 229 273 323 376 431 488
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VERY SIMPLE METHODS FOR ALL PAIRS NETWORK FLOW ANALYSIS*

DAN GUSFIELD-

Abstract. A very simple algorithm for the classical problem of computing the maximum network flow
value between every pair of nodes in an undirected, capacitated n node graph is presented; as in the
well-known Gomory-Hu method, the method given here uses only n- maximum flow computations. Our
algorithm is implemented by adding only five simple lines of code to any program that produces a minimum

cut; a program to produce an equivalent flow tree, which is a compact representation of the flow values, is

obtained by adding only three simple lines of code to any program producing a minimum cut. A very simple
version of the Gomory-Hu cut tree method that finds one minimum cut for every pair of nodes is also
derived, and it is shown that the seemingly fundamental operation of that method, node contraction, is not

needed, nor must crossing cuts be avoided. As a result, this version ofthe Gomory-Hu method is implemented
by adding less than ten simple lines of code to any program that produces a minimum cut. The algorithms
in this paper demonstrate that a cut tree of graph G can be computed with n-1 calls to an oracle that
alone knows G, and that, when given two nodes s and t, returns any arbitrary minimum (s, t) cut and its value.

Key words, network flow, combinatorial optimization

AMS(MOS) subject classifications. 90B10, 90B35, 90C35, 68Q25, 05C99

1. Introduction. For an undirected graph G with n nodes, Gomory and Hu [GH]
showed that the flow values between each of the n(n-1)/2 pairs of nodes can be
computed by solving only n- 1 network flow problems on G, saving a factor of n over
the obvious method. Furthermore, they showed that the flow values can be represented
by a weighted tree T on n nodes, where for any pair of nodes (x, y), if e is the minimum
weight edge on the path from x to y in T, then the maximum flow value from x to y
in G is exactly the weight of e. Such a tree is called an equivalent flow tree. They also
showed a stronger result, that there exists an equivalent flow tree, where for every pair
of nodes (x, y), if e is as above, then the two components of T-e form a minimum
cut between x and y in G. Such a tree is called a GH cut tree, and it compactly
represents one minimum cut for each pair of nodes. Figure 1 shows a three node graph
G, a cut tree T of G, and an equivalent flow tree T’ of G. Note that T’ is not a cut
tree of G. The method given in [GH] produces a GH cut tree using only n 1 maximum
flow computations. This method is well known and is discussed in many texts and
surveys on graphs and network flows [HI l, [H2], [LP], [FF], [FR, FR], [LP], [HA],
[PG], [VL], as well as in technical papers which build on it JAMS], [AH], [E], [H3],

3 7
1 2 1 2 1 02

3 3 3

(a) () (c)

FIG. 1. Graph G, a cut tree T, and an equivalent flow tree T’.

* Received by the editors August 17, 1987; accepted for publication (in revised form) April 7, 1989.
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grant CCR-880374.
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[HR], [HS], [SC], [S], [T], [GrH]. For a basic discussion of graphs and network flows,
see [FF], [L], or [H2]. For a textbook discussion of the GH method, see [H2] or [FF].

Two cuts (X, Y) and U, V) are said to cross if all four set intersections, X (3 U,
X f’l V, Y f’l U, and Y (q V, are nonempty. The Gomory-Hu method, and methods based
on it, require that all the cuts computed be pairwise noncrossing. Most of the work
of the method, other than the work involved in the maximum flow computations, is
involved in explicitly maintaining the noncrossing condition, or is a consequence of
that condition. In particular, the operations of node contraction and identification of
which nodes to contract, are consequences of the need to maintain noncrossing cuts.
In all discussions of the GH method that we know of, both algorithmic and mathemati-
cal, the existence of noncrossing cuts has been fundamental to both the logic of cut
trees, and to the algorithms to find and use them.

The GH method is fairly involved and nontrivial to program. A different method
for computing all the flow values, and a cut tree, can be obtained by modifying a
method of Schnorr [SC] for a related problem on directed graphs. This method requires
O(n log n) maximum flow computations, but it can be implemented to have an
amortized total running time of O(n4). However, the implementation is more complex
than the GH method, and to obtain the faster time bound, or to build cut trees, the
method also needs to maintain noncrossing (directed) cuts.

As for equivalent flow trees, in most of the published literature a full GH cut tree
is used even when only the flow values are required. However, after the results in this
paper were first obtained [GU1], we learned of a related method by Granot and Hassin
[GrH] which can easily be modified to produce an equivalent flow tree, but not a cut
tree. That method solves only n-1 maximum flow problems, and does not need to
maintain noncrossing cuts. Hence, that is the first paper we know of that indicated
that crossing cuts can be used in computing equivalent flow trees.

in this paper we give simple, efficient methods which show that crossing cuts can
be used in producing GH cut trees as well as equivalent flow trees. We first give an
extremely simple, efficient algorithm for producing an equivalent flow tree that is not
necessarily a cut tree; as in the GH method, only n- 1 maximum flows are computed
by the method. The simplicity of the method comes from the fact that the method does
not need to avoid crossing cuts, and so does not need to contract nodes. We implement
the method by adding only three simple lines of code to any maximum flow program
that produces a minimum cut; the program can be extended to explicitly output the
n(n-1)/2 flow values, by adding only two additional lines of code. We next show
that with a modification of the Gomory-Hu cut tree method, noncrossing cuts need
not be maintained, and so the fundamental operation of node contraction is not needed,
and the intermediate cut trees need not be explicitly represented or searched. Hence,
the major programming and data structures details needed for the original GH method
can be avoided. As a result, any maximum flow program producing a minimum cut
can be converted to one that efficiently computes a GH cut tree, with the addition of
under ten simple lines of code. More generally, we show that noncrossing cuts, which
are central to all previous expositions on cut trees, are never explicitly needed in
efficient algorithms for finding either cut trees or equivalent flow trees.

2. Equivalent flow trees and all pairs maximum flow.

ALGORITHM EQ. Input to the algorithm is an undirected capacitated graph G;
output is an equivalent flow tree T’. The algorithm assumes the ability to find a
minimum cut between two specified nodes in G.
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1. Create a (star) tree T’ on n nodes, with node at the center and nodes 2
through n at the leaves.

2. For s from 2 to n do steps 3 and 4.
3. Compute a minimum cut (X, Y) in G between (leaf) node s and its (unique)

neighbor in T’. Label the edge (s, t) in T’ with the capacity of (X, Y).
4. For every node larger than s, if is a neighbor of t, and is on the s side of

(X, Y), then modify T’ by disconnecting from t, and connecting to s. Note
that each node larger than s remains a leaf in T’.

It is easy to see that at every iteration, node s and all nodes larger than s are
leaves in T’, so each chosen s has a unique neighbor, as expected by the algorithm.
Figure 2 gives an example of the algorithm. Figure 2(a) shows the graph G, and the
five cuts used by the algorithm; the capacity on each edge in G is one. Figure 2(b)
shows tree T’ before any cuts are computed; Figure 2(c) shows the tree after the first
cut (1, 2) is computed; Figure 2(d) shows the final equivalent flow tree for G. Note
that in this example the (5, 1) and the (3, 1) cuts each cross the (1, 2) cut. Also note
that the equivalent flow tree T’ of Fig. would be obtained from running Algorithm
EQ on the graph G of Fig. 1, illustrating the fact that Algorithm EQ does not always
produce a cut tree.

G" 1

(1,2) cut

(a

-(5,1) and (6,2) cuts

2

(3,1) cut

/ (4,2) cut

1

(b)

2 3 2 3

(c)

2 2 3

(d)

FIG. 2. Graph G, and the creation of equivalent flow tree T’ for G.
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To show the extreme simplicity ofthis method, we present the following "program"
which implements Algorithm EQ. In the program, p is an n length vector initialized
to 1; at every iteration, every node larger than or equal to s is a leaf, and p[ i] indicates
its unique neighbor. The program takes in graph G and outputs a set of weighted
edges which form an equivalent flow tree T’ of G.

PROGRAM EQ.
for s:= to n do
begin
Compute a minimum cut between nodes s and t:-p[s] in G"
let X be the set of nodes on the s side of the cut.
Output the edge (s, t) and the maximum s, t flow value f(s, t).
for i:= s to n do
if (i is in X and p[i]=t) then p[i]:=s;

end;

To produce all the n(n-1)/2 flow values, let F be an n-by-n array, initialized to
infinity, holding the flow values. Then insert the following lines before the "end;" above.

F[s, t]::F[t, s]:=f(s, t);
for i:=I to s-1 do
if (i (> t) then F[s, i]:=F[i, s]:=min(f(s, t), F[t, i]);

In addition to the simplicity of the algorithm, it is noteworthy that the only
interaction with graph G occurs inside the minimum cut routine. Hence, the algorithm
can be thought of as n- 1 calls to an oracle which alone knows the structure of G.
Furthermore, for any given pair (s, t), if there is more than one minimum s-t cut, then
the oracle (or adversary) is free to choose one arbitrarily. Thus, an equivalent flow
tree for an unknown graph can be inferred from n- 1 cut queries. We shall see that
this is true for the cut tree as well.

We will present below a short, direct proof of the correctness of Algorithm EQ.
A different, indirect, proof based on comparing the behavior of Algorithm EQ with
the GH method is given in [GU1]. Before presenting the direct proof, we state some
needed results initially shown in [GH].

LEMMA 1 [GH]. Let (X, Y) be a minimum cut in G separating nodes x e X and
y Y. Let u and v be two nodes on the X side of the cut, and let (U, V) be an arbitrary
minimum (u, v) cut in G. Ify U, then (U’, V’) (U Y, Vf3X) is a minimum (u, v)
cut, else (when y V) (U’, V’)= (U 0 X, V U Y) is a minimum u, v) cut.

Figure 3 shows the two possibilities described by Lemma 1; cuts (X, Y) and U, V)
are drawn with straight solid lines, and cut (U’, V’) is drawn with a right angle, and
marked by hatch marks. Note that in Lemma 1, it does not matter whether x is in U
or in V; in Fig. 3 we have drawn x to be in U.

The importance of Lemma 1 is that it proves there always exists a minimum (u, v)
cut (U’, V’) in G such that Y falls entirely on the u side or entirely on the v side of
(U’, V’). Hence (U’, V’) does not cross (X, Y). The existence of a noncrossing cut
(U’, V’) is all that is needed in the correctness proof of the original GH method, but
in this paper we use the following immediate, but key, corollary.

The original lemma in [GH] is somewhat weaker, but the statement given here is explicitly stated and
proved in the body of the proof of the original version. For the easiest such proof of Lemma 1, see [FF, p.
179] or [H2, pp. 66-68].
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X Y

U

X

FIG. 3. The two cases of Lemma 1.

Y

U

COROLLARY 1. Let (X, Y), (U, V), and (U’, V’) be as in Lemma 1. Then the
minimum (u, v) cut (U’, V’) does not cross (X, Y), and it splits X exactly the same way
that U, V) does.

The following two facts are shown in [GH] (also in [FF] and [H2]) and are
simple to prove.

LEMMA 2 [GH]. Letf(x, y) denote the maximumflow value between nodes x and y.
If {v, v2, ", Vk} is a set ofnodes in G, thenf(v, Vk)--> min [f(vi, vi+): i= 1 to k- 1].

COROLLARY 2 [GH]. If i, j, and k are three arbitrary nodes in G, then the minimum
off(i, j), f(i, k), and f(j, k) is not unique.

2.1. Correctness of Algorithm EQ. Consider each edge (s, t) created in step 3 of
the algorithm to be directed from s to t; then all edges are directed from larger node
label to smaller node label, and hence T’ is a directed tree where every directed path
leads to node 1. For any path P (directed or not), let min (P) be the minimum weight
of the edges on P.

LEMMA 3. Suppose node reaches node j by a directed path P[i,j] in the final T’,
and suppose that (k, j) is a directed edge into j, where k is smaller (has smaller label)
than any node on P[ i, j] except j. Then node was a neighbor ofj in T’ at the time when
the (k, j) cut C was computed by Algorithm EQ. Furthermore, is on the k side of C if
and only if k is on the directed path P[ i, j] in the final T’.

Proof At the start of the algorithm, node is a neighbor of node only. Then
until iteration i-1, when is node s in step 2 of the algorithm, node has exactly
one neighbor at any time, and the unique neighbor of can change from v to w only
when v is and w is s in step 2. Hence every node on P[i, 1] is a neighbor of at
some point before iteration i-1, and no node not on P[i, 1] is. Then since j < k,
j must be i’s neighbor before the (j, k) cut C was computed. Furthermore, since k is
smaller than every node on P[i,j] except j, j must be the neighbor of when C is
computed. Now if k is on P[i,j], then surely is on the k side of C, and if k is not,
then cannot be on the k side. [3

THEOREM 1. Given input graph G, Algorithm EQ correctly computes an equivalent
flow tree T’ for G.

Proof First, note that if (x, y) is an edge in T’, then Algorithm EQ computed an
(x, y) minimum cut, and its value is written on edge (x, y). Hence the tree is correct
for every pair of neighboring nodes in T’. Now we show that if (x, y) is an arbitrary
pair of nodes not connected by an edge in T’, and P[x, y] {x Vl, vk y} is the
path (ignoring edge directions) in T’ from x to y, then f(x, y)= min [f(vi, vi+): i= 1
to k-l]. Given Lemma 2, we need only to show that f(x,y)<=min[f(vi, v+): i= 1
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to k- 1]. Suppose not, and let (x, y) be the pair with shortest path P[x, y] among all
pairs where f(x, y) > min (P[x, y]).

Case 1. Path P[x, y] is a directed path from x to y (the case when it is directed
from y to x is identical). Let v x be the neighbor of y on P[x, y] (if x v, the edge
(x, y) is in T’). By the minimality of P[x, y], f(x, v) min (P[x, v]), and since f(x, y)
is assumed to be greater than min (P[x, y]), Corollary 2 implies that min (P[x, y])=
f(x, v)-f(v, y). But by Lemma 3, the cut between nodes y and v found by Algorithm
EQ separates x and y, so f(x, y)<-_f(v, y)=min (P[x, y]), a contradiction.

Case 2. Path P[x, y] consists of two directed subpaths Ply, z] and P[x, z], where
P[y, z] is directed from y to z and P[x, z] is directed from x to z. Node z can be
thought of as the least common ancestor of x and y in T’ when node 1 is the root.
Let x be the neighbor of z on P[x, z] and let y be the neighbor of z on P[y, z].
Assume that x < y, so in the running of Algorithm EQ the (x, z) cut, C(x, z), was
computed before the (y, z) cut.

From Case we know that f(x, z)= min (P[x, z]) and f(y, z)= min (Ply, z]), so
either f(x, z) or f(y, z) equals min (P[x, y]). Hence by the assumption that f(x, y) >
min (P[x, y]), Corollary 2 says that f(x, z) =f(y, z) min (P[x, y]), and so there is an
edge of weight min (P[x, y]) on path P[x, z]. Let e (u, v) be the edge closest to z
on P[x, z] with weight min (P[x, y]), let C(u, v) be the (u, v) cut of that weight found
by EQ, and let v be closer to z on P[x, z] than u is. Then by Lemma 3, x, u, and v fall
on the x side of the cut C(x, z) computed by the Algorithm EQ, and y falls on the
z side of C(x, z). By Lemma 3 again, x falls on the u side of C(u, v), and from the
assumption that f(x, y) > min (P[x, y]), y must also fall on the u side. Figure 4 shows
the general situation. In particular, the positions of nodes u, v, x, and y are each
determined down to one of the four quadrants defined by the intersections of C(x, z)
and C(u, v); the positions of nodes x and z are each determined only to two quadrants.

C(x,z)

side z side

FIG. 4. Case 2 of the proof of Theorem 1.

Now there are two cases for the position of z. In either case, Lemma can be
applied (recall that in Lemma the only assumption on the position of x is that it is
in X), yielding a minimum (u, v) cut C* that either separates x and y, or that separates
z and v. In particular, if z U, then the quadrant containing v defines a minimum
(u, v) cut, and this cut also separates v and z; if z V, then the quadrant containing
u defines a minimum (u, v) cut that also separates x from y. But, the minimum (u, v)
cut has capacity min (P[x, y]), so if C* separates x and y, then f(x, y)_-<min (P[x, y]),
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and so f(x,y)=min(P[x,y]) as claimed. If C* separates v and z, then f(v,z) <-

min(P[x,y]). But P[v,z] is a directed path in T’, so from Case 1, f(v,z)=
min (P[v, z]) and min (P[v, z]) > min (P[x, y]) by the selection of v, so f(v, z) >
min (P[x, y]). This gives a contradiction, and we conclude that f(x, y)_-<min (P[x, y]),
so f(x, y)= min (P[x, y]), and the correctness of Algorithm EQ is proved.

3. A simple algorithm for the GH cut tree. In this section we show how to modify
the GH method to avoid node contraction and the maintenance of noncrossing cuts.
The result is a very simple algorithm to find a GH cut tree. The key idea is to show
that although the original GH method must find in each step a minimum (u, v) cut
that does not cross any previously used cuts, a modification of the method permits
any minimum (u, v) cut to be used. The modified method will be proved correct by
showing how its execution simulates a possible execution of the original GH algorithm.

DEFINITION. For a subset Ni ofnodes of G, the contraction of Ni is the replacement
of the nodes of Ni by a single node ci, and for each node v G-Ni, the replacement
of the edges from v to Ni with a single edge from v to ci; the capacity of edge (v, ci)
is the sum of the capacities of the removed edges incident with v.

3.1. The Gomory-Hu method.

Input: An n node capacitated undirected graph G..
Output: A GH cut tree T for G.
1. Set T to be a single "supernode" containing every node of G. Then iterate the

following step until every supernode contains only one node of G.
2. Pick a supernode S containing more than one node of G, and pick two nodes

u and v in S. Find all the connected components of T-S and let Ni be the
set of nodes of G contained in the supernodes of the ith connected component
of T-S. Successively contract the nodes in each set Ni in G, and let G(S) be
the resulting graph; note that the nodes in S are not contracted. Compute the
maximum flow from u to v in G(S). Let f(u, v) be the value of the (u, v) flow,
and let C(u, v) be a minumum cut between u and v in G(S). Let Su be the
supernode containing the nodes of G in S which fall on the u side of C(u, v),
and let S. be the supernode containing the remaining nodes of S. Modify T
by replacing supernode S with Su and S., connected by an edge of weight
f(u, v). Any edge (S, S’) incident with S in T is now moved to be incident with
Su if S’ is in a contracted node of G(S) on the u side of C (u, v), and is moved
to be incident with S. if S’ is in a contracted node of G(S) on the v side of
C(u, v); note that the weights of all the edges remain unchanged, including
those edges which were moved.

The existence of noncrossing cuts, stated earlier in Lemma 1, provides justification
for the contraction operation in the GH method. That is, in order to find a minimum
(u, v) cut in G, it is permissible to contract Y; a minimum (u, v) cut in the graph with
Y contracted defines a minimum (u, v) cut in G, and of course, the two cuts have the
same capacity. Applied iteratively from the leaves of T to S, the lemma can be used
to show that a minimum (u, v) cut (for u and v in S) in the contracted graph G(S),
has the same capacity as a minimum (u, v) cut in G. Such a cut will of course not
cross any previously found cuts, and is desired in the GH method because it is then
easy to see how to use that cut to split S and how to reconnect the supernode neighbors
of S to S, and S.

3.2. Crossing cuts can be used to split a supernode. Consider the basic step in the
GH method of dividing a supernode S by computing a minimum cut C(u, v) between
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u and v in the contracted graph G(S). This step does two things" it decides how to
split S into two new supernodes Su and Sv, and it decides how to reconnect the
neighbors of S to the supernodes Su and Sv. In this section we will show how the GH
method can use crossing cuts in carrying out the first decision.

DEFINITION. A pair of nodes (x, y) is called a cut pair for an edge e of an
intermediate cut tree T if the nodes of G in the two connected components of T-e
form a minimum (x, y) cut in G.

For the following lemma, let T be an intermediate tree produced by the GH
algorithm, with e an edge in T between two supernodes S and S’. Let (x, y) be a cut
pair for edge e, with x S and y S’; let u and v be any nodes in S, and let C(u, v)
be a minimum (u, v) cut in the contracted graph G(S) defined from T-S. Let S, and
S be the new supernodes created from S, and let T be the updated intermediate tree
given by the GH algorithm.

LEMMA 4 [GH].2 The pair (u, v) is a cut pair for the edge between S, and S, in
T. Assume x U (the case when x V is symmetric). If (S’, S,) is an edge in T, then
(x, y) is a cut pair for it, and if (S’, Sv) is an edge in T, then (v, y) is a cut pair for it,
in T.

Initially we will need only the following simpler version of Lemma 4, which
follows easily by induction on the number of iterations of the GH algorithm.

COROLLARY 3 [GH]. Let T be an intermediate tree in the computation of a GH
cut tree, and let e be an edge in T between two supernodes S and S’. Then there is a pair
of nodes (x, y) with x S and y S’ such that (x, y) is a cut pair for e.

Lemma 4 and its corollary are not as simple as they might at first seem, since x
and y may not be the nodes used in the flow that created e, and the nodes that were
used might not be in the current supernodes S or S’ in T.

We are now ready for the major theorem of this section.
THEOREM 2. Let u and v be two nodes of G in supernode S of an intermediate

GH tree T. If (U, V) is any minimum (u, v) cut in G (with u U and v V), then there
exists a minimum (u, v) cut (C,, C) in the contracted graph G(S) (with u Cu and
v C) such that S f3 U S (3 C, and S (3 V S (3 Cv, and such that the capacities of the
two cuts are the same.

Hence to determine how S could be split in a step of the GH method, we need
not compute a cut in the contracted graph G(S), but rather use the split of S created
by a minimum cut splitting S in the original graph G.

Proof of Theorem 2. By Corollary 3, for each from to k, C, (G-N,, N,) is
a minimum cut separating some node in G-N, from some node in N,, since S_
(G- N,).

We now apply Corollary 1 to cuts C1 and (U, V). Corollary 1 implies that there
is a minimum (u, v) cut (U, V) with the same capacity as (U, V), such that N

__
U

or N1
_
V, and such that (G N) f3 U (G N) f U. Since S (G N), it follows

that SfU-SU1 (and Sf3V-SV1).
Now consider the cut C2=(G -N, N2). Since N and N2 are disjoint, and

S
_
G- N2, it follows that S CI N

_
G- N. Hence, by Corollary there is a minimum

(u, v) cut (U, V2) derived from cuts C2 and (U, V1) such that
1. (U2, V) has the same capacity as (U, V) and hence as (U, V).
2. N2 Uz or N2_ V2.

As with Lemma 1, the statement and proof of Lemma 4 is found in the body of a proof of a different
proposition in [GH], [FF], and [H2]. The simplest such proof of Lemma 4 appears in [FF, p. 182] or [H2,
pp. 71-73].
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3. (G- N2) U2 (G- N2) f’) U1, so N c2 U2 or N1
_

V2 and N1
_

U2 if and only
if N__. U1.

4. Sf3 U2=S UI=Sf) U (and Sf’) V2=Sf) V).
Continuing in this way, using the fact that Ni is disjoint from S and from each

N:j-<_ i-1, we can inductively apply Lemma 1 to cuts Ci and (Ui_, V_I) (the cut
obtained in iteration i- 1) to obtain a minimum (u, v) cut (Ui, V) with the properties
that

1. (Ui, V) has the same capacity as (U, V).
2. S U=Sf U (and Sf V=S V).
3. (G-Ni)f) Ui=(G-N)f") U_I, so for all j_-< i, N___ U or N___ V/and N.c_ Ui

if and only if N U.
We conclude then that S Uk S U (and $ Vk S V), and that for each

< k, Ni
_

Uk or Ni
_

Vk, and (Uk, Vk) has the same capacity as (U, V). Now since
each N is strictly on one side or the other of (Uk, Vk), it clearly defines a (u, v) cut
(Cu, Cv) in G(S) of the same capacity, and the theorem is proved. [3

COROLLARY 4. For all j, N
_
Uk if and only if N

_
U..

This corollary, and the last part of line labeled 3 above are not needed in the
proof of Theorem 2, but will be needed later.

3.3. Reconnection despite crossing cuts. Theorem 2 shows how to determine, using
the original G instead of a contracted graph, a split of S that the GH algorithm could
have found. However, a minimum (u, v) cut C in G might split a set Ni between the
u and v sides of C (i.e., might cross a previous cut); the GH algorithm has no rules
to deal with such cuts. In this section we will see how to use crossing cuts to reconnect
the neighbors of S to Su and Sv.

3.3.1. Modifying the GH cut tree method. We first modify the GH method so that
in every intermediate tree, every supernode S contains exactly one node called the
representative of S, denoted r(S). We start by arbitrarily declaring some node to be
the representative of the first supernode of the GH method (the set of all nodes of
G). We then impose the rule that when any supernode S is to be split, the flow
computed must be between r(S) and some other node v of S. After S is split into two
supernodes Sr(S) and S, r(S) is the representative of St(s), and v becomes the
representative of S. It is then easy to see inductively that each supernode has exactly
one representative. With this modification, successive application of Lemma 4 yields
Lemma 5.

LEMMA 5. Let The an intermediate cut tree with S and S’ any two adjacent supernodes
in T; let Ni be the connected component of T-S containing S’. Then G- Ni, Ni) is a
minimum cut in G separating r(S) and r(S’). That is, (r(S), r(S’)) is a cut pair for the
edge in T between S and S’.

For the statement of the following theorem, let S and N for j -< k be as in Theorem
2, and for j -< k, let yj N, xj G N) be such that G N, N) i.s a minimum (xj, y./)
cut in G (by Corollary 3, such an (x, yj) exists). Also, for u and v in S, let (U, V) be
any minimum (u, v) cut in G, and let (Uk, Vk) be the minimum (u; v) cut obtained
from (U, V) as in the proof of Theorem 2.

THEOREM 3. For a fixed j, if xj u, then N Uk if and only ify U.
Proof Corollary 4 says that /V Uk if and only if N_ U. So all that must be

proved is that N_ U if and only if y 6 U, assuming that u x. Now if u x, then
xj U_I (since S 0 U S Yl U_I), so Lemma 1 says that yj U if and only if y U_1.
But y N

_
G N_), and G N_I) fq U_I (G N_) fq U_2, so y U_I if and

only if yj U_. Now y (G-Np) for all p <j, so we can induct as above to get
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(G-Np)f"I Up=(G-Np)f3 Up_l,soyj Up ifand only ify Up_l for allp <j. Hence,
assuming that x u, it follows that y Uk if and only if y U, and otherwise,
y Vk.

Theorem 3 is the key to reconnecting neighbors of S after S is split by a crossing cut.
COROLLARY 5. For S a sup.ernode in an intermediate tree Tproduced by the modified

GH method, and for v r(S), let (U, V) be any minimum (r(S), v) cut in G. The
following rule correctly decides whether a neighbor of S, S’, in T should be connected to

St(s) or to S: If r(S’) is on the r(S) side of (U, V), then connect S’ to Sr(S), else to S.
Proof. By Lemma 5, when the modified GH method is used, r(S) satisfies the

conditions required of x, namely, that r(S) G N the cut (N, G N) is a minimum
(r(S), r(S)) cut, where S is the supernode neighbor of S in N. Furthermore, in the
modified GH method, u =x r(S) for every j. Hence Theorem 3 implies that there
exists a minimum (u, v) cut (Uk, Vk) in G(S) such that for every j, N c_ Uk if and
only if r(S) U. Such a cut Uk, Vk) could have been computed by the GH algorithm,
and so the corollary follows.

3.3.2. The methotl in brief. Theorem 2 and Corollary 5 form the basis of our simple
version of the GH method. Initially, node 1 is the representative of the supernode
consisting, of all the nodes. When splitting a supernode S, compute an arbitrary
minimum cut in G between r(S) and any other node v in S. The nodes of S which
fall on the v side of the cut form a new supernode S with representative v, and the
other nodes in S remain in Sr(s) with representative r(S); if S’ is a supernode neighbor
of S in T before the split, and r(S’) falls on the v side of the cut, then replace the
(S, S’) edge with edge (S, S’).

3.4. A simple complete cut tree lrogram. To demonstrate the simplicity of our
version of the GH method, we give the following program to compute a GH cut tree
of input graph G. Theorem 2 and Corollary 5 allow great flexibility in the order in
which supernodes are split, but for simplicity, the program below chooses s nodes in
order from 2 to n. As in program EQ, p is an n length vector initialized to 1. At iteration
s, p[s] is the representative of the supernode that s is in. The edges of T are the final
pairs (i,p[i]) for from 2 to n, and edge (i,p[i]) has value fl(i). If each edge is
considered a directed edge from to p[i], then T forms a directed tree where every
node leads to node 1.

CUT TREE PROGRAM MGH.

for s:=2 to n do
begin
Compute a minimum cut between nodes
s and t:-p[sl in G; let X be the set of nodes on the s side
of the cut. Output the maximum s, t flow value f(s, t).
f[sl:=f(s, t);
for i:=l to n do
if (i(>s and i is in X and p[il=t) then p[i]:=s;

if (p[t] is in X) then
begin
p[sl :=pit];
p[t]:=s;
fl[s] :=flit];
fl[tl:=f(s, t);
end;

end;
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We use the convention that the name of a supernode is given by the name of its
representative, and note that after iteration i- 1, nodes 1 through are representatives
of supernodes, and no node j>i is a representative node in supernode p[j]; so for
every node j > s, p[ v] indicates the representative of the supernode that v is in. Every
supernode other than 1 points (with the p vector) to exactly one other supernode, and
hence if x is a supernode other than 1, then its neighbors consist of those supernodes
pointing to x, plus p[x], the supernode to which x points. The neighbors of supernode
1 are just those supernodes with p value 1, i.e., those supernodes that point to 1. During
the ith iteration, node + 1 becomes the representative of a supernode labeled i+ 1,
and all representatives which point to p[i+ 1] and which fall on the i+ 1 side of the
(i+ 1, p[i+ 1]) cut are now made to point to i+ 1. Since the intermediate trees are
being kept in an n-length vector, not an adjacency list, the only subtle part of the
program occurs after a flow from s i+ to p[i + 1] if points to a supernode
neighbor x of t, and x falls on the s side of the (s, t) cut. In that case we make point
to s, and s point to x; otherwise, s remains pointing to t.

To explicitly accumulate the maximum flow values between all the pairs, we simply
add the same two lines of code shown after algorithm EQ; the lines are added just
before the final end. This is correct, because the set of (s, t) flow pairs generated in
MGH is clearly a set that could have been generated in EQ. This accumulation of flow
values can also be shown to be correct strictly in the context of the GH method, but
was not obvious and was observed only after the discovery of algorithm EQ. Without
this observation, a simple O(n2) method to explicitly calculate the n(n-1)/2 flow
values is to do depth first search on the final cut tree, so that when backing up from
a node x to y, the flow fl(y, z) from y to a descendent z of x can also be computed
as the minimum offl(x, y) and fl(x, z). While this depth first search is not difficult, it
requires a change in how T is represented, and the above two-line approach is certainly
much simpler.

Note that, as in Algorithm EQ, the only interaction with G is in the minimum
cut routine, so the tree could be inferred from n- 1 calls to an oracle which returns
a minimum cut and its value.

Relation with Algorithm EQ. The modified GH method can be described in
terms of Algorithm EQ. To compute the GH tree, change step 4 of Algorithm EQ
to read:

4. For every node other than s, if is a neighbor of t, and is on the s side of
(X, Y), then modify T’ by disconnecting from t, and connecting to s, labeling
the new i, s) edge with the label from the old i, t) edge.

Phrases in italics show the differences between this step 4 and the step 4 of
Algorithm EQ.

4. Additional comments and extensions. (1) It is easy to underestimate the amount
of programming detail needed by the original GH method. In fact, the ideas leading
to this paper partly began after a failed attempt to quickly implement the method. The
implementation was made more difficult because we used existing code for finding the
maximum flow, but we did not understand the code well, and we needed to modify
it to implement graph contraction and expansion. With the modified GH method of
this paper, we totally avoid these difficulties, since we never touch any of the existing
code, and never touch the graph after it is input.

In addition to the obvious work involved in contraction, an implementation of
the original GH method must do a fair amount of work implied by the need to do
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contraction. It must maintain T in a way so that the connected components can be
efficiently found, and so that the nodes of G contained in particular supernodes of T
can be identified, both to split a supernode, and to properly contract the nodes of G
contained in a component of T-S. It must also maintain information about the
connected components of T-S, or it must reexpand components after a flow, so that
it can determine which supernodes fall on the u side and which on the v side of the
cut C(u, v)in G(S).

(2) The original GH method might run faster in practice than the modified method
(although the worst case asymptotic time is the same), since the contracted graphs are
smaller than the original graph. However, it is an empirical question whether the
speedup in flow computation compensates for the work needed to implement contrac-
tion and all the associated work implied by contraction; contraction should be seen
as a heuristic that might accelerate the performance of the program.

(3) Some of the ideas in this paper have been extended and used to study the
structure of minimum cuts in three other settings. A GH cut tree represents at least
one minimum cut for each pair of nodes in an undirected edge-weighted graph. In
[GN1] we generalize the GH cut tree, showing how to efficiently and compactly
represent all minimum cuts between each pair of nodes. Interestingly, our method is
based on equivalent flow trees, rather than on cut trees, further extending the importance
of efficient computation of equivalent flow trees. This work also connects to and builds
on recent work by Matula [M] and by Mansour and Schieber [MS] on computing
connectivity quickly. In related work [GN2] we show how to construct with O(n)
maximum flow computations a cut tree for weighted node cuts, rather than edge cuts.
We also show how to compactly represent weighted edge cuts in a directed graph.

(4) Very recently, Cheng and Hu [CH] have further reduced the importance of
noncrossing cuts in equivalent flow trees. In Algorithm EQ and in the algorithm from
[GrH], crossing cuts are allowed, but the proofs of correctness still use the fact that
noncrossing cuts exist. Cheng and Hu give a different method which uses only n- 1
maximum flow computations, and can be used to produce equivalent flow trees, but
not cut trees. However, its proof of correctness does not even depend on the existence
of noncrossing cuts. Because of that, their method can be used to represent minimum
cut values where the value of a cut is given by an arbitrary function, i.e., is not the
sum of the edge capacities crossing the cut. It is not difficult then to use this method
to improve the problem considered in Schnorr [SC]. For a pair of nodes (i,j) define
(i,j) as the minimum of the flow in a directed graph from to j, or fromj to i. These
/3 values are needed in several problems [GN2], [GU]. Schnorr shows, using a very
clever idea, that all the pairwise/3 values can be computed with O(n log n) maximum
flow computations on the original graph. He then modifies that method to show that,
with contraction, those O(n log n) flows run in total time O(n4). However, using the
method of [CH] with its relaxed notion of cut values, the/3 values can be computed
using only O(n) maximum flow computations [GN2]. Hence in Schnorr’s problem,
contraction can also be avoided without sacrificing efficiency.

5. Conclusion. We have shown how to efficiently construct equivalent flow trees
and GH cut trees without finding or maintaining noncrossing cuts, hence without node
contraction and its associated work. The main theoretical consequence is conceptual
clarity: node contraction, which is presented in existing discussions of the GH method
as the fundamental algorithmic idea, is in fact not fundamental to cut tree computation;
it should be seen as a heuristic which might accelerate the running of the flow
computations. Similarly, although the existence of noncrossing cuts remains central in
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the logic of cut trees, they are not explicitly needed in the efficient computation of cut
trees. An additional theoretical consequence is the fact that a cut tree can be inferred
from n- 1 queries of an oracle which alone knows the actual graph. On the practical
side, the import of these observations is that they lead to very simple, efficient programs
for computing equivalent flow trees and cut trees; most of the programming and data
structure details of the original GH method become unnecessary when contraction is
avoided.

REFERENCES

[AH] D. ADOLPHSON AND T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math., 25 (1973), pp.
403-423.

[AMS] S. AGARAWAL, A. K. MITTAL, AND P. SHARMA, Constrained optimum communications trees and
sensitivity analysis, SIAM J. Comput., 13 (1984), pp. 315-328.

[CH] C.K. CHENG AND T. C. Hu, Maximum concurrent flow and minimum ratio cut, Tech. Report
CS88-141, University of California, San Diego, CA, December 1988.

[E] S.E. ELMAGHRABY, Sensitivity analysis of multi-terminal network flows, J. ORSA, 12 (1964), pp.
680-688.

[FF] L.R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[FR, FR] H. FRANK AND I. T. FRISCH, Communication, Transmission and Transportation Networks,
Addison-Wesley, Reading, MA, 1972.

[GH] R.E. GOMORY AND Z. C. HU, Multi-terminal networkflows, SIAM J. Appl. Math., 9 (1961), pp.
551-570.

[GrH] F. GRANOT AND R. HASSIN, Multi-terminal maximumflows in node capacitated networks, Discrete
Appl. Math., 13 (1986), pp. 157-163.

[GU] D. GUSFIELD, A graph theoretic approach to statistical data security, SIAM J. Comput. 17 (1988),
pp. 552-571.

[GU1] Very simple algorithms and programs for all pairs network flow analysis, Tech. Report
cse-87-1, Division of Computer Science, University of California, Davis, CA, April 1987.

[GN1] D. GUSFIELD AND D. NAOR, Extracting maximal information about sets of minimum cuts, Tech.
Report cse-88-14, Division of Computer Science, University of California, Davis, CA, Septem-
ber 1988.

[GN2] Generalized cut trees: Efficient algorithms and uses, Tech. Report cse-89-5, Division of
Computer Science, University of California, Davis, CA, March 1989.

[HA] W. HANSJOACHIN, Ten Applications of Graph Theory, D. Reidel, Boston, MA, 1984.
[H1] T.C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.
[H2] Combinatorial Algorithms, Addison-Wesley, Reading, MA, 1982.
[H3] Optimum communication spanning trees, SIAM J. Comput., 3 (1974), pp. 188-195.
[HR] T.C. Hu AND F. RUSKEY, Circular cuts in a network, Math. Oper. Res., 5 (1980), pp. 362-373.
[HS] T.C. Hu AND M. T. SHING, Multiterminalflows in outplanar networks, J. Algorithms (1983), pp.

241-261.
[L] E.L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,

New York, 1976.
[LP] L. LOVASZ AND M. O. PLUMMER, Matching theory, Ann. Discrete Math., 29 (1986), North-

Holland, Amsterdam, the Netherlands.
[M] D. MATULA, Determining edge connectivity in O(nm), in Proc. 28th Annual IEEE Symposium

on Foundations of Computer Science, October, 1987.
[MS] Y. MANSOUR AND B. SCHIEBER, Finding the edge connectivity ofdirectedgraphs, J. Algorithms,

10 (1989), pp. 76-85.
[PG] D. PHILLIPS AND A. GARCIA-DIAZ, Fundamentals ofNetwork Analysis, Prentice-Hall, Englewood

Cliffs, NJ, 1981.
[SC] C.P. SCHNORR, Bottlenecks and edge connectivity in unsymmetrical networks, SIAM J. Comput.,

8 (1979), pp. 265-274.
IS] Y. SHILOACH, A multi-terminal minimum cut algorithm for planar graphs, SIAM J. Comput., 9

(1980), pp. 219-224.
IT] L.E. TROTTER, JR. On the generality of multi-terminalflow theory, Ann. Discrete Math., (1977),

pp. 517-525.
[VL] J. VAN LEEUWEN, Graph algorithms, Tech. Report RUU-CS-86-17, Department of Computer

Science, University of Utrecht, Utrecht, the Netherlands, October 1986.



SIAM J. COMPUT.
Vol. 19, No. 1, pp. 156-163, February 1990

()1990 Society for Industrial and Applied Mathematics
010

ON THE EXPECTED CAPACITY OF BINOMIAL
AND RANDOM CONCENTRATORS*

EDWARD R. SCHEINERMAN

Abstract. Masson and Morris [G.M. Masson and S.B. Morris IEEE Trans. Comput. C-
32 (1983), pp. 649-657] introduced the notion of expected capacity of a concentrator and explicitly
computed the expected capacity of ()-concentrators for values of n up to 15. In this article, tools
from random graph theory are employed to find asymptotic expressions for the expected capacity
for this class of concentrators. It is shown that the same results can be obtained by concentrators
that are constructed at random. It also is shown that the expected capacity of random concentrators
is slightly inferior to the expected capacity of Pippenger’s modular concentrators IN. Pippenger,
Expected capacity of modular concentrators, preprint], and that random concentrators have certain
advantages over deterministic designs. Finally, it is shown that expected capacity of a concentrator
is actually a useful performance measure because the capacity of almost all input sets is very near
the expected capacity.

Key words, concentrator, random graph
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1. Introduction. A concentrator is an interconnection network with rn inputs
and n outputs. Internal switches in this network enable inputs to be connected to the
outputs. The capacity of the concentrator is the greatest integer k such that every
k-element subset of the rn inputs can be connected along disjoint channels to k of the
n outputs.

More formally, the concentrators we consider are bipartite graphs F (X U
Y, E), where X represents the set of inputs, Y the set of outputs, and E the switches
connecting inputs to outputs. Such concentrators are also known as single-stage sparse
crossbar networks. The capacity is the largest k such that every k element subset of
X can be matched into Y. This definition of capacity provides a worst-case bound on
the number of inputs the concentrator can serve. In [5] a notion of expected capacity
was introduced.

Let the graph F (X U Y, E) be fixed. For a given subset K C X of the inputs,
let caPK(F denote the maximum size of a matching from K into Y. The expected
capacity ek(F), corresponding to input size k, is the average of caPK(F over all subsets
K C X of size k, each taken as equiprobable. That is,

1
k(F)

In both [5] and [6], the authors consider rather sparse concentrators. In particular,
each input is connected to exactly two outputs; thus the degree of each X-vertex
is exactly 2. Therefore, given a (not necessarily bipartite) graph G, we define a
concentrator (bipartite graph) F F(G) as follows: The inputs (X-vertices) of F
correspond to the rn edges of G and the outputs (Y-vertices) of F correspond to the
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Department of Mathematical Sciences, The Johns Hopkins University, 3400 N. Charles Street,
Baltimore, Maryland 21218 (ers@crabcake.cs.jhu.edu).
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n vertices of G. We have a switch connecting x to y (i.e., xy E E(F)), provided the
edge of G corresponding to x is incident with the vertex of G corresponding to y. See
Fig. l(a)-(c).

1 2 3 4 5 6 7 8

,-; ;; b

FIG. l(a). The graph G.
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FIG. l(b). Concentrator r(a) in bipartite graph form.
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b c d e f g
Outputs

FIG. l(c). Concentrator F(G) in crossbar form.

In [51 and [61 the concentrators F F(G) arise from considering different choices
for G. In [6] Pippenger chooses G as a particular 3-regular graph of high girth. These
concentrators are called modular (3:2)-concentrators. They have 3n/2 inputs and for
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k _< 3n/4, they have ek k. For larger values of k the expected capacity falls off a
bit, but still gives good performance (see Table 1).

TABLE 1
Expected capacity of modular and random concentrators.

Input
Size
k

Expected Capacity ek

Modular Random

0.10n 0.10000n 0.10000n

0.50n 0.50000n 0.50000n
0.60n 0.60000n 0.59630n
0.70n 0.70000n 0.67839n
0.75n 0.75000n 0.71335n
0.80n 0.79902n 0.74452n
0.90n 0.88148n 0.79686n
1.00n 0.93750n 0.83810n
1.10n 0.97115n 0.87060n
1.20n 0.98906n 0.89628n
1.30n 0.99709n 0.91665n
1.40n 0.99967n 0.93285n
1.50n 1.00000n 0.94579n
1.60n 0.95616n
1.70n 0.96448n
1.80n undefined 0.97118n
1.90n for 0.97659n
2.00n k > 3n/2 0.98096n
2.50n -0.99314n
3.00n 0.99750n

In [5] Masson and Morris use G Kn, the complete graph on n vertices. These
concentrators are called binomial or ()-concentrators. Masson and Morris explicitly
compute ek(1-’) for their concentrators with 0 _< k _< n _< 15. They found that ek is
generally very close to k.

In this paper we give asymptotic expressions for ek in binomial concentrators.
Further, we show that the expected capacity of binomial concentrators is the same
as the expected capacity of "random" concentrators. We note that the expected
performance of random concentrators is just slightly inferior to that of the modular
(3:2)-concentrators of [6]. In the last section we show that expected capacity of a
concentrator is actually a useful performance measure by showing that the capacity
of almost all input sets is very near the expected capacity.

2. Expected capacity of ()-concentrators. We first focus our attention on
the crossbar considered in [5], F F(Kn) where n is large.

THEOREM 1. Let c be a constant, k [cn/2J and F F(Kn). If c <_ 1 then
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ek(F) k but if c > 1 then ek(F) [1 -u(c)]n, where

u(c)
1 kk-2 )k-i k!
k=l

The key to proving this theorem is to apply known results from the theory of
random graphs, a notion introduced by Erd6s and R6nyi in [3]. Given positive integers
n and m, observe that there are (mN) labeled graphs on n vertices and m edges where
N (). Let (n, m) denote the sample space of all such graphs on n vertices and rn
edges, each taken as equiprobable. A random graph is a graph drawn from the sample
space G(n, rn). Often we denote a randomly chosen graph in G(n, rn) by Gm. For a
property Q of graphs, we can ask for the probability that G, satisfies Q. More often,
we wish to know the limiting probability of Pr{Gm has Q} as n and m rn(n)
depends on (and grows with) n. We say that almost every graph satisfies a property
Q if this limit is 1.

The primary tools we need from random graph theory can be found in [2]. (See
the following theorems.)

THEOREM 2. Let 0 < c < 1 be a constant and rn [cn/2J. Almost every graph
Gm is the union of tree and unicyclic components.

THEOREM 3. Let c > 1 be a constant, rn [cn/2J and w(n) . Almost every
Gm is the union of a "giant" component, tree components, and unicyclic components.
The number of vertices in unicyclic components is at most w(n). The number of
vertices in the giant component is within w(n)v/- of [1- t(c)]n, where

t(c)
1 kk-1 )k(ce- 
k=l

THEOREM 4. Let c 1 be a positive constant, m [cn/2J, and w(n) x, and
let w w(Gm) denote the number of components in Gm. In almost every Gm we have
that w is within w(n)v/- of u(c)n, where

1 kk-2

k--1

The following lemma, which is from [6], enables us to compute capK(F(G)).
LEMMA 5. Let G be a connected graph with n vertices and m edges, let F F(G),

and let K denote the set of all inputs ofF. If G is a tree, then capg(F m n-- 1;
otherwise, capg(F n.

Since this lamina is of central importance to our proof of Theorem 1 and is easy
to prove, we paraphrase Pippenger’s proof here.

Proof. We use induction on the number of vertices, n, in G. As the result is
trivial in case n 0, we assume the result has been proved for all graphs with fewer
than n vertices. Let G be a graph with n vertices.

If G has a vertex v of degree 1, denote by e the edge incident with v. Let the
input corresponding to e be matched to the output corresponding to v. We complete
the matching by applying induction to G- v.

Otherwise, every vertex of G has degree at least 2. (Note that in this case G
cannot be a tree.) In this case the X-vertices of F(G) each have degree 2 and the
Y-vertices of F(G) each have degree at least 2. Thus for any subset S c Y we have
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that the neighbors of vertices in S, denoted N(S) C X satisfies IN(S)I >_ ISI. (This
holds because the number of edges emanating from S is at least 21S and the number of
edges entering IN(S)I from S is at most 21N(S)I.) Hence by Hall’s marriage theorem,
there is a matching in F(G) that saturates the Y-vertices. rn

If G is not connected, we perform the computation of Lemma 5 for each of its
connected components.

Proof of Theorem 1. Let F F(Kn). Let K denote a set of k inputs, randomly
chosen from the () possible k-element subsets of the inputs (where N ()). Note
that the inputs in K exactly correspond to a random selection of k edges of the Kn,
giving us a random graph Gk. In applying the random graph theorems, we need to
select a function w of n as long as w(n) oc. For example, take w(n) log log log n.

In case c < 1, then we know that the components of almost every Gk are trees
and unicyclic graphs. By Lemma 5, it follows that caPK(F) k for such selections of
K. Any other selection of K (in which the corresponding Gk has a different structure)
appears with vanishing probability. Thus ek(F) [1 --o(1)]k k.

In case c > 1, then almost every (k has the following structure: one large
component with [1- t(c)]n + O(w(n)v/-d) vertices, t(c)n + O(w(n)v/-d) vertices in
u(c)n + O(w(n)v/-d) tree components and at most w(n) ver-tices in "small" unicyclic
components. We now apply Lemma 5 to compute Capg(F when (k has this struc-
ture. The inputs corresponding to edges in the "giant" component produce (asymp-
totically) [1- t(c)]n outputs, the inputs corresponding to the edges in the tree com-
ponents produce (asymptotically) It(c)- u(c)]n outputs and the inputs correspond-
ing to the edges in the unicyclic components produce a mere w(n) outputs. Thus
Capg(F [1--u(c)]n +O(w(n)v/-d). All other Gk’s appear with vanishing probability
and thus ek(F) [1 --u(c)]n.

Finally, we consider c 1. Note that u is a decreasing continuous function of
c and that u(1) 1/2. Further, e(r) is an increasing function of k. Thus for any
e > 0 we can select a 5 > 0 so that if k [(1- 5)cn/2] then ek(F) >_ (1- )n/2
and if k [(1 + 5)cn/2] then ek(F) _< (1 + e)n/2. Thus when c 1 we have ek(F)
[/J =.

3. Random concentrators. We wish to construct a concentrator with rn in-
puts, n outputs (m > n and n large) in which each input is connected to exactly two
outputs. In the previous section we considered the solution of [5] in which rn ().
In [6] we have concentrators for m 3n/2, where n is of the form (q+3), where q _> 5
is prime.

Here we consider concentrators designed at random. Specifically, given n and m
our concentrator will be F(Gm), where G, (n,m) is a random graph. Our first
observation is that the average expected capacity of a random concentrator equals the
expected capacity of F(Kn).

PROPOSITION 6. For Gm (n,m) and 1 <_ k <_ m we have E {ek[F(Gm)]}
e[r(g)].

Proof. It is convenient to work in a slightly altered probability space for our
graphs. Let G(n,m) denote the set of all graphs that have vertex set V
{1,...,n} and have rn edges that are labeled (without repetition) by the integers
1,..., m. Since there are m! ways to edge label the same graph, we have

and each element of G(n, m) is taken as equiprobable. Alternatively, we can think of a
graph in 6’(n, m) as a graph in 6(n, m) together with an ordering of its edges. Notice
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that whether we work in ’(n, m) or in (n, rn) we compute the same expectation for
ek[F(Gm)]. Let K0 {1,2,...,k} denote a fixed set of inputs. Thus,

(1) E {e[P(G)]}

(3)

(4)

We have the equality (3) (4) because the value of the sum

Capg [F(G)]
GE6’

does not depend on K. The equality (5) (6) holds because whether we randomly
choose the inputs in F(Kn) or fix the inputs and randomly choose the connections, we
compute the same quantity. []

We wish to assert that almost all graphs G 6 G(n,m) produce good concen-
trators F(G). However, it is not enough to know that the mean expected capacity
is good, since the good results may only be achieved on relatively few graphs. To
show that almost every graph gives good concentrator behavior, we use the method
of martingales.

Let {X0, X1,.’., Xm} be a sequence of random variables defined on a common
sample space. If Xi-1 E[XilXi-1] then the sequence is called a martingale. We use
the following inequality due to Azuma [1] (see also [4]).

THEOREM 7. Let {X0,..’, Xm} be a martingale and suppose that there exist con-
stants cl,..., Cm such that IX X_11 <_ c then

Pr(lXm-Xol >A)<2exp
2 Ei___c

We employ this inequality via the following definitions. For fixed k, define a
random variable X on g;’(n, m) by X(G) ek[F(G)]. Next, for G 6 G’(n, m) denote
by j(G) the set of the first j edges in G (recall that the edge sets of graphs in g;’(n, m)
are ordered). Now we define our martingale {X0, X1,..., Xm} by

Xy(G) E [X(H)Iej(H ej(G)].

In other words, Xj(G) is the average of X over all graphs H whose first j edges agree
with G. Thus X0’ has constant value E(X) and Xm X. Further, the martingale
condition, X_I E[XilXi_l], is satisfied. Finally, as we vary the connections of a
single input, j, we can change the expected capacity by at most 1, hence we have
IXj Xj-ll < 1. Applying Azuma’s inequality we have

Pr {IX -E(X)l >_ A} _< 2exp
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THEOREM 8. Let m o(n2/log n). Almost every graph G E 6(n, m) is such that
for all k with 1 <_ k <_ m we have

k + o(n)
[r(a)] [ ()] + o()

n + o(n)

when k <_ n/2,
when k cn/2 for constant c > 1,and
when kin --,

where, as before,

u(c) _1 k k-2. _c)k
c k!

(ce
k=l

Proof. Suppose m n2/(w(n) log n), where w(n) . We know from Propo-
sition 6 that for each k the mean expected capacity of F(G) has the value asserted
in the theorem. For fixed k, with 1 <_ k <_ m, the probability that G does not have
ek[F(G)] within A 2n/v/w(n o(n) of the mean can be estimated from inequality
(7) to be

{-2/() }pr {IE(e) eel >_ A} _< 2exp
n/(w(n)logn)

O(n-).

The probability that G does not have ek[F(G)] within of the mean for arbitrary k
can therefore be bounded by mO(n-2) 0 as n . []

We can compare expected capacity of a randomly generated concentrator with the
concentrators proposed in [6]. These concentrators are referred to as modular (3:2)-
concentrators F(G) whose underlying graph G is 3-regular and of high girth. Thus
the modular (3:2)-concentrators have m 3n/2 inputs and n outputs. Pippenger [6]
defines G using an algebraic construction. He shows that ek(F) for his concentrators
is given by

+ o(n)
ek(F)

]g- - (2- 3n 3 + o()
when k <_ -34n and

when n_<k_< n=m.
Thus the expected performance ek of modular (3:2)-concentrators dominates that of
random concentrators, but not by a wide margin. Table 1 shows the expected capacity
ek of modular and random concentrators for large n and various input sizes.

4. Justification of expected capacity. It is conceivable that the expected
capacity of a concentrator can be high while the actual capacity of many inputs is
low. Were this the case, the expected capacity might not be a useful performance
measure for concentrators. Fortunately, we can apply the martingale method to show
that the expected capacity is nearly achieved by almost all sets of inputs.

For fixed k, we consider all possible sets of k inputs to F as equiprobable. It
will be convenient to view the input set K as an ordered k-tuple without repetitions,
g (il, i2,..., ik), each with probability (m- k)!/m!.

Let X denote the random variable defined on the sample space of all ordered
inputs by X(K) capg(F). Note that E(X) e(r). We now define a martingale
by

" il, i i2, " ij].Xj(K) E [X(K’)I, ..., ,j

In other words, Xj(K) is the average capacity of those ordered inputs that agree with
K in the first j places. Note that X0 has constant value ek(F) and that Xk(K)
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X(K) caPK(F). Note that the sequence {Xo,...,Xk} is a martingale. Moreover,
since changing a single input in K can change caPK(F by at most 1, we have IXj
Xj-ll _< 1. Thus by Azuma’s inequality (Theorem 7):

Pr {IcaPK(F) (r)l >_ Pr ([xa Xol >_ A} G 2 exp

which is negligible if A
Thus high expected capacity translates into excellent performance for nearly all

input sets.
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SPACE-EFFICIENT MESSAGE ROUTING IN c-DECOMPOSABLE
NETWORKS*

GREG N. FREDERICKSONt AND RAVI JANARDAN$

Abstract. The problem of routing messages along near-shortest paths in a distributed network
without using complete routing tables is considered. It is assumed that the nodes of the network can
be assigned suitable short names at the time the network is established. Two space-efficient near-
shortest path routing schemes are given for any class of networks whose members can be decomposed
recursively by a separator of size at most a constant c, where c _> 2. For an n-node network, the first
scheme uses a total of O(cn log n) items of routing information, each O(log n) bits long, and O(log n)-
bit names, generated from a separator-based decomposition of the network, to achieve routings that
are at most three times longer than shortest routings in worst case. The second scheme augments
the node names with O(c log c log n) additional bits and uses this to reduce the bound on the routings
to (2/a)+ 1, where c, 1 < c

_
2, is the root of the equation a[(c+1)/21 _c_2 0. For both

schemes, the node names and the routing information can be determined efficiently.

Key words, distributed network, graph theory, k-outerplanar graph, routing, separator, series-
parallel graph, shortest paths

AMS (MOS) subject classifications. 68M10, 68Q20, 68R10, 94C15

1. Introduction. One of the primary functions in a distributed network is the
routing of messages between pairs of nodes. Assuming that a nonnegative cost, or
distance, is associated with each edge, it is desirable to route along shortest paths.
While this can be accomplished using a complete routing table at each of the n nodes
in the network, such tables are expensive for large networks, storing a total of O(n2)
items of routing information, where each item is a node name. Thus, recent research
has focused on identifying classes of network topologies for which the shortest paths
information at each node can be stored succinctly. It is assumed that the nodes can be
assigned suitable short names at the time the network is established. The idea behind
naming nodes is to encode useful information about the network in the node names
and use this to do the routing. Shortest path routing schemes that use O(logn)-
bit node names and a total of O(n) items of routing information have been given for
networks such as trees, unit-cost rings [SK],[vLT1], unit-cost complete networks, unit-
cost grids [vLT2], and networks at the lower end of a hierarchy identified in [FJ1] (the
simplest of which are the outerplanar networks [HI). Unfortunately, the approach in
the above research becomes expensive even for very simply defined classes of networks
such as, for instance, the series-parallel networks [D]. However, by shifting our focus
to consider schemes that route along near-shortest paths, we have been able to design
space-efficient routing schemes for much broader classes of network topologies.

The issue of saving space in routing tables by settling for near-shortest path
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routings was first raised in [KK]. (Indeed, this is the first reported work on the
problem of space-efficient routing.) Networks of general topology were studied in

[KK] and a clustering approach was proposed for naming the nodes. Unfortunately,
no indication was given of how to do the clustering. Further, the routings produced
depended crucially on certain strong assumptions about the structure of the clusters,
and, in worst case, could be O(n) times longer than shortest routings. In this paper,
and in a related paper IFJ2], we consider various classes of networks that exhibit a
certain separator property and we show how to take advantage of this property to
design space-efficient near-shortest routing schemes. All our schemes achieve routings
that are, in worst case, at most a small constant times longer than corresponding
shortest routings. More recently, general networks with unit cost edges have been
considered in [PU] and a trade-off has been established between the space used and
the quality of the routings generated. Both upper and lower bounds are given for this
trade-off.

In this paper, we present two near-shortest path routing schemes for any class
of c-decomposable networks, defined as follows. Let the network be represented by
an n-node undirected graph G (V, E). Consider an assignment of nonnegative
weights to the nodes of G and let c _> 2 be a constant. A c-separator of G for this
weight assignment is a set C of at most c separator nodes whose removal partitions the
remaining nodes into sets A and B, each containing at most two-thirds of the total
weight and with no node in A adjacent to a node in B. We call G a c-decomposable
graph if it has a c-separator for every assignment of weights to its nodes. Examples of
c-decomposable graphs are the series-parallel graphs [D], for which c 2, and the k-
outerplanar graphs [B] where k > i is a constant, for which c 2k. (The l-outerplanar
networks, or, more simply, the outerplanar networks, are also c-decomposable, for
c 2. However, we ignore them in this paper because an optimal routing scheme
for these hasalready been given in [FJ1].) As we shall see, the c-decomposability
of the network allows us to recursively apply a c-separator algorithm to perform a
hierarchical decomposition of the network and assign suitable names to the nodes.

We measure the quality of the routings achieved by our schemes on a network by
the performance bound, defined as the maximum ratio (u, v)/p(u, v) taken over all
pairs of nodes u, v in the network, where p(u, v) is the length of a shortest path from
u to v and 5(u, v) is the length of the routing from u to v. Our first scheme, called
the basic routing scheme, uses O(log n)-bit names and a total of O(cn log n) items of
routing information (where each item is O(log n) bits long) to achieve a performance
bound of 3. The second scheme, called the enhanced routing scheme, incorporates
in the node names of the basic scheme O(c log c log n) additional bits of information
about relative distances and uses this to achieve a performance bound of (2/c) + 1,
where c, 1 < a _< 2, is the root of the equation a[(+)/2] c- 2 0. Thus, the
performance bound is 2 for c

_
3 and ranges up to strictly less than 3 as c increases.

Our results also hold for classes of c-decomposable networks for which c is not a

constant, but instead depends on n. An example is the class of planar networks, for
which c is O(V [LT]. However, we will not consider such networks in this paper
for two reasons. First, the techniques of this paper are geared specifically towards c-
decomposable networks with constant c. When c is not a constant, it may be possible
to do better by employing techniques different from those used in this paper, as is the
case for planar networks IFJ2]. Second, when c is not a constant, node names in the
enhanced routing scheme are no longer O(log n) bits long. Although c is a constant
throughout this paper, we will include it within O(.) bounds on space and time, in
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order to make explicit the exact dependence of these resources on c.
In [FJ2] two routing schemes are given for planar networks. The first scheme uses

O(log n)-bit names and O(n4/3) items of routing information, each O(log n) bits long,
to achieve a performance bound of 3. For any constant , 0 < < 1/3, the second
scheme can be set up to use O(n1+) items of routing information, each O((1/e) log n)
bits long, and achieve a performance bound of 7, but at the expense of O((1/e) log n)-
bit names. These schemes are also separator-based, the first using the separator
strategy of [LT] and the second the more structured cyclic separator of [M]. However,
owing to the comparatively larger size of the separator for planar networks, the tech-
niques used for decomposition, naming, and routing are quite different from those in
the current paper.

The rest of this paper is organized as follows. In the next section we describe
how the network is decomposed hierarchically and how the nodes are assigned names.
The basic scheme is given in 3 and the enhanced scheme in 4. Section 5 discusses
efficient separator strategies for two specific classes of c-decomposable graphs, namely,
series-parallel graphs and k-outerplanar graphs. Section 6 discusses how to set up the
r.outing schemes efficiently.

2. Hierarchical decomposition and naming. We show how to generate suit-
able names for the nodes of G in order to facilitate the routing. The separator property
is used to decompose G hierarchically into levels and to assign names to the nodes
based on their relative positions in the decomposition.

The graphs at various levels are generated inductively as follows. The graph at
level 0 is Go G. Define the core of Go to be Go itself, and call each node in the
core a core node of Go. For _> 0, let G be aleveli graph, where w is abinary
string. If G has more than c core nodes, then a c-separator algorithm is applied
to G after assigning equal positive weights to its core nodes and zero weights to
its remaining nodes. (As we show later, G is c-decomposable, so that a c-separator
exists for the chosen weight assignment.) Let G0 and GI be the subgraphs of G
induced on the vertex sets A C and B C, respectively, where A, B, and C are as
in the c-separator definition given previously.

The separation of G into G0 and G may not preserve distances between core
nodes of G that end up in Go (respectively, G), since some of the shortest paths
between these nodes may use portions of G’I (respectively, G0). As we shall see,
these distances need to be preserved in order to achieve the claimed performance
bounds. This is accomplished by augmenting Go (respectively, G) with a suitable
graph derived from G (respectively, G0), which represents the shortest paths lostwl
due to the separation. The size of the augmenting graph is kept small (O(c4) nodes and
edges) so that the routing schemes can be set up efficiently. We note that information
about the augmentation is not needed once the routing scheme has been set up, since
the routing itself takes place in the actual network G. We discuss the augmentation
in more detail later.

The augmentation of G0 and GI yields the level i+ 1 graphs Go and G,
respectively. Define the core of Go (respectively, GI) as the subgraph ofG induced
on the core nodes of G that are in A (respectively, B). Call each such node a core
node of Go (respectively, G). Any other node of Go (respectively, G) is a
noncore node.

Because of the way the nodes of G are weighted, it follows from the definition
of a c-separator that the number of core nodes in each of G0 and G is at most
two-thirds the number of core nodes in G. Since Go has n core nodes and since no
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graph with c or fewer core nodes is decomposed further, it follows that the number of
levels in the decomposition is O(log3/2(n/c)) which is O(logn).

The decomposition establishes certain natural relationships between the nodes,
as follows. If level graph G is decomposed further, then each separator node of G
that is also a core node of G is a level node in the decomposition. Otherwise, G
has at most c core nodes, and each is a level node. Any two level nodes that belong
to the core of the same level graph G are siblings. Suppose that G is decomposed
further, into G0 and GI. Let u be a separator node of G. If v is any core node
G0 or GI, then u is an ancestor of v for level i. We further distinguish between
ancestors as follows. If u is also a core node of G, then u is a real ancestor of v for
level i. If u is a noncore node of G, then it is a pseudo-ancestor of v for level i. Note
that it is possible for a node to be a real ancestor of another node for some level j
and a pseudo-ancestor of that node for some other level j’ > j. Two nodes are related
in the decomposition if they are siblings or if one is a real ancestor of the other for
some level; otherwise, they are unrelated.

Each level node belonging to the core of G is given the name w, along with
an integer distinguisher of value at most c, to make names distinct. Clearly, any
name is O(log n) bits long. This naming has the property that two nodes are related
if and only if the distinguisher-free portions of their names are identical or if one is
a proper prefix of the other. For unrelated nodes u and v, if is the length of the
longest common prefix of the distinguisher-free portion of their names, then u and v
are in the core of the same level 1 graph, but are in the cores of different level
graphs resulting from the decomposition of the level 1- 1 graph. Level is called the
separating level for u and v. As we shall see, the separating level plays a crucial role
in the routing strategy.

We illustrate the decomposition and naming in Fig. 1. The given graph Go is
4-decomposable. For simplicity, let all edge costs be 1. The separator nodes of Go,
which become the level 0 nodes in the decomposition, are shown filled in. Only one of
the two graphs resulting from the separation of Go, namely, G0 is shown, together
with the names assigned to the level 0 nodes. The symbol "#" is a delimiter and the
integer following it is the distinguisher. Any two of the named nodes are siblings and
each named node is a real ancestor for level 0 of an unnamed node. Graph G00 is also
shown, with the portion introduced by the augmentation shown dashed. The nodes
of Go0 that are not filled in and that have solid edges incident with them are the core
nodes of G00; the remaining nodes of G00 are its noncore nodes. In order to illustrate
pseudo-ancestors, suppose that the node in the augmenting graph that is adjacent to
node 0#1 becomes a separator node of G00 at the next level in the decomposition.
Let this node be u and let v be the degree 3 node adjacent to 0#1. Then u is a
pseudo-ancestor of v for level 1.

We now discuss how the augmentation is performed Let G’ and G’ be thew0 wl

graphs resulting from the separation of G G’ is augmented as follows to obtainw0

G0. Let C be the set of separator nodes of G. A graph that is the union of the
shortest path trees Tv in G from each node v in C to the nodes in C- {v} is
constructed. The induced subgraph of this graph restricted to G’ is inferred. Towl

keep its size small, this induced subgraph is then contracted byrepeatedly replacing
each degree 2 node not in C and its incident edges by an edge of cost equal to the
sum of the costs of the two edges removed. Graph G0 is the union of the contracted
graph and G’ GI is similarly obtained from G’ Note that the nodes of C arew0" wl"

considered as part of the augmenting graph. Note also that the augmentation does
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Go:

GO0:

o#1

FIG. 1. Illustration of the first level in the hierarchical decomposition and naming of a c-

decomposable graph, with c 4.
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not create any new nodes.
In Fig. 1, the augmenting graph is a subgraph of GI, with the exception that the

dashed edge incident with node 0#1 is the contraction of a path of two edges, each
of cost 1, and thus has cost 2.

The following lemmas establish certain important properties of the augmentation.
LEMMA 2.1. Let G be any graph in the decomposition. The distance in G

between any two core nodes u and v is equal to the distance between them in G.
Proof. The proof is by induction on the length r of w. The basis r 1 is true

since G Go G. Consider r > 1, and suppose that the claim is true for any string
of length r- 1. Let G, be the graph that is decomposed to produce G, where w is
a proper prefix of w and of length r 1. Core nodes u and v of G are core nodes of
G, as well and, by the induction hypothesis, the distance in G, between u and v is
equal to the distance between them in G.

Consider any shortest (u,v)-path P in G,. If P exists in G also, then the
lemma follows. Suppose that P does not exist in G. Then each segment of P that is
missing in G is a shortest path in G, between a pair of separator nodes of G, and
was lost during the separation of G,. Due to the augmentation, G contains a path
whose length equals the length of the missing segment. Thus, G contains a path of
the same length as P, and the lemma follows.

LEMMA 2.2. Let the separation of G yield graphs Go and GII. The augmen-
tation of Go (respectively, GI) introduces fewer than C4 nodes and 3c4/2 edges into
Go (respectively, G

Proof. We prove the claim for G0. Let J0 be the graph with which G0 is
augmented to obtain G0. In worst case J0 is the contraction of the union of c
shortest path trees Tv. There are at most c(c- 1) shortest paths in these trees, and
for each path there is a corresponding contracted shortest path in Jo. If two shortest
paths in J0 meet, then they share a maximal subpath. We call the endpoints of this
subpath meeting nodes. In worst case there are c(c- 1)(c(c- 1)- 1)/2 < c2(c 1)2/2
meetings between different pairs of shortest paths.

We derive an upper bound on the sum of the degrees of the nodes in Jo. Starting
with an empty graph, insert the shortest paths of J0 one at a time. Assign each node
a degree when it is introduced into the graph for the first time. Assign it degree 1
if it is in C, and degree 2 otherwise. Taken over all nodes in J0, this contributes
2(I V(Jo) -c) + c 2 V(J0 -c to the degree sum. If two shortest paths meet,
then increase the degree of each of their meeting nodes by 1. Thus the increase in the
degree sum due to all meetings between shortest paths is less than c2(c- 1) 2. Thus
the degree sum is less than 2 V(Jo) -c + c2(c- 1) 2.

Now each node in V(Jo)-C has degree at least 3, so that the degree sum is at least
3(I V(Jo) -c) + c 31V(J0) -2c. It follows that IV(Jo) -c < c2(c- 1) 2 < c4.

The number of edges in J0 is half the degree sum of J0. Thus there are fewer
than IV(Jo) l-c/2 + c2(c- 1)2/2 < 3c4/2 edges in J0.

LEMMA 2.3. Every graph G in the decomposition is c-decomposable.
Proof. We will show how to find a c-separator of G for any assignment of

nonnegative weights to its nodes. View the replacement of each vertex of degree 2 as
the contraction of one of its incident edges, followed by the deletion of the resulting
loop. The endpoints of the contracted edge can be viewed as identified together, and
the resulting vertex can be viewed as a set of vertices identified together. Thus each
vertex in G can be viewed as a set of vertices originally in G that have been identified
together during the course of the graph decomposition. For each vertex w in G,
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choose from its set of vertices a representative vertex and assign this representative
weight (in G) equal to the weight of w in G. For each vertex in G that is not assigned
a weight, assign it the weight 0. Since G is c-decomposable, there is a separator C
of G, with vertex partition A, B for this assignment of weights. Let C be the set of
vertices in G such that a vertex is in C if and only if some member of the vertex’s set
is in C. Let A,B be a partition of the remaining vertices of G, where a vertex is in

A (respectively, B) if and only if the representative of its set is in A (respectively,
B).

We claim that C is a c-separator of G, with vertex partition A,B for the given
assignment of weights to G. Consider any path P in G between a vertex in A and
vertex in B. Path P must contain some vertex v in C. The corresponding contracted
path P (if it exists) in G must contain a vertex in C whose representative in G is
v. Since every path in G can be viewed as the contracted version of some path in
G, the sets A and B will be nonadjacent. Further, ICI < IC’I _< c and the total
weight of A (respectively, B) is at most the total weight of A (respectively, B),
which is at most two-thirds the total weight of G. Thus the claim is true. ll

LEMMA 2.4. Any path P in G between unrelated nodes u and v contains a real
ancestor of u and v for some level.

Proof. Let be the separating level for u and v and let G be the level l- 1 graph
containing u and v as core nodes. If every node of P is a core node of G, then P
exists in G also. Since is the separating level for u and v, every (u, v)-path in G
contains a separator node of G, i.e., an ancestor of u and v for level l- 1. Further,
the separator node on P is a core node of G, i.e., a real ancestor of u and v for
level 1- 1. Thus the lemma is true.

If P does not consist entirely of the core nodes of G, then let y be the first
noncore node of G encountered on P in going from u to v. Since y is a noncore node
of G, there is a smallest prefix w of w such that y is part of the augmentation of
G,. Further, y is a core node as well as a separator node of G,, since it is the first
noncore node of G on P. Thus, since u and v are both core nodes of G,, it follows
that y is a real ancestor of u and v for level , where is the level of G,. Thus the
lemma is true.

In particular, Lemma 2.4 implies that any shortest (u,v)-path in G between
unrelated nodes u and v contains a real ancestor of u and v for some level. We denote
by real_ancestor(u, v) the first such real ancestor encountered on the shortest path
in going from u to v. As we shall see in the next section, real_ancestor(u, v) plays
crucial role in the routing.

3. Routing information and routing strategy in the basic scheme. Hav-
ing generated the decomposition and node names, we store appropriate routing infor-
mation at the nodes and use this to perform the routings. In order to motivate the
routing information stored, we first give an overview of the routing strategy.

The strategy for routing from a source s to a destination d depends on whether
or not s and d are related. Since it is not expensive to store shortest paths routing
information for routing between related nodes, if s and d are related a shortest routing
can be performed using this information. However, this approach is not feasible for
routing between unrelated nodes, as the amount of shortest paths routing information
needed is large. Instead, if s and d are unrelated, then the routing is done as two
shortest routings, each of which is between a pair of related nodes. Let a be a suitably
chosen ancestor of s and d for level l- 1, where is the separating level for s and d.
The first routing is from s to a, and the second routing is from a to d. The length of
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the overall routing from s to d is not necessarily shortest, but depends on the ancestor
chosen. In the basic routing scheme, where the ancestor for level l- 1 chosen is the
one closest to s in G, the routing is within a factor of 3 of optimal. In the enhanced
routing scheme described in the next section, we show how to reduce the length of
the routings by making a more careful choice of an ancestor.

There are two problems that can arise in the routing strategy described above.
The first problem is that the ancestor chosen may not be related to s and d. Thus,
shortest paths routing information will not be available to do the routings from s to
a and from a to d. The problem is overcome by making the name real_ancestor(s, a)
available to s, since a real ancestor of s and a is clearly a real ancestor of s and
d as well. The routing from s to d is done through real_ancestor(s,a). We call
real_ancestor(s, a) a surrogate.

The second problem has to do with routing between related nodes. As an example,
consider routing from s to d when they are related. Node s uses its shortest paths
information to determine the node w to which the message is to be sent. If w and
d are unrelated, then w will be unable to continue the routing to d. The problem is
overcome by having s supply the name real_ancestor(w, d) to w in the message header,
so that w can route the message through this node. We call real_ancestor(w, d) a
milestone in the routing. In addition, the problem can occur at other intermediate
nodes in the routing from s to d, as well as in each phase of the two-phase routing
employed when s and d are unrelated. However, each time a suitable milestone will
be available through which the routing can be done.

We are now ready to describe in more detail the routing information stored
in the basic scheme. Let v be any .node. The information at v consists of four
tables: next_nodev(.), milestonev(.), ancestor(.), and surrogatev(.). The tables
next_nodev(.) and milestonev(.) are used for routing to related nodes. For each re-
lated node u, the name of the next node on a shortest .(v, u)-path in G is stored in
next_nodev(u). If next_nodev(u) and u are unrelated, the name real_ancestor(w, u)
is stored in milestonev(u), where w next_nodev(u). The tables ancestorv(.) and
surrogatev(.) contain additional information needed for routing to unrelated nodes.
Suppose that v is a level node, _> 1. For each j < i, the name of the ancestor of v
for level j that is closest to v in G is stored in ancestorv (j ). If v and a ancestor(j)
are unrelated, then the name real_ancestor(v, a) is stored in surrogatev(a). For con-
venience, if v and a are related, then a itself is stored in surrogatev(a).

The following theorem bounds the amount of routing information stored in the
network.

THEOREM 3.1. For any n-node c-decomposable graph, the basic scheme stores
a total of O(cn log n) items of routing information, where each item is O(log n) bits
long.

Proo]. Each item of routing information is a node name, and hence is O(logn)
bits long.

We first argue that the total amount of information held in next_nodev(.) by all
nodes v is O(cn log n). Any node v has O(c log n) real ancestors in the decomposition.
Thus v stores O(c log n) items of information for these ancestors, and these ancestors
together store O(c log n) items of information for v. Therefore, taken over all nodes
v, a total of O(cn log n) items of such information are stored in the network. Further,
since each node has at most c siblings, O(cn) items of sibling information are stored
in total. The total amount of information held in milestones(.) by all nodes v is at
most that which is held in next_node (. ). Finally, each node v stores O(logn) items
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of information in ancestorv(.) and surrogatev(.), for a total of O(n log n). K]

A complete description of the routing from s to d in the basic scheme is as
follows. The message header contains separate fields for the milestone and the des-
tination, both initially set to d. The milestone field alone is reset, as necessary,
during the routing. Let d denote the current name in the milestone field. Each node
v participating in the routing performs a routing action, as follows. It determines
w next_node(d’), resets d’ to milestone(d’) if w and d’ are unrelated, and then
sends the message to w over edge {v, w}.

At the start of the routing, node s compares the name s with dt, which is initially
d, to determine whether the two nodes are related or not. If they are related, then
s performs a routing action. Otherwise, let be the separating level for s and d (l
can be determined from the names), and let a ancestors(l- 1). Then s resets d to
surrogates(a) and performs a routing action. Each intermediate node different from
the current d will find the latter in its routing table and thus can perform a routing
action. Eventually the message reaches the current d. If d is d, then the routing
terminates. Otherwise, d is reset to d and a routing action is performed.

Note that whenever the milestone field is reset at a node that is different from
s and the current milestone, it is reset to a real ancestor on a shortest path to the
current milestone. Thus it is enough to continue the routing with respect to the new

milestone, and the previous milestone need not be saved. (In fact, the message may
never even reach some of the milestones that were discarded. This is because the next
node information used to do a shortest routing from the current milestone to d might
correspond to a shortest path that is different from the shortest path containing some
of the discarded milestones.)

In order to establish the performance bound of the basic scheme, we first obtain
a lower bound on p(s, d) when s and d are unrelated.

LEMMA 3.2. Let s and d be unrelated nodes with separating level and let a be
the ancestor of s for level l- 1 that is closest to s in G. Then p(s, d) >_ p(s, a).

Proof. We first show that there is a shortest (s,d)-path in G that contains an
ancestor of s for level 1- 1. Let G be the level 1- 1 graph containing s and d as core
nodes and let P be a shortest (s, d)-path in G. By Lemma 2.1, P has length p(s, d).
Further, P contains an ancestor b of s and d for level 1- 1, since is the separating
level for s and d. Let G be the subgraph of G obtained by uncontracting G until
no longer possible. This is done by repeatedly taking any edge that represents the
contraction of a two-edge path during any augmentation done so far and replacing
the edge by the path. Each edge of the two-edge path has the cost it had prior to
its contraction. Let P be the path in G (and hence in G) that corresponds to the
uncontraction of P. P has the same length as P and contains b. Thus Pt is the
desired shortest (s, d)-path in G.

Thus, we have

p(s,d) p(s, b) + p(b, d)
>_ p(s,b)
>_ p(s, a),

since a is the closest ancestor of s for level 1- 1. D
The following theorem establishes the performance bound of the basic scheme.
THEOREM 3.3. For any c-decomposable graph G, the basic scheme has a perfor-

mance bound of 3.
Proof. Let s be any source and d any destination. If s and d are related, then the
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routing is along a shortest (s, d)-path in G. This is because every node participating
in the routing performs a routing action with respect to the milestone, which is always
on a shortest (s, d)-path. Otherwise, let be the separating level for s and d and a
the ancestor of s for level l- 1 that is closest to it in G. Let a surrogates(a)
and consider the first occasion in the routing that a milestone a" is reached, where
a" is possibly a. Since a" is a real ancestor of s and d, and thus related to both, the
routings from s to a" and from a" to d are both along shortest paths, by the above
reasoning. Thus

p(s, a") + p(a", d)
< a")+ p(a", a’)+ p(a’, d)

p(s, a’)+ p(a’, d) (since a" is on a shortest (s, a’)-path)
<_ p(s, a’) + p(a’, a)+ p(a, d)

p(s, a)+ p(a, d) (since a’ is on a shortest (s, a)-path)
< a)+ d)
<_ 3p(s,d) (by Lemma 3.2).

Thus D(s, d)/p(s, d) _< 3 for any nodes s and d, and the theorem follows. VI

In fact, the performance bound of 3 is approachable and is thus the best possible
for this scheme. Let a* different from a be the ancestor on a shortest (s, d)-path and
suppose that a" a’ a. Let p(s, a) p(s, d)- p(a*, d), and let p(a, d) p(a, s)+
p(s, d) 2p(s, d) p(a*, d). Then D(s, d)/p(s, d) (3p(s, d) 2p(a*, d))/p(s, d) ap-
proaches 3 as p(a*, d) becomes vanishingly small.

4. Improving the performance bound: The enhanced routing scheme.
The idea behind the enhanced scheme is to make a more careful choice of an ancestor
among the ancestors of s for level 1 when s and d are unrelated. Once a suitable
ancestor has been chosen, the routing strategy is as in the basic scheme, with the
chosen ancestor substituting for the closest ancestor. To help make the choice, some
additional information is stored at the nodes and distance information is encoded in
the node names, as follows.

Let v be aleveli node, i_> 1. For eachj < i, instead of storing at v only the
name of the closest ancestor of v for level j, we store the names of all ancestors u
of v for level j. If u and v are unrelated, we also store the name real_ancestor(v, u)
in surrogatev(U); otherwise we store u in surrogatev(U). This introduces a total of
O(cn log n) additional items of routing information.

Node v’s name is augmented with information about the relative magnitudes
of its distances in G from its ancestors for level j. Two pieces of information are
encoded for each ancestor, with the information for different ancestors appearing in
the lexicographic order of the names assigned to them from the decomposition. The
first specifies its position in an ordering of the ancestors by nondecreasing distances
from v, with ties broken lexicographically. The second piece of information is as
follows. Let a > 1 be a function of c to be specified later. For each ancestor a

with index p in the above ordering by distances, let a" be the ancestor with the
smallest index p" > p, such that p(v,a) <_ (1/a)p(v,a"). Then, in addition, p" is
encoded in v’s name for a. If a" does not exist, then zero is recorded for a. All this
information can be encoded using at most 2clog c bits per level j. As there are at
most loga/2 n 1.71 log n levels, the total number of additional bits encoded into v’s
name is 3.42 c log c log n.
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From the ancestors of s and d for level l- 1, where is the separating level
for s and d, an appropriate ancestor is chosen by s as follows. Clearly, if there
are ancestors a and a" such that p(s,a) < p(s,a’) and p(d,a) < p(d,a’), then
a" can be eliminated. Using the information encoded in its name and that of d, s
determines a subset of the ancestors in which no ancestor eliminates another. (These
ancestors will be known in terms of their positions in the above lexicographic ordering.
However, s can determine their names, since the names of its ancestors at each level
are available.) Let a,a2,’",ah be the h _< c such ancestors, indexed in increasing
order of their distances from s. Denote p(s, ai) by xi and p(d, ai) by yi, 1 <_ _< h.
Thus x < x2 < < Xh. Furthermore, since no ancestor eliminates another, we
have y > Y2 >"" > Yh.

Let m be an integer parameter, 1 _< m _< h, to be specified later. If there exists a
minimum index i, 1 <_ < m, such that xi <_ (1/a)xi+, then s chooses hi. Otherwise,
if there exists a maximum index i, m < _< h, such that yi <_ (1/a)yi-1, then s chooses
hi. Otherwise, s chooses am. As demonstrated in the proof of the following theorem,
the appropriate choice for m is [(h + 1)/2J.

THEOREM 4.1. For any c-decomposable graph G, the enhanced routing scheme
has a performance bound of (2/a) + 1, where , 1 < <_ 2, is the root of the equation
c [(c+)/2] c 2 0.

Proof. Let s be any source and d any destination. From the proof of Theorem 3.3,
we know that the length of the generated routing is at most the sum of the distances
in G from s and d to the chosen ancestor. It follows that if there is a shortest (s, d)-
path through this ancestor, then the routing is optimal. Thus assume that there is
no shortest (s, d)-path through the chosen ancestor, and that there is one through Ca,
l <_aq <_h.

Case 1. hi, 1 _< < m, is chosen in the scan over the x’s.
(a) Suppose that < q. Then since Xi+l <_ Xq and xi _< (1/a)Xi+l, we have

xi <_ (1/a)xq. Thus,

(s, d)/p(s, d) <_ (x + u)l(x + )
<_ (2xi + Xq + yq)/(Xq + yq) (since Yi <_ xi + Xq + yq)
<_ (2xq/a)/(xq + yq) + 1

_< (2/c)/ 1.

(b) Suppose that > q. Since xj > (1/)xj+,l <_ j < i, it can be shown
inductively that xi < oli-qxq. Thus,

d) < + +
< (i-qxq + yq)/(xq + yq) (from above, and since yq > yi)

oi-q

Om-2"

Case 2. hi, m < <_ h, is chosen in the scan over the y’s.
(a) If > q, then, in a fashion similar to that in Case l(a), it can be shown that

(s, d)/p(s, d) <_ (2/c)/ 1.
(b) Suppose that < q. Then yi < q-yq holds. In a fashion similar to that in

Case l(b), it can be shown that (s, d)/p(s,d) < h-m-1.
C,se 3. am is chosen by default.
(a) If m > q, then we have Xm < (m-qxq and, as in Case l(b), it can be shown

that (s, d)/p(s, d) < Om- 1.
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FIG. 2. Example of a routing choice in the improved scheme for a c-decomposable network,
with c 5.

(b) If m < q, then we have y, < aq-myq and, as in Case l(b), it can be shown
that (s, d)/p(s, d) < Oh-m.

From the above it follows that

(s, d)lp(s, d) < max {(2/c) + 1, am-l, ah-m}.
For m L(h + 1)/2J we have am- < ch-m < ar(c-)/2] The larger of (2/c)+ 1 and
a [(c-)/2] is minimized when a is chosen as the positive root of (2/a) + 1 ar(c-)/2],
i.e., ar(c+)/2] a- 2 o. Thus )(s, d)/p(s, d) < (2/a)+ 1 for any nodes s and d,
and the theorem follows, rl

For small values of c the above theorem yields performance bounds that are
appreciably better than 3. For instance, if c is 2 or 3, then the performance bound is at
most 2; if c is 4 or 5, then the performance bound is at most 2.32. These performance
bounds are approachable. Let a be the ancestor chosen by s and suppose that there
is a shortest (s,d)-path through a2. Let Xl (1/c)x2 and yl Xl + x + y. Then
f(s, d)/p(s, d) approaches (2/a) + 1 as y2 becomes vanishingly small.

Figure 2 illustrates schematically the enhanced routing algorithm for a 5-decom-
posable graph. There are just four ancestors a, a2, a3, and a4 to choose from, since
the unnamed ancestor is eliminated by a3. For this example, a 1.52, m 2,
and the shortest (s,d)-path is through a.. In the routing algorithm, the scan over
the x’s is inconclusive. The scan over the y’s first succeeds at Y3, since Y3 6 and
(1/a)y2 6.6. Thus a3 is chosen, yielding a routing that is 21/14 1.5 times longer
than optimal.

5. c-Separator strategies for graph decomposition. In this section, and in
6, we address the problem of efficiently setting up the routing schemes described. A
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crucial step in setting up the schemes is finding a c-separator efficiently. In this section,
we give O(n)-time c-separator algorithms for two specific classes of c-decomposable
graphs, namely, the series-parallel graphs (c 2) and the k-outerplanar graphs for
k > 1 a constant (c 2k).

5.1. Finding a 2-separator for series-parallel graphs. Two edges in a graph
are series if they are the only edges incident with a node, and parallel if they join the
same pair of nodes. A series-parallel graph is recursively defined as follows [D]. An
edge is a series-parallel graph. The graph obtained by replacing any edge in a series-
parallel graph either by two series edges or by two parallel edges is series-parallel.
A two-terminal series-parallel graph is a graph with two distinguished nodes called
terminals and is defined recursively as follows. Any edge is a two-terminal series-
parallel graph, the terminals being its endpoints. If H1 and H2 are two-terminal
series-parallel graphs, then so is the graph H obtained either by identifying one of
the terminals of Hi with one of the terminals of H2 or by identifying them in pairs.
In the former case the terminals of H are the unidentified terminals of H1 and H2,
while in the latter they are the identified terminals. Any simple n-node series-parallel
graph has O(n) edges.

With every two-terminal series-parallel graph G, one can associate a binary struc-
ture tree [VTL]. Each leaf of the tree represents an edge of G. If v is an internal node
of the tree with children v and v2 representing the two-terminal series-parallel graphs
Hi and H2, then v represents the two-terminal series-parallel graph H obtained as
above from H and H2. The root of the tree represents G. Since every series-parallel
graph ,is two-terminal series-parallel for an appropriate choice of terminals [D], a
structure tree can be associated with it.

For convenience, we assume that the given series-parallel graph G is biconnected.
This condition can be enforced, if necessary, by introducing an edge between the
terminals of G. The cost of the edge is chosen to be greater than the sum of all the
edge costs, so that shortest paths are unaffected.

Given any assignment of nonnegative weights to the nodes of G, a 2-separator
can be found as follows. Construct a structure tree for G with root r, as described in

[VTL]. For each node x in the tree, let W(x) be the sum of the weights of the nodes
in the series-parallel graph represented by x. For each nonleaf node, let the heavy
child be the one with the larger W(.), ties broken arbitrarily.

Initially, set x to r. While x is not a leaf of the structure tree and W(x) exceeds
two-thirds the total weight assigned to the nodes of G, reset x to its heavy child.
When this step terminates, let C be the set of terminals of the series-parallel graph
represented by x. Let A consist of the remaining nodes of this graph and let B be
V(G)- (A [J C). It can be verified easily that A, B, and C satisfy the conditions for
a 2-separator.

THEOREM 5.1. A 2-separator of an n-node series-parallel graph can be found in
O(n) time.

Proof. Consider the algorithm described above for finding a 2-separator of a
series-parallel graph. The structure tree can be constructed in O(n) time [VTL]. The
time to compute W(.) and search the tree is clearly O(n). D

5.2. Finding a 2k-separator for k-outerplanar graphs. The k-outerplanar
graphs are defined as follows [B]. Consider a plane embedding of a planar graph.
The nodes on the exterior face are layer 1 nodes. For > 1, the layer nodes are
those that lie on the exterior face of the embedding resulting from the deletion of all
layer j nodes, j < i. A plane embedding is k-outerplane if it contains no node with
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layer number exceeding k. A planar graph is k-outerplanar if it has a k-outerplane
embedding. Any n-node k-outerplanar graph has O(n) edges.

Let G be a k-outerplanar graph. We assume that a k-outerplane embedding G*
of G is available. G* may be represented using the data structure of [LT], where
each node has available a list of its neighbors in clockwise order around the node in
the embedding. Given any assignment of nonnegative weights to the nodes of G, a
2k-separator can be found as follows. The interior faces of G* are first triangulated.
Each interior face whose boundary consists of nodes all with the same layer number
is triangulated arbitrarily. Each interior face whose boundary consists of both layer
and layer + 1 nodes, 1 <_ < k, is triangulated by repeatedly adding an edge joining a
layer + 1 node to a layer node. The resulting embedding, G, is also k-outerplane,
with each layer + 1 node adjacent to at least one layer node. The desired separator
is found in G,.

We assume that G, is biconnected. Otherwise, we enforce this condition as
follows. Each articulation point a of G will be on the exterior face. Introduce an
edge joining two neighbors of a that are on the exterior face and are consecutive in
the clockwise ordering of the neighbors of a. The number of such edges introduced
will be O(n), and the cost of each is chosen sufficiently large so that shortest paths
are unaffected.

The separator algorithm is as follows. At all times, the algorithm maintains a
path P of length at most 2k in G,, which disconnects G, into two regions. The
algorithm repeatedly modifies P until the total weight of the nodes in each region is
at most two-thirds the total weight assigned to the nodes of G. Initially, P consists
of a single edge joining a pair of level 1 nodes. In general, P has layer 1 nodes as
endpoints, and from one end of P to the other, the layer numbers of its nodes first
increase monotonically and then decrease monotonically, possibly with a single pair
of consecutive nodes of the same layer number.

For each region bounded by P, determine the sum of the weights of the nodes
contained in the region. Let the heavy region be the one with the larger total weight,
ties broken arbitrarily. If the heavy region has weight exceeding two-thirds the total
weight assigned to the nodes of G, then modify P as follows.

Let v be a node on P of highest layer number and u the neighbor of v on P with
the higher layer number, ties broken arbitrarily. Let P1 and P2 be the subpaths of P
on either side of edge {v, u}, where v is an endpoint of P1 and u an endpoint of P2.
Consider the face in the heavy region whose boundary contains edge {v, u} and let w
be the third node on this face. For some i, 1 _< < k, the layer numbers of v, u, and
w must each be either or + 1. There are two cases of interest.

If the layer number of w exceeds the layer number of at least one of v and u,
then reset P to the path consisting of P1, {v, w}, {w, u}, and P2. If the heavy region
now has total weight exceeding two-thirds the total weight assigned to the nodes of
G, then modify P recursively.

Otherwise, let P3 be a path in the heavy region from w to the exterior face such
that the layer numbers of its nodes decrease monotonically. Such a path can be found
because each layer + 1 node is adjacent to at least one layer node, 1 _< < k.
Furthermore, P3 can always be picked so that it is either node-disjoint from both P1
and P2, or it meets one of these paths at a node and contains the segment of this
path from the meeting point to the exterior face. Determine the total weight of the
nodes contained in the region R1 bounded by P1, {v, w}, and P3. Do the same for the
region R2 bounded by P2, {u, w}, and P3. Without loss of generality assume that R
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is the heavy region. If P3 and P1 share no nodes, then reset P to the path consisting
of P1, {v, w}, and P3. Otherwise, let z be the first node common to P and P3 and
let e be an edge incident on z from the cycle consisting of the (z, v)-subpath of P,
the edge {v, w}, and the (w, z)-subpath of P3. Reset P to the path consisting of P,
{v, w}, and P3, with e deleted. If the heavy region now has total weight exceeding
two-thirds the total weight assigned to the nodes of G, then modify P recursively.

Eventually a path P is found such that the heavy region has total weight at most
two-thirds the total weight assigned to the nodes of G. It can be shown inductively
that P is a disconnecting path for G,, hence for G*, and has at most 2k nodes. Let
C be the set of nodes on P, A be the set of the nodes in the heavy region, and B
be V(G) (A [J C). It may be verified that A, B, and C satisfy the conditions for a
2k-separator.

THEOREM 5.2. A 2k-separator of an n-node k-outerplanar graph can be found in
O(n) time.

Proof. Consider the algorithm described above for finding a 2k-separator of a
k-outerplanar graph. Given the embedding G* using the data structure of [LT], the
layer numbers can be computed in O(n) time [B]. The triangulation can also be done
in O(n) time. The time to successively modify paths is as follows. Consider any path
P in the algorithm. The node v of highest layer number is identified at the time P is
formed. The nodes u and w can be identified in constant time.

If the layer number of w exceeds the layer number of at least one of v and u, then
P can then be modified and the weight of the heavy region determined in constant
time. The node of highest layer number on the resulting path is w. Charge this cost
to edge {v, w}, which is eliminated from the heavy region. Thus the total time for all
paths modified in this fashion is O(n).

Otherwise, we find P and determine as follows which of R and R2 is the heavy
region. Accumulate the weight of the two regions by alternately examining one node
from each region, stopping when one of the regions has been exhausted. To do this
efficiently, perform a depth-first search in each region in incremental fashion, i.e.,
search in one region until a node has been added to the depth-first search tree, and
then suspend the search in this region and resume it in the other region. Since the
graph is planar, the time for this is proportional to the size of the exhausted region.
Since the weight of the exhausted region is known, the weight of the other region can
be computed, and the heavy region determined. P is then reset appropriately. The
node of highest layer number on the resulting path is one of v, u, and w.

The time to thus modify P is proportional to the size of the exhausted region.
Charge this cost to the nodes in the region that is not the heavy region. This results
in constant charge per node. Since each of these nodes is charged at most once and
then eliminated, the total time for all pat.hs modified this way is O(n).

6. Computing the node names and routing information. In this section
we discuss how to generate the node names and determine the routing information
stored at each node. Our time bounds hold for any uniformly sparse and contractible
class of c-decomposable graphs such that any n-node graph from the class has an O(n)-
time c-separator algorithm. We call a class of graphs uniformly sparse and contractible
if, for any graph in the class, the number of edges in any subgraph is linear in the
number of nodes, and any contraction of the subgraph is also in the class. Examples
of uniformly sparse and contractible classes of c-decomposable graphs are the series-
parallel graphs and the k-outerplanar graphs, for k > 1 a constant. Linear-time
c-separator algorithms for these classes have been given in the previous section.
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The following theorem establishes the time needed to set up our routing schemes.
THEOREM 6.1. Let G be any n-node graph drawn from a uniformly sparse and

contractible class of c-decomposable graphs such that any n-node graph from the class
has an O(n)-time c-separator algorithm. The basic and enhanced routing schemes can
be implemented in G in O(cn(log n)2 + c4n log n) time. If G is also planar, then the
time is O(cn(log n)3/2 + c2n log n + c4n(log n)1/2). For series-parallel graphs G, the
setup time is O(n log n).

Proof. Let NC(n) be the total number of noncore nodes that are generated when
graph G with n (core) nodes is decomposed down to graphs with at most c core nodes,
where we include in NC(n) each occurrence of a node as a noncore node. We establish
an upper bound on NC(n), which will be useful later. We have,

NC(n) 0 forn<c

NC(n) < gC(an) + NC((1-a)n) + 2c4 forn>c,

where 1/3 _< a _< 2/3. The last line above follows from the fact that the two graphs
resulting from the separation of G have at most an and (1 a)n core nodes, respec-
tively, for some a, 1/3 < a < 2/3. By Lemma 2.2, the augmentation introduces fewer
than ca noncore nodes into each of these graphs, which contributes a total of at most
2c4 to NC(n).

An induction on n shows that NC(n) < max{0, 2c3n- 2c4} for all n > 0. Thus
gC(n) is O(c3n).

We first analyze the setup time for the basic scheme. The time for doing the
decomposition and naming is as follows. Let G be any level graph in the decom-
position, > 0. Let G have l core nodes and m noncore nodes, for a total of n
nodes. Note that G will be in the same class as G. The time to separate G, if nec-
essary, is O(n). The time to augment the two graphs resulting from the separation
of G is dominated by the cost of computing at most c shortest path trees, one rooted
at each separator node of G. This takes time O(cn log n), which is O(cn log n),
using the algorithm from [J]. The other operations, including the contraction, take
O(n) time. The time to name the level nodes from the core of G is O(c). Thus
the time to handle G is O(cn log n), which is O(c(l + m)log n). The total time is
obtained by summing over all level graphs and then summing over all levels i. Thus
the total time is O(al levels al leve igraphs C c(l + m) log n), which is

O(all levels i(cn log n / c log n -al level graphs Gw mw))
This follows, since the cores of the different level graphs are disjoint, so that

-a eve graphs a l is O(n).
Since

all levels iall level graphs a m is NC(n),
and since there are O(log n) levels, the total time is O(cn(log n)2 + c4n log n).

Next, routing information is set up at the nodes. Let v be a level node from the
core of level graph G. The next_nodev(.) information is determined as follows. A
shortest path tree rooted at v is constructed in G. Let u be any node in the core of
G, and let y be the the child of v on the path from v to u in the tree. If the edge
{v, y} belongs to G, then next_nodev(u) is set equal to y. If {v, y} does not belong
to G, then it must be the result of contracting a maximal path in G, with interior
nodes of degree two, during some augmentation. In this case, next_nodev(U) is set
equal to the name of the neighbor of v on this path. This neighbor information can
be maintained easily during the augmentations. Furthermore, whenever v is included
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in the shortest path tree rooted at a real ancestor w of v for some level less than i,
next_nodev(w) is set equal to the name of the parent of v in the tree, with contracted
edges handled as before. During this computation, p(v, w) is also determined for later
llse.

The time to construct the shortest path tree for v is O(n log n). Thus the
time to construct the shortest path trees for all level nodes from the core of G is

O(cn log n), which is O(cn log n). The total time is obtained by summing over all
level graphs and then summing over all levels i. By a previous argument, this is

+
The closest ancestors are determined next. Let j 0, 1, 2,... in turn and for each

j let j + 1, j + 2,... in turn. For each level node v, the closest ancestor for each
level j is determined as follows. Let a be any ancestor of v for level j. If v and a are
related, then p(v, a) is known from the next_nodev(a) computation done previously.
If v and a are unrelated, then p(v, a) can be computed by minimizing p(v, a’) + p(a’, a)
over all ancestors a’ of v and a for level j’- 1, where j’

_
j is the separating level for

v and a. Since j’- 1 < j, the distances p(v, a) and p(a’, a) p(a, a’) will have been
computed already. If 5 is found to be the closest ancestor of v for level j, then the
name 5 is stored in ancestorv (j ).

The above process also yields real_ancestor(v, a) when v and a are unrelated. Let
a be the ancestor of v and a for level j- 1 that minimizes p(v, a’) + p(a, a). If a
is a real ancestor of v and a for some level, then real_ancestor(v, a) is a. Otherwise,
real_ancestor(v, a) is just real_ancestor(v, a), and the latter will already be available,
since j- 1 < j, Thus, corresponding to 5, the name real_ancestor(v, 5) is stored in
surrogatev(5) if 5 is a pseudo-ancestor of v for level j. Otherwise, 5 itself is stored
in surrogatev().

The time to compute p(v, a) for unrelated nodes v and a is O(c). Thus the time for
all such nodes a among the ancestors of v for level j is O(c2). Once the distances from
v to all its ancestors for level j are known, the closest ancestor and the corresponding
surrogate can be found in O(c) time. Thus the time for closest ancestor and surrogate
computations for all levels at v is O(c2 log n), hence O(c2n log n) at all nodes.

The milestone information can be set up as follows. Let v be any level node from
the core of level graph G. Let u be a core node of G, and thus related to v, and
suppose that w next_nodev(u) and u are unrelated. Let j be the separating level
for w and u, and y the ancestor of u and w for level j that minimizes p(w, y)+ p(y, u).
Then milestones(u) is just real_ancestor(w, y), which, by the previous discussion,
will be known already. If next_nodeu(V) and v are unrelated, then milestoneu(v) can
be set up simultaneously at u.

The time to set up milestonev(u) is O(c) for each node u in the core of G, and
hence O(cl) for all u in the core of G. Since there are O(c) level nodes from the
core of G, the milestones at all these nodes can be set up in O(c21) time. The total
time to set up milestone information at all level nodes in the decomposition, which
is obtained by summing over all level graphs G, is O(c2n). Thus the total time,
obtained by summing over all levels i, is O(c2n log n).

It follows that the total setup time for the basic scheme is O(cn(log n)2 +cdn log n).
For planar graphs, the faster algorithm from IF] may be used in lieu of the algorithm
from [J] for determining shortest paths. This leads to a setup time of O(cn(log n)3/2 +
c2nlog n + cdn(log n)1/2). For series-parallel graphs, a setup time of O(nlog n) can
be achieved, using a result from [HT] which allows single-source shortest paths to be
computed in O(n) time.
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The analysis for the enhanced scheme is as follows. The time for doing the decom-
position and naming, and for setting up shortest paths information, milestones, and
surrogates, is as before. The time to encode the additional information into the name
of a level node v is as follows. A lexicographic ordering of all the nodes, based on the
names assigned from the decomposition, can be generated in O(n log n) time using a
radix sort. A lexicographic ordering of the ancestors of v for any level j < i, which
number at most c, can be inferred from the full lexicographic ordering in O(clog c)
time, by sorting the positions of these ancestors in the full ordering. Since the dis-
tances from v to the ancestors are known, the distance ordering can be generated
and the corresponding position information encoded into v’s name in O(c log c) time.
Furthermore, given a, the information about the relative magnitudes of distances can
be determined in O(c) time, by scanning in increasing order the distances of v from its
ancestors for level j. This information can then be encoded in v’s name in O(c log c)
time. Thus, the time per level for v is O(clog c), hence O(c log c log n) for all levels.
Taken over all nodes, this is O((c log c)n log n).

Thus the overall setup time for the enhanced scheme is O(cn(log n)2 + c4n log n).
It is O(cn(log n)3/2 + c2n log n + c4n(log n) 1/2) for planar networks, and O(n log n) for
series-parallel networks.
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[FJ1]

IFJ2]

[HI
[HT]

[KK]

[LT]

[M]

[PC]

[SK]

[VTL]

[vLT1]

[vLT2]

REFERENCES

B. S. BAKER, Approximation algorithms for NP-complete problems on planar graphs, in
Proc. 24th Annual IEEE Symposium on Foundations of Computer Science, Tucson,
AZ, October 1983, pp. 265-273.

R. J. DUFFIN, Topology of series-parallel networks, J. Math. Appl., 10 (1965), pp. 303-318.
G. N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs, with applica-

tions, SIAM J. Comput., 16 (1987), pp. 1004-1022.
G. N. FREDERICKSON AND R. JANARDAN, Designing networks with compact routing

tables, Algorithmica, 3 (1988), pp. 171-190.
------, Efficient message routing in planar networks, SIAM J. Comput., 18 (1989), pp. 843-

857.
F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
R. HASSIN AND A. TAMIR, Efficient algorithms for optimization and selection on series-

parallel graphs, SIAM J. Algebraic Discrete Methods, 7 (1986), pp. 379-389.
D. B. JOHNSON, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Com-

put. Mach., 24 (1977), pp. 1-13.
L. KLEINROCK AND F. KAMOUN, Hierarchical routing for large networks performance

evaluation and optimization, Comput. Networks, ISDN Systems, 1 (1977), pp. 155-174.
R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl.

Math., 36 (1979), pp. 177-189.
G. MILLER, Finding small simple cycle separators for 2-connected planar graphs, J. Com-

put. System Sci., 32 (1986), pp. 265-279.
D. PELEG AND E. UPFAL, A trade-off between space and efficiency for routing tables, J.

Assoc. Comput. Mach., 36 (1989), pp. 510-530.
N. SANTORO AND a. KHATIB, Labelling and implicit routing in networks, Comput. J., 28

(1985), pp. 5-8.
J. VALDES, R. E. TARJAN, AND E. L. LAWLER, The recognition of series-parallel digraphs,

SIAM J. Comput., 11 (1982), pp. 298-313.
J. VAN LEEUWEN AND R. B. TAN, Computer networks with compact routing tables, in

The Book of L, G. Rozenberg and A. Salomaa, eds., Springer-Verlag, Berlin, New York,
1986, pp. 259-273.
, Interval routing, Comput. J., 30 (1987), pp. 298-307.



SIAM J. COMPUT.
Vol. 19, No. 1, pp. 182-204, February 1990

() 1990 Society for Industrial and Applied Mathematics
012

FEASIBLE REAL FUNCTIONS AND ARITHMETIC CIRCUITS*

H. JAMES HOOVERf

Abstract. The connection between computable analysis and computational complexity is in-
vestigated by asking what it means to feasibly compute a real function. A new class of arithmetic
circuits, called feasible-size-magnitude, is introduced and used to show a feasible version of the
Weierstrass approximation theorem. That is, a real function is feasible if and only if it can be sup-
approximated by a division-free uniform family of feasible-size-magnitude arithmetic circuits over R.
This result involves a counter-intuitive simulation of Boolean circuits by arithmetic ones. It also has
implications for algebraic complexity theory.

Key words, feasible analysis, arithmetic circuit complexity, computable analysis
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0. Introduction. Suppose that x is a real number, and that f is a continuous
function over the real interval (-oc, +oc). What does it mean to compute x, to
compute f(x) for any x, and to do so efficiently or feasibly?

The computability aspect of this question originates with Turing [Tu36],[Tu37],
with further work by Grzegorczyk [Gr57] and Shepherdson [$h76] among many others.
The notions of feasible real number and feasible real function are more recent, being
established by Ko and Friedman in [KF82]. They define a real number x to be feasible
if an approximation to x of error _< 2-n can be computed in time n(1). Similarly, a
real function f is feasible over the fixed interval [0, 1] if an approximation to f(x) of
error <_ 2-n can be computed in time n(1) relative to the cost of computing approx-
imations to x. In other words, a real function is a reduction of each approximation
of f(x) to a set of oracle calls delivering approximations to the input x. Thus, real
numbers are computed by Turing machines, while functions are computed by oracle
Turing machines.

From a classical real analysis perspective, it is sufficient to study only the functions
defined on the interval [0, 1]. However this is not the case if one adds complexity
considerations. In [Ho87] we began a systematic study of analysis in the more general
case, beginning with real numbers, progressing to functions, and then considering
operators. This paper contains some of the results of this program:

First we extend the notion of feasible function to the interval (-, +oc) by
making the complexity of the function f depend on both the desired accuracy of
approximation and the length of the interval over which it is computed. The structure
of the oracle machine computation in the case of continuous functions is such that,
although one can make many oracle calls, only two are actually needed. This allows us
to give equivalent definitions of feasible real functions in terms of the simpler Boolean
circuit model without oracles.

Both the oracle machine and Boolean circuit models are unstructured in the
sense that they are permitted to inspect the bits of their inputs and to modify their
behaviour accordingly. This is not quite how mathematicians compute functions. Ap-
proximation theorists use more structured ways--such as power series, polynomials,
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and rational functions--which are essentially oblivious to the actual values of their
inputs. We show that there is common ground between these two approaches.

To capture the notion of structured computations, we introduce a new class of
arithmetic circuits, called feasible-size-magnitude, which are of polynomial size and in
which internal gate values have only polynomial length magnitudes. This new model
is more like what an approximation theorist would consider a legitimate computation.

Although one might think that the unstructured model is more powerful than
the structured one, our main result is that they are equivalent. That is, a real function

f is feasible on an oracle Turing machine if and only if it can be approximated by a
uniform family of feasible-size-magnitude arithmetic circuits. In fact, the approximat-
ing family is inverse-free and thus simply computes a polynomial--a kind of feasible
Weierstrass approximation theorem.

An interesting consequence of the preceding result is that an analogue of
Strassen’s [Str73] division removal result also holds for feasible-size-magnitude arith-
metic circuits. Specifically, any feasible-size-magnitude circuit family can be approx-
imated by an inverse-free feasible-size-magnitude circuit family. This is despite the
fact that such circuit families can have exponential degree and do not necessarily
compute polynomials--two conditions under which Strassen’s technique fails.

Although these results are in the domain of real analysis, they have algebraic
applications. We show that given a feasible-size-magnitude circuit family computing
a polynomial, it is in general impossible to produce a feasible-size-magnitude circuit
family that computes the indefinite integral of that polynomial unless P #P. This
partly addresses an open problem posed by Kaltofen in [Ka87].

We also extend these notions to feasible space and give corresponding results
for oracle machine space versus arithmetic circuit depth.

We assume that the reader is familiar with the usual basic material of compu-
tational complexity, Turing machines, uniform Boolean and arithmetic circuits, and
real analysis.

1. Feasible reals. Since most real numbers cannot be represented as finite strings
of digits, any notion of computing a real number must involve approximation.

DEFINITION 1.1. Let x be a real number. The notation (Xln, for n _> 0, stands
for any rational number such that Ix- (x/n <_ 2-n. We say that (Xln is an nth
approximation to x, and that a sequence { (X}n } of such approximations represents x.

Often, one wishes to perform arithmetic on approximations. For example, suppose
one wants an nth approximation to x + y. What approximations to x and y are
sufficient? Equivalently, suppose one has a representation of x and y, what is a

representation of x + y?
PROPOSITION 1.2. Let x and y be real numbers represented by

Also suppose that L >_ 0 and M >_ 0 are integers such that 2-n

_
Ixl

_
2M and

lYl <- 2M. Then:
1. x+y can be represented by the sequence with terms (x+y}n =- (X}n+I +(Yln+"
2. xy can be represented by {Xy}n (X}n+M+2(Y}n+M+2.
3. x- can be represented by Ix-lln (XI-3L.
The natural notion of feasibility for real numbers is that computing an n-bit

approximation to x should only require time n().
DEFINITION 1.3. A real number x is a feasible real if there is a Turing machine

that, on input of a natural number n, outputs IXln in time n().
The results that follow depend in a detailed way on how we encode rational

numbers and sequences of approximations. To simplify the exposition we will restrict
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our rationals to those that can be encoded in fixed-point binary notation, and restrict
our representations so that every nth approximation to x has exactly n bits to the
right of the binary point. This does not affect the class of reals and real functions
that we wish to compute--although this requires some proof. (See [Ho87].)

DEFINITION 1.4. Let be a natural number, s an integer, and bo,..., bz E {0, 1}.
2-b We say that Is, l, b0,’" bt]Consider the rational x where x (2b0 1) 28 z=l

is a range s length fixed-point binary encoding of x. Note that b0 plays the role of a

sign bit.
DEFINITION 1.5. Let s be a fixed integer, and x a real in [-28, 28]. We say that a

sequence of approximations { (Xln } is a range s fixed-point representation ofx if every
(xln is encoded as a range s length fixed-point binary encoding with s + n.

Thus we compute a real x by computing a sequence {(x)n} of approximations,
each term having essentially one more bit of precision than the preceding one.

2. Feasible real functions. The original work of Ko and Friedman [KF82] de-
fines the class of feasible real functions in terms of oracle Turing machines.

DEFINITION 2.1. An oracle machine M on sequence w is a multitape Turing
machine with input and output tapes and with two other distinguished tapes. One
tape, called the oracle index tape, is write only. The other, called the oracle result
tape, is read only. When a natural number n is written on the oracle index tape the
string (win may be read from the oracle result tape. Such an operation is termed
oracle call. The time complexity of M is the usual one for Turing machines, with the
cost of each oracle call being the length of n and

Oracle machines are the most powerful of all the reasonable deterministic models
for computing real functions. In the most general case, to compute an approxima-
tion {f(x)ln we let the machine make any number of oracle calls to obtain various
approximations to x, and perform arbitrary amounts of computation between calls.
In general, every computable function is continuous on its domain [Gr57]. We are
interested in those functions whose domain is the entire real line.

DEFINITION 2.2. Oracle Turing machine M computes a continuous real function

f on the interval (-, +) if for each integer s >_ 0, for each real x E [-28, 28],
and for every oracle sequence { {X}n } that is a range s fixed-point representation of x,
machine M, on input n >_ 0, outputs

What should our notion of feasibility be for real functions? We must use a weaker
notion than do Ko and Friedman. They require that one function t(n) --n() work
for all input sequences {{x/,}, so that M on input n outputs (f(X)ln in time t(n). This
stronger notion can be used only when the length of the string of bits encoding IXln
that result from an oracle call of n is independent of x--such as when the sequence
represents reals only in [0, 1]. If one wishes to compute functions over (-, +) as
we do, we must accommodate arbitrary reals, and so the length of (Xln will increase
as the real it represents increases. In this case, no fixed time bound t will cover all
inputs. The solution is to make the notion of feasibility also sensitive to the magnitude
of the input argument.

DEFINITION 2.3. Real function f is feasible if there is an oracle machine M
computing f such that for every real x, on input of oracle sequence { (Xln } of range s
representing x, oracle machine M on input n outputs (f(x)ln in time n()s().

Under this definition of feasibility, most of the usual mathematical functions such
as min, max, x/r, sin, and cos and their inverses are feasible real functions. The
exponential function ex is not however, because its magnitude grows too quickly as a
function of x. But the restricted version emin{x’a}, for any fixed a, is feasible.
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It is an instructive exercise to pick a function and show that it is feasible. For
example, this function is feasible:

if x e (-1, 1)
otherwise

It is also illuminating to think about why 1Ix is not feasible. (But the function
1/max{Ixl,a} is feasible for fixed nonzero a.)

In the most general setting, oracle Turing machines seem to be necessary for
computing real functions. But when resource bounds are applied to the computations
a simpler model will suffice, and one does not need the full power of the oracle model.
This is because oracles that represent reals have a special property--oracle call
contains essentially all the information provided by oracle calls (x/0 to (x}i-1. In any
computation with a given n and s, the machine can make oracle calls with index at
most n(1)s(). So for each particular oracle, one call to get (x/0 will determine s
(by just counting the bits in (x}0), and then one call with index n(1)s() can be
used for all the other calls made by the machine. Thus the oracle machine need only
make two oracle calls to compute an approximation to f(x). The net effect is that we
do not require the oracle mechanism at all and instead can express the computation in
terms of Turing machines that take as input a single approximation of x. For further
details see [Ho87].

This observation lets us describe the computation of feasible functions in terms
of the more natural model of uniform Boolean circuits. There are many notions of
uniformity (see [BCH86],[Bo77]). For our purposes, a circuit family {% } is uniform
if a description of member % can be produced by a Turing machine using space
O(log size(’)’n)).

The idea is to define a uniform circuit family {% } that over the interval [-2’, 2n]
computes an approximation (f(X)}n to f(x). Since we only want to approximate f
we need not have x exactly, and since the interval of approximation is closed, with the
function f continuous, there will be some upper bound on how accurately we need to
approximate x. There will also be an upper bound on the magnitude of f itself over
the interval [-2n, 2hi. Both of these upper bounds are functions of n, and are called
the modulus and range functions respectively. Their presence is a crucial part of the
definition of the family {% } since each member circuit can only have a fixed number
of input and output bits.

Each circuit % takes as input a range n length n + #(n) fixed-point binary encod-
ing of an approximation (x)(n). It delivers a range p(n) length p(n) + n fixed-point
binary encoding of an approximation (f(x)l, which we denote by %((x),(,)). The
situation is depicted in Fig. 2.1, where the bits b are from the fixed-point representa-
tion of (x)(n) and the bits c are from the fixed point representation of (f(x)l,. The
equivalence of the two notions of feasibility is summarised by the following theorem:

THEOREM 2.4. A real function f is feasible if and only if there is a uniform family
{%} of Boolean circuits with size(%)- n(); a modulus function # from naturals to
naturals; and a range function p from naturals to naturals such that when {x/t,(n) is
a range n length n + #(n) fixed-point binary encoding then %((x)t,(n) is a range p(n)
length p(n) + n fixed-point binary encoding, and If(x)- %((x)(n)) <_ 2-n. Note
that #(n) n(), p(n) n() and %({x)t,(n) e [--2P(n),2P(n)].

Proof. The proof simply uses the standard equivalences between Turing machines
and uniform Boolean circuit families as described in [Bo77]. [2]
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bo bnbn+l ...bn+t(n
\ !
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C0 ep(n)Cp(n)+l Cp(n)Wn

FIG. 2.1. Boolean circuit n approximating real function f.

The following lemma is justification for calling # a modulus function--as in mod-
ulus of continuity.

LEMMA 2.5. Let f be a feasible real function computed by Boolean circuit family
{/n } with modulus function # and range function p. Then for all x, x’ E [-2n, 2hi, if
Ix- x’

_
2-t(n) then If(x)- f(x’)l

_
2-n+l.

Proof. Since Ix- x’

_
2-(n) there exists a range n length n + #(n) fixed-

point binary number z such that Iz- x _< 2-t’(n) and Iz- x’ _< 2-’(’). That

is, z (2b0- 1)2n -=+(n)2_bi is an #(n)th approximation to both x and x’.
Thus /n(Z) is an nth approximation to both f(x) and f(x’), and so we have that
If(x)- f(x’)l < 2

These definitions can be extended in the obvious way to functions that have
multiple input and output arguments.

3. Feasible-size-magnitude arithmetic circuits. The preceding notions re-
flect an unstructured approach to computing real functions in the sense that what
happens inside the oracle Turing machine or Boolean circuit family is completely
arbitrary, generally involving decisions and possibly even strange bit computations.

The main problem with using an unstructured model to compute real functions
occurs when one wishes to supply a function to an operator. For example, suppose
that one wishes to compute f f(y)dy for arbitrary functions f. When f is presented
as a black-box that does some kind of obscure bit manipulations, the only way to
compute the integral is by taking samples of f and integrating numerically. But if

f is presented as a polynomial, then the structure in the description of f can be
exploited and f can be integrated symbolically.

One structured approach to computing a real function is to use uniform arith-
metic circuits to approximate the function. These circuits do nothing but arithmetic
operations, and are the natural extension to the traditional notions of approximation
by polynomials and rational functions [BB88]. On the surface, this approach appears
to be weaker than the unstructured one. In fact, the original motivation for using
arithmetic circuits was to get a computationally weaker model. What is rather sur-
prising is that the Boolean circuit model is equivalent to the arithmetic circuit model
when computing feasible real functions.

Uniform arithmetic circuits over the reals R are acyclic networks of gates where
--1the edges carry real numbers and the gates perform the operations +, -, ,

(inverse) or deliver rational constants. A computation by such a circuit is the obvious
one, with the proviso that the computation is undefined when any inverse gate has a
zero input. These circuits and their extensions to general fields have been extensively
investigated, [vzG87], [vzGS86], and are one of the main models of parallel algebraic
complexity. The notion of uniformity can be made precise for these types of circuits,
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FIG. 3.1. Arithmetic circuit On approximating real function f.

but for our purposes the following informal definition will suffice:
DEFINITION 3.1. An arithmetic circuit family {an} is log-space uniform if a

description of the connection pattern, gate types, and values of the constant gates
(encoded in binary) for circuit an can be produced in space O(log n) on a deterministic
Turing machine.

Each arithmetic circuit computes a rational function over R. In general, a family
of arithmetic circuits {an} computes a sequence of rational functions and one can
ask about approximating a function f with such a sequence. It is important to note
that for many f no single rational function can approximate f within 2-n over the
entire interval (-(x, +c). For example, the function sin(x) has an infinite number of
zeros, so any rational function P(x)/Q(x) that is within 2-n, n _> 2, of sin(x) must
also have an infinite number of zeros, which implies that P(x) is either constant or
has infinite degree. So any approximating family of rational functions will require an
index that specifies the range over which the approximation works.

We use one index to indicate both the accuracy of approximation and the range
over which it applies. Each circuit an of the approximating family {an} for f takes
as input a real x E [-2n, 2hi, and computes a real output, denoted by an(x), which
approximates f(x). Pictorially we have Fig. 3.1, where we slightly abuse the notation
(f(x))n and allow it to denote real values, not just rational ones. Note that if x is
rational number, then an(x) will also be a rational number.

We can now define what it means to compute a real function with arithmetic
circuits.

DEFINITION 3.2. Let {an} be a uniform family of arithmetic circuits over R, and
let f be a real function. Suppose that for all n _> 0 circuit an satisfies the relation
that if x e [-2n, 2n] then If(x)-an(X)l 2-n. Then we say that the family {an} of
arithmetic circuits sup-approximates real function f.

What does it mean to do this feasibly? Algorithms in algebraic complexity theory
are often sensitive to the degree of the circuit, and so in order to maintain feasibility
one usually limits the degree of the function computed by an to n(1) (see [Va82]).
But there are functions, such as sin, that require exponential degree to approximate,
yet are feasible in the unstructured sense. Since we wish to compute such functions,
rather than limiting degree, we instead place a bound directly on the magnitude of
the rational numbers produced in the circuit. Note that a degree bound implies
magnitude bound so we are relaxing the usual constraint. Also note that magnitude
bounds make sense in the general algebraic setting only when there is some norm that
measures the field elements.

With the above considerations in mind we give the following definitions.
DEFINITION 3.3. Let {an} be an arithmetic circuit family over R, and let
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denote the output value of gate v of an on input x. The magnitude of circuit an,
denoted mag(cn) is the quantity

mag(an) max max lan(X)lvan xE[-2n,2n]

That is, mag(an) is the absolute value of the largest output from any gate of an on
any input x E [-2n, 2n].

DEFINITION 3.4. A family {an} of arithmetic circuits over R is feasible-size-
magnitude if size(an) n(1) and mag(an) 2n(1).

Again, these definitions can be extended in the obvious way to functions with
many input and output arguments.

4. Arithmetic feasibility implies Boolean feasibility. Suppose that a func-
tion f can be computed by a feasible-size-magnitude family {an} of arithmetic cir-
cuits. Is f feasible in the sense that it can be computed by a polynomial size Boolean
circuit?

How do we go from an arithmetic circuit that maps reals to reals to a Boolean
circuit that maps bits to bits? One approach to establishing such a result is to use
simulation. Suppose that we are given a description of a feasible-size-magnitude arith-
metic circuit family {Cn } that sup-approximates some function f. We can try and
construct a Boolean circuit family {Tn } such that 7n exactly simulates the computa-
tion of an on certain special values of input x. Then the family {Tn} would compute
f, and if the family were polynomial size, f would be feasible.

Assume that x is rational. Then we can simulate the computation of each
exactly using exact rational arithmetic. But an can have degree that is exponential
in n, so even for small magnitude rational x, the number of bits required to exactly
represent the output value of an grows exponentially. This results in exponential size
for 7n. So this direct simulation approach will not work.

However, {Cn } only approximates f, so we do not need to do an exact simulation.
Instead we can approximately simulate each circuit on an approximations to the input
x. The Boolean circuits doing the simulation will be polynomial size, provided that
we do not need more than a polynomial number of bits of precision in the simulation.
Thus we have the following theorem.

THEOREM 4.1. If a real function f can be sup-approximated by a uniform family
of feasible-size-magnitude arithmetic circuits then f is a feasible real function.

Proof. Let {an } be a feasible-size-magnitude uniform arithmetic circuit family
that sup-approximates f. Note that any approximation {a,(x)/k to an(x) is going to
be an approximation to f(x) over some interval and with some degree of accuracy.

Since the Boolean circuit 7n that computes approximation (f(x)ln to f(x) will
actually be an approximation to an approximation of f, it will not be simulating
but instead will simulate an+l over the interval [-2n,2n] by computing a (n + 1)th
approximation (an+l(X)ln+l. That this is sufficient is because

If(x)-
< 2-n-1 + 2-n-1 < 2-n

Boolean circuit 7n will simulate an+l on rational input x. (Recall that (f(X)n)
is by definition a rational number.) Since x is a rational, we could use a brute-force
approach and just compute the value of an+l (x) exactly, by computing the value of
each of the gates of an+l. The problem is that even though the output values do
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not grow too large, the total number of bits required to represent the values exactly
can grow exponentially with n. This would make the size of ’in nonpolynomial and
thus not feasible. To keep the simulation feasible, we must truncate the intermediate
results corresponding to gates of an+l.

Each truncation causes a loss of precision that depends on the type of opera-
tion and magnitude of the values involved. Since the circuit family is feasible-size-
magnitude, there is a function m(n) n() such that for x [-2n, 2n] the output
value of each gate in an has magnitude _< 2re(n). This, combined with the results of
Proposition 1.2 limit the loss of precision to at most 3m(n) bits per operation. Since
there are at most depth(an) gates along the path from the output gate to x, at each
gate at most 3m(n) more bits of precision are required of the inputs. So to compute
the output of an within error 2-k we need to have x within error 2-k-3m(n) depth(an).
In other words, to compute an approximation (an(X))k we need an approximation to
x of (X)k+p(n), where p(n) 3m(n)depth(an). Note that p(n) n().

Finally we can specify the Boolean circuit family {’in} that feasibly computes
f(x). Remember that ’in is computing (an+),+. The modulus function for the
family is #(n) =_ p(n + 1) + (n + 1), and the range function is p(n) =_ m(n + 1). Each
"In takes as input the bits of (x)t,(,) and simulates an+ gate-by-gate using fixed-point
binary arithmetic of range p(n) and length p(n) + #(n).

Since p(n), #(n), and size(an+) are all n(1), the size of ’in is also n(), and so
the family {’in } is feasible. Thus the function f is feasible as required.

OPEN PROBLEM 4.2. We must place a magnitude bound on the gate values in
order to simulate the circuit family in feasible time. If we just place a limit on the
magnitude of the output o.f the circuit and let the internal gates have arbitrarily large
values can we compute a larger class of functions?

5. Computing approximate binary representations. Before embarking on
the proof of the converse of Theorem 4.1 we will examine a situation in which arith-
metic circuits cannot possibly perform the same computations as Boolean ones. The
problem will be to take a real number x [-2n, 2n] and compute the bits of a range
n length k fixed-point binary representation of an (k- n)th approximation to x.

Although the partial solution to this problem is crucial to the next section, the
first time reader is urged to skip to the end of this section and examine just the
statement of Proposition 5.4.

Let x be a real such that x [-2, 2hi. We wish to compute bits b0,..-, bk such
that

k

X- (2b0 1)2n Z 2-ibi
i--1

The usual method of computing these bits involves performing mod operations or
making comparisons--neither of which is directly available to an arithmetic circuit as
a primitive operation. But let us suppose anyway that we have a comparison function
defined for all rational a by

1 ifx>_aCa(x) _=
0 otherwise

The following program computes a range n length k fixed-point binary (k- n)th
approximation to x:
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bo Co(x)
x - (2b0- 1)x
for i: 1..k

(x)
x +--- x- bi2n-i

end for

The bi resulting from this program represent a number (xlk_, that is an (k-n)th
approximation to x.

It is clear that Ca (x) is a discontinuous function and thus cannot be sup-approx-
imated by an arithmetic circuit. But it can be sup-approximated over a restricted
range by a feasible family of arithmetic circuits. So, rather than having an exact
Ca(x) let us assume one that makes errors and behaves as follows on x E [-2n, 2hi:

[1 2-P, 11
e [o, e-;]

[0,11

if x E [a + 2-p, 2’]
if x G [-2n, a 2-p]
if x (a- 2-p,a + 2-p)

We call such a function a (p, s) approximate comparison.
Consider the same program as above but using approximate comparisons:

--x (2<bo>p- 1)x
for l..k

(-yp ,n (x)
x x- (b>p2n-i

end for

For any x G [-2n, 2n] this program produces some "approximate" bits (bi>p
[0, 1]. We would like each (b}p to be a pth approximation to bit b of the fixed-point
binary approximation we compute in the first program--thus our choice of notation.
But this will only happen when each application of the approximate comparison func-
tion CPa’n is to an argument outside of the error-prone interval (a- 2-p, a + 2-P).
Under what circumstances will this happen?

Note that in the first program, where Ca(x) works exactly, for each integer d,
with -2k

_
d < 2k, the program computes the same binary representation for all

x (d2n-k, (d + 1)2n-k). That is, the interval [-2n, 2n] is divided into 2k+l intervals
of width 2n-k. In each interval, each real number is assigned the same binary repre-
sentation. In the case of approximate comparisons, it is clear that CPa’n(x) must not
be permitted to make big errors, and so in order to keep the intermediate values of
x away from the points prone to large errors x must initially be in the good interval
[d2n-k + 2-p, (d + 1)2-k 2-P]. At each step, when the comparison function makes
small errors it has the same effect as a small shift in the original value of x. As long
as x is not shifted out of its original interval, the (bilp will continue to approximate
a binary representation for the interval. (If it ever does leave the good interval then
the resulting (blip will be a mixture of the first bits of one binary representation and
the last bits of another, and so will not make sense.)

How much will x be shifted? Initially, when obtaining the sign bit (bolp, x can
be shifted by as much as

1(2bo 1)x- (2<bo>p 1)xl 21xllbo <bo>pl 2
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At each iteration, the shift introduced is _< 2n-i-p so the total shift for the entire
2n-i-p < 2n+2-pprogram is _< 2n+l-p -I- ik__.l

So to ensure that x is not shifted out of the good interval it began in, it is sufficient
that x initially be in the interval

[d2n-k + 2-p + 2n+2-p, (d + 1)2u-k 2-p 2n+2-p]

The length of this interval is 2n-k --2-p+I --2n+3-p and p must be chosen so that the
length is positive. Choosing p > k / 5 will work. We can use an even smaller interval
length, and this gives us the following lemma.

LEMMA 5.1. Letx e [-2n,2n]. Forp > k+5, iffor some integerd, -2k < d < 2

x [d2n-k + 2n+3-p, (d + 1)2n-k 2n+3-p]

then the (bo)p,..., (bk)p produced by the preceding program are pth approximations to
the bits b0,..., bk of a range n length k fixed-point binary representation of an (k-n)th
approximation to x.

The next question is whether there is an arithmetic circuit family that computes
CPa’n. This family must be feasible in p, n, and the length of a. The obvious approach
of using polynomial approximations will not work, for the required degree is expo-
nential in p and n. Fortunately, Newman [Ne64] shows how to approximate lxl to
within 3e-v using a degree n rational function. Using this result we can construct
a feasible-size-magnitude arithmetic circuit family {tn} that behaves like Ixl. This is
then used to obtain an approximate comparison function.

LEMMA 5.2. There is a feasible-size-magnitude arithmetic circuit family
such that if x E [-1, 1] then

lxl- 2--

Proof. See Appendix A.
Using the function t, we can construct another one that gives us the sign of its

argument, with some error. Define the approximate sign function Sp(x), for p > 0,
by

/22p+2(X -- 2-2p-LEMMA 5.3. The function Sp(X) has the following property:

[1 2-p, 11
Sp(X) e [-1,-1 + 2-P]

[-1, 11

if x e [2-P, 11
if x e [-1,-2-p]
if x e

Proof. First consider the case of x [-2-p, 2-p]. So

2p+2(x) -!- 2-2p-1 > I 1- 2-2p-2 A- 2-2p-1 > Ixl + 2-2p-2

and this gives Sp(x) [-1, 1].
Now suppose Ixl [2-v, 1]. Since

0 < b’2p+2(x) + 2-2p-1 _< Ixl + 2-2p-2 + 2-2p-1 <_ Ixl + 2-2P
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we have

1 1> > > 1-2-P
1 -- 2P2-2p 1 + 2-p

1 + ]x-[2-2p

and so ISp(X)l >_ 1 2-p. Observing that Sp(x) has the same sign as x establishes
the remaining properties of Sp. [:]

We can now define the (p, n) comparison functions in terms of Sp by:

1 + Sp+n(2-n(x- a))

It is easy to verify that it has the required properties, and that the circuits for pro-
ducing the (bi)p are feasible-size-magnitude in terms of p, n, and the length of a
fixed-point binary representation of a.

Thus we have the following proposition.
PROPOSITION 5.4. There exists a feasible-size-magnitude family of arithmetic cir-

cuits {n,k,p} with input x and outputs (bo)p,’", (bk)p such that when x e [-2n, 2hi,
k >_ n, and p >_ k + 5 then:

1. Each (bilp e [0, 1].
2. If for some integer d, --.2k

_
d < 2k, it is the case that

x E [d2n-k + 2n+3-p, (d + 1)2’-k 2+3.p]

then the (bo)p,..., (bk)p are pth approximations to the bits bo,’. ",bk of a range n
length k fixed-point binary representation of an (k- n)th approximation to x given by

k

(X)k-n =-- (2bo 1)2n E 2-ibi
i--1

3. The bi and (bi)p satisfy

k

(X)k- --(2(bo)p 1)2 E 2-i(bi)P
i--1

_
2n+2-P

Proof. For case 3. We have two cases to consider, b0 1 and b0 0. Suppose
bo 1. Then (bo)p e [1- 2-p, 1] and so (2(b0)p- 1) e [1- 2-p+1, 1]. So there is some
5 [0, 2-p+1] such that

(X)k-n (2(bo)p 1)2n k _ie

-(1- 5)2n rki: 2-i(bi)p_
2n Eik=l 2-i [bi <bi>p -[- ( -- 2n Ei=lk 2_i (2_p q_ 2_P+1) __( 2n+2-p

The case for b0 0 is similar. [:]

6. Boolean feasibility implies arithmetic feasibility. Suppose f is a feasi-
ble real function computed by a Boolean circuit family {%}. Since every continuous
function f can be approximated by rational functions, there must be some arith-
metic circuit family {an} that sup-approximates f. But is this family feasible-size-
magnitude? The problem is that the feasibility of f is given by the discrete Boolean



FEASIBLE REAL FUNCTIONS AND ARITHMETIC CIRCUITS 193

computations that {’n} performs to approximate f. Since we know almost nothing
else about f, to get a feasible family of arithmetic circuits sup-approximating f we
must refer to the original Boolean circuit. Taking advantage of the fact that f is
continuous gives us the following theorem.

THEOREM 6.1. If a real function f is feasible then f can be sup-approximated by
a uniform family of feasible-size-magnitude arithmetic circuits.

The proof of Theorem 6.1 is rather long, and so will be presented in stages. We
begin with the well-known observation that we can simulate a Boolean circuit by
an arithmetic circuit a with the same order of size and depth as -. Suppose that we
have available, as real numbers, the bits bo,..., bk that are input to a circuit ,. How
can we compute "’s oUtput bits co,’", cl by an arithmetic circuit?

LEMMA 6.2. Let " be a Boolean circuit with inputs b0,.’., bk and outputs co,’", el.
Then there exists an arithmetic circuit a over R, without .-1 gates, with inputs
o,"" ,[k and outputs o,"" ,t such that when the inputs i are restricted to be 0
or 1 the circuit a computes the same Boolean function as the circuit /. Furthermore,
size(a) O(size(.)) and depth(a) O(depth(,)).

Sketch of proof. Assume that is constructed using only NAND and 0, 1 gates.
Construct a as follows:

1. Associate each input bi and output c of with input and output of
2. Associate Boolean constant 0, 1 gates of- with rational constant gates 0, 1 of

a.
3. Associate a NAND gate of /computing -(u A v) with gates of a computing

1-uxv.
Without changing the size or depth by more than a constant factor, we can always

translate a Boolean circuit into one that just uses NAND gates and the constants 0,
1. Thus this argument works for any Boolean circuit.

Now suppose that we have an arithmetic circuit a that simulates Boolean circuit

". Circuit a computes a continuous function, in fact a polynomial, of its inputs. Thus
small errors in the value of the inputs should only create small errors in the values
of the outputs. So we should be able to simulate 7 even if the inputs to a are not
exactly 0 or 1.

LEMMA 6.3. Let a be the arithmetic circuit of Lernma 6.2. Suppose that the
inputs Di to a are restricted to lying in the interval [0, 1]. Then the output of every
gate in a is also restricted to [0, 1] and

lai(0, Dk) ai((D0)n+depth(c), (Dk)n+depth(c))l
_

2-n

where ai(Do, ...,Dk) denotes the value of output i of a on Do,...,Dk. That is, to
compute approximation (i)n it is sufficient to have available the approximations
(Dj) n-t-depth(c)

Sketch of proof. We have two inductions based on the depth of a. To show that
the output of every gate is [0, 1] observe that level d of a contains 0, 1 gates or a
gate computing 1- uv of some gates u, v from a previous level. Thus u, v [0, 1] and
so is w.

The second induction is backwards. At level d, to compute the approximate value
(W)n of gate w computing 1 -uv we need (U>n+l and (V>n+l. Thus to compute
we may need (j)n+depth(c). [-]

For all the arguments that follow, let real function f be computed by Boolean
circuit family {’n} with modulus function # and range function p. Circuit "n takes a
range n length n + #(n) fixed-point binary encoding of the rational (x),(n), with bits
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b0,’", bn+t,(n), and outputs a range p(n) length p(n) + n fixed-point binary encoding
of (f(x))n, with bits co,’", cp(n)+n.

The actual simulation of Boolean circuit 7n by an arithmetic circuit an is easy,
assuming that you can get the inputs. Our problem is that the Boolean circuit "n
wants the bits bo,..., bn+t(n) and all that we have available as input to an is the real
number x. Also, the output of the arithmetic circuit is supposed to be a single real
number, not a set of bits co,..., cp(,)+,.

Let us examine what "Yn is actually doing. The input bits bi represent a #(n)th
approximation to input x given by

(x)t,(n) (2b0- 1)2n 2-ibi
i--1

while the output bits ci represent an approximation to f(x) given by

()+n

i--1

Note that the latter expression can be computed exactly by a feasible-size-magnitude
arithmetic circuit.

Suppose that we had a means of taking any real number x E [-2n,2n] and
computing a range n length n + (n) fixed-point binary number that is a (n)th
approximation to x. Then we could use an arithmetic circuit to exactly compute n
on the input bits bi representing (x}(n), and get output bits ci representing (f(X))n.
These can then be decoded exactly into a real number that is an nth approximation
to f(x).

This is illustrated by the pseudoarithmetic circuit family {} of Fig. 6.1. Since
it exactly simulates the process of computing an approximation to f(x) using n, for
x [-2n,2n] circuit Cn satisfies ]f(x)- Cn(x)] 2-. We use the term "pseudo"
because this circuit cannot actually exist, yet it can be approximated.

This approach would work fine, were it not for the problem that the bits b are not
continuous functions of x, and so cannot possibly be computed by any arithmetic cir-
cuit. Instead, we will emulate the hypothetical circuit family {Ca } using, in part, the
approximate binary conversion circuit of Proposition 5.4, and construct an arithmetic
circuit family {An,q} that will approximate {Ca} for special subsets of the interval

PROPOSITION 6.4. Let feasible real function f be computed by Boolean circuit
family {n} with modulus function and range function p. There exists a feasible-
size-magnitude circuit family {An,q} such that, for all x e [-2n, 2hi, if

x e [d2-u(n) + 2-q, (d + 1)2-u(n) 2-q]

for some integer d, -2n+u(n) d < 2n+u(n), then

I(x)- 15

Proof. We model the circuit A,q after the idealized circuit of Fig. 6.1. Let.,.,. be the approximate binary conversion circuit of Proposition 5.4, and let an be
the arithmetic circuit of Lemma 6.2 that simulates . Construct An,q as in Fig. 6.2.
Next, we must specify the functions s(n) and r(m, q). We first choose s(n) so that
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Convert to a binary approximation

bo "bnbn+l "bn+.(n)
\ !

Simulate "n by an arithmetic circuit Cn

Co Cp(n)Cp(n)q-1 Cp(n)+n

\ !
p(n)+n

(2o 1)2o( y 2-i=-1

Cn(x)

FIG. 6.1. Pseudoarithmetic circuit Cn approximating f.

(,)+,

(2<co>(.)- 1)2(n) 2--i<Ci)s(n)
i--1

FIG. 6.2. Arithmetic circuit An, that almost approximates f.
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the error in the output of An,q introduced by approximating the ci .is _< 2-’.
Proposition 5.4 (3), we have that

By

p(n)+n p()+

(2C0- 1)2p(n) E 2-ici --(2(CO)s(n)- 1)2o(n) E 2--i(Ci}s(n)
i=1 i=1

_
2P(n)+2-s(n)

Defining s(n) n + p(n) + 2 is sufficient to ensure that the above quantity is _< 2-’.
The requirement that we need s(n)th approximations to the ci places a minimum

value on r(n,q). By Lemma 6.3, to get the (ci)s(n) we need (bi}r(n,q) such that
r(n, q)>_ s(n) + depth(an).

Applying Proposition 5.4 again, we have that circuit n,n+tt(n),r(n,q) delivers cor-
rect approximations to the b only when r(n, q) _> n + #(n) + 5 and for those x that
lie in the intervals

[d2-g(n) + 2n+3-r(n’q), (d 4- 1)2-g(n) 2n+3-r(n’q)]

for integer d, with -2n+t(n) _< d < 2n+t(n).
We want 2n+3-r(n’q) <_ 2-q and so r(n, q) >_ n + 3 + q is also required.
Combining these constraints on r(n, q), we define

r(n, q) =_ max { s(n) + depth(an)
n + (n) + 5
n+3+q

Note that depth(an) O(depth(9’n)), s(n) n(1), and r(n,q) n(1)q().
Thus the circuit An,q is of size n()q(), which is feasible.

Regardless of which value of x E [-2, 2n] is input to An,q, the approximations
(bi}(n,q) are always in [0, 1]. Thus the {ci}8(n) are also restricted to [0, 1], and so

IAn,q(X) I<_ 2p(n). Thus the circuit is also feasible-magnitude.
Finally, when x is in the interval

x (E [d2-t(n) 4- 2-q, (d 4- 1)2-t(n) 2-q]

the circuit An,q outputs an nth approximation to the output produced by ", on the
input approximation Ixl(n) given by the b. Since the output of "Yn is itself an nth
approximation to f(x)we have that f(x -An,q(x) _< 2-n+l. [-]

Now we have a problem. The circuit of Proposition 6.4 does not work for every
x, as it makes errors on some sub-intervals of [-2n, 2hi, and so we cannot use it by
itself to approximate f. Suppose that we had three different ways of computing f(x)
with the property that for any given x only one of the three made a significant error.
Then we could take majority, in an approximate sense, and get the correct value of
f(x). The following three lemmas give a way of taking this kind of majority.

LEMMA 6.5. Let x, y be arbitrary. Then

min{x, y}

max{x, y}

x + y -Ix yl
2

x + y + Ix- yl
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LEMMA 6.6. Let z be arbitrary, and let xi, for E {-1, 0, 1} be such that for at
least two values of we have Iz- xil <_ 2-n. Let y be given by

y x-1 -- xo -- Xl min{x_l,XO,Xl} max{x_l,XO, Xl}

Thn Iz- l < 2-.
LEMMA 6.7. Letze [-2s,28]. Letxi e [-2s, 28], for e {-1,0,1} be such that

for at least two values of i, ]z- xi] <_ 2-n-1. Then there is a feasible-size-magnitude
arithmetic circuit family {Tn,8} such that

Proof. Use the approximation for Ixl given in Appendix A. [-1

We now return to the problem of approximating f(x). By Lemma 2.5 we have
that for x,x’ [-2’, 2’] iflx-x’ <_ 2 -"(n) then If(x)-f(x’)l _< 2-n/x. Consider the
following situation for an interval [d2-,(), (d + 1)2-t()]. The shaded areas represent
regions where the conversion to binary circuit makes big errors.

2--q

d.2-() x-5 x x+5

V////A

(d + 1) 2

We wish to choose q and 5 such that, for any value of x, at least two of x, x- 5, x + 5
will be outside the shaded area, and so will produce good approximations to f(x).

LEMMA 6.8. Let q #(n) + 4 and 5 22-q. For any x [-2’, 2’], at least two
values of {-1, O, 1} satisfy

If(x)- A,q(X + iS)l <_ 2-+

Now we can take majority and obtain the following proposition.
PROPOSITION 6.9. Let feasible real function f be computed by Boolean circuit

family {’n } with modulus function # and range function p. There exists a feasible-size-
magnitude circuit family {flu} such that, for allx [-2n, 2n], f(x)--3n(X)l <_ 2-n.

Proof. Define the family by

n(X) Tn-t-l,l+p(n-t-2)(/nW2,q(X ), AnT2,q(X), An+2,q(X "Jr- ))

where we choose q #(n + 2) + 4 and 5 22-q. Then Tn+l is within 2-n-1 of An+2,q
which is within 2-n-1 of f. Thus fin is within 2-n of f. E]

This completes the proof of Theorem 6.1.

7. A feasible Weierstrass approximation theorem. Combining the results
of Theorems 4.1 and 6.1 we get the following theorem.

THEOREM 7.1. A real function f is feasible if and only if function f can be
sup-approximated by a uniform family of feasible-size-magnitude arithmetic circuits.

The Weierstrass approximation theorem states that every continuous function
can, over a closed interval, be approximated arbitrarily closely by polynomials. We
will show a feasible version of this theorem. That is, we will show that every feasible
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real function can be approximated by a family of polynomials generated by feasible-
size-magnitude circuits that do not contain any inverse gates.

Recall that Theorem 6.1 states that every feasible real function f can be sup-
approximated by a uniform family {a, } of feasible-size-magnitude arithmetic circuits.
This circuit family uses inverse gates in a very restricted manner. In particular, only
positive values ever appear as inputs to the gates. By replacing each inverse gate
with a subcircuit that performs Newton’s method we can approximate the inverse
that would be computed by the original gate. We thus obtain an inverse-free feasible-
size-magnitude circuit family {fin } that approximates {a, } and thus approximates f.
Since {/n} is inverse-free, each fin is a polynomial, and we get a feasible version of
the Weierstrass theorem.

THEOREM 7.2. A real function f is feasible if and only if function f can be sup-
approximated by a uniform family of inverse-free feasible-size-magnitude arithmetic
circuits.

Sketch of proof. Let f be computed by Boolean circuit family {’n}. Consider
the circuit family {an} of Theorem 7.1 that was derived from {’n}. We have for
x E [--2n, 2n] that If(x)- an(X)l <_ 2-n.

Now consider Theorem 4.1 in which we simulate an arithmetic circuit family by
a Boolean circuit family. This theorem is really just a backward error analysis of
each circuit, and it specifies how much internal accuracy is needed by the Boolean
circuit to simulate the arithmetic circuit to a given output accuracy. For feasible-size-
magnitude circuits, to compute (an(X))n we need only do all internal computations
to precision 2-n(1). In effect, this says that the arithmetic circuits can make small
errors at each gate and still compute a good approximation to f. So inverses need not
be computed exactly, and we can replace the gates by subcircuits that approximate
the inverse using the Newton iteration of Appendix B.

In the construction of an all inverses are of positive values. Also, because the
circuits are feasible-magnitude, the inputs to the inverse gate range between 2-n(1)

to 2n(1) in magnitude. Thus the circuit for the Newton iteration needs only do n(1)

steps. It is feasible-size-magnitude.
As a result of the replacement we get a new inverse-free, feasible-size-magnitude

circuit family {/n} with the property that lan(X)- n(X)l _< 2- for x E [-2n,2n].
Thus If(x)- n+(x)l _< 2- and we have the theorem. V]

One application of the general Weierstrass approximation theorem is to translate
the integration of arbitrary functions to the polynomial domain. Integration then
becomes a term-by-term operation on easy to manage polynomials. This occurs both
in classical functional analysis and in recursive analysis. But in our version, each
member of the circuit family {n } is a very compact representation of a polynomial
that may have degree greater than 2n, may have many nonzero coefficients, and
possibly have non-feasible-magnitude coefficients. Thus efficient integration requires
a more clever approach than just term-by-term evaluation.

OPEN PROBLEM 7.3. Precisely characterize the coefficients of the polynomials
computed in Theorem 7.2. We conjecture that the coefficients of fin are bounded by
2n(1)

In Problem 2 of Kaltofen [Ka87] it is asked if given a family of polynomials,
{Pn }, computed by polynomial-length straight-line programs whether in general the
anti-derivatives of the family can also be computed by polynomial-length straight-line
programs. Suppose that we restrict the problem further, and require that the polyno-
mials be generated by a feasible-size-magnitude circuit family {an}. In addition, we
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relax the condition that the anti-derivatives must be computed exactly. Is it possible
to approximate the anti-derivatives with a feasible-size-magnitude circuit family? The
following result indicates that this is unlikely.

THEOREM 7.4. There is a family {an} of inverse-free feasible-size-magnitude
arithmetic circuits such that the following are equivalent:

1. There is a family {/n} of feasible-size-magnitude arithmetic circuits such that,
for x e [-2n, 2n]

In other words, it seems unlikely that every polynomial generated by a feasible-
sie-magnitude circuit has an anti-derivative that can be generated by a feasible-sie-
magnitude circuit. So, even though approximation is easier than exact computation,
it is still not easy enough. The essence of this result (see [Pr84], [Ho87]) is that we
can encode satisfiability by a feasible real function that has peaks at each satisfying
assignment. Then we can use integration to detect and count peaks, and thus count
satisfying assignments.

It should be remarked that these results extend to multiple argument functions
in the obvious way, and also to functions and circuits over the complex numbers.

8. Other results. An important result in algebraic complexity theory is that
divisions do not help much when computing polynomials of small degree (see [StrTa],
[BGI-Ia], [KaaT]). That is, every circuit of sie s and degree d with divisions can
be transformed into an equivalent division-free circuit of sie s()d(1). As long
as the sie and degree of the circuits in a family are polynomial, one obtains an

equivalent division-free family of polynomial sie and depth. The basic idea of the
transformation is due to Strassen. Each operation is replaced by its formal power series
about some point. or example, replace 1/x with the power series 1/(1 (1 x))
1 + (1 x) + (1 x) + (1 x)a +.... Then all operations are carried out in the domain
of formal power series. Since the circuit computes a polynomial, the power series can
be truncated at the degree of the polynomial and a division-free circuit results.

Suppose we forget about computing real functions, and just look at uniform fami-
lies of feasible-sie-magnitude arithmetic circuits as a collection of different functions.
That is, in family {c,}, circuits ci and cj may be computing rational functions
that are very dissimilar in behaviour. Can we construct an inverse-free feasible-sie-
magnitude circuit family {,} such that ,,k is a kth approximation to c,?

We cannot use Strassen’s technique because our circuits can have exponential
degree and so the truncated power series does not have a polynomial number of
terms. But our notion of computation does not require us to compute exactly, and so
we need only compute approximations to 1/x. We still cannot use the power series for

1/x this time because it does not converge fast enough to get a good approximation.
What we can do is replace inversions by Newton’s method as we did for the

feasible Weierstrass approximation theorem. There is one slight catch--we need to
know the sign of the element we are inverting in order to get the correc starting value
for the iteration.

A non-log-space uniform method of doing this transformation is as follows. By
definition, no inverse gate of an arithmetic circuit is allowed to have an input of zero.

Also, the output of every gate is a continuous function of x. Thus we know that the
input to an inverse gate cannot change sign. If the circuit is feasible-magnitude, then
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the input to the inverse gate cannot get any smaller in magnitude than 2-n(1) This
means we can simulate the values of the gates in Cn on input x 0 and determine
the sign of the input to each inverse gate. Then we know whether to use a positive
or negative starting value for the iteration.

Although we can do this simulation in polynomial time, it is not clear how to
do it directly in log space and so preserve uniformity. The circuit resulting from the
polynomial time simulation is however P-uniform [BCH86].

To preserve log-space uniformity we must take a less direct route. The idea is to
use the same techniques as Theorem 4.1 to simulate each an by a family of Boolean
circuits {Yn,k} such that n,k kth approximates an. Then, apply the techniques of
Theorem 6.1 to simulate this Boolean family by an arithmetic family {n,k } such that
n,k will kth approximate an. This new family has only positive inputs to its inverse
gates. Finally, remove inverses from n,k using Newton’s method. All of the technical
details required are reasonable modifications of the proofs of Theorems 4.1 and 6.1,
mainly just adding the parameter k to the various internal functions.

Thus we get the following theorem.
THEOREM 8.1. Let {an} be a uniform family of feasible-size-magnitude arith-

metic circuits. Then there exists a uniform family {fln,k } of inverse-free feasible-size-
magnitude arithmetic circuits that, .for x e [-2n, 2HI, have lan(x) n,k(x)l <_ 2-k.

OPEN PROBLEM 8.2. 18 there a more direct way of transforming an to fin in log
space ?

OPEN PROBLEM 8.3. If we restrict the an to computing polynomials, can we
remove inverses and still compute the original polynomial exactly ?

Finally, in all of the preceding theorems, we can replace feasible-size-magnitude
by feasible-depth-magnitude (polynomial depth rather than size) to get analogous
results for depth and space. These other results will appear in a subsequent paper.

Appendix A. Circuits based on Newman’s theorem.
THEOREM A.1 (Newman). For n >_ 4 let

n--1

P() 1-I ( +
k-O

and

Then ]or x e [-1, 1]

R(x) xP(x) P(-x)
P() + P(-x)

lxl- R,(x)I < 3e-v

Proof. See [Ne64]. [:]
For fixed n, no arithmetic circuit can compute Rn since we cannot generate the

constant e-1/v exactly. But we should be able to use an approximation to this
instead and still obtain a function that behaves like R,.

One worry we have is that the denominator of R, might get too small and make
the output of the inverse gate too big, and thus the circuit would not have feasible-
magnitude. Fortunately this does not happen.

LEMMA A.2. For x E [-1, 1] and n > 4

IP,(x) + P,(-)I > 2-’’z-
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Proof. For x E [0, 1] we have

n--1

P.(x) > II e-/’m e-"("-)/:v >
k=O

In the proof in [Ne64] it is shown that for e-f _< x _< 1 we have IPn(-X)l <_
IPn(x)le-V. Thus for n > 1

IP, (x) + >- IP..(x)l- IP..(-x)l > IP,(x)l(1- e-v)
1 1
5 ip, (x) _>

e-,v/For -1 < x < -e-4-a a similar argument gives IPn(x) + Pn(--X)I >
For -e-v < x < e-v we have Pn(x) > 0 and so IPn(x) + Pn(-x)I >_ e-nf-a/2

-nv/2 2(nv/2)-iThus IPn(x) + Pn(--X)I >_ -e >_ 2- [
The next thing to do is find a suitable approximation to Pn.
LEMMA A.3. There is a feasible-size-magnitude arithmetic circuit family

such that for x E [-1, 1]

IP.(z) < 2--’

n--1Proof. We wish to compute (Pn(x))m for x e [-1, 1], where Pn(X) =- 1-Ik=o(X +
e-k/vrff). One way to do this is with a N [lg n] depth binary tree of multiplications.

k/f-aThe leaves of the tree are the terms (x + e- ). Each of the terms has magnitude
less than or equal to 2 and so IPn(x)l <_ 22N. The numbers computed at level of
the tree, with the root level 0 and the leaves level N- 1, have magnitude bounded
by 22N-. To get an mth approximation to the result at the root of the tree we apply
Proposition 1.2 and see that we need at worst an/th approximation to the leaves,
where _

m + 2N-1 + 2 + 2N-2 + 2 +... + 2N-N + 2 m + 2N + 2N 1

Thus to obtain (Pn(x))m it is sufficient to have approximations (X2C-e-k/V)M for
0 _< k < n, where M m + 2N + 2N 1. Note that M O(m + n). To get these, we
just need to take powers of the approximation (e-i/vr)M. This latter approximation
can be computed by taking at most M terms of the power series for e-1/v, using
approximation (1 /r)M instead of 1/v.

It is simple to verify that the resulting arithmetic circuit has a size of n()m0(1)

and a depth of O(lognm), and that all of the intermediate gate values are feasible-
magnitude. E]

With this we can construct a circuit that behaves essentially like the function Rn.
LEMMA A.4. There is a feasible-size-magnitude arithmetic circuit family {Un}

such that if x [-1, 1] then

lxl- < 2-"

Proof. Sketch. The circuit u will exactly compute the formula

x N,M(--X)) X (IZN,M(X) -}- IZN,M(--X)) 1)
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where M, N will be chosen so that ]lxl- n(X)l <_ 2-n for x e [--1, 1]. In effect, Pn
is an mth approximation to RN for some m. Since IPg(x) + PN(--x)l

_
2-gv-I

it is easy to see that to compute {Rg(X)}m it is sufficient to have approximations
{Pg(X)}m+4YVr+8. Thus one condition on M is that M _> m + 4Nv + 8.

Now

< I1 1- R (x)l + IR (x)-
< 3e-v/ + 2-m < 22-v + 2-m

and we want this to be < 2-" that is, m > n+land -2 > n+l We can
achieve this by setting N (n + 3) and M m + 4Nx/ + 8 n + 9 + 4(n + 3)3.

Now n is certainly feasible-size. We also must ensure that it is feasible-magnitude.
The only potential problem is the inverse gate. Since IPN(x) + PN(--x)I >_ 2-gv-I

as long as M > NV+ 3, then I t 2-gv-2N,M(X) "" N,M(--X)I and so the inverse

gate has magnitude _< 2yr+2, which is feasible. [:]

Appendix B. Newton’s method for computing inverses. The following
proposition gives a division-free iteration for computing x-1 using Newton’s method.

PROPOSITION B.1. Let x be a real such that 2-k < x < 2k. Let the sequence {y}
be defined by

yo 2-k
y+ y(2 xy) fori>_0

Then Ix-1
Proof.

iteration

yi[ <_ 2- for >_ 3k + lg(k + n).
Recall Newton’s method for finding a zero of a real function f via the

Yi+ Yi
f(Yi)
f’(Yi)

If we define f(y) =_ x2 -x/y then f(x-1) 0. Since f’(y) x/y2 we get the iteration

2yi xy y(2 xy)

Define the error 5 in y by 5 --x-1- y.
The iteration has two fixed points, y 0 and y x-. In order for the iteration

to converge to x- it is necessary that (2- xy) > 0. Note that if y ever becomes
negative or zero it will remain so. The next two lemmas show that the iteration will
converge to x- from below if Y0 begins at a value < x-1.

LEMMA B.2. If 0 < xyo < 1/2 then there is an > 0 such that the sequence {y}
has the property that

3
y <y+l for0_<i_<l

and

1
0 < xy < -1 < xyt < 1
2-

for 0 < <l
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3Proof. Note that yi+l yi(2 xyi) and so -Yi ( yi+l < 2yi. Thus the yi form a
monotone increasing sequence. Let be the index of the first term Yl in the sequence
for which xyl >_ 1/2. Since 0 < xyt_ < 1/2 we have xyt < x2yt_ < 1 and so

1/2 <_xyt <1.
LEMMA B.3. Let be such that 1/2 _< xyl < 1. Then the sequence of approxima-

tions {yt, yt+l,...} has the property that

1 < xyt+i < l fori>0

and

51+i

_
X--1 2--2

Proof. First note that

Yi+l xv ) (x x(x
(x- 5i)(1 + xSi) x- xS

and so 6i+i x6/2.
If 1/2 < xyi < 1 then -1 <-x yi ( x- and so 0 < 5i <_ -x- Thus 1/4x- <

Yi+l x-1 -x62i < x-1, which means that 3/4 < xyi+l < 1.

Since 5i+1 x6 a simple induction shows that 5+i x2’-5’. Now 0 < 5 _<
--1gX SO we get 5+i <_ x2*-ix-2 2-2* x 2 2.

Returning to the proof of the proposition, assume that 2-k < x < 2k. By choosing
Y0 2-k then either Lemma B.2 or B.3 applies. The worst case is when Lemma B.2
applies followed by Lemma B.3. When B.2 applies we have that

An upper bound on the first for which xyi

_
1/2 is given by the minimum for

which

xy > 2-ky > 2-k2-k(23-) > 1

That is -2k +/(lg 3 1) _> -1 or _> (2k 1)/(lg 3 1), which gives an upper bound
of < 3k. So at most 3k steps of the iteration are required before Lemma B.3 applies.

When it does, the sequence converges quadratically with 5t+i <_ x-12-2. Thus
to get 6t+i <_ 2-n requires at most steps where is the minimum such that 2k2-2
2-n. That is 2 _> k + n or at most lg(k + n) more steps of the iteration are required.

So Ix- YI <- 2-n for >_ 3k + lg(k / n) and we have the proposition.
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ERRATUM:
Generalized Selection and Ranking:

Sorted Matrices*

GREG N. FREDEI:tICKSONt AND DONALD B. JOHNSON$

The proof of Lemma 7 contains several arithmetic mistakes, which can be cor-
rected easily while still maintaining the basic form of the proof [SIAM J. Comput.,
13(1984), pp. 14-30]. We give a revised proof for this lemma.

LEMMA 7. Selection of a kth element in a sorted matrix X of dimension n m,
1 < m <_ n, requires time (h log(2k/h2)), where h min(v, m} and k <_ [nm/2.

Proof. If k < 13, then clearly the lemma holds. Thus we consider the case in
which k _> 13. We construct a basic "step-shaped" configuration as follows. If m 2,
an initial configuration will have k elements in column 1. A valid configuration may
be obtained by moving up to [k/2J elements into column 2. If m 3, an initial
configuration will have [2k/3J elements in column 1 and k/3 elements in column
2. This allows-moving.up to [k/3J elements from column 1 to column 3. If m 4,
an initial configuration will have k/2 elements in column 1 and [k/2J elements in
column 2. This allows moving up to [k/4J elements from column 2 to column 3. So,
for the cases m 2, m 3, and m 4, P (k) and log P (logk), which is
(hlog(2k/h2)).

For m _> 5, we have the following. Let a min{m, [v/J}, s [2k/a2J, and
b [k/a+(s/a)[a/2J(a+ [a/2] + 1)/2]. Note that s _> 1. The basic configuration has

b-s(i-1) elements in each column 1 [a/2J and a total of k-X"[a/2J(b-s(i--.i=1

1)) elements in columns [a/2J + 1,..., a, with each of the latter columns containing
no more than b- sial2] elements, and no more elements in column i than in column
i- 1. It is possible to move up to s elements from any column 1,..., [a/2J to
columns with index greater than [a/2J, while still observing the restrictions on each
of the latter columns, and this may be done independently for each of the first [a/2J
columns. Therefore P _> (s + 1) [a/2j and log P 2(h log(2k/h2)) as required.

We now verify that such configurations exist for all values of k, m, and n for
which 13 <_ k <_ [nm/2 andn_> m_> 5. It may be verified that s[a/2J <_ b<_ n.
From the definition of b, we have

which is equivalent to

b k/a + ( la)L 12J(a + F /22 + 1)/2

ab- sLa/2J(a + Fal2 + 1)/2 _> k

which is equivalent to

bLal2j -Lal2J(Lal2J / 1)12 + Fal21(b Lal2J)>

which is equivalent to

L/J
>

=1 =La/2J+

Received by the editors October 10, 1989; accepted for publication October 16, 1989.
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205



206 ERRATUM

From the above inequality it is clear that there is a valid configuration with the
minimum number of elements, b- si, in each column 1,..., [a/2J.

We next show the existence of a basic configuration, i.e., one that has b- s(i- 1)
elements in columns 1,..., [a/2J. Since m _> 5 and k _> 13, we have a >_ 5, which
implies that

8k < 3ak- 6k

Since a _< x/, this implies

4a2 < 3ak 6k

which is equivalent to

(2k/a2)(a / 6)/8 / 1

_
k/a

which, using the definition of s, implies

s(a + 6)/8 + 1 _< k/a

which is equivalent to

k/a + (l)(a18 + a14) + 1 <_ :la 1
which implies

kla + (./<’)L<U2J Fa12]12 + (s/a)L/2J/2 + 1 #/L</2J /2

which is equivalent to

kla + (sla)Lal2J(a + r/2] + 1)/2 + 1

_
klL12J + s(La/2J 1)/2

which, using the definition of b, implies

< klL121 + (L<I2J 1)12

which is equivalent to

bLal2J sLal2J(Lal2J 1)/2

which is equivalent to

L/J

Z (b- s(i- 1))

_
k.

i--1

Thus the required configurations always exist. [:]
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REVERSAL COMPLEXITY CLASSES
FOR ALTERNATING TURING MACHINES*

MIROSLAW KUTYLOWSKI’, MACIEJ LIKIEWICZ’, AND KRZYSZTOF LORY"

Abstract. Alternating Turing machines (ATMs) with bounded number of reversals are considered. It
is proved that the machines making fewer than log* n reversals can recognize only regular languages. On
the other hand, the class of languages that can be recognized by ATMs using log* n reversals is very wide.
The authors prove that above this limit even a slight increase ofthe number ofreversals leads to a considerably
larger class of languages. It is also proved that every T(n)-.time bounded ATM may be replaced by an
equivalent machine working in the same time and making no more than log* (T(n)) reversals.

Key words, alternation, reversal complexity, regular languages, computational complexity
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1. Introduction. Alternating Turing machines (ATMs) were introduced by
Chandra, Kozen, and Stockmeyer [4], and since then ATMs have been intensively
studied. In particular, many results on alternating time and space complexity have
been proved.

Along with the time and space complexity, the reversal complexity is an important
and widely used complexity measure. It was introduced by Hartmanis 11 and Fischer
[8], and then it was investigated for many classes of problems and different types of
computational devices, especially for pushdown and counter automata and for one-tape
Turing machines. Gurari and Ibarra [9] proved that deterministic multicounter
machines that make a constant number of reversals on counters cannot recognize any
nonregular unary language. It is not true for nondeterministic multipushdown machines
(Baker and Book [2]) or even for deterministic ones (Chrobak [5]). One-tape ATMs
with a constant number of reversals were considered by Likiewicz, Lory, and Piotr6w
[13]. They showed that such machines recognize only regular languages.

It is known that two-tape nondeterministic Turing machines making only one
reversal recognize all recursively enumerable languages (see, e.g., Baker and Book
[2]). So it is reasonable to assume that all considered reversal bounded Turing machines
are one-tape machines. Therefore we omit the subscript 1 (denoting the number of
tapes) in DREVI(...), NREVI(...), and AREV(...).

Different connections between reversal complexity and time and space com-
plexities have been found. It is well known that NSPACE (S(n)) NREV (S(n)) for
all S(n)>=n (Chytil [6]). The corresponding result for deterministic classes is
DSPACE (Pol S(n))--I,J k DREVk (Pol S(n)) for all S(n)>-n (Hong [12]). For alter-
nating machines we have ASPACE (S(n))c_ AREV (log* S(n)) for all S(n) > n (Lig-
kiewicz, Loryg, and Piotrdw [13]).

The next important question that was investigated for reversal complexity is a
hierarchy problem. It was proved by Hartmanis [11] that for one-tape deterministic
Turing machines with one-way input tape incrementing the number of reversals by
one leads to a strictly larger class. On the other hand, Fischer [8] proved that for
one-tape deterministic Turing machines DREV (R(n)) DREV (c. R(n)) for each

* Received by the editors August 11, 1986; accepted for publication (in revised form) December 19,
1988. This research was supported by the Polish government under program RP.I.09.

t Institute of Computer Science, University of Wroctaw, ul. Przesmyckiego 20, 51-151 Wroctaw, Poland.
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constant c. Chan [3] obtained some hierarchy results for multicounter machines. These
results were refined by Duri and Galil [7].

Our main results concern the hierarchy of AREV classes. First, we investigate
what is the lower bound for recognizing nonregular languages. Recall that

log* (n) =min {k: log (log... (log n) ...)< 1}.
ktimes

We show that if lim (log* n R(n)) +c, then AREV (R(n)) is included in the class
of regular languages (hence both are equal). This provides a striking characterization
of regular langUages, since it follows from [13] that all languages recognized by

2

2 2. -space bounded ATMs
ctimes

belong to AREV (log* n), where c is a constant. In the case of deterministic machines,
the corresponding lower bound for recognizing nonregular languages is equal to log n
(Hartmanis 10]), and in the case of nondeterministic machines it is log log n (compare
Chytil [6]).

The function log* n is a boundary above which a hierarchy theorem for AREV
classes holds. Namely, if a function R is reversal-constructible and lim (R n Z n ))
+o, then AREV (Z(n))AREV (R(n)). On the other hand, we prove that for each
machine the number of reversals can be decremented by a constant.

In the last section we deal with time-bounded ATMs. It is shown that
ATIMEk T(n)) ATIME-REV T(n), log* T(n)).

2. A lower bound for recognizing nonregular languages. For the sake of complete-
ness let us recall the definition of the AREV classes.

DEFINITION 2.1. (a) We say that an alternating machine M accepts a word w
making at most r reversals if there is an accepting computation tree for w such that
along each computation path, M makes no more than r reversals.

(b) We say that L AREV (R(n)) if there is a one-tape ATM, M, recognizing L,
such that for each we L the machine M accepts w making at most R(IwI) reversals.
Sometimes we say that M AREV (R(n)) to indicate that the machine M has the
properties stated above.

We commence with a simple observation.
DEFINITION 2.2. We say that M, a one-tape Turing machine, is normal ifM makes

reversals only at the ends of the previously used portion of the tape. That is between
each two reversals the head of M moves through all cells that have been visited so far.

LEMMA 2.3. For each machine M AREV (R(n)) there is an equivalent machine
M’ AREV (R(n)) that is normal. The same holds for NREV and DREV classes.

Sketch of the proof. M’ closely simulates M. During the simulation a portion of
the tape, which has been visited by M, is indicated by two end markers. The idea is
that if M makes a reversal between end markers then M’ interrupts the simulation,
leaves a special marker in the place where M makes the reversal, and without a reversal
moves until the end marker is found. Then M’ makes a reversal and moves to the
place where the special marker was left. Then M’ resumes the simulation of M. Clearly,
such described M’ makes the same number of reversals as M.

In the next lemma we use codes of ATMs. Each such code is a set of quintuples
characterizing a machine. If a machine uses s states, then the number of distinct
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quintuples does not exceed s2 multiplied by a constant depending on the alphabet
used by the machine. Hence if we encode states as numbers written in binary, then
the total length of the code is not greater than c. s2. log s, where c is a constant
depending on the alphabet.

Recall that for a, b N by a- b we mean max (0, a-b). In the next lemma we
give a method of reducing the number of reversals by a constant. Moreover, if a
machine M AREV (R(n)) is given then we not only find an equivalent machine
M’ AREV (R(n)-1), but we also indicate that a code of M’ can be easily derived
from a code of M. Let us describe how M’ is constructed. By Lemma 2.3 we may
assume that M is normal. Until the last two reversals M’ operates exactly as M. After
that, the head of M moves in one direction, makes a reversal, and then comes back.
The head of M’ cannot come back, hence sufficient information must be derived to
avoid the last reversal. The idea is similar to that of replacing a two-way finite automaton
by a one-way automaton. However, unlike in the case of finite automata, ATM can
change the content of the tape, so we are not able to decrement at once the number
of reversals by more than one.

LEMMA 2.4 (technical). There is a one-tape deterministic Turing machine P such
that for a given input word w, a code of a normal ATM M, the machine P computes a
code of a machine M’ such that

(1) M and M’ recognize the same language;
(2) M is normal;
(3) if M6AREV(R(n)), then M’AREV(R(n)- I); and
(4) if s and denote the number of states of M and M’, respectively, then

2+8s+2s. 2s.
Moreover, during the computation P uses no more space than needed to write a code

Proof First we describe the algorithm executed by M’. The simulation of M is
divided into the following stages:

Stage 1. M’ operates exactly as M unless an attempt is made to make a reversal.
Then M’ splits existentially into two machines that start the execution of Stage 2 and
Stage 3, respectively.

Stage 2. M’ makes a reversal exactly as M does. Then M’ returns to Stage 1.
Stage 3. Let w be a word written on the tape. Assume that the head of M ,.’s at

the left end of w (if M is at the right end of w, the algorithm is essentially the same).
M’ makes the reversal, as M does, and transforms into a one-way alternating automaton
F. The automaton F verifies whether M accepts w without more than one reversal.
Two activities are performed simultaneously by F: the first one is a direct simulation
of M while it moves to the right, the second one is getting information necessary to
avoid moving to the left.

Let us say more about F. Let Q be the set of states of M. Each state of F has the
form [pr, Z], where p Q and Z Q. Assume that w uav (a is a character) and M
has moved from the left end of w to the cell occupied by a. Assume that during this,
M has replaced u by u’. If M arrives at a in state p, then the corresponding state of
F is [pr, Z] where for q Q we have:

q Z <::> M can accept u’ making no moves to the right if started
in state q with the head at the right end of u’.

Of course when M makes the reversal at the right end of w, then F has only to consult
the current set Z to decide whether M will accept without further reversals. The major
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problem is how to update the set Z when M (and hence also F) moves to the right.
If M makes a stationary move, then Z remains unchanged. So assume that the head
of M moves to the right, leaving some b in place of a. Then Z is replaced by Z’,
which is generated as follows.

Let q Q. We start an execution of M in state q on a one-letter word b. We put
q Z’ if and only if there is a computation tree such that on each path:

(i) M makes only stationary moves and no more than one move to the left, and
(ii) M either leaves the cell occupied in the beginning by b in a state from Z, or

stops in the meantime in an accepting state.
It is clear that M’ fulfills the conditions (1)-(3). To verify the last one, we have

to write down all states of M’. Since M’ uses three stages of computation, there are
distinct states and quintuples connected with each stage.

1. States and quintuples corresponding to Stage 1. For each q Q we have two
corresponding states, ql, qr. During the simulation, the state qt will be used instead of
q while M moves to the left, and qr will be used while M moves to the right. Also,
if q is universal (existential), then ql, q are universal (existential), too. If q is an initial
state of M, then q is an initial state of M’.

Let C and C’ denote the sets of quintuples of M and M’, respectively. Then for
each q Q and each symbol a, the following quintuples belong to C’:

(q, a, q’, a’, l) for each q’, a’ such that (q, a, q’, a’, 1) C
(1 denotes a move to the right);

(qr, a, q, a", O) for each q", a" such that (q, a, q", a", O) C;

(qr, a, Rqr, a, 0) if there are p, b such that (q, a, p, b,-1) C;

(q, a, q, a’,-1) for each q’, a’ such that (q, a, q’, a’,-1) C;

(q, a, q’, a", O) for each q", a" such that (q, a, q", a", O) C;

ql, a, Rq,, a, O) if there are p, b such that (q, a, p, b, 1) C.

The states Rqr and Rqt are used in the situation when M makes a reversal. Both are
existential and cause exiting from Stage 1.

2. States and quintuples corresponding to Stage 2. For each q and a the following
quintuples belong to C’"

(Rqr, a, Pq,a,O) and (Rq,,a, Pq,,a,O);

(Pqr, a, q, a’,-1) for each q’, a’ such that (q, a, q’, a’,-1) C;

(Pq,, a, q, a", 1) for each q", a" such that (q, a, q", a", 1) C.

The states Pot and Pq, are universal (existential) if q is universal (existential). At first
look, it seems to be redundant to introduce the states Rq,, Rq, Pq,, Pq. However, Rq,,
Rqr must be existential because they enable nondeterministic transition to Stage 2 or
3. After this transition, a correct mode of M, universal or existential, must be regained.
The states Pq,, Pqr are used for this purpose. They cause an immediate return to Stage 1.

3. States and quintuples corresponding to Stage 3. The reversal of M’ and transfor-
mation into a one-way alternating automaton F are caused by the following quintuples
(for each q and a):

(Rq, a, Sq, a, O) and (Rq,, a, Sq,, a, O);

(Sq, a, ql, Beg (a’)], a’, 1) for each q’, a’ such that (q, a, q’, a’, 1) C;

(So,, a, [ qT, Beg (a") ], a", 1) for each q", a" such that (q, a, q", a", 1) C.



REVERSAL COMPLEXITY FOR ATMS 211

The states Sqr and Sq, are universal (existential) if q is universal (existential). Now
qi, Begr (a)] and qr, Beg, (a)] are the first examples of the states connected with the
machine F. As we have mentioned, each state of F has two components, the first one
is of the form ql, qr, the second one is a subset of Q. The mode (universal or existential)
of such a composed state is determined by the mode of q. Now let us say how the sets
Beg/(a), Beg (a) are determined. For q Q we have q Beg (a) if starting in state
q, the machine M can build an accepting tree over the one-letter word a. Moreover,
during this computation moves to the left are prohibited. The set Beg/(a) is defined
in the same way, but no move to the right is allowed. During one particular execution,
F can move only to the right or only to the left. There are separate sets of quintuples
corresponding to these two options. Since these sets differ inessentially, we describe
only one of them by assuming that F moves to the right.

For a symbol b and Z__. Q we define a set Nextr (b,Z)_ Q such that q
NexL (b, Z) if and only if there exists a subtree T of the full computation tree of the
machine M over the one-letter word b such that

(i) assuming that all states from Z are accepting (besides the regular accepting
states of M) T is an accepting tree,

(ii) q is the state in the root of T, and
(iii) on every path of T, either
(a) M makes only stationary moves and stops in a regular accepting state,

or
(b) after some number of stationary moves, M makes one move to the left and

enters a state from Z or a regular accepting state.
Now we are ready to list the quintuples of F. For each state q, Z Q, and symbol

a the following quintuples are quintuples of F.

([q, Z], a, [q’r, Nextr (a’, Z)], a’, 1) for each q’, a’ such that
(q,a,q’,a’,l)C;

([qr, Z], a, [q, Z], a", 0)

([ qr, Z], a, accept, a, O)

([ q, Z], a, accept, a, O)

([ qr, Z], a, reject, a, O)

for each q", a" such that (q, a, q", a", 0) C,

if q is accept,

if there are p’ and a’ such that
(q,a,p’,a’,-1)C and p’Z,

if there are p" and a" such that
(q, a, p", a",-1) C and p"C:Z.

The states accept and reject are final and accepting or rejecting, respectively.
The reader may check that M’ defined by the above quintuples works exactly

as it was described at the beginning of the proof. Moreover, it can be easily checked
that we have used 2+8s+2s-2 states for M’ if s denotes the number of states
of M.

The method of generating the quintuples of M’ is so simple that a code of M’
can be easily derived from a code of M by some deterministic machine, which uses
only the space needed for its input and the resulting code. [3

COROLLARY 2.5. AREV (R(n)) AREV (R(n) c) for all R and c N. Even more,
ifM is a normal machine andM ATIME-REV T(n), R(n)), then there is an equivalent
machine M’ ATIME-REV (T(n), R(n)- c).

Proof. In the proof of Lemma 2.4 for a given normal machine M AREV (R(n))
we have constructed M’ AREV (R(n)-1). It easily follows from the construction
that if M makes T(n) steps to accept, then M’ makes no more than T(n)+2R(n)
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steps to accept But R(n)<-T(n), so the result follows for c 1. To get the rest, a

straightforward induction can be applied. [2

THEOREM 2.6. For each language L AREV R n there is a constant c such that

2

L ASPACE (22.. ).
R(n)+c

Proof Let M be an ATM recognizing L and making at most R(n) reversals. We
have to define ATM G which simulates M and works within the tape bounds stated
in the theorem. Let w be a given input word. We describe how the machine G works.

Stage 1. G guesses existentially a number k such that k R(Iwl). G writes a code
of machine M on the work tape. Then using the algorithm from Lemma 2.4, G finds
codes of machines Mo M, M, M2,’’’, Mk equivalent to M of reversal complexity
R(n), R(n) 1, R(n) 2,. ., R(n) k, respectively.

Stage 2. G simulates Mk on the word w.
Now we check that the space used by G does not exceed the stated bound. By

Lemma 2.4 the space used for generating a code of Mk is not larger than the code
itself. In Stage 2 the machine Mk makes R(Iw[)-" k 0 reversals, so in fact Mk works
as an alternating finite automaton, and hence no additional space is required other
than a space needed to record a current state. So we have to find the number of states
of Mk. Suppose x is the number of states of M. Let /,(i) be the number of the states
of Mi. By Lemma 2.4 we have

r/,,(i+ 1)=2+8r/,,(i)+2r/,,(i) 2 n-(’), also rt,,(0)=x.

CLAIM. There is a constant c (depending on x) such that
2

2r/,(i) =< 22
i+ctimes

for all i. Hence also
2

/ ti

Proofofthe Claim. Without loss of generality we may assume that x _-> 5. We prove
the Claim by induction on i. Let c be such that

2 2.. _>- 2. x 2. r/x(0).
ctimes

Assume now that
2

2 2.. => 2. x(i).
c+ times

Then

2

22.. 22..(i) 2.(i)
c+ + times
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On the other hand, since r/x(i) _-> x _-> 5 we have

2. (2+8r/x(i) +2r/x(i) 2.’)) 2 n.’). 2. (2r/x(i) +2r/(i+ 1)=

=< 2".i). 2’zi).

So
2

2 2.. =>2r/x(i+ 1),
c+i +1 times

for inputs of the length n. So
2

G e ASPACE (2 2.. ).
R(n)+c

Remark. It is proved by Ligkiewicz, Loryg, and Piotr6w [13] that
ASPACE(S(n))_AREV(Iog*S(n)) for S(n)>=n. In a view of Theorem 2.6, the
function log* S(n) cannot be replaced by a smaller one. Indeed, let S(n)=>22". If
lim(log*S(n)-Z(n))=+m and ASPACE(S(n))c_AREV(Z(n)), then we would
have

2

ASPACE (S(n))_ AREV (Z(n))c_ ASPACE (2 2.. ),
Z(n)/T(n)

where T(n) is any function such that lim T(n)= +m. Then also
2

ASPACE (S(n)) ASPACE (22.. g ASPACE (log log log S(n))
log*S(n)-3_

U DTIME (Clglglgs(n)) DTIME (log S(n)).

If S is time-constructible, then DTIME (log S(n))DTIME (S(n))
_
ASPACE (S(n)).

Contradiction: For n <-S(n)<= 22" the Remark follows by Theorem 2.7.
As another corollary of Theorem 2.6, we obtain the lower bound for recognizing

nonregular languages.
TrtEOREM 2.7. Iflim (log* n-Z(n))=+c% then AREV (Z(n))_ Reg, where Reg

denotes the class of regular languages.
Before the proof of Theorem 2.7, notice that from the inclusion ASPACE ($(n))

_
AREV (log* S(n)) and Corollary 2.5 it follows that, for every constant c, the class

2

ASPACE (22..
times

is included in AREV (log* n). Hence AREV (log* n) is a very large class. However,
even minor decreasing of the function log* n leads to the class of regular languages.

as required. [3

Now by the Claim and the considerations that precede the Claim, it follows that
G uses the space of size

k + times
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Proof of Theorem 2.7. Suppose L AREV (Z(n)). By Theorem 2.6 there is a
constant c such that

2

L ASPACE (22.. ).
Z(n)+c

Since log* n-4> Z(n)+ c for almost all n, so

2

L ASPACE (22..
___
ASPACE (log log log log n).

log* n--4

It was proved by Alberts [1] that for each function S(n)= o (log log log n) the class
ASPACE (S(n)) contains only regular languages. Hence the theorem follows. 1-1

For the sake of completeness we now examine what is the lower reversal bound
for recognizing nonregular languages if we use deterministic and nondeterministic
machines. First we show that in the case of deterministic Turing machines this bound
is log n.

PROPOSITION 2.8. For each constant c the language L= {a"b"" n N} belongs to
DREV (log (n)/c). Hence DREV (log (n)/c)- Reg.

Proof. The following deterministic algorithm using log n reversals recognizes L.
Stage 1. The head moves to the right end of the input checking if it is of the form

anb ’.
Stage 2. The head changes its direction. While it moves through the word, it

erases half of the a’s and b’s still on the tape. Namely, the first a, the third a, the fifth
a... are erased and the first b, the third b, the fifth b... are erased. When the head
reaches the opposite end of the word, the following can be said.

(i) If there are no symbols left, then n m and the word should be accepted, and
(ii) If the last met a was not erased and the last b was erased, then m n and

the word should be rejected. This also holds if the last a was erased but b was not.
These cases are checked directly. If none of them holds, then the machine returns to
the beginning of Stage 2.

It is easy to see that log n reversals would suffice--So the language {anb" n N}
is in DREV(log n). Since DREV(R(n)) =DREV(c. R(n)) for all R and c N
(Fischer [8]), the proposition follows, l"1

PROPOSITIOW 2.9 (Hartmanis). DREV (o(log n))_ Reg.
Proof. Let M DREV (R(n)) for some function R(n)= o(log n). We show that

the language L recognized by M is regular. It follows from Lemma 2.3 that we may
assume that M is normal. Let be the number of states of M and c > log t. There
exists a constant no such that M makes no more than log (n)/c reversals for each word
from L of length n _-> no.

Let m > maxi=<o R(i). We now show that each word from L can be accepted by
at most m reversals. Assume the converse. Let x L be the shortest word that requires
m’ reversals for some m’> m. Of course, Ixl > no. Let us consider all crossing sequences
between symbols, of x. The total number of different crossing sequences does not exceed
tlglxl)/c--lxl’g’)/c <lxl. Therefore there are two different places in x that have the
same crossing sequences. Let x uvw (u, v, w-nonempty words) and the crossing
sequence between u and v is the same as that between v and w. It is clear that uw
and x are accepted by the same number of reversals. This is a contradiction, since
luwl < Ixl,
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We have shown that L DREV (m), but DREV (m) Reg by Theorem 2.7. [3
Now we show that in .the case of nondeterministic Turing machines the lower

bound for recognizing nonregular languages is log log n. The results are given in the
following two propositions.

PROPOSITION 2.10. Suppose S(n) o(log log n). Then NREV (S(n)) Reg.
Proof. Recall that for each function $(n), NREV (S(n))_ NSPACE (S(n)) [6].

So if S(n) o(log log n), then the result holds since NSPACE (S(n)) Reg (see Alberts
[1]). I-!

LEMMA 2.11. There exists constant d such that for all n, m N if n m, then
n m rood (p) for some prime p <-_ d. log (max (n, m)).

Proofi For x N we set

O(x)= lnp.
p-<-x

p prime

There exists a constant c such that O(x)->_ c. x (see Prachar [15]). From that we can
simply get

H p-_>x
p<=d. logx
p prime

for some constant d. Now let n > m. If m -= n (mod p) for all p _-< d. log n, then by the
Chinese Reminder Theorem

m-- n (mod H P).p_d. log
p prime

But

m,n< H p,
p<--d, log
p prime

so m n, a contradiction.
PROPOSITION 2.12. Let L {a"bm: n # m}. ThenL NREV (log log (n)/ c) foreach

c N. Hence NREV (log log (n)/c) Reg.
Proofi The following algorithm recognizes L.
Stage 1. The machine checks ifthe input word is ofthe form. a"b ". Simultaneously,

the machine nondeterministically puts some number of symbols # on the second track.
They are used to divide a"b into smaller blocks, say, a"b" wW2 WlUlU2 Igt,

where each wi is a subword of a" and each uj is a subword of
Stage 2. The machine accepts if the following conditions are checked true:
(i) ]w] ]WE[ IW,-ll lUll lU=I
(ii) Iw, lu, and Iw, I, lu,

Essentially the same algorithm as in Proposition 2.8 is used. The head moves several
times between the ends of the input word. During each round the head erases half of
the symbols from each block, namely, the first symbols, the third ones, and the fifth
ones .... The same procedure as in Proposition 2.8 is used to accept or reject. We
leave all remaining details to the reader.

Notice that the machine makes at most log (w)+ 1 reversals, where w is the length
of the longest block.

Now let a"b" L and p be the number given by the Claim. We may assume that
all blocks, except wl and u,, have the length p, and Iwl, lutl < p. Then n Iw, (mod p)
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and m lut] (mod p), so IWll ]utl. Hence the machine accepts anb and uses no more
than log p <-- log (d) + log log (max (n, m)) reversals to accept.

It is easy to check that NREV (S(n))= NREV (c. S(n)) for all S and c N. So
the proposition holds.

3. A hierarchy for reversal-bounded ATMs.
DEFINITION 3.1. A function f is alternating reversal-constructible if there is a

one-tape alternating machine M that recognizes the language Lf= {0nlYn)" n N}
using at most f(n) reversals.

Note that the class of alternating reversal-constructible functions is very wide.
For instance, it contains log*, log, all polynomials, exponential functions....
Moreover, for many f the language Ly can be recognized with no more than log* (n)
reversals.

PROPOSITION 3.2. Suppose f is alternating reversal-constructible. Then for some
constant c the function

2

9.2."
f(n)+c

is deterministic space-constructible.
Proof. Let f be alternating reversal-constructible. Slightly modifying the proof of

Theorem 2.6, we obtain that the language Ly is recognized by some ATM M’, that
accepts words On l f(n) within space

2

22
f(n)+c’

where c’ is a constant. Thus Ly is recognized also by some deterministic machine M"
that needs at most

2

22..
f( n)+c’+2

cells to accept words 0nlYn.
We can construct a deterministic machine M that for a given input 0 finds f(n)

and then marks
2

22
f(n)+c’+2

cells on the work tape. The number f(n) is found by the following algorithm.

:= 1; found := false;
repeat

k:=0; i:= i+l;
while k-<_i and not found do

if M" accepts 0nl k using cells then found := true else k := k + 1;
until found
Let c c’+ 2. It is easy to see that the number of cells needed by M to find f(n)

is bounded by
2

22.
f(n)+c
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Then the machine M in a simple manner marks
2

2 2.. cells.

f(n)+c

THEOREM 3.3. Suppose R and Z are functions such that
(i) lim (R(n)-Z(n))- +,
(ii) R(n)_->log* n,
(iii) R is alternating reversal-constructible.

Then AREV (Z(n))AREV (g(n)).
Proof By Theorem 2.6 we have

AREV (Z(n))
_
ASPACE (2 2.. ).

R(n)

It is easy to see that R(n)+3 is alternating reversal-constructible, so by Proposition
3.2 for some constant c >-3 the function

2

R(n)/c

is deterministic space-constructible. Hence we have

2 2

ASPACE (2 2.. ) DTIME (2 2.. )_ DSPACE (2 2.. )DSPACE (2 2..

R(n) R(n)+2 R(n)+2 R (n)+c

_AREV(R(n)+c).

So AREV (Z(n))AREV (R(n)+ c).
AREV (R(n)); hence, the result follows.

By Corollary 2.5 AREV (R (n) + c)

4. Reversal complexity of time-bounded ATMs. In this section we shall prove that
for ATMs the number of reversals can be reduced to some small number without loss
of,. time.

If w is a string of the numbers -1, 0, and 1, say w ala2 an {-1, 0, 1}*, then
w stands for al / a2 /’" / an. We prove the following technical proposition.
LEMMA 4.1. There is an alternating Turing machine M working in linear time and

making log* n reversals such thatfor given words w, u {-1, 0, 1}* the machine M checks
ifu=2w.

Proof We may assume that inputs are given on the first track of the tape. The
following recursive algorithm solves the problem.

For a given input word w if wl is small enough, then Y. w is determined directly
with no reversals. Otherwise, M executes the algorithm described below. Of course M
chooses existentially between these two options. We shall prove that the total number
of reversals made by M does not exceed log* Iwl- 1 and the time used is linear.

In the existential mode, M goes to the opposite side of w using tracks number 2,
3, 4, 5 to write certain sequences (see Fig. 1).

On the first track, w is left unchanged. On the second track, M puts the symbol
# several times to divide the word w into smaller blocks (the last block may contain
blanks from outside of w). Simultaneously, inside the ith block, on tracks number 3,
4, and 5, M writes binary numbers xi, yi, and zi, respectively. Let w denote the part
of w lying inside the ith block. The numbers written by M are to have the following
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1st track

2nd track

3rd track

4th track

5th track

W2

Y2

Z2

W

FIG.

Wt Wt

Xt Xt

Y,- Y,

Zt- Zt

properties.

(4.1) xi wi, y Z_l, z y + xi for all -< and

The point is that from these equalities it follows that

zi=E w, +E w+" "+E Wi"

Clearly such numbers xi, yi, z exist, and the only trouble that could arise is when the
blocks are too small. Then simply there is no room inside the blocks to write down
the numbers z. We avoid this if each block has the length at least log ]wl. We may
assume that each block has the length log

Now M has to check that the equalities (4.1) hold. M makes a reversal and splits
universally in two machines. The first one of them checks if z, u, the second one
moves through the word and for each creates universally the following machines:

(i) one checking if y z-l,

(ii) one checking if z yi + x, and
(iii) one checking if x Y. w.

The first machine makes log* lYI <log* Iw reversals and works in time ly, (compare
Lemma 3.1 from [13]). The second machine makes at most one reversal (it depends
on the direction from which the head has arrived) and works in time ]zi I. The third
machine executes the same algorithm but now for a word of the length log wl. By the
induction hypothesis this machine works in time O(log wl) and makes no more than
log* (log Iwl)- 1 reversals. Now we see that the total time used by M is linear. Also
the number of reversals does not exceed (log* (log Iwl) 1)+ 1 log*

Let us recall two useful algorithms from Ligkiewicz, Lory, and Piotr6w 13, Lem.
3.1].

LEMMA 4.2. Let a word x, a binary number m, and a symbol b be given. There are
ATMs M1 and M2 making at most log* Ixl reversals and working in time O(Ixl) such that

(i) M1 determines whether m > {xl, and
(ii) M2 checks whether the mth symbol ofx is b.
Now we are ready to prove the result we want. Recall that ATIMEk (T(n)) is the

class of languages recognizable by k-tape ATMs in time T(n). Similarly, ATIME-
REV (T(n), R(n)) denotes the class of languages that can be recognized by one-tape
ATMs that work in time T(n) and make at most R(n) reversals.

THEOREM 4.3. ATIMEk (T(n))
_
ATIME-REV T(n ), log* T(n)).

Proof. Paul, Prauss, and Reischuk [14] showed that ATIME(T(n))_
ATIME1 (T(n)), so we may consider exclusively one-tape machines. Let M be such
an ATM working in time T(n). Admittedly, M makes a large number of reversals, so
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we have to simulate M in some nonstraightforward way. The machine M’, defined
below, makes the simulation. The idea is to write a whole computation path. However,
the full configurations of M cannot be used for this purpose. Even recording whole
tape contents would require too much time. Roughly speaking, for each execution step
of M, the machine M’ puts on its tape the record [a, b, m], where

a is the symbol that the head of M reads,
b is a new symbol left by M in this place, and
m {-1, 0, 1} and denotes the move of M (-1 for the move to the left, 0 for

the stationary move, and 1 for the move to the right).
So after steps of the simulation the tape contains a word of the form x[al, bl, m]
[a2, b2, m2] [a,, b,, m,], where x denotes the input word. Using its states, M’
remembers the state of M. Now we describe the simulation in detail:

Stage O. First of all, M’ existentially marks the end of the tape that will be used.
Then it returns to the right end of x. If qo, the initial state of M, is existential, then
M’ goes to Stage 1.1. Otherwise, M’ goes to Stage 1.2. From now on qM denotes the
current state of M remembered by M’. Let 4 be the transition function of M.

Stage 1.1. M’ chooses existentially a symbol a and (p, b, m) 4(q, a). Then
M’ changes q to p and puts the record [a, b, m] on the tape. If p is existential, then
M returns to the beginning of Stage 1.1. If p is universal, then M’ splits universally
and goes to Stages 1.2 and 2. If p is an accepting state, then M goes to Stage 2. If p
is a rejecting state, then M’ rejects.

Stage 1.2. M’ chooses universally a symbol a and (p, b, rn) (qM, a) (we may
assume that for each universal q, 4(q, a) is nonempty). Then M’ changes q4 to p
and.puts the record a, b, m] on the tape. Ifp is existential, then M’ creates existentially
two machines going to Stages 1.1 and 3 (respectively). If p is an accepting state, then
M’ accepts. If p is a rejecting state, then M’ goes to Stage 3. Now we have to consider
the only remaining possibility when p is universal. It may happen that M’ has reached
the end of the tape marked during Stage 0. It means that the guessed computation
path is not a path from an accepting computation tree. If at least one guess was not
correct, we have to accept. If all guesses were correct, then it means that we are
describing a valid computation path of M, and this path is longer than the allowed
time of computation. Then we have to reject. So in either case, machine M’ goes to
Stage 3. In the cases when the endmarker was not reached and p was universal, M’
returns to the beginning of Stage 1.2.

Let us put a few lines of informal comments before the next stages. In Stages 1.1
and 1.2 the records of the form [a, b, m] are guessed. Of course, nothing prevents M’
from incorrectly guessing a. In Stages 2 and 3 we check the guesses. The checking is
initiated at the moment when M changes its mode. Consider such a situation. Then
the tape of M’ contains some x[al, bl, ml][a:z b, m2] [at, bt, mt]. Let ql," ", qt
be the states of M corresponding to the above records. Let us assume that qt is
existential and q is the last universal state. In fact, it would suffice to check that
as+, , at are correct, since al, a have been checked previously. The algorithm
presented here checks all of them but this is nonessential. Since M’ has to check that
the guesses are correct and that the further simulation leads to acceptance, M’ splits
universally into two machines, one making further simulation and one checking the
guesses. Now let us assume that qt is universal and so are q+,..., q,_. Since
as+l," ", at were written in universal mode, we must accept when either one of the
guesses was not correct or the further simulation leads to acceptance. Hence in this
case M’ must split existentially.
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Stage 2. M’ enters this stage with some x[a, b, m][a2, b2, m2] [a,, b,, m,]
on the tape. The machine now checks if the symbols al, a2,"’, a, were guessed
correctly. For this purpose M’ splits universally and checks the correctness of each
aj. Let C be the cell at which the head of M stands during the round corresponding
to [aj, bj, rn]. To determine whether aj was guessed correctly, M’ either has to find
the symbol left in C during the previous visit of M in C or to determine that C has
never been visited so far. In the last case an appropriate symbol from the input tape
should be found. The decision of which case occurs is made existentially and M’ enters
Substage 2.1 or 2.2. Notice that to determine a position of the head of M, say, at the

i--1round corresponding to [ai, hi, m], it suffices to compute =1 m. At this round the
j--1head of M stands at C if and only if 1= rn =0.

Substage 2.1 (the case when C has not been visited so far). M’ generates uni-
versally j- 1 machines, each of them checking for some <j that j-=i ml # O. Then M

j--1guesses rn Yl= ml and splits universally. The first machine checks if rn was guessed
correctly and uses the algorithm from Lemma 4.1 for this purpose. The second machine
again splits, but now existentially, and checks one of the following:

m < 1 and aj is a blank,

orm>[x[ and aj is a blank,

or 1 =< rn-< Ix[ and the mth symbol of x is a.
Notice that in each of these cases we can use an algorithm working in time O(Ixl) and
making no more than log* Ix[ reversals. The first case is straightforward. For the two
remaining ones we can use the algorithms from Lemma 4.2.

Substage 2.2. Using the algorithm from Lemma 4.1, the machine M’ checks that
there is i<=j such that

bi=aj ^ m=0 ^ Vs i<s<j:=> mtO
l=i l=s

Stage 3. This stage is the same as Stage 2 except that we have to accept when the
guesses were not correct and to reject otherwise.

It is quite easy to verify that M’ recognizes the same language as M. To show
that M’ satisfies needed complexity requirements, consider one computation path in
an accepting tree. Before M’ leaves Stage 1 no reversal is made. The time used also
does not exceed T(n). After leaving Stage 1 the machine executes either Stage 2 or
Stage 3. Moreover, in either case it is made only once. Now consider what happens
in Stage 2 or Stage 3. Most costly is the use of the algorithms from Lemma 4.1 and
Lemma 4.2, but the words to which we apply these algorithms have lengths no greater
than T(n), so the time used is no greater than O(T(n)) and no more than log* T(n)
reversals are made.

By Corollary 2.5 the total number of reversals made in Stage 2 can be reduced to
log* T(n)- 1 with no increase of time. Hence the total number of reversals does not
exceed log* T(n) and the theorem follows.

By careful examination of the proof of Theorem 4.3, one can see that during the
simulation the number of alternations does not increase significantly. If A(n) is the
number of alternations made by M, then M’ makes no more than A(n)+log* T(n)
alternations. To get the same result for multitape ATMs, we must generalize slightly
the presented proof (or re-prove the theorem of Paul, Prauss, and Reischuk). Simply
each record would contain a triple of the form [a, b, m] separately for each tape of
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M. Finally, we have the result, which can be abbreviated as

ATIME-ALTk T(n), A(n)) ATIME-REV-ALT
(T(n), log* T(n),A(n)+log* T(n)).
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THE COMPLEXITY OF FILE TRANSFER SCHEDULING
WITH FORWARDING*

JENNIFER WHITEHEAD?

Abstract. The file transfer scheduling problem was introduced and studied by Coffman, Garey, Johnson,
and LaPaugh. This paper extends their model to include forwarding when no direct link exists between
nodes. Several special cases of the problem, which were previously solvable by polynomial time algorithms,
are shown to be NP-complete when forwarding is included. Other special cases are shown to continue to
have polynomial time solutions in the forwarding model. All results assume the existence of a central
controller.

Key words, network, scheduling, complexity
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1. Introduction. The problem of scheduling file transfers between nodes in a
network to minimize overall finishing time was first introduced by Coffman et al. [4].
The model introduced in [4] represents an instance of the problem as a weighted
undirected multigraph G =( V, E), called a file transfer graph. The vertices of G
correspond to the nodes of the network that are communication centers capable of
communicating directly with every other center. Each vertex v in V is labeled with a
positive integer ce(v) that represents the number of communication modules at the
node corresponding to v. It is assumed that each communication module may be used
as a transmitter and as a receiver. Each edge e E is labeled with a positive integer
w(e) that represents the amount of time needed for the transfer of a file corresponding
to e (the file is transmitted between the nodes corresponding to the end vertices of e).
The authors assume, in addition, that once the transfer of a file begins it continues
without interruption. They show the general problem to be NP-complete but obtain
polynomial time algorithms for various restrictions on the graph G. In the case where
G is an odd cycle, Hakimi and Choi [2] obtain a polynomial time algorithm for the
file transfer problem.

The question is raised in [4] as to whether their model extends to include the
possibility of forwarding. If a communication center u wishes to send a file to v but
no direct link exists, the file must be sent to one or more intermediaries who will then
send it on to v. In this paper we study the file transfer problem when this type of
forwarding is included.

The model we use is as described above, except that only files which may be sent
directly between the centers that are its endpoints are represented with an undirected
edge. Files that are sent to an intermediary will be represented as a directed edge
indicating the direction of the transmission. The file may take several steps to reach
its destination. We shall assume throughout the paper that schedules are constructed
by a single central controller that, given the file transfer graph, constructs an overall
schedule in advance. The forwarding will be assumed to be nonadaptive fixed routing
where the destination rigidly determines the route. The route will be represented as a
path of directed edges in the file transfer graph.

In 2 of this paper we consider the case where all transmissions between nodes
are assumed to be of a fixed length (i.e., w(e)= 1). In contrast to the results in [4] we

* Received by the editors July 27, 1987" accepted for publication June 22, 1989.
t Department of Computer Science, Queens College, Flushing, New York, 11367.
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find that when forwarding is included the problem is now NP-complete even for
bipartite graphs where the degree r(v) of each node is bounded. For trees the problem
is NP-complete for r(v) unbounded, but we obtain a polynomial time algorithm when
r(v) is bounded, assuming only single edges between nodes. The case of paths and
cycles is examined separately, and a better time bound of O(IEI) is obtained for the
optimal algorithm.

in 3 we assume the length of file transmissions may vary. In this instance, for
paths and even cycles, the problem becomes NP-complete if multiple edges are allowed.
For single edges we obtain an O(IEI. log IEI) optimal algorithm in the case G is a
path or cycle.

The file transfer problem has been studied by other authors who have assumed
that the schedule may be interrupted (see [9], [10], [1]). If interruptions are allowed
and transmitting and receiving modules are distinct, the problem has been studied in
[3] and [8].

2. Complexity results for equal edge lengths.
2.1. Bipartite graphs. We shall show that the file transfer problem with forwarding

(FTPF) is NP-complete even for bipartite graphs with fixed maximum degree 3 at
each node. We shall reduce the restricted timetable problem to FTPF. For convenience
we state the timetable problem (TT) here (see [5]):

Given are: a set H of hours of the week, a set T of teachers, a set C of classes,
a subset A(c) of available hours for each class c C, a subset A(t)_ H of available
hours for each teacher t T, and for each pair (t, c) T C a number R(t, c)Z- of
required teaching hours. The problem is to determine if there is a timetable for
completing all tasks, i.e., a function f: T C H- {0, 1}, where f(t, c, h) 1 means
teacher teaches class c during period h such that:

(1) f(t,c,h)=l only if h A( t) fq A( c);
(2) For each h H and T there is at most one c C for each f(t, c, h) 1;
(3) For each hH and cC there is at most one tTforwhichf(t,c,h)=l;
(4) For each pair (t, c) T C there are exactly R(t, c) values of h for which

f(t, c, h)= 1.
A teacher is called a k-teacher if IA(t)l-&. The teacher is tight if IA(t)l-

Ycc R(t, c), i.e., they must teach whenever they are available.
The restricted timetable problem (RTT) is that problem subject to the following

restrictions:
(1) IHI- 3;
(2) A(c)= H for all c C (each class is always available);
(3) Each teacher is either a tight 2-teacher or a tight 3-teacher;
(4) R(t, c)=0 or 1 for each t T, c C.
THEOREM 1. File Transfer Scheduling withforwarding is NP-completefor G bipartite,

maximum degree 3 at each node, all edge lengths equal, no multiple edges and ce v 1

for all v V.
Proof Given an instance I of RTT we construct a file transfer bipartite graph as

follows. The nodes of G consist of a set T of teacher nodes one for each teacher, a
set C of class nodes one for each class. In addition, we have sets D and S of nodes
constructed by examining the restrictions on each teacher. Edges will go between D U C
and S [_J T nodes only. Thus G is bipartite.

If teacher is required to teach class c, draw an edge from to c (representing a
file transfer between and c with no forwarding). Since each teacher is a 2- or 3-teacher,
the maximum degree 3 at each node. We add D and S nodes as follows for tight
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2-teachers. Assume H-(tl, t2, t3). Suppose teacher is a tight 2-teacher available
during {tl, t2). Then add nodes s S and dl, d2 D as shown in Fig. l(a). Thus for
deadline d --3, is available only during the first two time intervals.

If is a tight 2-teacher available during (tl, t3) add nodes, sl, s, s3, s4, dl, d:, d3
as shown in Fig. l(b). For deadline d- 3, d: will be available to transmit to only
during the second time interval. Thus is available for other transmissions only during
the first and last intervals.

dl d2

(a)

sl s2 s3 s4

el
e2

dl d2 d3

(b)

sl

dl d2

FIG. 1. File transfer graph from the RTT problem.

(c)

If is a tight 2-teacher available during {tz, t3} add nodes, Sl, dl, d2 as shown in
Fig. l(c). Thus is available only during the second and last intervals for deadline 3.

We note that in all cases the maximum degree at any node is equal to 3. No extra
construction is needed for tight 3-teachers since there are already 3 edges incident at
such a node.

It therefore follows that G can be scheduled with deadline equal to 3 if and only
if there is a valid timetable for L Since the reduction may be performed in polynomial
time, and the file transfer problem with forwarding is clearly in NP, the result follows.

2.2. Trees. We show that if there is no restriction on the maximum degree at a
node and G is a tree, then FTPF is NP-complete. To do this we will reduce a scheduling
problem in which tasks have discrete starting times to FTPF. We begin by introducing
the scheduling problem and showing its NP-completeness.

Suppose we are given a set - { T1, T,. ., T,} of n tasks and a single processor.
Each task T requires execution time ’i and has a set of possible starting times
s(T) {si, s,..., Sik}. Such scheduling problems for independent tasks have been
studied in [12] and [13]. Suppose now that for each task T either ’i 1 or ’i 2 and
Ti is a chain b < b2 of unit length tasks b, b. We wish to know whether - can be
scheduled on a single processor such that all precedences are satisfied. Proposition
states that the problem is NP-complete. We note that this result is of independent
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interest since when no chains exist and all tasks have unit execution time the problem
may be solved in polynomial time [13]. Adapting the notation of [12], we call our
problem DSTP--discrete starting times with precedences problem.

PROPOSITION 1. The DSTP problem is NP-complete in the strong sense even when
all tasks have either unit execution time, and no precedence constraints, or are a chain
bi < bi2 of two unit execution time tasks.

Proof The DSTP problem is clearly in NP. We now reduce the 3-satisfiability
problem (3SAT) to DSTP. We state 3SAT as follows (see I-6, LO2, p. 259]).

Given a set U of p Boolean variables and a collection C of q clauses over U
such that each clause in C has exactly three literals, is there a truth assignment for U
such that each clause in C has at least one true literal?

Since 3-SAT remains strongly NP-complete even if for each u U at most five
clauses in C contain u or a [6, LO2, p. 259], we may assume this restriction holds.

Given any instance (U, C) of 3-SAT (with the above restriction) we construct a
corresponding instance -(U, C) of the DSTP problem.

Let U={ul,u2,...,up} and C={cl,c2,...,Cq} and let U={a,t72,...,up}.
Let xt, Xl2 and x3 be the (distinct) literals in clause ct.

For each u U, 1-< i<=p, we construct Pi unit execution time tasks uj, j
{1, 2, , q}, where p is the number of times u or ai occurs in C. By the assumption
above, 1-<_ Pi-<-5. For each let 0 be a map

0,’{1,... ,p}-{1, 2,...,q}

defined as fl(1)= r where c is the first clause of C in which ui occurs, otherwise the
first clause of C in which t] occurs.

If pi> 1, then 0(2),..., 0(p) are defined similarly, except only previously
unassigned numbers (and clauses) are considered. Hence uo,), , uio,j) correspond
to clauses COl(i),’’" Coi(j in which u occurs and UiOi(j+l),’’" l,,liOi(Pi correspond to
clauses coi(j+l),... Coi(pi) in which fi occurs for 1-<j <p-<5.

We now create unit execution time tasks ao,)," ", aio,(p,) and form the following
chains"

ao,(j) < Uio,(j) for j odd, or

blio,(j) < aioi(j) for j even 1 <=j <= Pi.

In addition we create p unit tasks dio,(1)’"dio,(p,). The set of possible starting
times for each of the tasks created are defined as follows"

20( 1) + ,20( 1) + 7 +j if j is odd,
$( ao(j))

20(i- 1) + 7 +j, 20(i- 1) + 18+-} if j is even,

s(uo,() {20(i 1) + 2 +j, 20(i 1) + 12 +j}.

We will write for each task T, s(T) to denote the first possible starting time and
s(T) to denote the second, i.e., s(T) < s(T). The start times for the do,( depend on
whether the literal is negated or nonnegated in Co,(. We consider the following possible
cases. In each case +" for j p is defined by j + 1 1.

(1) u Coi(j) U COi(j+1)

{Sl(Uioi(j)), sl(aio,(j+l))} ifj is even,
s(d,o,))

t{s2(uio,j)), s2(aio,j+))} ifj is odd.
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(2) gl E COl(j), ffl COi(.j+l)

{ S1 bliOi (j S2 gliO (j+ }
s(dioi(j)

{S2(blioi(j)), Sl(blioi(j+l))}

(3) i Coi(j), i Coi(j+l

s(dioi(j) { {S2(iOi(j+l))’ S2( io(j))}
{Sl(Hioi(j+l)), Sl(aioi(j))}

(4) i Coi(j), Hi Coi(j+l

s(dioi(j) {Sl(aiOi(j+l) )’
{Sl(aiOi(j)), S2(aiOi(j+l))}

ifj is even,
ifj is odd.

ifj is even,
ifj is odd.

ifj is even,
ifj is odd.

We now show how the scheduling of the lioi(j) will be interpreted as the truth
value of ui. If ui Co,j) then schedule Uio,j) at Sz(Uio,)) ifj is odd, else at sl(uio/)) for
j even. If ti Co,j) then schdu!e Uio,) at sl for j odd, else at s2 for j even.

This scheduling is consistent, i.e., scheduling any of the tasks Uio,) as above
according to a true value of ui implies the other tasks are scheduled according to a
true value of ui. The details are given in Lemma A1 (of the Appendix).

Finally, we have q clause tasks el, 1 <-l <-q, with unit execution times and three
start times, one for each literal in el. We show how to construct the first start time; the
construction for the next two start times is similar.

Suppose U e or l Cl" then Oi(j) for some j, 1 <=j <= Pi. We define

S2(glil ifj is even,
SI(CI)

Sl(Uil) ifj is odd.

Hence c may be scheduled during {20i, 20i + 19}, the part of the schedule corre-
sponding to ui, if and only if u, is scheduled according to ui is true and ui el, or Uil
is scheduled according to ti is true and ti cl.

We claim (U, C) has a solution if and only if 3-(U, C) has a solution. Suppose
that (U, C) has a solution. Let a truth assignment function TA’U U U {true, false}
be such that each clause in C has at least one literal u with TA(u)= true. It is possible
to construct a feasible schedule for all tasks in -(U, C) on a single processor as
follows. For each i {1, 2,..., p} assign tasks gliOi(j) 1 <-j <-_ Pi, corresponding to U is
true, otherwise schedule corresponding to ui is false. For each clause el such that ui el
and TA(ui)= true, or t c and TA(Oi)= true then cl can be scheduled at Sz(U,) for j
even or at s(u,) forj odd where Oi(j). Since all other tasks can always be scheduled
whether the schedule corresponds to TA(ui)= true or TA(O)= true we conclude the
schedule is feasible and is a solution for -( U, C).

Conversely, suppose -( U, C) has a solution. Let a truth assignment function
TA" U U U->{true, false} be defined as follows. If gliOi(j) 1 <=j<=Pi are scheduled
according to ui is true, then TA(ui)= true, otherwise TA(ui)=false. By Lemma 1 the
schedule of the Uio,) is always consistent. If el is scheduled during Sk(Cl) for some
k E {1, 2, 3}, then TA(Xlk) true where Xk Ui or ti for some u. This is true for each
l, 1 <= <- q, therefore each clause in C has at least one literal u with TA(u) true and
(U, C) has a solution.

We now consider the following example to illustrate the construction used in
Proposition 1. Consider the instance of 3-SAT given by the following Boolean
expression with three variables and four clauses"

U1-1- /’2 q- U3)" al -ll" I"/2 + U3)" Ul q- /’2 l_ /’3) (/’1 q- /’2 -at- /3)
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and the corresponding task system

’( U, C) {Ull u12 u13 u14 u21 u22 u23 u24 u31 u32 u33 u34 all, 012 a13,014,021,

a22, a3, a24, a31, a32, a33, a34, d11, dl, d13, d14, d, d22, d3, d24,

d31, d32, d33, d34, 1, 2, 3, 4}.

Precedences and the map 0i are described as follows:

01(1 1, 01(2) 3, 01(3) 2, 01(4) =4,

(/11 //11, /113 O13, O12 //12, //14 O14,

02(1) 2, 02(2) 1, 02(3) 3, 02(4) =4,

a22 //22, //21 a21, a23 //23, //24 < a24,

03(1) 1, 03(2) 2, 03(3) 3, 03(4 4,

a31 //31, //32 a32, a33 /,/33, //34 a34.

Figure 2(a) illustrates the possible start times for each task, and Fig. 2(b) shows
a feasible schedule for the truth assignment Ul u2 t73 true.

2.2.1. NP-completeness of FTPF for trees. We now show the NP-completeness of
FTPF for trees, by using a reduction from the DSTP scheduling problem.

THEOREM 2. File Transfer Scheduling with forwarding is NP-complete for G a tree,
all edge lengths equal, no multiple edges and a(v)= 1.

t=O 2 3 4 5 6 7 8 9 10 12 13
all a12 ull u13 u12 u14 all a13 a12 a14 ull
d14 d12 C1 d13 C2 d12 dll

14 15 16 17 18 19 20 21 22 23 24 25 26
u13 u12 u14 a13 a14 a22 a23 u22 u21 u23 u24
C3 d13 C4 dll d14 d24 d23 C2 d22 C3 d23

27

28 29 30 31 32 33 34 35 36 37
a22 a21 a23 a24 u22 u21 u23 u24

d22 C1 d21 C4

38 39 40 41
a21 a24 a31 a33
d21 d24 d34 d33

42 43 44 45 46 47 48 49 50 51
u31 u32 u33 u34 a31 a32 a33 a34
C1 d32 C3 d33

52 53 54 55
u31 u32 u33
d31 C2 d32

56
u34
C4

57 58 59
a32 a34
d31 d34
FIG. 2(a). The task system with possible execution intervals.
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t=O 2

d14 a12

14 15 16
d13 u14

28 29 30
a22

3
C1

17

31

4 5 6 7 8 9
u13 u12 d12 all a13

18 19 20 21 22 23
dll a14 d24 a23 C2

32 33 34 35 36
u22 u21 d21 u24

37

10 11 12 13
ull

24 25 26 27
d22 u23 d23

38 39 40 41
a21 a24 a31 d33

42

56
C4

43 44 45
u31 d32 C3

57 58 59
a32 d34

46 47 48 49 50 51
u34 a33 a34

52 53 54 55
d31 u32 u33

FIG. 2(b). A feasible schedule for truth assignment ul u2 3 true.

Proof The FTPF problem clearly belongs to the class NP. We will now reduce
to FTPF an instance of the DSTP problem in which tasks, ui, either have unit execution
time and no precedence constraints, or are a chain bi < b2 of two unit execution time
tasks. In Proposition 1 we have shown that DSTP is NP-complete in the strong sense.
Hence we may assume that the size of any integer occurring in DSTP is bounded by
the length of the instance of our DSTP problem. By adding extra unit execution time
tasks with no precedence constraints, if necessary, we may assume that a feasible
schedule will have no idle time in our DSTP problem. Let d be the length of a feasible
schedule in DSTP. We construct a file transfer problem with G a tree as follows.

Let G have root node v. For each unit execution time task u with no precedences,
construct a child node w of v, which corresponds to a nonforwarded file transmission
of length 1. By Lemma A2 (of the Appendix) we may construct a subtree with w as
the root, in which transmissions between v and w may only occur at the set of possible
start times for u, s(u).

If bi < b2 is a chain of unit execution time tasks, we construct child nodes w
and w2 of G corresponding to a forwarded file to be sent from w to v and from v
to wi2. Again by Lemma A2, we may assume that possible transmissions between wi
and v can occur only during times in s(bi) and between v and we only during times
in s(b). By our assumption that follows from the strong NP-completeness of DSTP,
all constructions may be carried out in polynomial time. Since FTPF can be scheduled
with deadline d if and only if DSTP has a feasible schedule, we conclude that FTPF
is NP-complete.

2.2.2. Algorithms for trees. Throughout this section we shall suppose that G is a
tree with equal edge lengths, no multiple edges, and a(v)= 1. We begin by examining
the special case of a tree in which the only node sending or receiving more than one
file is the root node.

LEMMA 1. Suppose the root is the only node of a tree in which more than one file is

sent/received (apart from forwarded files); then the earliest deadline first algorithm is
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optimalfor scheduling files at the root to meet an overall deadline d. This algorithm runs
in time O( r log r) where r is the degree of the root.

Proof. Let v be the root of the tree G. All branches into v are by hypothesis single
paths. We reduce this scheduling problem to the problem of scheduling tasks on a
single processor with release times and deadlines [7]. Suppose a branch into v represents
an incoming file as shown in Fig. 3(a). Ifj => 2, then the file may be scheduled to leave
Vo at time =0 and hence arrives at vj-1 at time j-1. Then the scheduling at v
corresponds to scheduling a unit execution time task on a single processor with release
time j- 1 and deadline d. If j 1 then vj_l Vo is adjacent to v and the release time
is zero at Vo.

Suppose a branch represents an out-going file as shown in Fig. 3(b), then the
scheduling at v corresponds to scheduling a unit execution time task with release time
zero and deadline d- (j- 1).

Suppose a file is forwarded at v and is represented by the paths as shown in Fig.
3(c). Then the scheduling at v may be represented by two unit execution time tasks
b, b2 with bl < b2, i.e., b2 starts only after b has completed. We let b have release
time j-1 and deadline d- k, and b2 have release time j and deadline d- (k-1). As
observed in the introduction to [7], Lemma 2 of [7] shows that for one processor, the
partial order may be ignored and then the result follows directly from algorithms for
scheduling independent tasks with release times and deadlines (see [11]).

We note that for discrete starting times the partial order may no longer be ignored
(see the previous section).

We now introduce some definitions for investigating polynomial time algorithms
for general trees.

DEFINITION. Let G be a tree. If v is a node of G then v is a branch node if:
(1) v is a leaf node;
(2) There is more than one file sent, received or forwarded through v.
Note. The only nodes in which only one file is sent or received (not forwarded)

are the leaf nodes.
We shall now distinguish between three possible types ofbranch nodes v in the tree.
Type I. There is a path representing a file to be forwarded down the tree from

its nearest branch ancestor v’ to v and the path from v’ to v is of length greater than
or equal to 2. The file may or may not be forwarded down the tree.

Type II. Same as type I except the file is forwarded up the tree from v to v’. The
file may or may not have been forwarded to v from below in the tree.

Type III. The parent v’ of v is a branch node and there is a file to be transmitted
between v and v’. This file may or may not be forwarded up/down the tree.

All other nodes are forwarding nodes through which only one file passes.
Suppose G is a tree in which all branch nodes are of type I or type II. Given a

deadline d, the following algorithm produces a schedule of length d (if possible). We

I (a)vO vl v]’-- v

vj vj- v 1" v

"- (c)vO 1 vj-1 v wl wk-1 wk

FIG. 3. Branches into the root v of a tree.
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assume without loss of generality that d < [E[; otherwise, if d-> [E[ we can schedule
all edges sequentially. We note that by hypothesis there is always an intermediate
forwarding node between branch nodes, so once a file is ready it may be scheduled
at any time by the branch node.

ALGORITHM A.
(1) Schedule all leaves of the tree that are of type II, by scheduling the file f to

be sent from the leaf at t- 0.
(2) Choose a node v all ofwhose descendant branch nodes v" have been scheduled.

As in Lemma 1, if v" sends a file, f, to v, calculate the ready time of f at v. Similarly,
if v" receives a file, f, from v we can calculate the deadline for sending f from v.

(a) TYPE I NODE.
Schedule the file f from v’ as late as possible. For each t, 0-< =< d 1 (starting
with d 1), assume f has ready time and deadline + 1. If f is forwarded,
adjust the ready time for the forwarded step to be + 1. Then schedule v by
earliest deadline first algorithm as in Lemma 1. If a schedule is found stop,
else try next value of t.

(b) TYPE IX NODE.
Schedule the file f from v to v’ as early as possible. For each t, 0 =< =< d- 1
(starting with =0), assume f has ready time and deadline t+ 1. If f is
forwarded at v, and the ready time at v for the first transmission is s, adjust
the deadline at v for the first transmission to be and only consider values
of for s + 1 =< -<_ d 1. Schedule v by the earliest deadline first algorithm as
in Lemma 1. If a schedule is found stop, else try next value of t.

(3) Repeat step (2) until all branch nodes have been scheduled. If at any stage
a node may not be scheduled then no overall schedule is possible. Finally, nonbranch
nodes can now easily be scheduled. If the node is adjacent to a branch node its schedule
is already determined. Otherwise, schedule the (forwarded) file through the node at
its ready time.

THEOREM 3. If G is a tree in which all branch nodes are of type I or type II,
then G is scheduled with deadline d by Algorithm A in time O(n[E[2. log IE[), where
n denotes the number of branch nodes in G. If Algorithm A fails then no schedule is

possible.
Proof. Consider a branch node v. If v is a leaf of type II then Algorithm A

schedules the file at v to leave at t- 0. This is the best possible time. If v is a branch
node of type I the file leaving v’ for v is sent as late as possible to v, assuming v can
be scheduled to meet the deadline d. This ensures the deadline for f at v’ is as late as
possible in any feasible schedule. Similarly, if v is a branch node of type II, the file
leaving v for v’ is sent as early as possible from v, assuming v can be scheduled to
meet the deadline d. This ensures the ready time for f at v’ is as early as possible in
any feasible schedule. Hence if Algorithm A fails no schedule is possible.

Since step (2) may be performed in time no more than O(IE[2. log [El) this gives
the worst-case time bound as stated (since d <: [E[).

Note. To obtain an optimal schedule run a binary search on deadline d. Thus an
optimal schedule can be obtained in time O(nlE[2. log2 [E[).

We conclude that if branch nodes are not permitted to be adjacent to each other,
then the scheduling problem may be solved in polynomial time. As is evident from
Theorem 2, once branch nodes are permitted to be adjacent to each other the problem
becomes NP-complete. However, if we bound the maximum degree allowed at a branch
node, the problem once more may be solved in polynomial time.
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Enumerating all possible schedules at a branch node v in the general case may
be done in time O([E[ r) where r degree (v). (As before we assume d < IE[.) Hence
if we bound the degree of each (branch) node, we obtain the following algorithm.

ALGORITHM B.
(1) Schedule all leaves of the tree which are of type II by scheduling the file f to

be sent from the leaf at 0.
(2) Choose a node v all ofwhose descendant branch nodes v" have been scheduled.

If v" is a descendant branch node of type III then v" is adjacent to v, and we may
assume by a straightforward induction argument that we have a set S,,
{0, 1,..., d-1} of available times for a transmission between v and v". If v" is a
descendant branch node of type I or II, then the node v adjacent to v on the (unique)
path from v to v" has a ready time and a deadline for a transmission between v and
v" (as in Algorithm A).

(a) TYPE I NODE.
Search for a feasible schedule of v such that file f from v’ to v is sent as late
as possible (cf. Algorithm A).

(b) TYPE II NODE.
Search for a feasible schedule of v such that file f from v to v’ is sent as early
as possible (cf. Algorithm A).

(c) TYPE III NODE.
In this case v and v’ are adjacent. For each {0, 1, , d 1) schedule the
file between v and v’ to be sent at time t. If a feasible schedule for v is found,
then S

_
{0, 1, , d 1}; otherwise, S.

(3) Repeat step (2) until all branch nodes have been scheduled. If at any stage
a node may not be scheduled then no overall schedule is possible. Nonbranch nodes
may be scheduled as in Algorithm A.

THEOREM 4. If G is a tree such that the maximum degree of a node is bounded by
some integer R, then G is scheduled with deadline d by Algorithm B in time

O(nRIEI ’. log IEI)

where n is the number ofbranch nodes in G. IfAlgorithm Bfails then no schedule ispossible.
Proof. Since Algorithm B is essentially an exhaustive search of all possible

schedules at each branch node, it is clear that if Algorithm B fails then no schedule
is possible.

At each branch node, each possible schedule may be checked for feasibility in
time no more than R. log d. Since there are o(Ig[ R) schedules to check, the time
bound for Algorithm B is as stated.

COROLLARY. An optimal schedule may be obtained in time O(nRIEI g. log2 ILl).

2.3. Algorithms for paths and cycles. In this section we examine the special case
of paths and cycles, and obtain algorithms with better worst-case time bounds. We
begin by classifying branch nodes into three distinct types.

DEFINITION. Let v be any branch node of G that has v’ and v" as its nearest
branch nodes. Suppose file fl is to be transmitted between v’ and v and f2 is to be
transmitted between v and v". Then v is said to be as follows.

Type A. If fl is sent from v to v’ and f is sent from v to v".
Type B. If fl is sent from v’ to v and f is sent from v" to v.
Type C. If fl is sentfrom v’ to v and f is sent from v to v" or f is sent from v

to v’ and f sent from v" to v.
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We now examine how to schedule type A nodes in the case where files do not
have the same number of forwarding steps.

LEMMA 2. Let G be a path or cycle. If v is any node of type A, then in any schedule
it is optimal to transmit the file with the maximum number offorwarding steps first in the
case where the files do not have the same number of steps.

Proof. Let to be the time taken to finish transmitting all files from v if scheduled
as above, and let t be the time taken to schedule the shortest number of steps file
first. Let f and f2 be as described in the definition. Without loss of generality suppose
f has 11 steps, and that f2 has I steps where 1 > 2.

If f is sent first, then f2 is sent at 1 in the case l > 1. If v’ is busy at time l
in either case, then f2 arrives at v’ in time no more than ll / 1. If v" is busy at l- 1,
then fl arrives at v" in time no more than 11 + 1. Hence to_-< 11 + 1.

Suppose now that f is sent first. Then f can arrive at v" no earlier than l / 1.
Hence tt _-> l / 1, which implies that to -< t. Therefore this scheduling is optimal.

We now examine how to schedule files that must be transmitted to/from type B
and type C nodes.

LEMMA 3. Let G be a path or cycle. Suppose v is not adjacent to two branch nodes:
(1) Suppose v is any type C node. Ifthe out-goingfile must beforwarded it is optimal

to send it at O. Otherwise, if there is a tie, schedule arbitrarily.
(2) If v is any type B node it is optimal to schedule transmissions at B as soon as

files are ready. These ready times are determined by the scheduling of nodes of type A
and type C. If there is a tie then schedule arbitrarily at v.

Proof (1) If the out-going file must be forwarded and is the only file ready at
0 it is clearly optimal to send it at that time. Otherwise, if v is adjacent to a branch

node, then v will be finished under any schedule in three time units. Since the out-going
file takes at least three time units if sent at time 1, scheduling the out-going file at

0 is clearly optimal.
If v is adjacent to a branch node and the out-going file is to be transmitted to

that branch node, if the node is not available at t- 0 then it is available at t->_ 1. So
we may schedule v arbitrarily in the case of a tie.

(2) By hypothesis v is not adjacent to two branch nodes. Therefore if there is a
tie at time t, then t_>- 1. Hence if B is not adjacent to a branch node we may schedule
files arbitrarily at v since no node is busy with another file at / 1. On the other hand,
if v is adjacent to a branch node, the branch node is not busy at => 1, since it must
have transmitted its other file at t- 0. Again we can schedule arbitrarily.

DEFINITION. Let G be a file transfer graph. Then makespan (G) is the smallest
possible overall finishing time in any feasible schedule.

In any graph G let L equal the maximum number of forwarding steps of any
file. Then makespan (G) L1, L + 1 or L1 + 2. (Delay for any file being sent is at most
one time unit at initial and terminal nodes.)

The type A nodes that have files of an equal number of steps j have smallest
finishing time j + 1 and maximum finishing time j / 2. Let L2 be the maximum number
of forwarding steps of any such type A node in G. We need only consider these type
A nodes when j L2 and L2 / L1, i.e., L2 L1- 1. All other such nodes may be
scheduled arbitrarily. Let L equal the maximum number of steps of any file in a type
A or type B node in which both files have the same number of steps. We obtain the
following result for paths and cycles.

THEOREM 5. Let G be a path or a cycle. Then an optimal schedule for G may be
obtained in time O(IEI) and makespan (G) is given by the following"

(1) Suppose L3 L. Then makespan (G)- L1 + 1.
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(2) Suppose L3 < L and L2 L- 1. Then makespan (G) L + in the case
where G has a path u, Uo, Vo, v, v,_, u,_, u, as classified in Fig. 4. Otherwise,
makespan (G)= L.

(3) Suppose L3 < L and L2 < L- 1. Then makespan (G) L.
Proof (1) We may assume that L > 1; otherwise, if L 1, the result follows from

[4]. Suppose that L2 < L3. Then all type A nodes will have their files finished with
time at most L2 + 2 L + 1. We now consider the type B node v as shown in Fig. 5(a).

By hypothesis, v" and v’ must be type C nodes in the case where their other file
takes L steps. Otherwise, they are type A or type C nodes in which the other file takes
less than L steps. By Lemmas 2 and 3, an optimal schedule will send fo and f from
v" and v’ at =0. Hence v is finished by L + 1. So makespan (G)=> L1 + 1. Since all
files of length L will be sent at 0 by Lemmas 2 and 3, we obtain makespan (G)=
L + as required.

Suppose that L L2 L3. As in the previous case it is clear that makespan (G)->
L + 1. Any file with L steps from a type C node will finish in time at most L + 1 by
Lemma 3. We therefore consider files sent from type A nodes. If the closest branch
nodes are type C nodes the result is clear. We therefore consider type A nodes that
have type B nodes as their closest branch nodes.

Consider a maximal length path, from a node Vo to a node v,_ in which there
are n vertices Vo, v,. ., v_l of alternating type A and type B nodes each of which

L1 L2 L2 L2 L2 L1-- -- n odd (I)-"1 u-O "0-" v vn- un- un

L1 L2 L2 L2 L2 L1
-"- -" -" n even (11)iJ"l u-O ’0" v v n- "-n"- u n

L1 L2 L2 L2 L2 L1-= n even (111)
ul uu vO ’1 vn-1 u’n- un

L1 L2 L2 L2 L2 L1-= -" -" n odd (IV)u "’0" vO "1 vn- "-n"- un

2 t=l t=O t=l t=O 2
[] "- =-- -" nodd (V)]Jl uO vO vl vn-1 u-n-1 un

2 t=O t=l t=O t=l 2-= = "- n odd (Vl)u -0 vO v vn- u-n"- un

2 t=O t=l t=l t=O 2=- -" n even (VII)
ul "Q-’O v-O vl vn-1 u-n-1 un

2 t=l t--O t=O t=l 2; = ; n even (VIII)"u’l uO v-O v vn- u-n"- un

FIG. 4. Classification ofpaths of G.
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u-1 0 fO vO v v-n-1 fn u-=n.1 (i)

FIG. 5. Classification of some node types with schedules.

have files of equal number of steps, j, where j L, and such that vi and vi_ are closest
branch nodes, 0_-< < n 1.

Suppose that G is a cycle and Vo and v._ are closest branch nodes. Then, without
loss of generality we must, have that Vo is type A, v._ is type B and n is even (see Fig.
5(b)). Iff is scheduled at 0 from vi-1, 1 -< =< n 1 and is odd, then fk is scheduled
at 1 from Vk, 0 <--k <--n- 2 and k is even. Maximum finishing time for any node is
then L1 + 1.

Suppose now that Vo and v.-1 are not closest branch nodes and let Uo be the
closest branch node to Vo, u._ the closest branch node to v._. If u Uo u._, and
G is a cycle then by maximality of n we have without loss of generality that u is of
type C, Vo is of type A, v._ is of type B, and n is even (see Fig. 5(c)). Iff is scheduled
at =0 from v_, 1-< i-< n-1 and is odd, then fk is scheduled at 1 from Vk,

0 <-- k <- n 2 and k is even, and f. is scheduled from u at 0. The maximum finishing
time for any node is then L1 + 1. Hence we may suppose that Uo and u._ are distinct.
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By maximality of n, either ui, 0, n- 1 is of type C or ul is of type A or type B and
has its other file with k steps where k <j.

Case (i). uo is of type C. Let ul be the closest branch node to Uo. We have either
the situation of Fig. 5(d) or 5(e). Consider first the situation of Fig. 5(d). By Lemma
3, Uo is free at L1 =j. Send f at 1 from vi, and f/l at 0 from vi for even.
Then the maximum finishing time is L + 1. In the situation of Fig. 5(e), by Lemma 3,
fo is sent at 0 from Uo. Hence Vo is free at =j. Send f at 1 from vi, and f/ at

0 from vi for odd. Then maximum finishing time is L + 1.
Case (ii). Uo is of type A or type B. Then the file e between Uo and u has k steps

where k <j. Consider the following situations:
(a) Vo is of type A. Then Uo is of type B. The latest arrival time at Uo for file e is

k+ 1, if there is no delay at Uo. Hence assume that Uo is free at =j and
schedule as in Case (i) of Fig. 5(d). Hence maximum finishing time is L + 1.

(b) Vo is of type B. Then Uo is of type A. By Lemma 2, fo is sent at 0 from Uo.
Hence fo is finished at time =j at Vo if there is no delay. We may assume
that Vo is free at =j and schedule as in Case (i) of Fig. 5(e). Hence the
maximum finishing time equals L + 1.

We conclude that in all the cases in (1) that makespan (G)= L1 + 1.
(2) Suppose L < L and L2--L 1. As in case (1) the only difficulty will be

maximal paths with type A and type B nodes that are closest branch nodes.
Assume that L2> 1. Consider the maximum length path, with Vo, Vl,"’, v,_l

alternating type A and type B closest branch nodes each of which have files of equal
number of steps j, where j L1-1. Let Uo be the closest branch node to Vo, and un_
be the closest branch node to vn_. By hypothesis, Uo and un_ are distinct.

Case (i). Uo is of type C. In all cases send the out-going file from Uo at 0. Then
schedule the same as (1) Case (i). Hence the maximum finishing time is L1.

Case (ii). Uo is of type A or of type B, and the file eo between Uo and ul has k
steps where k <j. Then schedule as in (1) Case (ii). The maximum finishing time is L.

Case (iii). Uo is of type A or of type B and the file e between Uo and u has j + 1
steps. Consider the situation as shown in Fig. 5(f). Then send the file fo at 1 from
Uo, f+ at 1 from Vi, for odd and f at 0 from V for odd. Suppose that v_
is a type B node. Then n is odd and fn-1 is scheduled at 1 from v-2. The maximum
finishing time is L iff is sent at 0 otherwise the maximum finishing time is L + 1
and u,, Un_l have a file with j+ 1 steps. We therefore have the situation of Fig. 4(I).
Suppose v_l is a type A node. Then n is even and f is sent at 1. The maximum
finishing time is then L unless we have the situation of Fig. 4(II) in which case it is
L1 + 1. Consider now the situation as shown in Fig. 5(g). Then e is sent at 0. Hence
send fo at 0 from Vo, f/at 0 from vi for even and f/+l at 1 from vi for odd.
Suppose that v,_ is a type B node. By symmetry the schedule has maximum finishing
time L1 unless there is the situation of Fig. 4(I) or (III) in which case it is LI+ 1.
Suppose v_ is a type A node. Then the maximum finishing time is L unless there
is the situation of Fig. 4(IV) in which case it is L1 + 1.

Now consider the case where L2 1 and L 2. By maximality of n assume the
file between /’/1 and Uo, U_l and u has two steps. If n is odd and we have the situation
of Fig. 5(h) we can schedule f at 1 for even and have the maximum finishing
time is L1 unless there is the situation of Fig. 4(V). If we have the situation of Fig.
5(i) then we can schedule f/at 0 for even and the maximum finishing time is L
unless Fig. 4(VI) holds. In the case of n even a similar argument shows that the
maximum finishing time is L1 unless Fig. 4(VII) or (VIII) holds. Since it is clear that
all schedules are optimal the statement of the theorem is true for (2).
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(3) This follows directly from the discussion before the theorem and from Lemmas
2 and 3.

Finally, we note that we have shown that Algorithm C (below) is optimal. Since
Algorithm C runs in time O(IEI) the theorem follows.

ALGORITHM C.
(1) Calculate L3, L2, L1. If L1 1, then schedule by [4]; otherwise L > 1.
(2) Schedule type A nodes that have files of a different number of steps according

to Lemma 2.
(3) Schedule type B and type C nodes that are not adjacent to two branch nodes

according to Lemma 3.
(4) If L L3 > L2, schedule all other nodes arbitrarily. Otherwise, if L2 > 1 and

Vo, v,..., v,_ is a maximal path of alternating type A and type B closest branch
nodes with both files having L steps, schedule as follows:

(a) Vo is of type A. Let Uo be the closest branch node to Vo. If there is no file of
length L1 into Uo then schedule f at 1 from vi (see Fig. 6(a)), otherwise
schedule f at 0 from vi for even.

fO fl......... (a)u-O" v ’1 v n-

fO fl -= (b)u-O -0" vl vn-

fO fl fn= = (c)u’O vO vl vn-1 u-n-1
FIG. 6. Scheduling of some node types.

(b) Vo is of type B. Let u0 be the closest branch node to Vo. If there is no file of
length L1 from Uo to ul then schedule f at t=0 from vi/ (see Fig. 6(b)),
otherwise schedule at 1 where is even.

If L2 1 let Uo, Vo," , v,_, u,_ be a maximal path of branch nodes such that
each node is adjacent to the next branch node as shown in Fig. 6(c). Schedule f for
even at 0 if there is no path of length 2 from Uo to u, otherwise schedule at 1.

(5) Schedule any remaining nodes arbitrarily.

3. Complexity results for arbitrary edge lengths.
3.1. NP-completeness results. It has been shown in [4] that except for certain

special cases of paths and cycles, the file transfer problem without forwarding is
NP-complete, when arbitrary edge lengths are allowed. We now show that in all these
cases where multiple edges are allowed, the file transfer problem with forwarding
becomes NP-complete. Since all other cases have been covered in [4], except paths
and even cycles, the next theorem proves NP-completeness in these new cases.

THEOREM 6. FTPF is NP-completefor paths and even cycles in which multiple edges
are allowed and a(v)= for all v V.

Proof. We shall reduce the NP-complete problem PARTITION to the two cases
of FTPF as stated in the theorem. We state the PARTITION problem:

Given a sequence A (a, az,. , a,) of positive integers does there exist a
subset A’_ A such that aa’ a 1/2 7= ai.
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Given an instance of PARTITION we show the corresponding graph for the case
of paths in Fig. 7(a) where B =1/2 Yi--1 ai and deadline is 5B. The case of even cycles
is shown in Fig. 7(b) and deadline is also 5B.

Each graph can be constructed in polynomial time so the proof is complete if we
show schedules exist with deadline 5B if and only if the desired partition exists.

First suppose there is a partition A U A= A such that ,,,A, a =EaiA2 a B.
A feasible schedule is obtained as follows. At time =0 transmit fo from Vo, and at
time 2B transmit to Vl. The B files e A1 are transmitted sequentially between v
and v2 starting at 0. At time B transmit fl from v2, and at time 3B send f
to v3. Finally, the B files e, ei 6 A are transmitted sequentially between v and v2
.starting at 4B. In the case of an even cycle send f between Vo and v3 starting at
time 2B. Hence the desired schedule exists.

Next suppose there exists a schedule with finishing time at most 5B. In each case
we obtain:

(1) Transmission offo to v and transmission off from v2 must overlap for exactly
B units of time (see [4] proof of Theorem 9) in order for the deadline to hold.

(2) fo must be sent to vl at its earliest possible time of 2B and f must be sent
from v at the latest possible time of B; otherwise (1) does not hold.

(3) By precedence constraints fo must be transmitted from Vo at 0 and f must
be transmitted to v3 at 3B.

(4) Vo and v2 are available simultaneously only during the intervals [0,/3] and
[4B, 5B]. Hence the files in A must be sent during these times. Since their lengths total
exactly 2B, they completely occupy these two regions. Since the lengths of the subsets
of A in each region must sum to exactly B, we obtain the desired partition.

3.2. Algorithms for paths and cycles. In the previous section we have shown that
for multiple edges FTPF is NP-complete for paths and even cycles. For single edges,
the problem has been shown in [4] to be NP-complete for trees. We therefore examine
the single edge situation for paths and cycles, noting that in [4] polynomial time
algorithms have been obtained in these cases when forwarding is not permitted.

The next two lemmas examine how to obtain an optimal schedule at a node when
it is not adjacent to other branch nodes, and there is at most one out-going file from
the node.

el al

fO
(b)

al

fO fO " fl fl
2B "’" 2B vv2 2B " 2b "-3 (a)

FIG. 7. Graphs corresponding to the,PARTITION problem.
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LEMMA 4. In any schedule, given a path with branch nodes Vo, vl, v2 not adjacent
to each other, as in Fig. 8(a), it is always optimal to schedule el before eo at vl.

_Proof Let S be any schedule. Let do be delay at Vo before eo is sent in S. Let j
be the number of steps of eo. By hypothesis, j >= 2. Since e is ready at v at time 0,
it is clear that the finishing time of el at v2 is optimal when e is sent at 0.

eO eO ol el
(a) v2) ’1 ’2

eO eO el el

FIG. 8. Scheduling of nonadjacent branch nodes.

The time eo is sent from Vo is fixed so it remains to prove that v finishes optimally
when el is sent first from v. If el waits for eo then v takes time do+jao+ a where ai
denotes the length of ei for 1, 2. If el does not wait for eo then v takes time where

+ ao if do + (j- 1)ao =< a,
t=

do+jao if do+(j-1)ao>al.

Hence the proposed schedule is optimal.
LEMMA 5. In any schedule, given a path as in Fig. 8(b) with branch nodes Vo, vl,

and v2 not adjacent to each other, it is always optimal to schedule the first readyfile at v.
Proof Let S be any schedule. Let j be the number of steps of eo, k be the number

of steps of el, do be the delay at Vo of file eo in S, and d be the delay at v of file e
in $. Then eo is ready at v at time do+(j-1)ao, and el is ready at v at time
d+(k-1)al.

Suppose that do + (j-1)ao < d + (k-1)a. Then if eo waits until el is finished at
vl the finishing time at v is d + ka + ao. If eo is scheduled at v at time do + (j- 1)ao,
then the finishing time at v is given by

do +jao + a if d + (k 1) a <- do +jao,
d + kal if d + (k- 1)al > do +jao.

In the first case,

do +jao + a do + (j 1 )ao + ao+ a < d + k 1 )al + a + ao d + ka + ao.
In the second case,

d + ka < dl + ka + ao.
Hence the proposed schedule is optimal. By symmetry the result is true if d + (k 1)a <
do + (j 1)ao.

We conclude that we must decide how to schedule the branch nodes v as shown
in Fig. 9(a). We note that it is sufficient to schedule these nodes so that the nodes u
of Fig. 9(b) meet the deadline d.

Unfortunately, Fig. 10 gives an example where it is not optimal to send the longest
number of steps file first. An optimal schedule sends fo and f2 at 0, f and f3 at 2
to give makespan 4 (optimal). If fo and f3 are sent at 0 we obtain makespan 5.
Hence we are unable to prove a result analogous to Lemma 2, for nodes that have
two out-going files.

We note however, that the finishing time at each node is one of at most five
possible values, each depending on the fact that just two particular files were started
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(a)

e0
v0 vl v-’2 Type (i)

eO el-= = Type (ii)vO vl v2

e0 e0 e e
v-0 vl "2 Type (iii)

(b)

m , TypeBuO ul u2

e0 elu- uS u-’-2 Type C

uO u ""2 Type D

u u 2 Type E

FIG. 9. Critical nodes to be scheduled.

2 2

f0 fl f2 f3

FIG. 10. Example to show that sending the longest steps file first is not optimal.

at =0. (The rest ofthe schedule follows by Lemmas 4 and 5.) Once we have established
this fact (Lemma 6) we will reduce the file scheduling problem to the 2-satisfiability
problem (2-SAT) giving a polynomial time solution. Note that 2-SAT is analogous to

3-SAT, defined in 2, except that each clause has at most two literals.
The nodes for which we need to establish possible starting times, are classified

and listed in Fig. 11. These are essentially all nodes of types A, B, C, D, E in all
possible contexts that they might appear in G.

LEMMA 6. Let G be a path or cycle. For each branch node that is either a terminal
node for some file, or adjacent to another branch node, there are at most five possible
finishing times. Each finishing time depends on the fact that at most two particular files
are sent at O.
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Notation: means either -- or
A1 ...e0 el,,._

A2 ...e0 el el
u-0 ul

B1 e0 el e2 e3

B2 e0 el e2 e3

""1
C1 e5 eO el e2

C2 el e2

C4 e4 e0

C5 _.e5 e0....

C6 m..e5 e0.._

C7

C8

C9

C10 e5 e0 el e2 e3
ul

Cll e5 e0 el e2 e3
ul

D1 eO el e2
__

D2 e0 el e2

el e2

u"l

E1 eO el e2...

E2 ,,,e3 e0

e4

e4

e3 e4

e3 e4

e4

FIG. 11. Classification offiles sent at O.

Proof We consider all possible situations as classified in Fig. 11. Let f, _-< i-<_ 5
be finishing times and let eek mean e and ek are transmitted at 0.

For nodes of type A:

A(f,f.,f3,f4) correspond to (ele2, ee3, eoe2, eoe3),

A2(f,f_) correspond to (eo, el).

Clearly these consider all possible delays for e and e2.
For nodes of type B:

B(f,f2,f3,f4) correspond to (e, e2, ee3, eoe2, eoe3),

B_(fl, f:) correspond to (el e_, eoe).
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For nodes of type C:

C(fl,f2,fa,f4) correspond to (ele3, ele4, eoe2, ese2),

C(fl,f2) .correspond to (e e3, eoe),

C3(f,f,f3) correspond to (ee4, eoe2, eoe4),

C4(f,f,f3) correspond to (ele3, eoe, e4e),

Cs(fl,f2,f3) correspond.to (ee3, eoe2, ese),

C6(fl, f2, f3, f4) correspond to (el e3, el e4, eoe2, ese),

CT(f,f,f3) correspond to (ee3, eoe2, eoe3),

Cs(fl,fE,fa,f4) correspond to (ele3, ele4, eoe2, eoe3),

C9(fl,’"" ,fs) correspond to (ele3, ele4, eoe2, ese2, eoe3),

Co(fl,f,f3) correspond to (ee3, eoe2, eoe3),

C(fl,f,fa,f4) correspond to (ele3, eoe2, eoe3, e5e2).

For nodes of type D always schedule e first by Lemma 4:

D1 (fl, f2) correspond to (el e, eoe:),

D(f) correspond to (ee2).

For nodes of type E:

El(fl, f) correspond to (el, eoe2),

E2(fl,f,f3) correspond to (el, eoe2, eae2).

In each case it is not hard to show that once the chosen files are scheduled at
t- 0, the finishing time at u is determined by scheduling the first ready file at Ul first
or by scheduling arbitrarily (see Lemma 5). Since no vertex has more than five possible
finishing times, and each finishing time is determined by only at most two particular
files starting at t- 0 the result follows.

We therefore obtain the following algorithm which will decide, given deadline d,
whether there is a feasible schedule for G meeting the deadline, where G is a path or
a cycle. For each e we associate a literal x. Then x is true if and only if e is scheduled
at t=0.

ALGORITHM D.
(1) For each node of type A, B, C, D, E calculate the possible finishing times, as

outlined in Lemma 6. If d <f for any f and f corresponds to ee then generate
-(xx) =-( + ). If f corresponds to e then generate .

(2) For each node u of types (i), (ii), (iii) of Fig. 9(a) generate (o+ ). Use the
algorithm given in [5] to see if the generated collection of clauses C is satisfiable.
Note that each clause has at most two literals, and that there are O(I VI) literals.

(3) If C is satisfiable then C has a feasible schedule meeting deadline d. For each
x such that x is assigned to be true, schedule e at 0. If C is not satisfiable no
schedule exists.

(4) For each remaining node not scheduled above, schedule files as soon as they
are ready. Ties may be scheduled arbitrarily.

THEOREM 7. If G is a path or cycle in which lengths offiles are arbitrary, then G
is scheduled with deadline d by Algorithm D, in time O(IEI). If Algorithm D fails then
no schedule is possible.
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Proof. Step (1) of Algorithm D checks the finishing times that are possible at each
branch node that is a terminal node for some file, or is adjacent to another branch
node. If each of these nodes finishes within the given deadline, then it is clear that
the schedule is feasible, otherwise it is not feasible. In the reduction to 2.SAT we must
show that FTPF is solvable if and only if the instance of 2-SAT is solvable.

Let C be the instance of 2-SAT. Suppose a feasible schedule exists. Each of the
files ej started at 0 corresponds to xj is true. Similarly, if e is not started at 0
then x is false. Since the deadline d is met at each node, this means d ->f for all e, ek
started at 0. Hence for each finishing time f such that d <f the files corresponding
to f are not both started at 0 or, in the case of only one file, that file is not started
at =0. In the case of two files, e, ek, ( +k) is true. In the case of one file e we
have that g is true. Hence each clause in step (1) is satisfied. Since we have a valid
schedule, each clause in step (2) holds. Hence C is satisfied.

Conversely, suppose that C is satisfied. Then the schedule constructed by the
truth assignment given in Algorithm D is feasible. Suppose not, for a contradiction,
then some node of type A, B, C, D, E does not meet the deadline d, i.e., f > d for
some finishing time f. (It is clear that two files will not be started at time 0 from
the same node by the clauses generated in Step (2)). Hence there exist files e and ek
such that e and ek are both started at 0, or a file el such that el is started at 0.
But Algorithm D generates (gj + gk) in C, and 21 in C which implies that x and Xk
are not both true, or Xl is not true. Therefore the schedule generated by Algorithm D
does not have both ej and ek starting at 0, nor et starting at 0. This contradiction
shows that the original schedule must be feasible.

Finally, we note that steps (1) and (2) of Algorithm D take O(I V[) time (see [5]),
and steps (3) and (4) take time O(IEI). We note that step (2) creates any additional
clauses needed for cycles.

COROLLARY 1. An optimal algorithm may be obtained in time O(IEI" log IEI). An
optimal algorithm may be obtained for a(v) > 1, with the same time bound, as outlined
in [4].

We conclude with an example of how Algorithm D produces a feasible schedule.
Consider the path shown in Fig. 12 with the possible finishing times calculated at each
node. We consider first d =6. The finishing times that do not meet the deadline
correspond to the following files:

el, eoe2, eoe3, e3es, e2e4, e2es, e4e7, e6.

Step (1) of Algorithm D generates the clauses

.’1 (’0 + 2)(’0-- )’3) (" "- ’5) (22 " 24)(22 -- 5)(4- 6)(4+ 7)26Since this is not satisfiable no feasible schedule is possible.
For deadline d 7, the collection of clauses C in Algorithm D is satisfiable with

truth assignment given by

Xo 21 22 X3 X4 ’5 X6 27 true.

(6,8 (6,6,7,7) (6,8 7,_)

FIG. 12. Example of the schedule produced by Algorithm D,
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This corresponds to starting the files eo, e3, e4, e6 at 0. From the calculations of the
finishing times shown in Fig. 12 it is clear that this yields a valid schedule.

Appendix. We now prove the technical lemma needed in Proposition 1.
LEMMA A1. The truth assignment for ui is consistent.

Proof. If T is any task and S is a schedule, then let t(T) be the assigned start
time of T in S, where j Pi "+," is defined by j + 1 1. We show that for each j if
Uio,(j) is scheduled according to u is true, then so is Uo,(j+.

(I) Suppose ui Co,().
(1) j even. Then uo,()< ao,() and ao,(+)< uo,(+). Now if u is true then

t(u,o,) s(u,0,j)
(a) ti Co,+l. By the scheduling of dio, we have

t(do,) s2( uio,j+)=:> t( uio,+l) s( uio,j+l) --> ui true.

(b) ui Co,+l. By the scheduling of dio, we have

t(dio,<)) sl(aioi(j+l))= t(aioi(j+l)) s2(aio,(j+l))

==> t( uio,+ ).) s2( uio,<j+ )) <--> ui true.

(2) j odd. Then we have aio,) < uio,<) and uio,<+) < aio,<+l). If u true then
t(Uio,(j))
(a) ti co,<+). By scheduling of dio,<)

t( dio,<j)) Sl( uio,+l)= t( uio,<+)) s2( uio,<+l)) ui true.

(b) u co,<+). By the scheduling of do,<)

t(d,o,<j)) s:(aio,<j+))=:> t(aio,<+)) s(aio,<j+l))

=, t(uio,<+)) si(uio,<+))-- ui true.

(II) Suppose
(1) j even. Then we have uio,<) < ao,< and aio,<j+) < uoi<+). If u true then

t( uo,<)) s2( uo,<))= t( ao,<)) s2( ao,<j)) by the precedence constraints.
(a) ti s co,<j+). Then by the scheduling of dio,) we have

t( d,o,) S2( tlio,(j+ )=r?P t( ttio,(j+ Sl Uio,(j+ <’-’> Ui true.

(b) u co,j+. Then we have

t(d,o,j)) si(a,o,j+l) t(aio,j+l))= s2(aio,j+l))

==> t( uio,j+) s2( u,o,j+l) --> u, true.

(2) j odd. Then we have ao,j < uo,j and uo,j+l < ao,j+. If u, true then
t( u,o,) Sl( Uio,(j))=r t( aio,(j)) $1( aioi(j)).
(a) rTi co,+. Then

t(do,) Sl Uio+ ):=> t( uio,j+ ) SE(t/,o,+l)<-> ui true.

(b) u co,+. Then

t(dio,(j)) s2(aio,(j+l))==> t(aio,(j+l)) s(aio,(j+l))

=:> t(uio,j+l)) Sl(Uio,+l)) <-> ui true.
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Since j is arbitrary, 1-<j=<pi, we conclude that the truth assignment for ui is
consistent, and the lemma is proved.

We conclude with the proof of the lemma needed for Theorem 2.
LEMMA A2. Given a node v, deadline d, and a set of available times

S--- {s1, $2,’." Sk} {0, 1, , d 1},
there exists an FTPF problem represented as a tree G with v as the root, with all lengths
equal to one, such that if the subtree below v can be scheduled with deadline d, the
remaining set of available times for v is S.

Proof For each j {0, 1,..., d- 1} such that j S create a child node vj of v
such that the edge from v to v represents a file transmission of length 1. We construct
a subtree of v so that this file may only be sent to v at time j for a feasible schedule
of deadline d.

Suppose d is odd. Then if j is odd we have that 0, 1,..., j-1 is an odd number
oftime slots and so isj + 1, , d 1. Create a directed path v, Vo,1, , VO,d represent-
ing a file that must be forwarded d times starting at vj. For a feasible schedule with
deadline d, this file must be sent at time 0 from vj. For each pair (k, k + 1) where
k is odd and k- 1 <-j- 1 create a directed path Vk,o, ", Vk,k, Vj, Vk.k/2, ", Vk,a. This
represents a file that must be forwarded d times, and to attain a schedule with deadline
d must be scheduled at v at times k and k+ 1. Similarly, for time slot d- 1 create a
directed path Vd-l,o,’’’, Va-l,a-1, Vj that must be scheduled at time d- 1 at v. For
the pairs (k, k + 1) where k is even, k-<j + 1 =< d- 3, we may create directed paths as
described above in which a file must be scheduled at vj during times k and k + 1.

If d is odd and j is even, then the time slots 0, I,...,j-1 and j+l,..., d-1
are each an even number. We create directed paths that represent files that must be
scheduled at v at times k and k + 1, where 0 -< k =<j 2, k even, and j + =< k -< d 2,
k odd.

The case for d even is similar and we omit the proof.
We conclude that if there is a feasible schedule at v with deadline d, then the set

of available times for which v is not busy is exactly S.
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CHARACTERIZATION OF ASSOCIATIVE OPERATIONS WITH
PREFIX CIRCUITS OF CONSTANT DEPTH AND LINEAR SIZE*

G. BILARDI" AND F. P. PREPARATA

Abstract. The prefix problem consits of computing all the products XoX xj (j 0,. , N- 1), given
a sequence x (x0, xt, , xN_t) of elements in a semigroup. It is shown that there are unbounded fan-in
and fan-out Boolean circuits for the prefix problem with constant depth and linear size if and only if the
Cayley graph of the semigroup does not contain a special type of cycle called monoidal cycle.

Key words, prefix computation, Boolean circuits, size-depth trade-offs, semigroups, superconcentrators

AMS(MOS) subject classifications. 68Q10, 68Q20, 20M99, 94C99

1. Introduction. The prefix problem consists of computing all the products
XoXl xj (j 0,. , N- 1), given a sequence x (Xo, xl, , xN-1) of elements in
a semigroup. Prefix computations occur in the solution of several significant problems
such as the evolution of finite-state machines [O63], [LF80], binary addition [O63],
[BK82], linear recurrences [K78], digital filtering [BP86], various graph problems
[KRS85], sorting in bit-models of computation [CS85], [BP85], and scheduling [DS83].
Several built or proposed parallel computers include some variant of the prefix
operation as a basic instruction, e.g., fetch-and-add on the Ultracomputer
[GGKMRS83], scan on the Connection Machine [H185], and multiprefix on the Fluent
Machine [Rn89].

The prefix problem has been extensively investigated (see [P87] for a survey).
Various complexity measures such as size, depth, width, and their trade-offs have been
studied in [LF80], [F83], and [$86] for circiuts ofsemigroup multipliers. Algorithms for
the EREW-PRAM model have been proposed in [KRS85], [R84], and [CV86].
Implementations on a tree-connected network are discussed in [DS83]. Size-time trade-
offs for Boolean networks, which are synchronized interconnections of Boolean gates
and one-bit storage devices, have been characterized in [BP87]. Size-depth trade-offs
for Boolean circuits with NOT, OR, and AND gates of unbounded fan-in and fan-out
have been studied in [CFL83a] and [CFL83b] and will also be the subject of this paper.

It is interesting to observe that the prefix problem reveals different facets in different
models of computation. The structure and the complexity of prefix circuits are oblivious
to the nature of the underlying semigroup if semigroup multipliers are assumed as the
primitive modules, whereas they depend on the nature of the semigroup if the primitive
modules are Boolean gates.

In the present paper we study the size of prefix Boolean circuits of constant depth,
a subject whose investigation began in [CFL83a] and [CFL83b]. The goal is the
identification of the semigroup properties that determine the size complexity.

In [CFL83a] it was shown that the size of constant-depth prefix circuits for
nongroup-free semigroups is exponential, as a simple consequence of known bounds
on the size of constant-depth circuits for the parity function [FSS81], [Y85], [H86].
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For group-free semigroups, a construction is provided that achieves slightly superlinear
size. Indeed, given any primitive recursive function f(N), the construction can be
tuned to achieve size O(Nf-I(N)) and depth independent of N (but dependent upon
f and upon the underlying semigroup).

In [CFL83b] the above bound is shown to be tight for the carry semigroup, whose
prefix circuit computes the carries in binary addition. The lower bound is obtained by
showing that any prefix circuit for the carry semigroup contains a weak superconcen-
trator, and hence satisfies a lower bound on the size of constant-depth weak supercon-
centrators due to [DDPW83]. Finally, [CFL83b] show that not all group-free semi-
groups require superlinear size by constructing a linear-size prefix circuit for the OR
semigroup.

Given these results, it is natural to ask which semigroups have linear-size constant-
depth prefix circuits. In this work, we introduce the notion of monoidal cycle, a special
type of cycle in the Cayley graph of a semigroup, and we show that there are
constant-depth linear-size prefix circuits for a semigroup if and only if its Cayley graph
has no monoidal cycle.

The remainder of this paper is organized as follows. Section 2 contains the
necessary technical definitions about semigroups. In particular, two distinct elements
a and b of a semigroup are said to form a monoidal cycle if and only if, for some c,
d, and to in the semigroup, ac b, bd- a, ato- a, and bto b. Section 3 contains a
superlinear lower bound for semigroups with monoidal cycles. This result is obtained
by showing that any prefix circuit for a semigroup with monoidal cycles contains an
a-weak superconcentrator graph, a generalization of a weak superconcentrator with
similar size-depth trade-offs. It should be observed that the lower-bound argument of
[CFL83b] cannot be applied directly to arbitrary semigroups with monoidal cycles
because it crucially exploits the special nature of the monoidal cycle of the carry
semigroup, where c b and d a. Our lower bound matches the upper bounds of
[CFL83a], for the class of group-free semigroups with monoidal cycles.

Section 4 investigates semigroups without monoidal cycles. It is first shown that
the absence of monoidal cycles implies some more global algebraic properties. These
properties are then exploited in a nontrivial construction that yields prefix circuits of
constant depth and linear size. Finally, in 5, we compare the classification of semi-
groups with reference to the size complexity of constant-depth prefix circuits with the
classification of semigroups with reference to the size-time complexity of prefix Boolean
networks [BP89].

As pointed out by Pippenger [P], a construct equivalent to the monoidal cycle--as
introduced in this paper--had been considered earlier in automata theory. Indeed, the
absence of such construct is characteristic of the syntactic monoid of the so-called
"irreversible nets." (See Problem 19 in Chap. 5 and Problem 17 in Chap. 6 of [MP71],
and [Z70].)

2. Preliminaries. A finite semigroup is a pair (A,.) where A {al, a2,’’ ", as} is
a set of size s and is an associative binary operation on A, which we call product.
We denote by xy the product of elements x, y A. A finite monoid is a finite semigroup
with a distinguished element e, called the identity, such that xe ex x, for all x A.

For a sequence x (Xo, Xl, Xs-1) AN, the sequence ofprefixes ofx is defined
as y (yo, Yl, ", YN-1), with yj xoxl xj. The prefixproblem consists in computing
y from x.

In the study of the prefix problem, an important role is played by the Cayley graph
G(A) (A, E) of A, containing for each ordered pair (x, y) an arc of the form (x, xy),
labeled by y.
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An element a of A is said to be recurrent if G(A) contains a self-loop at a, that
is, if there is an element b of a, not necessarily distinct from a, such that ab a.

Two elements a, b A are said to be equivalent, denoted a b, if there are c, d A
such that ac b and bd a, i.e., a and b are joined in a cycle in G(A). Note "---" is
an equivalence relation; its equivalence classes are the strongly connected of com-
ponents of G(A).

A semigroup (A,.) has a monoidal cycle if there are five elements, a, b, c, d, and
to in A (not all necessarily distinct but with a # b) such that b ac, a bd, ato a,
and bto b. In other words, the Cayley graph G(A) contains a two-node cycle with
nodes a and b having identically labeled self-loops. A semigroup is referred to as MC
or NMC depending upon whether or not it has monoidal cycles, respectively. We will
see that monoidal cycles are crucial in determining the complexity of the prefix problem.

It is well known (and also easy to prove) that for each element a in a finite
semigroup there are two positive integers k and p such that a, a2, ., a k+p-1 are all
distinct, and a k+p --a k. Moreover, if the period p of a is larger than 1, then
{a k, ak+l, "’, a k+p-1} form a group. If p 1 for all the elements, then the semigroup
is called group-free [MP71].

We now give examples of semigroups that belong to the various classes introduced
above. If any element x A different from the identity has an inverse x-1 such that
xx-= e, then (e, x, e) forms a monoidal cycle in G(A) and A is MC. As a corollary,
all groups are MC.

A special but important case of NMC semigroups are the cycle-free (CF) semi-
groups, defined by the absence of cyles in the Cayley graph. We denote a noncycle-free
semigroup as NCF. An example of CF semigroup is the left-zero semigroup (Lp, o,
where Lp {ll, 12," ", lp} and li / li, for all li and/. An example of semigroup that
is NMC and NCF is the right-zero semigroup (Rq, .), where Rq {r, r2, , to} and
q _-> 2, and r* r , for all ri and r. This semigroup with q 2 and with the adjunction
of the identity, becomes the monoid that models the function "carry" in binary addition
(the identity representing carry propagation and the two zeros representing carry setting
and carry resetting, respectively). With the identity, the semigroup becomes MC,
although it remains group-free.

Further examples of CF semigroups are all semilattices, where the semigroup
operation is commutative and idempotent. Semilattices include the set of the 0-1 vectors
of length n with respect to component-wise OR (AND), and the set of the first s
nonnegative integers with the MINIMUM (MAXIMUM) operation.

3. Lower bound. As the model of computation, we consider circuits defined in
terms of the underlying graphs, as follows. Let G be a directed acyclic graph. Inputs
are the vertices of indegree 0, and outputs are the vertices of outdegree 0. Each vertex
distinct from an input is labeled by an arbitrary Boolean function with an aribtrary
number of inputs and one output, and represents a gate computing that function. All
gates distinct from the outputs have unbounded outdegree (fan-out). The size of the
circuit is the number of arcs of its underlying graph; its depth is the number of arcs
in the longest path from input to output. We observe that the lower bound derived in
this section is independent of the nature of the function computed by the vertices of
the circuit. The explicit construction given in the next section, however, assumes the
standard base {AND, OR, NOT}.

We now define the notion of a-weak superconcentrator. Let ih, jh, h 1,..., k,
be integers in the range {1,2,..., N}. An interleaved matching of size k on
{1, 2,..., N} is a sequence of pairs ((il,j)(i2,j2),"’, (ik,jk)), such that i <jl < i2<
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j2 <’’" < ik <jk" Let be a directed acyclic graph with N vertices {Ul,""" UN} of
indegree 0 and N vertices {Vl, , vN} of outdegree 0. For a fixed constant 0 < a _-< 1,
we say that 0 is an a-weak N2superconcentrator if, for any interleaved matching
((il,jl)," ", (ik,jk)) of size k, G contains at least ak vertex-disjoint paths joining
{ui,, , uik} and {v,, , vk}. A 1-weak superconcentrator is a weak superconcen-
trator as defined in [DDPW83].

The size-depth trade-off of weak superconcentrators can be expressed in terms of
the functions f, >- 1, defined as fl(n)= 2n, and f+(n)=f")(2), where f(n) denotes
the n-fold iterate off Each f is primitive recursive, monotone, and grows faster than
f-1. Moreover, each primitive recursive function is asymptotically bounded above by
a suitable f. Iff is monotone increasing, f-l(n) denotes the least k such that f(k)>= n.

Our interest in a-weak N-superconcentrators is due to the following result, whose
proof is a minor adaptation of the proof of Theorem 2 in [DDPW83] and is therefore
omitted here.

LEMMA 1. The size of an a-weak N-superconcentrator of depth exactly 2d is
a(Nf(N)).

We shall also need the following lemma, essentially due to [V76], which relates
a graph-theoretic property of a circuit to a property of the function computed by it.

LEMMA 2. Let A be ct set oj" input vertices, and let B be a set of output vertices of
a circuit C. If, for some fixed values of the variables not applied to A, there are 2q

assignments to the (binary) variables applied to A each causing a distinct configuration
for the variables available at B, then there are at least q vertex-disjoint pathsfrom vertices

ofA to vertices of B.
Proof Each set of vertices of C whose removal disconnects B from A must have

cardinality at least q since the values computed by these vertices uniquely determine
the values computed by the vertices in B. The claim then follows from Menger’s
theorem.

We are now ready to state the main result of this section.
THEOREM 1. If (A,’) is an MC semigroup, then any length-N prefix circuit for

(A, .) of depth d has size 12(Nf-d+)/2j(N)).
Proof We shall construct a (1/2)-weak (N-1)-superconcentrator C by

modifications of the prefix circuit for (A,.), which increase the depth by one and the
size by O(N). Then, the result follows from Lemma 1.

Throughout this proof, a and b form a monoidal cycle such that aoo- a, bw b,
ac= b, and bd a.

In the prefix circuit, x and y, respectively, denote the variables applied to the
ith input and output terminals (i=0, 1,..., N-l). Values of input and output
semigroup variables are encoded in binary. Specifically, we let xo, j 1, 2,..., r(i),
be the binary variables encoding xi A and y,..j, j- 1, 2,..., s(i), the binary variables
encoding y A. Note that we allow different encodings to be used for different
input/output variables. We let xo(z) be the vglue of xi in the encoding of semigroup
element z. Likewise we define yi(z).

We now construct a circuit C by adding to the prefix circuit (N-1) new binary
terminals u,..., UN- and p,..., PN-1, connected as follows. For each i= 1,
2,. ., N- 1 and each j 1, 2,. ., r(i), the input vertex for variable x2 is replaced
by a vertex with inputs u and p, which computes the function

xi2 pi(-quixi(w v uixi2( c) v --qpi(-uixi2(w v uixi2( d ).

Intuitively, if p 1, then u 0 forces x 0 and u 1 forces x
u 0 forces xi w and u forces xi d.

c. If p =0, then
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Since a b, there exists a smallest j such that Yo(a) Yo(b), and we choose vi as
the terminal that outputs yij in C, for i-1,..., N-1. We shall prove that C is a
(1/2)-weak (N-1)-superconcentrator with respect to the sets of vertices U=
{ul,’’’, UN-I} and V={v,..., vN-}.

For simplicity, let k be an even number, and let ((i,j),..., (ik,jk)) be an
interleaved matching. We consider the set of assignments to the inputs of C satisfying
the following conditions.

(1) Xo= a.
(2) For {il, ik}, Ui Pi 0, SO that x
(3) For odd h, p, 1, pg,+ =0, and ui, uih+.

Clearly, there are 2k/2 such assignments. It is also easy to see that in the output
configurations corresponding to such assignments, for odd h we have vh- ui. From
Lemma 2, with q k/2, we conclude that there are at least k/2 vertex-disjoint paths
from inputs to outputs of the chosen interleaved matching. In conclusion, C is an
(1 /2)-weak superconcentrator as claimed. [3

Theorem 1 shows that the prefix circuits proposed in [CFL83a] for group-free
semigroups, which have size O(NfSI(N)) and depth O(d), have optimal size to within
a constant factor for the depth, when the group-free semigroup is in particular an MC
semigroup.

4. Upper bound. In this section we give a constructive proof that if (A,.) is an
NMC-semigroup, then there is a constant-depth prefix circuit for (A,.) of linear size.
We begin by deriving a crucial property of G(A) as a direct consequence of the absence
of monoidal cycles.

LEMMA 3. Let x be a recurrent element ofA, and, for some u and v in A, let ux a
and vx b, with a =-b. If (A,.) is an NMC-semigroup, then a b.

Proof Assume, for a contradiction, that aS b. For any cA, let SL(c) a--
{to lcto c}, i.e., the set of labels of the self-loops of c in G(A). Since x is recurrent,
then ISt(x)l>= 1. We claim that SL(x)_ SL(a). Indeed, for any toe SL(x), xw =x;
using the hypothesis ux a, we have aw (ux)w u(xw) ux a, i.e., aw a, as
claimed. Analogously, we show SL(x) SL(b). But the absence of monoidal cycles
means that for two equivalent elements a and b, we have SL(a)0 SL(b)= . This
implies SL(x)= , contrary to the hypothesis that x is recurrent. [3

Let m’ be the number of nodes on the longest path of G(A) consisting exclusively
of nonrecurrent elements of A. (Note that m’= 0 if every a e A is recurrent.) We now
establish the following important property of NMC-semigroups:

THEOREM 2. Let (A, .) be an NMC-semigroup, and let a, b, c, and d be equivalent
elements ofA. Let atlV2 /-)m’+l C and bVlV2 Vm’+ d, where v A, 1 <= <- m’ + 1.
Then c d.

Proof Since c a by hypothesis, then avl v2 vj =- a for all j 1, m’ + 1 ], by the
definition of strongly connected component of G(A); similarly, we establish
bVlVZ’’’vj =-b. Moreover, according to the above definition of m’, the sequence of
the prefixes of the sequence (v, v2," ", v,,,+l) contains at least one recurrent element.
Let Wk V V2 Vk (k _-< m’ + 1) be one such prefix. Since Wk is recurrent and aWk =-- a
b =- bWk, by Lemma 3 we have aWk bWk. Then it trivially follows that c av v,,,+
aWkVk+l Vm’+l bWkVk+l Vrn’+l bVl Vm’+l d.

This theorem shows that the mere knowledge that ax and a are in the same
strongly connected component of G(A) for some recurrent x dispenses us from knowing
exactly the value of a if we wish to know ax.

Before proceeding to the construction of the prefix circuit, we introduce an
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important structural parameter of G(A), denoted hA, and defined as the maximum
number of distinct strongly connected components visited by any (directed) path in
G(A).

The prefix circuit is best described as an ha N array. The rows of this array are
referred to as "stages" numbered from 1 to hA. Each stage contains N modules,
numbered from 0 to N-1, responsible for "local" processing, and circuits spanning
the entire stage, responsible for global processing. Module MJh) appears in the (j + 1)st
column of the hth stage.

Any given instance of prefix computation corresponds to the segmentation of the
interval [0, N- 1 into a collection of contiguous intervals {[ji-], ji- 1 ]li 1,. , h’},
where 0 =jo <jl <" <jh’-- N, such that yj,_, =- yj,_] for 1, , h’ and Yj,-1 Yj,,
for 1,. , h’- 1. In other words, all prefixes with indices in a given interval are in
the same strongly connected component and h’<= ha. Referring to Fig. 1, the indices
of the N modules in the generic stage h are partitioned into three contiguous intervals:
the interval [0, jh-1] of the passive modules, the interval [jh-1-t-1,jh] of the productive
modules, and the interval [jh q- 1, N 1 of the irrelevant modules. The reasons for these
denotations are: A passive module M}h) simply passes to M}h+l) the (previously
correctly computed) prefix y it receives from MJh-); a productive module M}
correctly computes prefix y and forwards it to MJh/l); an irrelevant module MJh)

computes a possibly incorrect prefix, not to be forwarded to M!h+

Stage
Stage 2

Stage 3

Stage h’-I

Stage h’

Stage h A

-lj j.ljJo Jl 2
lj Jh-

FIG. 1. Schematic layout of the linear-size prefix circuits for NMC semigroups. Each stage is segmented
into threeportions: thepassive modules (left), theproductive modules (center), and the irrelevant modules (right).

We now describe in detail the operation of the generic stage h, where 1 <= h <= hA.
Notationally, u (Uo, ul, , uN_) is an N-component vector, where uj, 0=<j =< N- 1,
is a member of a finite set B (either B A, the semigroup set, or B {0, 1}). Stage h
receives three vectors from Stage h- 1:

), 0 < N 1, is(i) The enable vector e(h-1)--(e(oh-1) ’’’, e-)), where e)h- <--_j=
Boolean. This vector is used to separate the passive modules from the productive and

(h-l+l (h+the irrelevant ones, i.e., eoh-])= eh-) e,2)= 0 and ejh-1

_
1.

(h-l)_ {, (h-l) (h-l)), where yJh-1), O_--<j _-< N- 1, is(ii) The prefix vector o ," ", s-]
(h-l) yJhh- )) represent correct values,an element of A Of these components, Yo ,"’,
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i.e., yh-l)__yj forj 0, 1,.." ,jh_-while yJh-)= y,,_, forja_, <j=< N-1. (Note that
y,,_, y,,_,- .)

(iii) The infix vector w=(wo,’.’,wN_), where wA, O<-_j<=N-1. Letting
m & m’+ 2, the components of w are defined as follows"

XoX Xj
Wj

[.XJ-m+l Xj

forj < m,
for j-> m.

Note that w does not depend on the index h, and is computed by a linear-size
constant-depth network. Vectors e() and y(O) are correctly initialized as

(1) e(), =(0,1,1,...,1) and y(O)=(Xo, Xo,...,Xo).

The following algorithm illustrates the operation of Stage h"

j’wj for j =0, 1,. , m- 1,
(1) Z(h) ] (h-1ty-mw forj=m,m+l,...,N-1.

(2) (h {0 if zJ= yjh-1)
u+ if zh)i y)h-1)

(3)
(4)
(5)

(j--l) O,or ej

and eh- j O, 1, N- 2.

e(h)= PREFIX-OR (u(h).
(h) ---e(h) o( hA r..j+

Y(h)= z}, where t,h)= 1.

(6) yh)={yh-1) if eh) O’
Y(h) if eh)= 1.

From the performance viewpoint, we note that each step is executed by a circuit
with size O(N) in constant depth. This is trivial for Steps (1), (2), (4), (5), and (6);
as for Step (3), this result is achieved by the prefix-OR circuit of [CFL83b]. Thus, the
Boolean circuit implementing the above computation has linear size and constant depth.

We now turn our attention to the correctness of the above procedure. We assume
inductively that e(-) and y(h-) are correct. The basis for the induction is provided
by (1). Since, by Step (3), e (h) is the PREFIX-OR of vector u (h, we wish to show that

uh) 0 for j <--jh and’uh(h)+ 1 Indeed, for j <----jh- we have u}h)= O, since e}h-= 0 by
the inductive hypothesis. For j =jh--t-1,’’’,jh, we argue as follows. Let C(h-) and
C(h be the strongly connected components of the correct prefixes computed by stages
(h 1) and h, respectively. Depending upon whetherjh <--jh-1 + m or not, we distinguish
two cases"

(1) j <=jh <=jh- + m. In this case, since y)h-)= yj for j <=jh- (with Yjh-,--1 c(h-)
(h)and yh_, C(h)), by virtue of Step (1) above, z y for j <=jh-1 + rtl. Thus the smallest

value [jh-l,jh- + m] for which zh) C(h) is detected by the condition (elh-)= 1) ^(zlh)s ylh-1)) and Ui+(h 1 is correctly generated. Note that u) h) =0 for j < i.

(2) jh >----j>jh-1 + m. In this case, the precise value of Y-,+I is not known, but we
know that y_,+ C(h. Since w is the product of m semigroup elements, one of its
prefixes is a recurrent element x of A. Then Y-m/" x is, by Theorem 2, a unique
element of C(h, independent of the specific Yj-,,+I C(h). From this point on, we can
argue as in Case (1) above.

This analysis shows that Step (2) always generates ,(h 1 whereas uh)= 0 forWjh +
k<=jh. Therefore Step (3) correctly generates a vector e(h) such that e}h=0 for i<-jh
and eh= 1 for i>j,. Subsequently, Step (4) uniquely detects position jh (since
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eJ ej,,-(h)+l 01), and Steps (5) and (6) construct vector y(h) in a straighforward manner.
This completes the correctness proof and we have Theorem 3.

THEOREM 3. If (A, is an NMC-semigroups, then there exists a length-N bounded-
depth prefix circuits for (A,.) of size O( N).

5. Remarks and conclusions. The results of [CFL83a] and [CFL83b] and of this
paper show that the optimal size of constant-depth prefix circuits is exponential for
nongroup-free semigroups, slightly superlinear for group-free MC semigroups, and
linear for (group-free) NMC semigroups.

It is interesting to contrast these results with those on the size-time complexity of
prefix Boolean networks [BP89]. In this context, semigroups can be divided into two
classes: friction semigroups, for which the size-time product is superlinear (ST=
19(N log (N! T))), and frictionless semigroups, for which the size-time product is linear
(ST O(N)). The class of frction semigroups can be more precisely defined as the
intersection of two other classes" The NCF semigroups and the memory-inducive
semigroups. The latter are those in which products of arbitrary length are true functions
of all their factors, and can be structurally characterized as those semigroups whose
recurrent subsemigroup is not isomorphic to a direct product of a left-zero and a
right-zero semigroup. The inclusion relationship among the relevant classes of semi-
groups mentioned above is illustrated by means of a Venn diagram in Fig. 2.

general
semigroups

group-free

monoidal-cycle-free

cycle-free

nonmemory-inducive

FIG. 2. Inclusion relationships among classes of semigroups with respect to the complexity of their prefix
circuits. The shaded area indicates the frictionless semigroups.

We conclude by mentioning an open problem. We can show that cycle-free and
right-zero semigroups are NMC. We can also show that the class of NMC semigroups
is closed under direct product and under homomorphism. It would be interesting to
ascertain whether NMC semigroups .can be characterized as the homomorphic images
of direct products of particular types of semigroups.
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for pointing out several relevant references.
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A TIME-RANDOMNESS TRADE-OFF FOR OBLIVIOUS ROUTING*

DAVID PELEGt AND ELI UPFAL

Abstract. Three parameters characterize the performance of a probabilistic algorithm: T, the run-time
of the algorithm; Q, the probability that the algorithm fails to complete the computation in the first T steps;
and R, the amount of randomness used by the algorithm, measured by the entropy of its random source.

A tight trade-off between these three parameters for the problem of oblivious packet routing on N-vertex
bounded-degree networks is presented. A (I-Q) log (N/T)-log Q- O(1) lower bound for the entropy of
a random source of any oblivious packet routing algorithm that routes an arbitrary permutation in T steps
with probability Q is proved. It is shown that this lower bound is almost optimal by proving the existence,
for every e log N <-<. T <_ N/2, of an oblivious algorithm that terminates in T steps with probability Q
and uses (1 -Q+ o(1)) log (N/T)-log Q independent random bits.

This result is complemented with an explicit construction of a family of oblivious algorithms that use
less than a factor of log N more random bits than the optimal algorithm achieving the same run-time.

Key words, communication networks, permutation routing, randomized algorithms, resource trade-off

AMS(MOS) subject classifications. 68M10, 68Q25, 68R05

1. Introduction. The contribution of randomness to computation is one of the
least understood aspects of complexity theory. While there is a variety of problems
for which probabilistic algorithms perform significantly better than the best known
deterministic algorithms, we lack a clear theory that explains this phenomenon.

One approach that might extend our understanding of randomness is to treat
randomness as a resource and to analyze the amount of randomness required in order
to achieve a given performance. Since different algorithms might use different (biased)
sources of randomness we need a uniform measure for the amount of randomness
provided by different random sources. The most general measure for randomness is
the entropy of the random source. Knuth and Yao [KY] have shown that this measure
is closely related to a more algorithmically oriented measure, namely, the average
complexity of simulating the random source using only independent random bits as
a source of randomness. For algorithms that use only independent random bits we
distinguish between two measures of randomness" the average number of random bits
used by the algorithm (or alternatively the entropy); and the worst case number of
random bits. We prove a gap between these two measures.

Our goal is to study the trade-off between the amount of randomness used by an
algorithm and its performance, measured either by the probability that it fails to
complete the computation within a given number of steps, or by its average run time.
In order to prove such a trade-off between randomness and performance for a given
problem, we need to prove a gap between the deterministic and probabilistic complexity
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of the problem. Since in general it is not known whether probabilistic time is different
from deterministic time, previous works mainly consider the question of reducing the
number of random bits used to solve a given problem [B], [CG], [KR].

In this work we focus on one of the few problems whose probabilistic complexity
is provably better than its deterministic one, namely, the problem of oblivious routing
in bounded-degree networks. A routing algorithm is oblivious if the route of one packet
does not depend on the origins and destinations of other packets in the system. Let
N denote the number of processors in the system. In each step each processor can
send up to one packet to each direct neighbor in the network. We measure the
performance of a routing algorithm by the time it requires to execute a permutation
request, i.e., a communication request of N packets with initially one packet at each
processor, and where each processor appears as a destination of exactly one packet.

Borodin and Hopcroft [BH] have shown that any deterministic oblivious packet
routing algorithm on a bounded-degree network requires f(x/-) parallel
steps. Aleliunas IA] and Upfal [Up] have presented probabilistic oblivious routing
algorithms for several bounded-degree networks that terminate in O(log N) parallel
time.

In this work we bridge the gap between these two results by analyzing the minimum
amount of randomness needed in order to execute oblivious routing on a bounded-
degree network in T steps, for any log N =< T< O(x/-). We first extend the lower
bound of [BH] to show that a probabilistic algorithm that uses a random source with
entropy bounded by 1/2 log N cannot run faster than the O(v/-) deterministic algorithm.2

Forlarger amounts of randomness we prove a tight trade-off between the entropy of
the random source of the algorithm (or the worst-case number of random bits used
by the algorithm), its run-time, and its failure probability. In particular, we show that
each additional random bit can reduce the product of the run-time and the failure
probability by a factor of 1/2.

THEOREM 1. Let log N<-_T<-x/-/2x/-d, and consider an oblivious routing
algorithm that terminates in Tsteps with probability 1 Q on an N-vertex degree d network.

(1) The algorithm must use a random source with entropy at least (l-
Q) log (S/T) -log Q O(1 ).

(2) If the algorithm uses only independent random bits, then it must use at least
log (N/T) log Q O(1) random bits in the worst case. I3

Since the entropy of the distribution defined by the outcome of k independent
random bits is equal to k, the following theorem shows that the above lower bound is
almost optimal.

THEOREM 2. For every e log N <-T <-x/ there exists an oblivious algorithm on
the butterfly network (degree 4) that terminates in T steps with probability 1-Q and uses
(1-Q + o(1)) log (N/ T)- log Q independent random bits on the average and no more
than(1 + o(1)) log (N/ T)-log Q independent random bits in the worst case. lq

Similar results are obtained for the trade-off between randomness and average
run-time of oblivious routing algorithms. Note that f(log N) is a lower bound for the
execution time of any routing algorithm, and there is a deterministic oblivious routing
algorithm on a bounded degree network that terminates in O(x/) parallel steps [L].

Our tight upper bound is not constructive, since it involves a structure that we
cannot explicitly construct in an efficient way. Using a family ofuniversal hash functions

Our definition of an oblivious algorithm is slightly weaker than the definition in [BH], thus resulting
in a stronger model of computation. However, the lower bound in [BH] holds even in the stronger model.

All logarithms in this paper are taken to base 2.
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[CW], we can obtain a simple and easy-to-program family of oblivious routing
algorithms. The number of random bits used by these algorithms is optimal (up to a
constant factor) for T- N for some e > 0, and less than a factor of log N from the
optimal for T=o(N). The case T= O(log N) and R O(log2 N) was first proven
in [R] using standard hashing techniques. For smaller R (and larger T) we need a
new "divide-and-conquer" proof technique that yields better probabilistic estimates
when using smaller families of hash functions. Oblivious routing on the hypercube
using simpler randomization schemes has been analyzed in [KR]. For every 1 _-<f(N) <-

log N, Karloff and Raghavan present a scheme that runs inf(N)N(c+)/() log N time
and uses f(N) log N independent random bits.

While our interest in oblivious routing on bounded-degree network was motivated
by theoretical questions, we should note that oblivious routing is, in fact, a .natural
and practical problem to study. Technical considerations dictate the use of oblivious
routing algorithms in almost all practical implementations oflarge scale communication
networks. The fact that-very limited randomness is sufficient for efficient oblivious
routing might offer some explanation as to why some of the simple heuristics for
oblivious routing perform so well in practice.

2. Definitions. We consider a collection of N processors connected by some
bounded-degree communication network. The processors generate packets that have
to be transmitted through the network to their destinations. In each step each processor
can transmit one packet to one of its direct neighbors in the network. Every packet
contains a label with its destination, thus without loss of generality we can assume
that the number of bits a processor can transmit to a direct neighbor in one step is at
least log N.

In this paper we are interested in probabilistic oblivious routing algorithms.
DEFINITION 2.1. A (probabilistic) algorithm is oblivious if the route taken by one

packet does not depend on the source or destination of any other packet in the network.
We measure the performance of a routing algorithm by the time it requires to

execute any permutation request. Given a permutation trEv on N elements, a
permutation request tr is a set of N packets, initially located one at each processor,
such that for every 1-< i_-< N the destination of the packet originated at processor is
o-(i).

A probabilistic algorithm might use a biased source of randomness. We use the
entropy function as a uniform measure for the amount of randomness used by the
algorithm.

DEFINITION 2.2. The entropy function of the probability distribution P=
{Pl, P,’" ’} is H(P)= ,,-pi log p,.

The entropy function is closely related to a more algorithmically oriented measure
of randomness defined by Knuth and Yao [KY]. Let A be an algorithm that generates
the distribution P {Pl, P2,’" "} using only independent random bits as its random
source. Let R(A) denote the average execution time of the algorithm A, and let
(P)=minAR(A).

TUEOREU 2.1 [KY]. H()<-(F)<-H(P)+2. ]

The algorithm can generate no more than one random bit per step. Thus, up to
a constant additive factor, the entropy of a random source specifies the average number
of independent random bits required to simulate the source.

3. The lower bound. In this section we consider an N-vertex network G (V, E)
with maximal in-degree d for which a probabilistic oblivious routing algorithm is
sought. The lower bound extends that of [BH] in a natural way.
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LEMMA 3.1. Let log N_-< T_-<x/-/2x/. For any collection {D1," ", Dr} of l<-
(1/4,,/-d)(N/ T) deterministic oblivious routing algorithms there exists an input permuta-
tion cr such that each of these algorithms requires at least T steps on this input.

Proof. In a deterministic oblivious routing algorithm, the route taken by a packet
is completely determined by its source and destination. Any such algorithm can
therefore be described in full by means of a collection of N2 routes p(w, v), one for
every (ordered) pair of vertices in the network. If the route p(w, u) goes through a
vertex x then we call w an origin for x.

A partial destination graph G(W, u) is a collection of routes originated at the
vertices of W and directed to u, i.e., G(W, u)={p(w, u)lw W}. For every vertex
x V, denote by org(x, G( W, u)) the number of origins x has in G( W, u). For every
k=>l let Sk(G(W, u))={xlxE V, org(x, G(W, u))-> k}. A full destination graph G(u)
is the partial destination graph G(V, u) (we henceforth omit the words partial/full
whenever no confusion may arise).

We need the following generalization of Lemma 1 in [BH].
LEMMA 3.1.1. For every destination graph G( W, u) and for every k such that

l <=k<=lWl, ISk(G(W, u))i>=lWl/(dk-d + l).
Proof The proof is a simple variation of that of [BH]. Let $ Sk(G( W, u)). Since

u S, every route in G( W, u) enters S at some point. Let P denote the set of routes
in G(W, u) originated in V\S. Then Pl/lsl>-JWl. We bound PI from above by
counting the number of times that a route from P enters $ for the first time. Let
H F(S)\S. Since the graph G has maximal degree d, Inl -< dlSl. Every route in P
must enter S through H. However, at most k-1 routes can go through every vertex
x H (otherwise org(x) >- k and hence x S). Therefore JPI._-< (k 1 )lnl _-< (k 1)dlSl,
and (dk- d + 1)ISl--> Wl.

Let T be given and consider a collection of algorithms as above. A deterministic
oblivious routing algorithm D can be described in terms of a collection of N full
destination graphs, one for each vertex in the network. Consequently, denote Di
{ Gi(u) u V}, for every 1 =< =</. We now describe how to construct an input permuta-
tion tr that will force each of these algorithms to run for a long time. The permutation
tr is built iteratively, similar to the construction of [BH]. For each D we fix exactly
T source-destination pairs in

Suppose we already chose a partial permutation tr {(sj, tj) 1 _<- j <= (i 1) T} (o"
for 1) taking care of D1 through D-I(1 =< l) and consider D. Eliminate from

D all destination graphs G(t), 1-<j =< (i-1)T. From every other destination graph
Gi(u) in D eliminate the routes p(s, u), 1 <-j <= (i- 1) T. This leaves us with a collection
of m=n-(i-1)T partial destination graphs {G(W,u)IuW:}, where W1
V\{s 1 _-<j _-< (i- 1)T} and W2-- V\{tl 1 <-j <-(i- 1)T}, Wll W2[ m. By the restric-
tions on and T,

N
(,) m>-N-lT>- -.

2

By Lemma 3.1.1, [ST-(GI(WI, u))[ >- m/(dT) for every u W2. For every vertex x let
Cx denote the number of vertices u W2 such that x ST(G’( WI, u)). Then

m2

v w2 dT

Therefore there must be a vertex x such that Cx >= m/dTN. By (,), m2>- N2/4>= dNT,
so cx-> T. We now select precisely T pairs of distinct vertices (wj, uj), 1-<j-< T, such
that for each j, w W, uj W2, xSr(Gl(W,u)) and w is an origin of x in
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G( W1, uj), and add these pairs to the permutation tr. By the choice of W1 and W2,
these vertices are also distinct from all previously chosen vertices in o-. Any run of the
algorithm Di on an input permutation containing cr as a partial permutation requires
the packets sent between the endpoints of these pairs to go through the vertex x, and
at most one of these T packets can be sent out of x in each time unit, so the number
of steps is at least T. (Of course, l)(log n) is also a lower bound.) [3

THEOREM 3.2. Let log N _-< T_-< /2x/-d and 0 < Q < 1, and let M be an oblivious
algorithm that terminates on every input in T steps with probability 1- Q.

(1) Algorithm M must use a random source with entropy at least (1 Q) log (N/T)
log Q log (Sx/-d).

(2) IfM uses independent random bits as its source of randomness then the number
of random bits M uses in the worst case is at least log (N/T)- log Q- log (Sx/-d).

Proof. Any probabilistic algorithm M can be transformed to an equivalent form
in which the random source of 1 first chooses a deterministic algorithm from a
pre-defined collection of deterministic algorithms, {B1, B2, } and then the selec-
ted algorithm is deterministically executed. Let M be a routing algorithm in this form,
which is equivalent to the algorithm M. Let P { Pl, P2, "} be the probability distribu-
tion by which the deterministic algorithms of are selected and assume that Pl P2 ->... Since M is an oblivious algorithm, the deterministic algorithms B1, B2," are
also oblivious. By the previous lemma, for any set of [(1/4x/-d)(N/T)J deterministic
algorithms there is an input permutation cr such that each of these deterministic
algorithms requires more than T steps on this input. If the probabilistic algorithm
terminates on every input with probability 1 Q in T steps, the sum of the probabilities
given to any set of deterministic .algorithms must be bounded by Q. In particular,
W=E= P -< Q, thus for every => l, p =< O/I. Therefore,

Q
pi log p, ----> -p, log=(1-W) lOgQil+l i>=l+l

Similarly, since Pi---Q for every i,

1
-pilogpg-> -plogQ=WlOgQl<=i<=l

Put together, we get that

N, Pi log Pi --> 1 Q) log log Q _-> 1 Q) log - log Q log (5,-d),

which proves part (1).
If the sum of every subset of probabilities is bounded by Q then there must be

at least l Q determinstic algorithms that are selected with positive probability. Thus,
at least one of the probabilities is Q/l or less, which requires at least -log (Q/l)-
log (N/T) log Q log (5v/-d) bits to generate. [3

THEOREM 3.3. Let log N _-< T <_-x//2x/-d, and let M be an oblivious algorithm that
terminates on every input in average time T.

(1) Algorithm M must use a random source with entropy at least (l-
T/v/-) log x/ log T/ (Sx/-d).

(2) If uses independent random bits as its source of randomness, then the number
of random bits M uses in the worst case is at least log (N/T)- (Sx/-d).

Proof. If the algorithm terminates in T steps on the average then the probability
that it terminates in no more than x/ steps must be at most T/x/-. D
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4. The upper bound.
4.1. The general scheme. In this section we present algorithms for the butterfly

network of degree 4. Similar algorithms can be derived for related topologies such as
the hypercube, the omega network, and the cube-connected-cycles network (cf. lUll).

For simplicity, we assume that N n2 for some n => 1. To construct the butterfly
network we separate the processors’ numbers, in their binary representation, into two
parts. The n rightmost bits of the number x are called the address, denoted by
address(x); the rest is called the prefix and is denoted by prefix(x). We sometimes
describe a processor’s name as the pair (prefix(x), address(x)). Each group of 2
processors having the same prefix a forms one stage in the network. Each processor
with prefix a has four neighbors, two with prefix (a + 1)mod n and two with prefix
(a- 1)mod n. Specifically, the processor (a, (bo,""", b,..., b-l)) is connected to
the processors with the addresses bo, , b,. ., b_l and bo," , b,, ., b_l and
prefix (a + 1) mod n; and to the processors with address bo, , b,, , b,-1 and
bo," ", b(-l)modn, ", bn-1 and prefix (a 1) mod n.

All the known probabilistic packet routing algorithms are based on the following
two phase routing scheme first presented by Valiant [V]"

(1) For each packet x choose a random destination p(x).
(2) Send each packet x to its random destination p(x);
(3) Send the packets from their random places to their real destinations;
Our model of computation allows each processor to send exactly one packet per

step. Each processor keeps priority queues of packets waiting for transmission in each
edge. The priority of a message is the number of edges it still has to pass in the current
phase. Thus, the priority numbers are used to speed up slower messages at the expense
of faster ones.

It has been proven in [A] and [Up] that this algorithm terminates with high
probability in O(log N) parallel steps. The algorithm requires O(N log N) random
bits since N random destinations have to be chosen independently for the N packets.

We reduce the number of random bits used by the algorithm by choosing the
middle destinations of the N packets from a smaller family of possible sets of
destinations. To handle the dependencies between the paths of the different packets
we split the algorithm into three routing phases. In the algorithm we distinguish between
forward and backward paths. There are two paths connecting every two processors in
the same stage. The forward path is the path that traverses the stages in increasing
order, while the backward path traverses the stages in decreasing order.

Let b be a set of L possible intermediate assignments, i.e., functions {fl, f/},
f/’[1,..., N] [1,’’ ", N], and let (45) be a probability distribution on 4b.

ALGORITHM ROUTE.
Step 1. Processor 1 randomly chooses a function f from 5 according to the

distribution (45).
Step 2. Broadcast f to all processors in the network.
Step 3. For each message with destination x initiated at a processor v, v computes

fi(x) (prefix(f(x)), address(fi(x))), the prefix and address of the inter-
mediate assignment of x.

Step 4. First routing phase. Each message with destination x that was initiated at
a processor v=(a,/3) is sent to the processor (a, address(f(x))) using
the forward path.

Step 5. Second routing phase. A message with destination x currently at processor
(a, address(f(x))) is sent to the processor (a, address(x)) using the
backward path.
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Step 6. Third routing phase. A message currently at the processor (a, address(x))
is sent to its final destination x (prefix(x), address(x)) using only the
direct edges connecting processors with the same address.

The efficiency of the algorithm depends on the choice of the family 6e and the
distribution (6e). The rest of this section is concerned with the characterization
and construction of good families for intermediate assignments.

We bound the execution time of each communication phase using the delay
sequence technique [Up]. Let {P1," ", PN} be a set of paths that the N packets have
to traverse in one of the communication phases. A delay sequence D is a sequence of
processors (vn,. ", Vo) such that for any > 1 either vi vi_l or v is one of the two
processors transmitting packets to vi_ in that communication phase.

For a given delay sequence D and a set of paths {P,. ., Pu} let fff denote the
number of messages with priority leaving processor v, and let F=7=f. F is
called the volume of the delay sequence D.

LEMMA 4.1 [Up]. Let T denote the number ofparallel steps required to execute a
phase with the set ofpaths {P1,""", PN}, then TmaxoF.

4.2. Oblivious routing with fewer random bits.
DEFNIXION 4.1. A function f f:[1, , N][1,. ., N] is an (N, T)-mixer for

a permutation EN if the execution of the first and second routing phases with input
and intermediate addresses given by f terminates in T steps.
Our goal is to construct a small set of functions, such that for every permutation

most of the functions of the set are (N, T)-mixers for . It has been shown in [Up]
that for every EN, and T O(log N), if f is a random permutation in EN, then
with high probability f is an (N, T)-mixer for . Using a counting argument we will
show that there exists a small subset of EN, such that for every permutation EN,
most of the functions in the subset are (N, T)-mixers for .

LEMMA 4.2. Let e log N T , and let f be a permutation chosen randomly
with uniform distributionfrom the set ofall permutations on N elements. Let EN then

Prob {fis an (N, T)-mixerfor} 1 e-

Proo We first bound the probability that in the execution of the first routing
phase with input and the function f there will be a delay sequence with volume
greater than t. We use the following facts:

(1) There are no more than N3 different delay sequences.
(2) If the volume of a delay sequence is t, it can be partitioned between the n

veices of the sequence in no more than (t++) ways
(3) The t elements that leave vertex v with priority can be originated in 2"-

veices and their destinations can be chosen from n2 possible locations.
Thus, the probability is bounded by

N3
n N ti tii=1

2nt
n N i=l i

()( )’ ()’ l e-’N3 e+1 e 1 + 2* e2n -2for _--> e n.
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The number of packets leaving processor vi with priority in the execution of the
second routing phase is equal to the number of packets leaving processor vi with
priority n in the execution ofthe first phase when it runs with the identity permutation
as input and with the same intermediate function. Thus, the probability of having a
delay sequence with volume in the execution of the second routing phase with input
cr and the function f is also bounded by 1/2e -2t, and the probability that f is not an
(N, T)-mixer is bounded by 1- e-r.

LEMMA 4.3. For every e log N <= T <= x/-, e-r <= Q <= 1/2 and L <=
max {16N log N/ QT, 16N(log n)2/ T} there exists a set 5f ofLfunctions such thatfor
every pemutation cr EN at most 4N log N/ T of the functions in 5 are not (N, T)-
mixers for or.

Proof Let ff’ be a random set of L permutations chosen with uniform probabil-
ity from the set of all permutations on N elements. We show that with positive
probability the set 0 has the required property.

By Lemma 4.2, for every permutation cr iff oW then f is an (N, T)-mixer for
o- with probability 1- e-r. The probability that L(T) 4N log N/T functions in
are not (N, T)-mixers for cr is bounded by (Lr) e-rL(r and the probability that for
any permutation cr less than L-L(T) functions are (N, T)-mixers for o- is bounded
by N!2/ e-/4. For the case Q >= 1/log N we get

N!(4e log N) NIgN/T e-4NIg’N 1.

For 0 =< I/log N we get

--4N log NN! N og N/r e

Thus, there exists a set 0 as required.
THEOREM 4.4. For every e31og N<-T<=x/- and e-r/2<=Q<-- there exists an

oblivous routing algorithm that uses a random source with entropy (l-Q+
o(1)) log (N/T) log Q and terminates in T steps with probability at least 1 Q.

Proof We use the algorithm ROUTE with a set 0 of L=< max {32N log NQT,
32N(log n):/T} satisfying the requirement of Lemma 4.3. We define the following
distribution (ow) on the set

QlogN 1

(log N+ 1)
1 and Q>log N’

Q 1-, i= 1 and Q=<
log N’

1 -Pl 2<_i<=L.

The entropy E of the distribution is bounded by

/
E=<

L- 1 log

-<-logQ+ 1-Q+logN logN+l

N
_--< (1-Q+ o(1))log--log Q.
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Since log L-< 2 log N, broadcasting a name of a function in M5 requires no more
than 2 log N bits. Also, the diameter of the graph is 2 log N, so the broadcasting phase
takes at most 2 log N parallel steps.

The sum of every subset of 8N log N/T probabilities in (M5) is bounded by
Q. Thus, with probability 1-Q the first and the second communication phases take
no more than T/4 steps.

In the third routing phase, messages are sent along rings of n processors. Each
processor is the distination of one message and the priority number of a message at
a given processor is the distance of this processor from its destination. Thus only one
message can leave each processor with a given priority and the maximum volume of
a delay sequence at this routing phase is n <= log N. Thus, the total run time of the
algorithm is T/4+ 3 log N <= T with probability 1- Q.

Theorem 2.1 gives us a tool for simulating the distribution (M) using indepen-
dent random bits.

COROLLARY 4.5. For every e log N <-T<=x/- and e-T/Z<= Q<=-. there exists an
oblivious routing algorithm that uses (1 Q + o(1)) log (m/T) log Q random bits on
the average, and terminates in T steps with probability 1- Q.

Proof By Theorem 2.1 the average number of independent random bits required
to generate the distribution used in the proof of Theorem 4.4 is equal to the entropy
of the distribution which is bounded by log N-log Q. [3

Moreover, it is possible to match the lower bound of Theorem 3.3(2), for the worst

case number of random bits used by the algorithm.
THEOREM 4.6. For every e31og N <- T<-_v/ and e-r/4< Q<=1/2 there exists an

oblivious routing algorithm that uses (1 + o(1)) log (N/T) random bits in the worst case
and terminates in T steps with probability 1- Q.

Proof We use the algorithm ROUTE with a uniform distribution over a set
of L functions such that:

(1) 1/2. max {64N log N/QT, 64N(log n)2/T} <= L <= max {64N log N/QT,
64N(log n)2/ T};

(2) For every trXu no more than 16N log N/T functions in M5 are not
(N, T/4)-mixers for o-;

(3) L 21 for some integer/. The algorithm picks an element of MSf with uniform
distribution.

By Lemma 4.3 there exists such a set, and since L<=max {64N log N/QT,
64N(logn)Z/T}, l<=(l+o(1))log(N/QT) and this number bounds the worst-case
number of random bits used by the algorithm.

Since the sum of every subset of 4N log N T probabilities is bounded by Q, the
first and the second routing phases take T/4 with probability 1- Q. The broadcasting
phase takes at most max {l, 2 log N} steps and the third routing phase takes log N
steps. Thus, the algorithm terminates in log N-log Q+ T/4+log N_-< T steps with
probability 1 Q.

4.3. The average case. For the average case analysis of the algorithm we need a
bound on its worst-case performance.

LEMMA 4.7. Let f and cr be two permutations on N elements; then f is an

(N, 4v/N log N )-mixer for
Proof For a given communication phase let Co and ci denote the bounds

on the number of packets located in any one processor at the start and at the
termination of the communication phase. The set of packets that leave processor with
priority are originated in 2 processors and can be sent to one of 2n-i processors.
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Thus, the volume of vi, the ith element in any delay sequence is always bounded by
min {c02 i, ci2 }.

If f is a permutation then in the first phase Co and c n and in the second
phase Co n and c 1. Thus, any delay sequence in the two first routing phases is
bounded by 2(n2n)n/2= 2/nN and f is an (N, 4/N log N)-mixer.

THEOREM 4.8. For every e log N <= T <= there exist oblivious routing algorithms
that use (1 + o(1))log (N/ T) independent random bits in the worst case and terminate
in T steps on the average. [:]

4.4. An explicit construction. We now turn to the question of explicit construction
of an efficient intermediate assignments set. Let

Mbe(r)={hlh(x)=(( ajxJ) modP)modN, foranyaj[1,’",P]}
j=0

where P_-> N is a prime. Let (M0)(r) be a uniform distribution on the
THEOREM 4.9. Let e log N >- T>= and let r (log N-log Q)/(log T-log n).

Ifthe algorithm ROUTE uses thepair $M(r), (Mbe)(r) then the algorithm terminates

in T steps with probability 1 Q.
Proof We first show that the first communication phase terminates in T/4 steps

with probability 1 0/2.
For each pair (v, i) let A(v, i) denote the set of pairs of processors {x, y} such

that the forward path from x to y leaves processor v with priority i. Clearly, IA(v, i) 2".
Let A(v, i, 1),... ,A(v, i, T/4r) be a partition of A(v, i) into T/4r sets such that for
every 1 <=j<= T/4r, IA(v, i,j)l<=2r2"/T+ 1. Let A(j)= [-Jvv [-Jo<=<-_, A(v, i,j).

Let Ff denote the contribution of communication between pairs in A(j) to the
volume of a delay sequence D.

If the first communication phase does not terminate on every input in T/4 steps
with probability 1- Q/2 then there exists a permutation r, a delay sequence D, and
an index j, such that in the execution of the first routing phase with input r

erob {Z’ >- r} _>--.
To bound the probability of the above event we observe the following facts.
(1) There are no more than N3" different delay sequences.
(2) There are T/4r sets A(j).
(3) r can be divided in no more than (r/,/l)r ways between the n elements of the

delay sequence.
(4) No more than 4rN! T pairs can contribute to the volume of each element in

the delay sequence.
(5) ISM(r)[ pr.
(6) Given a set of r pairs (xt, Yl), 1,..., r, no more than (P/N) functions in

$dg(r) satisfy the relation Yl--f(Xl) for all 1,..., r.
Using the above observations, we require

T (rl+rd-1)(4rg)r(__)r() Q
Prob -> r}_-< N3"rr n 2

which implies

log N- log Q
r >

log T- log n
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As in the proof of Lemma 4.2 the same bound holds for the execution of the
second communication phase. Following the proof of Theorem 4.4, execution of the
first and the second communication phases in T/2 steps implies execution of the whole
algorithm in T steps.

COROLLARY 4.10. The family of sets glS(r) gives an explicit construction of
oblivious routing algorithms that for every e log N <- T <-_ N

(1) Use log N (log N-log Q)/(log T-log n) random bits in the worst case and
terminate in T steps with probability 1- Q;

(2) Use 2 log N/(log T-log n) random bits in the worst case and terminate in T
steps on the average. 1-1

Acknowledgments. We wish to thank Eli Shamir for raising the question of packet
routing with fewer random bits, and Allan Borodin, Nati Linial, and Nick Pippenger
for many stimulating discussions and helpful ideas.
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A HEURISTIC ALGORITHM FOR SMALL SEPARATORS IN
ARBITRARY GRAPHS*

DAVID A. PLAISTED

Abstract. Some heuristic random polynomial time algorithms for finding good cuts in arbitrary graphs
are presented. A cut is good if there are a small number of edges across the cut and if the cut divides the
set of vertices somewhat evenly. The algorithms obtain cuts from solutions to randomly chosen network
flow problems based on the input graph. Probabilistic bounds for the goodness of the cut obtained in terms
of the goodness of an optimal separator are derived. These bounds are valid for all input graphs. There is
reason to think that the algorithm will perform better than the bounds indicate.

Key words, graph algorithms, random algorithms, separators, maximum flow, network flow
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1. Introduction. For many applications it is useful to be able to decompose a
graph G into two parts G1 and G2 that have few edges between them. For example,
in VLSI design, G1 and G2 may be parts of a circuit G and then G1 and G can be
laid out in adjacent parts of a rectangle with few interconnections between them. Or,
G may represent relationships between concepts in a knowledge base; then (G1, G2)
represents a way of hierarchically decomposing the knowledge base into relatively
independent subparts. This corresponds to the small separator problem. There is not a
complete uniformity of terminology about separators in graphs. We will define
separators as follows. A cut in an n vertex graph G (V, E) is a partition (W, W) of
V. An (edge) separator in an n vertex graph G (V, E) is a partition (W, W) of V
such that IW] _-> n/3 and [W[ => n/3, where ]A[ is the number of elements in a set A.
Such a separator is called small if the number of edges (v, w) with v in W and w in
W is small. A vertex separator is a set of vertices that disconnect a graph into roughly
equal components. There are slight variations in these definitions in the following
references. Lipton and Tarjan [1979] show that small vertex separators can be found
in linear time for planar graphs. However, their method does not guarantee a separator
within some bound of an optimal one. Despite this, their algorithm may be used to
solve some problems efficiently on planar graphs using a divide-and-conquer approach
(Lipton and Tarjan [1977]). Bui et al. [1984] give a probabilistic algorithm that finds
optimal edge separators in arbitrary graphs or else halts without output, and that halts
without output with low probability for certain classes of graphs. Their algorithm is
based on solving network flow problems and finding min cuts using the max flow-min
cut theorem of Ford and Fulkerson [1962]. However, it is not known whether this
algorithm performs well on arbitrary graphs, or on randomly chosen graphs. Rao
[1987] gives an algorithm for finding nearly optimal edge separators in planar graphs.
Also, Rajasekaran and Reif [1988] have shown how a small separator algorithm can
be used to speed up simulated annealing in some cases. The problem of finding an
optimal edge separator in an arbitrary graph is NP-complete (Garey, Johnson, and
Stockmeyer [1976]). For a discussion of flow algorithms on networks see Mehlhorn
[1984]. A recent algorithm by Leighton and Rao [1988] finds a separator very close
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to optimum (within a log (n) factor). This algorithm is based on multicommodity flow
and uses linear programming with n2e variables, where n is the number of vertices
and e is the number of edges in the graph. This can be as many as n4 variables. The
best linear programming algorithms have a time bound of o(nl4L) arithmetic
operations on O(L) bit numbers to solve such systems (Karmarkar [1984]), where L
can be as large as n 2. We present an algorithm that uses single commodity flow. It
turns out that our algorithm solves O(n log2 (n)) single commodity flow problems and
runs in O(n4 log (n)) time since single commodity maximum flow can be found in time
O(n3) (Mehlhorn 1984]). Thus, although we do not come nearly as close to an optimal
separator as the algorithm of Leighton and Rao [1988], the worst-case time bound
is much better. From now on we use the term separator to describe an edge separator.

We present probabilistic heuristic algorithms with provably good performance on
arbitrary graphs. For an arbitrary graph G with separator having m edges, the algorithms
will with high probability, and in polynomial time, find a "near separator" having
f(m) edges where f is not too large. More precisely, we have the following results.
Both results hold in the limit for large graphs. In principle the algorithms could be
modified to make these results hold everywhere, by storing a table of the small graphs
and their optimal separators. Let n be the number of vertices in graph G henceforth.
Also, if C is a cut (W, W) of G then CI is the number of edges in C, that is, the
number of edges (v, w) with v in W and w in W.

DEFINITION. The balance b(C) of a cut C W, W) is the ratio min (I WI, IWI)/n.
Note that if C is a separator then b(C)>-. A near separator is a cut with balance
near 3, informally.

THEOREM 0.1. There is a polynomial time algorithm that, given a graph G with a
separator S and given a real number r, 0 r 1, with probability .5 outputs a cut C of
G such that either C is a separator with at most 31SIx//2(1- r) edges or C has balance
at least r/3 and has at most ISIx/r/(1- r) edges.

Proof. See Theorem 5 and its corollary.
THEOREM 0.2. There is a polynomial time algorithm that, given a graph G with a

separator S and given a real number r, 0 r 1, with probability .5 outputs a cut C of
G such that either C is a separator with at most 61SI2(ln (n)/ 1)/(l-r) edges, or C is
not a separator, has balance at least r/3, and has at most 4[Sl2(ln (n)+ 1)/(1-r) edges.

Proof. See Theorem 8 and its corollary. Here and throughout we use In for natural
logarithm.

These algorithms perform independently on successive trials, so the probability
.5 can be made arbitrarily close to 1 by running the algorithms repeatedly. There is
reason to believe that the algorithms will perform much better in practice than the
bounds indicate, since the bounds are based on a kind of probabilistic worst-case
analysis. Therefore it would be interesting to implement the algorithms and see how
well they actually perform.

We summarize the different algorithms here. Algorithm A solves a parameterized
flow problem and finds a cut of G. Algorithm Ama applies Algorithm A number of
times and picks the "best" output. Algorithm Amax has a better bound than Algorithm
A. Algorithm A* calls Algorithm A on a sequence of graphs to obtain a sequence of
cuts of G that are pieced together to produce a near separator of G. Algorithm B is
like Algorithm A, but the flow problems are defined differently to better approximate
a normal distribution of certain quantities related to small cuts in G. Algorithm B
outputs a cut of G. Algorithm B* calls Algorithm B on a sequence of graphs to obtain
a sequence of cuts of G that are pieced together to product a near separator of G.
The bounds of Theorems 0.1 and 0.2 above refer to Algorithms A* and B*, respectively.
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2. The basic approach: Algorithm A. The algorithms we present, like that of Bui
et al. [1984], are based on solving network flow problems and using the max flow-min
cut theorem. For some recent polynomial time algorithms for finding a maximum flow,
see Mehlhorn [1984]. The algorithms we present are very similar toeach other; the
difference is mainly in the analysis. We now describe Algorithm A. In this algorithm,
a random network flow problem based on G is constructed. This problem p is
parameterized, so we have p(x), where x is the parameter. This problem is solved
using possibly the network flow algorithm of Ford and Fulkerson 1962] or more recent
refinements of it, for various values of x, until a "critical value" x’ of x is obtained.
The maximum flow for p(x’) yields a cut C of G by the max flow-min cut theorem.
The "goodness" of this cut C is related to the number of edges in a small (edge)
separator in G. We will define "goodness" in 2.1. Now, C may not be a separator,
since it may partition the vertices into two very unevenly sized subsets. However, it is
possible to perform algorithm A on the larger subset and repeat this process a number
of times. By piecing together these cuts in the right way, a near separator may be
obtained if desired, with only a slight degradation of the goodness of the resulting
separator. This is the idea of Algorithm A*. For some applications, it may suffice to
obtain a good cut and it may not be necessary to use Algorithm A*.

The intuitive idea of Algorithm A is as follows: Given a connected graph G, the
flow problem p is constructed by randomly choosing half the vertices of G as sources
and half the vertices of G as sinks. Let VA denote the set of sources and Vz the set
of sinks. Also, we add a new source vertex A with edges from A to all sources, and
a new sink vertex Z with edges from all sinks to Z. Therefore, in reality, A is the only
source and Z is the only sink. However, we speak of the vertices in V as sources or
sinks also. The capacities of all the edges incident with A or Z is one, and the capacities
of all the edges of G is x, in both directions. Thus this flow problem is parameterized
by x. Initially, x is chosen very large, and a maximum flow from A to Z is found. We
choose x large enough so that none of the edges of G is saturated by this flow. (A
value of n/2 for x suffices.) Instead, the edges from A to vertices in VA are saturated,
and likewise the edges from vertices in Vz to Z are saturated. This is always possible
since the capacities of these edges from A or to Z are fixed at 1. Then x is reduced
(say, by binary search) until we find a value x’ such that the flow problem p(x’+ e)
has a maximum flow in which none of the edges of G are saturated, but the flow
problem p(x’) has a maximum flow that saturates some of the edges of G. Also, the
flow problem p(x’-e) has a maximum flow that fails to saturate some edge (A, y)
and some edge (w, Z). For example, if G has only one edge between a and b, and a
is a source and b is a sink, then when x > 1, the edge (A, a) will be saturated and the
edge (b, Z) will be saturated in a maximum flow. When x 1, the edge from a to b
will also be saturated in a maximum flow. Thus, the problem p(1 + e) has a maximum
flow with none of the edges of G saturated, but p(1) has a maximum flow that saturates
some of the edges of G. Also, p(1- e) has a maximum flow that fails to saturate the
edges (A, a) and (b,Z). Since x is initially n, log(n) iterations will reduce the
uncertainty to 1, and each further iteration will add a significant bit of information.
Thus O(log (n)) iterations will suffice to get a constant number (or even a logarithmic
number) of significant digits in the value of the flow.

Let A’ denote the set of vertices y of G such that the edge (A, y) is not saturated
in a maximum flow for p(x’-e). Let Z’ denote the set of vertices y of G such that
the edge (y, Z) is not saturated in this flow. We can show that the saturated edges of
G disconnect A’ from Z’, and that A’ and Z’ are nonempty. Therefore, the saturated
edges of G disconnect G, and from them we can obtain a cut C separating A’ from
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Z’ such that all the flow across this cut is in one direction. This cut can be obtained
easily as in typical maximum flow algorithms. This completes the description of
Algorithm A. It should be clear that this can be done in polynomial time since a
maximum flow can be found in polynomial time and so Algorithm A takes polynomial
time.

The idea of the analysis is as follows" Consider an arbitrary cut (W, W) of G.
What is the chance that this cut will have all edges saturated, which is a prerequisite
for its being chosen by Algorithm A? If the cut has many edges, the chance that they
will be saturated is low. However, if the cut has few edges, the chance that they will
be saturated is high. More precisely, if W and W are nearly equal (as with a separator)
then there is a reasonably high probability that the number of sources and sinks in W
differ by some constant multiple of by properties of the normal (or binomial)
distribution. However, the probability that these numbers differ by more than a few
multiples of is extremely low.

DEFINITION. If the cut C is (W, W) then let Ac (equivalently, A(w,w) be the
difference between the number of sources and sinks in W (or W) in the flow problem
p(x).

DEFINITION. The capacity per edge through (or of) a cut C is Ac/IC [. (Recall
that [C[ is the number of edges across C.) The absolute capacity per edge of a cut C
is the absolute value of the capacity per edge of C. We use Ix[ to refer to the absolute
value of a number x, as usual.

THEOREM 1. Algorithm A will always choose some cut having nearly maximum
absolute capacity per edge.

Proof Let 4(x) be a maximum flow for the problem p(x). Algorithm A finds x’
such that p(x’+ e) has a maximum flow 4(x’+ e) in which no edges of G are saturated
(and all edges incident on A and Z are saturated), but p(x’) has a maximum flow
4(x’) in which some edges of G are saturated, and p(x’-e) has a maximum flow in
which some edges incident on A and Z are not saturated. Recall that A’ are the vertices
y in VA such that the edge (A, y) is not saturated in 4(x’-e) and Z’ are the vertices
y in Vz such that the edge (y, Z) is not saturated in 4(x’-e). Algorithm A finds a
minimal cut (W, W) separating A’ from Z’. Assume the flow goes from W to W, so
that A’c W and Z’c W. It follows that all sinks in W are saturated (absorbing a flow
of 1) and all sources in W are saturated (producing a flow of 1) in ch(x’-e).

The total flow in 4 (x’+ e) is n/2 since no edges of G are saturated. By multiplying
all flows in ch(x+e) by (x’-e)/(x’+e) we obtain a (nonmaximum) flow for the
problem p(x’-e), since the edge capacities are reduced by a ratio of at most (x’-
e)/(x’+e) in going from p(x’+e) to p(x’-e). This nonmaximum flow has a total
flow of n(x-e)/2(x + e). Therefore the maximum flow 4(x’-e) has a total value of
at least n(x’-e)/2(x’+ e). Thus the total flows for 4(x’-e) and 4(x’+ e) are about
the same.

Now, the total flow for ch(x’-e) is fll-[-/12 -/22, where fl is the flow from sources
in W (including A’) to sinks in W, f2 is the flow from sources in W to sinks in W
(including Z’), and f2 is the flow from sources in W to sinks in W. We can omit flow
from sources in W to sinks in W, since all the flow across the cut is in one direction.
We justify this informally as follows. If we have a flow from a source to two sinks,
this flow can be expressed as a sum of a flow from the source to each sink. By extending
this argument, we can express the flow in ch(x’-e) as f +flz+f2.

Let f, f2,’ fl, and f2 be similar quantities for 4(x’+ e). By above remarks,
f +fl+f2 is nearly n and f’l +f2+f+f n. Note that the total flow from sources
in W in ch(x’-e), is about the same as the total flow from sources in W in ch(x’+e).
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This is because the sources in W produce a flow of 1 each in both ch(x’-e) and
b(x’+ e), hence the total flow from sources in W is the same in 4(x’- e) and 4(x’+ e).
Also, the total flow in b(x’- e) is about the same as in b (x’+ e). This flow must come
from sources in W and sources in W. Thus fl+f2 is about the same as fl+f2.
Similarly, f+f= is about the same as fz+fz2 We obtain that fz is about f2-f’2
by combining these two approximate equalities with the fact that the total flows in
b(x’- e) and 4(x’+ e) are about the same. Thus the flow through W, W) in 4(x’- e)
and b(x’+ e) is about the same, since the flow across (W, W) in 4(x’-e) is f2 and
in 4(x’+ e) it is fz-f. But the flow through (W, W) in 4(x’+ e) is A(w,, so the
flow through (W, W) in ch(x’-e) is about A(w,). Since each edge of (W, W) is
saturated in b(x’-e), the flow through each edge of (W, W) in 4(x’-e) is x’-e.
Therefore (x’-e)[(W, W)I is nearly A(w, and the capacity per edge of (W, W) is
nearly x’-e. Since Algorithm A chooses X’ nearly maximum so that some such cut
(W, W) exists, Algorithm A finds a cut in G of nearly maximum capacity per edge.

The idea, then, is that if a cut W, W) has a few edges, then in a random selection
of sources and sinks, its expected capacity per edge will be high, while if a cut has
many edges, its expected capacity per edge will be low. Since Algorithm A always
chooses a cut having nearly maximal capacity per edge, it should always choose a cut
having nearly the smallest number of edges. However, this analysis leaves out some
factors. Namely, if W or W is very small then the expected value of Aw,) is also
small, and so even if the cut W, W) has a small number of edges, it may have a small
expected capacity per edge. Therefore the measure of goodness must also-take into
account the relative sizes of W and W. Also, even if the probability is low that any
particular cut has high capacity per edge, if there are many cuts, then the collective
probability that one of them has a high capacity per edge, may be high. Therefore we
need to do an analysis of the number of cuts of various sizes in a connected graph.
This turns out to be fairly easy.

2.1. A bound on the performance of Algorithm A. We first give a fairly simple
analysis to produce a rough bound on the performance of Algorithm A. Let C(n, m)
be the binomial coefficient giving the number of ways of choosing rn out of n objects.
Thus C(n, m) n !/m (n m) !. Our analysis makes use of the following fact.

THEOREM 2. Suppose half of the vertices of G are chosen randomly as sources and
the other half as sinks. Suppose C W, W) is a cut in G and W[ n and WI n.
Thus nl + n n. Then as n approaches infinity with n/ n held to a constant with 0 < n/ n <
1, the distribution of Ac approaches a normal distribution with mean 0 and standard
deviation x/nln2/ n.

Proof The number of ways of choosing sources and sinks so that Ac is 2d, is
C(n, (n/2)+ d)C(n2, (n2/2)- d). The total number of ways of choosing sources and
sinks is C(n, n/2). Therefore the probability that Ac/2 d is

C(n, n/2+d)C(n2, n2/2-d)
C(n,n/2)

Now, the binomial distribution C (n, m) may be approximated by a normal distribution.
We have that

C(n,2, m) n e-2(m-n/2)2/n

as n-az with (m-n/2)/n held constant. This is a normal distribution of random
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variable m, with mean n/2 and standard deviation 2v. It follows that the distribution
of Ac/2 approaches a normal distribution with mean 0 and standard deviation
(1/2)x/hn2/n as nl and n2 approach infinity with nl/n held constant. Therefore the
distribution of Ac is a normal distribution with mean 0 and standard deviation V’n n2/n.

COROLLARY 1. With C as above, the distribution of Ac/nl approaches a normal
distribution with mean 0 and standard deviation x/(1/ nl) (1/n) as n approaches infinity
with nl/n held constant. Also, this standard deviation decreases as n increases.

Proof. The standard deviation of Ac/nl is (1/nl)x/nn2/n, which equals
x/(1/n)-(1/n).

COROLLARY 2. With C as above, if C is a separator in G then the probability that
IAcI >= (1/2)x/- approaches a constant greater than .3 as n approaches infinity. Also,
regardless of whether C is a separator in G, if nl <- n2 then the probability that
1/x/ approaches a constant greater than .3 as n approaches infinity.

Proof. Note that since n and n2 are at least n/3, and n+ n2 n, the standard
deviation is at least (1/2)x/-. The probability that Ac has absolute value larger than the
standard deviation is at least .3, from tables for the normal distribution. Now, the ratio
of the standard deviation to nl is minimal (assuming n-<_ n2) when n n2 and then
it has a value 1/x/-. Therefore the probability that IAc[/nl-> 1/v/- is at least .3 for
large n.

From now on we assume that n n2.

DEFINITION. The goodness g(C) of a cut C (W, W) is the ratio
min ([ W[, wl)/I cI.

This is equivalent to flux or minimum edge expansion used in VLSI. Also, a
separator of maximum goodness is sim(lar to a minimum quotient separator discussed
by Miller [1984] and Rao [1987].

DEFINITION. If C (W, W) is a cut, then W and W are called sides of C.
THEOREM 3. Suppose G has a cut C W, IYV). Thus as n, WI, and approach

infinity, the probability that Algorithm A will find a cut having goodness at least about
g(C)/v/-ff approaches a constant greater than .3. Also, this probability increases as the
balance of C decreases.

Proof. In Corollary 2 above we have shown that the probability that
is at least .3 for large n. The algorithm will always find a cut having nearly maximum
absolute capacity per edge. The capacity per edge of C is Ac/ICI. Therefore Algorithm
A finds some cut D whose absolute capacity per edge is at least about IAcI/ICI. Thus
the total flow through D is at least about IDIlcI/ICI. This means that there are at
least about [DIIAc[/ICI vertices on either side of side of D. Hence g(D) is at least
about la l/I cI, But g(C) is n/I CI. Thus g(D)/g(C) is at least about IA , I! However,
the probability that IAc]/n >-x/-ff is at least .3 for large n, as shown above. Therefore
the probability that g(D)/g(C) is at least about 1/x/-ff is at least .3, for large n. Thus
the probability that g(D) is at least about g(C)/x/-ff is at least .3 for large n, as claimed.
Since cuts C with small balance have larger standard deviation of Ac, by Corollary 1
above, the probability increases as the balance of C decreases. It is necessary that WI
and W] approach infinity so that we can approximate the distribution of Ac by a
normal distribution. Note that C need not be a separator.

3. A better bound: Algorithm Amaxo The probability that IAc[/n -> 1/x/-ff is at least
.3 for large n. However, sometimes IAcl/nl will be much larger than this, since this
quantity has a normal distribution. For example, from tables for the normal distribution,
the probability that a random normally distributed variable with mean zero has absolute
values at least twice the standard deviation, is at least .045, and the probability that
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such a random variable has absolute value at least three times the standard deviation
is at least .0025. Therefore, in 25 trials we will probably obtain at least one result
having absolute value at least twice the standard deviation, and in 400 trials we will
probably obtain at least one absolute value at least three times the standard deviation.
Thus, if Algorithm A is run say 25 times, and the best cut is kept, we will probably
obtain a cut D having goodness at least about 2g(C)/x/-, and in 400 trials we will
probably obtain a cut D having goodness at least about 3g(C)/v/-. In this way, at
the expense of running more trials, we can get a better bound than that of Algorithm
A. Reasoning in this way, we obtain the following result.

THEOREM 4. Suppose G has a cut C. Then as n - o, ifAlgorithm A is run O(k ek2/2)
times and the best cut D is taken, the probability is greater than .5 that g(D)/g(C) is
at least about k/x/.

Proof We can show that Ixo e -t2/2 dt is (R)((1/Xo) e-X/2). Therefore the probability
that a normally distributed variable with mean zero, has absolute value at least k times
the standard deviation, is (R)((l/k) e-k2 Therefore the probability that a cut found
by the algorithm has goodness at least about kg(C)/x/- is (R)((1/k) e-k2/2). Therefore
in O(k ek/2) trials, the probability is greater than .5 that the best cut will have goodness
at least about kg(C)/x/.

We will derive a much better bound on g(D) below for separators C such that
g(C) <x/. First we consider how the cuts found by the algorithm can be pieced
together to form a "near separator."

4. Piecing together cuts: Algorithm A*. Suppose C (W, W) is an arbitrary cut
in G. We present an algorithm for constructing a "near separator" in G and bound
the goodness of the near separator obtained in terms of the goodness of C. This method
is the same as that used in Rao [1987] for planar graphs. Algorithm A* constructs a
sequence Go, G, G,. of graphs. Go is G. Gi is (V/, Ei). Gi+l is obtained from Gi
by finding a good cut (Y/, Zi) in Gi using repeated calls to Algorithm A. (We could,
of course, also use Algorithm Amax, obtaining an Algorithm A’max.) Assume without
loss of generality that YI _-< IZil. Then V+I is V/- Y/ and Ei+l is all edges of Ei with
both endpoints in V/+I. From this sequence of graphs we define a sequence (W1, W1),
(W2, W2), (W3, W3) of cuts of G. The output of Algorithm A* is one of the cuts
(W, W/) that may be chosen from the sequence in various ways. We analyze the
goodness of this output cut in terms of the method of choosing it from the sequence.
The sequence of cuts is defined as follows: W1 is Y1 and, in general, W+I is W (.J Y+.
Thus W is a union of the smaller sides of the cuts (Y, Zi). Note that the length of
the sequence Gi of graphs is at most n + 1 since V+I is smaller than V always. We
stop the sequence when W _-> n/3 and so the length ofthe sequence is at most (n/3) + 1.

We must specify how the "good cut" (Y, Zi) is found. In general, Algorithm A
is used. However, it is necessary to apply this algorithm a number of times and take
the best cut, to insure that the probability of finding a sufficiently good cut is sufficiently
high. By Theorem 3 above, if Algorithm A is applied once it obtains a cut within a
ratio of 1/x/ to optimal, with probability greater than .3. Therefore if Algorithm A is
applied twice, and the best result taken, we obtain a cut within a ratio of 1/x/ to
optimal, with probability greater than .5. If Algorithm A is applied 2 log (n/3) times
and the best cut taken, we obtain a cut within a ratio of 1/x/ to optimal with probability
greater than 1-1/(n/3). Algorithm A* depends on all the cuts (Y, Zi) being within
a ratio of 1/v/- to an optimal cut in Gi. The probability of this is at least (1 1/(n/3)) n/3

since the sequence has length at most n/3. However, (1-1/(n/3))/3>.5. Therefore
the probability that all the cuts Y, Zi) will be within a ratio of v/ to optimal in their
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graphs, is greater than .5. Note that the total number of trials for this is at most
(2n/3) log2 (n/3). Since each application of Algorithm A may require O(log (n)) flow
problems to be solved, and a single flow problem takes O(//3) time, the total time for
Algorithm A* is O(n4 log2 (n)).

We also need to analyze how many edges the cuts (Y, Zi) will have. We know
that they will, with high probability, have goodness within a ratio of 1/x/ to an optimal
cut in Gi. However, the optimal cut in Gi may not be as good as the optimal cut in
G. Let m be [(W, ffr)l and let n be IVI. Suppose that I_,l <lwl. Then the graph G
has a cut (Wf’l V, Wf) V) with at most m edges and at least Iwl-Iw-l vertices in
each part. The goodness of this cut is at least (I WI-I V-I)/m. Therefore with high
probability, by Theorem 3, g((Y/, zi))>=(1/,)(Iwl-IW_l)/m, assuming
IWI. Since ni<=n, g((Y,Z))>-(1/vr-)(Iwl-lw_l)/m with high probability. Since

YI--< IZI, l( Y, Z)I is at most Yl/g(( Y, Z)), that is, at most Ylmx/-/(I WI-I -l).
We now analyze how good the cuts (W, W) will be. The number of edges in the

cut (W, W) of G is at most the sum of the number of edges in the cuts (Y, Z1),
Y2, Zz), , Y, Z). Thus l( W, l/)l --< mx/- =1 IYI/(I WI- W-I). Suppose for this

discussion that W] =<IWI. Since _1 is the sum of Yk[ for k from 1 to j-1, we can
show that ]( W, )1 =< mx/-ff(Hiw HI wl_lw, i) where Hp is 1 +1/2+x+... + 1/p. Therefore
](, )l<-mv/-ffHiwl. Now Hp is ln(p)+’r,+O(1/p) where 3,=.5772 is Euler’s
constant. We obtain therefore (assuming VCI--<IWI) that [(W, W)[_-<
mx/(ln(lWl)+3,+O(1/lW[)). Let g be g((W, I/)). Now, if [[_-<lwl then [W[_-<
l//[ SO gi----I w/l/l(W/, /)l. Since g(( W, if’)) [W]/m, g

(] W[/[ W[)g(( W, if’_))/(x/-ff In ([ W[ + 3’ + 0(1/[ W[)). For another bound, recall from
above that [(W, Wi)[<-mx/-ff(Hiwi-H(iwl_lw,l)).We can show that if p<q, then
Hq-H(q_p)<-p/(q-p). If p<-q then 1/(Hq-H(q_p))>=(q/p)-l. Therefore, using
the inequality [( W, ff/)[ _-< mx/-ff(Hiw Hlwl_lw, i) from above, 1/( W, IY)[->_
(1 / (mx/-ff))([ W[/[ W/[- 1 ). With gi as above, g -> (I VI/(mx/-ff))([ W[/I V[- 1), and gi ->_

(l lll Wl)g(( W, ffq)(I wl/l w, -1)/,/-ff so g,->_g((W, ))(1-l w, I/I wl)/,/-ff.
We now bound the goodness of the cut produced (with probability >.5) by

Algorithm A*. We shown above that if Algorithm A* stops at graph Gi such that
w, I--<lwl, then with probability greater than .5 it outputs a cut W/, W/) with goodness

at least ([w,I/Iwl)g((w, ff’))/(,/-ffln(lWl)/r/o(1/lw[)). Also, by the second
bound, g(W,, )->_ g(( W, ff/))(-IW,I/lWl)/,. The first estimate is good when
is large, the second when [W is small. These may be combined by using the first
estimate when 11->- [w[/2 and the second when W[ <--I Wl/2. In this way, assuming
that [W[->_2 we obtain that g(W, 17) >= g( W, )/(2,/fi(nlWl/,/o(a/ll))) with
probability greater than .5, if [w/I <--Iw[. Thus we have an extra cost of about ln lwI
from piecing together the cuts. The problem with this bound is that [W[ may be very
small and so the cut (W, W) may not be a near separator.

To guarantee that a cut is found in which IWI is not too small, we can take the
first cut (W, I/,.) such that 1/1 W[ > r for some real number r less than one. In this
case we may have [W/] >lwl. We can show that with probability greater than .5 the
cut W, ff/) produced has goodness at least (1 r)g( W, ff’)/x/-ff. Thus the cost increases
as the ratio r approaches 1. To obtain this bound, recall that g
g((W, ff/))(1-lwil/Iwl)/4- if Il_-<lwl. (All bounds are with appropriate prob-
abilities.) Also, recall that g((Y,Z,))>=(1/x/-ff)(lWl-lWi_l)/m if l_ll<lwl.
Suppose that ]W/-I =< r] W] and W, > r[ w[. Then [W_l[ <lwl, so by the bound
on g(( Yi, Zi)), g(( Y, Z)) >- g( W, ’v)(1/x/-) (1 -I w,-,I/I v,l). Also, gi-,

g((W, ffV))(1-lW_l/[W[)/4-. These bounds are identical. Since g, is a weighted
average of g(( Y, Z)) and g,_,, it follows that g _-> g(( W, I’))(1 -[ w/-,I/I w[)/,/-, that
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is, gi >- (1 r)g( W, ff’)/x/-ff. Also, since w, > rl wl, we know that w, is not extremely
small.

A problem is that we may not know[W[ and so we may not know when to stop.
However, if W, W) is a separator then we know that [W[-> n/3 and so we can output
the first cut (W/, W/) such that [W[_-> r(n/3). We can show that the above bound on
gi still holds in this case. Also, is at least n/3 since W is W/_ U g/, W/_ll ( rn/3,
w,_ t.J Y, t_J z, is v. Y,[ _-< 121, and V is Zi. If Iw, I-< 12,1 then the balance is at least
r/3, otherwise it is at least . Thus, since r < 1, the balance of W, /) is not less than
r/3 and (W/, W) is a near separator. Therefore we have the following result.

THEOREM 5. Suppose graph G has a separator (W, W). Suppose Algorithm A* is
used on G, real number r with 0< r< is given, and is minimal such that lWil >- r( n/ 3 ).
Then the balance of W, ff’) is at least r/3, and g(( W, )) _-> (1 r)g( W, ff’)/x/- with
probability greater than .5.

Proof. The proof is given above.
COROLLARY. If G has a separator C, Algorithm A* is used, real number r with

0 < r < 1 is given, and is minimal such that Iw, >- r(n/3) for some real number r < 1,
then either W, IYCi) is a separator with at most 31ci,/-ff/2(1 r) edges or W, ff’) has
balance at least r/3 and has at most [CIx/-ff/(1- r) edges, with probability greater than
.5. Thus we obtain a near separator with o(IcI,/) edges.

Proof Using the definition of goodness for the separator C and the cut W, V)
and the fact that if v,, ) is not a separator then min (I WI, Izl)/min (I WI, I1) --< 1.
If (w, /) is a separator then this quantity is bounded by }.

5. A more refined analysis: Algorithm B. We now give a more refined analysis on
a slightly different algorithm to produce a better bound. Note that if Ac/nl >--1/v/-ff
then Algorithm A will always find a cut D as specified in Theorem 3. However, we
can get a better bound by looking at the goodness of cuts D that are often found,
rather than always found, when Ac/nl => 1/v/ft. For, the probability that a cut D as
above will have capacity per edge Ac/I CI will be very small if D has many more edges
than C. Thus if there are not too many cuts with many more edges than C, we will
probably find one having not too many edges. We makes this precise below. To do
this we need to consider the number of cuts of G of various sizes. Then, after showing
that the probability is low that a cut with many edges will be chosen, we still must
show that among the cuts with few edges, the probability that a cut of low goodness
will be chosen is low. It turns out that this is also possible.

For this algorithm, we need to change the flow so that even for C with small
balance, the distribution of Ac approximates a normal distribution. Suppose C
(W, W) and WI 1. Then either Ac 1 or Ac =-1 and this does not approximate a
normal distribution. To overcome this, we choose a number K and let each node of
G contain K subnodes. Half of the subnodes in G are chosen as sources and half are
chosen as sinks. So, with C as above with one side containing only one vertex, Ac
will be an integer in the range -K to K. If K is large enough, even for such a C, Ac
will approximate a normal distribution. In actuality, there are no subnodes, but the
flow out of C is some integer in the range -K to K. Other than this, the algorithm is
as before. That is, Algorithm B is like Algorithm A with this change. The graph G is
also as before; the edges of G connect nodes of G, not subnodes. Only the choice of
flow out of nodes of G differs.

Suppose that a cut S, not necessarily a separator, exists in G. Suppose that the
balance b(S) of S is b. Note that b-<1/2. Then As is approximately distributed as a
normal distribution with mean 0 and standard deviation v/Kb(1-b)n. This is by
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Theorem 2, using the fact that the number of subnodes on each side of S is Kbn and
Kn Kbn, respectively, and (Kbn)(Kn Kbn)/ Kn Kb(1 b)n. Thus the probability
that IAsl >--_ x/Kb(1- b)n is larger than .3 for large K and n.

Suppose S has p edges. Then the absolute capacity per edge of S is
>=(1/p)x/Kb(1-b)n with probability greater than .3. For another cut C to be chosen
when IAs]>-v/Kb(1-b)n, the absolute capacity per edge of C must be at least about
(1/p)x/Kb(1-b)n. Suppose that C has rn edges. For the absolute capacity per edge
of C to be this large, IAcl must be at least about (rn/p)v/Kb(1-b)n. Suppose the
sides of C have nl and r/2 vertices, respectively, with nl--< r/2. Then the distribution of
Ac is a normal distribution with mean 0 and standard deviation x/Knln2/n for large
n and K. Integrating the tails of the normal distribution, it turns out that the probability
that IAcl is at least (rn/p)x/Kb(1-b)n, that is, the probability that cut cut C with m
edges might be chosen instead of S when As is as above, is at most

(p/m)(1/x/2zrb(1 b)) e-2b(1-b)rn2/p2.

Let us call this quantity Po(m). We must consider the number of cuts C with m edges
to find a bound on the probability that one of them with small goodness will be chosen
instead of S.

5.1. The number of cuts of various sizes. Since G is a connected graph, it has a
spanning tree. Let T be a spanning tree of G. Now, there is a one-to-one correspondence
between subsets of the edges of T, and cuts of G. Given a cut C of G, from it we can
obtain the set T(C) of edges e of T such that the endpoints of e are on different sides
of C. Also, given such a set T(C) of edges, we can from it obtain C by starting at
some point in T and assigning vertices to one or the other side of C so that the
condition on T(C) is satified. (We are identifying the cuts W, W) and W, W).) Now,
T has n- 1 edges. Note that [C[ _-> IT(C)]. So if ICI-<-rn then IT(C)[ <_-m, and we can
bound the number of cuts with m edges or less, by bounding the number of subsets
of the edges of T, with rn elements or less. But the number of subsets of the edges of
T with rn elements or less, is just C(n-1, 1)+C(n-l,2)+...+C(n-l,m) where
C(i, j) is a binomial coefficient, as before. Thus the number of cuts of G with m edges
or less, is at most C(n 1) + C(n 1, 2) +. + C(n 1, rn). Looked at another way,
let Tm be the set of cuts C such that IT(C)[ m. Then all cuts C in T" satisfy ]C] >- m.
Thus we know that the set of cuts of G can be expressed as the union of such Tm
where Tm[ C(n- 1, rn). In this way we obtain the following result.

THEOREM 6. The set of cuts of G can be expressed as the union over rn of sets T"
of cuts such that (a) each cut C in T" has at least rn edges and (b) [Tm[ C(n- 1, m).

Proof The proof is as above.

5.2. Bounding the probability of choosing a large cut. We first show that the
probability is small that a cut will be chosen from some T" with rn large relative to
p. We say m is large relative to p if a cut with m edges cannot possibly have a goodness
near that of the best cut even if the cut has n/2 vertices on each side. Therefore there
are a small number of cuts (relative to p) that can be chosen. We next show that of
these remaining cuts, the probability is small that any one ofthem with a small goodness
relative to that of S, will be chosen. Therefore there is a large probability that a cut
with a goodness near that of S will be chosen.

Now, IT,,I C(n-1, m)< (n-1)’, which is about emln(n). An arbitrary cut with
m edges will be chosen with probability bounded by Po(m), which is

(p/ rn)(1/x/2,n’b(1- b)) e-2b’-b’/p,
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when IAs] is large, as specified above. Therefore,since thereare about 8
mln(n) such cuts,

the probability that any cut with m edges will be chosen when ]As] is large, is bounded
by

Po(m) emln(n).

Let too> 0 be some fixed value for m; then if m _-> mo the probability is bounded by

(p/mo)(1/x/2rb(1 b)) e -2b(1-b)m2/p2+mln(n).

Integrating from rn0 to infinity with respect to rn and bounding the result, we show
that the probability that any cut in T,, will be chosen for any m >_-mo is less than

P3N/ -2b( -b)m2/pZ+mln(ne
mov/rb(1- b)(Smob(1- b)-Zp2 In (n))

Let us call this quantity Pl(n). Assuming that p21n (n)/(2b(1-b))<mo, we obtain
that P(n) is bounded by

x/2b(1- b)
v/--p In (n)2"

Since > 1.5, if n > 3 this probability is less than 1/2, and becomes much smaller than
for larger n and p > 1. Thus for problems of practical interest this probability is small.

5.3. Bounding the probability of choosing a small cut. We now discuss the cuts in

Tm for m _-< too. For these cuts, we distinguish those having high goodness from those
having low goodness, and show that the probability is low that a cut with low goodness
will be chosen. If a C has m edges and goodness g then its sides have gm and n- gm
vertices, respectively. Therefore the standard deviation of Ac is x/Kgm(n- gin) n, and
Ac is distributed as

/n/(Kgm(n-gm)2r) exp
2Kgm(n-gm)

The cut S will be chosen often unless some other cut has a larger or equal absolute
capacity per edge. The absolute capacity per edge of S is at least /Kb(1- b)n/p with
probability at least .3, since S has p edges. For the absolute capacity per edge of C
to be this large, IAcl must be at least (m/p)/Kb(1-b)n. Therefore the probability
that this will occur can be obtained by integrating the above distribution from
(m/p)/Kb(1- b)n to infinity and multiplying by two. This yields a value bounded by

p/2gm(n gin)
exp (-mnb( 1 b)/(2p2g(n gin))).nm/rb(1- b

Now, suppose for simplicity that all cuts in Tm have m edges. (If cuts have more edges
than this, our algorithm will perform better.) There are less than n or emn(n) cuts in
T,,,. The probability that one of them will have the absolute value of z at least
(m/p)/Kb(1-b)n is therefore at most eraIn(n) times the preceding probability. This
probability is therefore bounded by

p/2gm(n gin)
exp ((m In (n)- mnb(1 b))/(2p2g(n gin))).

nmv/.n.b(1- b

Let us call this quantity Pz(rn, n). We want to choose g small enough so that the sum
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of this quantity from m to m =p2 In (n)/(2b(1-b)), is small. If we choose g such
that g(n-gm)<n2b(1-b)/(2p21n(n)), then the exponentis less than zero and
P2(m,n) is bounded by 1/v/mTrln(n). If we choose g such that g(n-gm)<
n2b(1- b)/(2p2(ln (n)+ 1)), then P2(m, n) is bounded by e-m/x/mzr In (n). Summing
P2( m, n) from m 1 to m c, using the fact that P2( m, n) is bounded by e-"/v 7r In (n),
we obtain a total bounded by 1/x/Tr In (n). This quantity becomes small as n increases.

5.4. Bounding the performance of Algorithm B. For large enough n, both this
quantity and P1 (n) are small, under the assumption that the absolute capacity per edge
of S is at least (1/p)v/Kb(1-b)n. The absolute capacity per edge of S will be this
large with probability at least .3. Therefore we have the following result.

THEOREM 7. Suppose graph G has a cut S, not necessarily a separator, and Algorithm
B is applied to G. For large n, there is a probability at least .3 that either the cut S will
be chosen by Algorithm B or some cut C satisfying g(C)(n-g(C)[CI)>=
n2b(1-b)/(21Sl2(ln (n)+ 1)) will be chosen, where b is the balance of S.

Proof The probability that a large cut will be chosen is Pl(n), which approaches
zero as n approaches infinity if m0 is suitably chosen. The probability that a small cut
will be chosen with low goodness is obtained by summing P(m, n) with m varying
from 1 to infinity. This quantity also approaches zero as n approaches infinity. The
absolute capacity per edge of S will be as large as stated, with probability at least 3.
Therefore, the algorithm will choose a small cut with a high goodness with probability
at least .3, for large n.

Noting that 1/2<-(n-gm)/n<=l and that bn/p is the goodness of S, g>=
g(S)/4p(ln (n)+ 1). Therefore the goodness of the cut obtained is bounded in terms
of the goodness of an optimal cut. The extra factor of p is essentially the cost we pay
because there are so many cuts in T, for small m that it is necessary to choose a small
goodness to insure that the total probability of choosing any of them is small. This
extra factor will be reduced if many of the cuts in T, have more than m edges, because
the capacity per edge is inversely proportional to the number of edges. For many
graphs the cuts in T, will have m edges for some real a > 1, leading to an even better
bound. Also, the behavior of different cuts is highly correlated, with we have not taken
into account. This will also improve the bound. We will return to this point shortly.
Therefore Algorithm B may do much better in practice than the bound indicates, so
implementation would be useful. In addition, the performance of Algorithm B is
influenced as much (and even more) by the goodness of cuts that are not separators,
as by the goodness of separators. Therefore, if the graph G has any good cut, separator
or not, then the algorithm will tend to find a good cut. This also will tend to improve
the performance ofthe algorithm. This completes our description ofthe basic algorithm.

6. Piecing together cuts to get a separator: Algorithm B*. As before, we can apply
Algorithm B a number of times to obtain a near-separator with goodness near that of
S. We thus obtain Algorithm B*, which is the same as Algorithm A* except that
Algorithm B is used instead of Algorithm A. We then obtain the following result.

THEOREM 8. Suppose Algorithm B* is applied to graph G having a cut S (W,
Suppose also that real number r, 0 < r < 1, is given, and is minimal such that W[ >- r( n/ 3).
Then the balance of the cut (Wi, Wi) is at least r/3 and g((W, W))>-_
(1-r)g(S)/4[Sl(ln n + 1) with probability greater than .5.

Proof. Similar to the proof of Theorem 5. Note that the worst case is when the
cuts (W V, W V/) all have IS[ edges. This makes the ratio corresponding to
1/(41Sl(ln (n)+ 1)) in Algorithm B a constant and so the previous proof method can
be applied.
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COROLLARY. With as above, and assuming that S is a separator, the cut (W, Wi)
has at most 6lSI2(ln (n)+ 1)/(1- r) edges, and if the cut (W, if’i) is not a separator, it
has at most 41S[2(ln (n) + 1)/(1 r) edges, with probability greater than .5.

Proof Using Theorem 8, the definition of goodness, and the fact that if (W/, W/)
is not a separator then min (1 W/I, ff//I)/min ([ wl, I l) =< 1, If (W/, /) is a separator
then this quantity is bounded by .

7. Possible extensions. Just as Algorithm Ama gives a better bound than Algorithm
A at the expense of running more trials, it seems possible to improve the bound on
Algorithms B and B* by a similar approach, giving Algorithm Bma and B’max. In
addition, there are factors not considered, which means that the bound on Algorithms
B and B* is pessimistic. One such factor is mentioned above, namely, that the cuts in
T,, may have many more than m edges. Another such factor is the interdependence
of the behavior of different cuts. In the above analysis, we have assumed the worst
possible case, namely, that at most one cut C has a high absolute capacity per edge
at a time. Thus the probability that some cut C has a high absolute capacity per edge
is at most the sum of the probabilities for different cuts C. In reality, the chances that
two cuts C1 and C2 will have a high absolute capacity per edge, are closely related
much of the time. Note, for example, that [Ac-Ac2[ is bounded by [Y1-Y[ for
Algorithm A or K Y1- Y21 for Algorithm B, where CI is (Y1, Z) and C2 is (Y2, Z2).
Therefore cuts that are similar to each other will behave similarly. In fact, the expected
absolute difference between the number of sources and sinks in[Y1-Y2[ is on the
order of x/[Y1-Y[, or x/KIY Y2[ for Algorithm B. This means that the average
correlation between cuts is much higher than the worst-case value. That is, the expected
value of lac,- Acl is on the order of x/K[ Y1 Y2[ for Algorithm B. The effect of all
this is to reduce the effective number of cuts in G, improving the performance of
Algorithms B and B*. Since Algorithms A, Amax, and A* are based on worst-case
bounds, and not on independence assumptions, those bounds are not affected.

Also, for many graphs, it seems that the edges in an optimal cut will be more
likely to be included in the cuts found by Algorithm A than the other edges in the
graph. So, a promising approach is to run Algorithm A many times (say 100 times),
and with each edge keep the number of times it is included in the cut found by
Algorithm A. Then, find the minimium value such that the edges found or more
times, disconnect the graph, and let this set of edges be the cut output by the algorithm.
This approach is fast and also seems likely to obtain near optimal cuts for many graphs.
However, we have not analyzed this approach at all.
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Abstract. Polynomial-time Turing machines that output instances of a given language are considered,
where the instances are required to have a certain length specified by the input. Two types of generating
machines are investigated. The first, called a constructor, is deterministic and outputs one string in the
language having the specified input length, if such a string exists. A generator is nondeterministic and may
output different strings in the language using different computations on the same input; it is required,
however, that for any string in the language satisfying the input constraint, there be some computation of
the generator on this input that produces the string. Although most P and NP languages examined appear
to have such polynomial-time constructors and generators, it is shown that the question of whether all
NP languages have such machines is related to other open questions in complexity theory and that even

under the assumption that P is not equal to NP, the question cannot be resolved using techniques that
relativize.

More general and/or flexible types of generators are also considered; namely, generators based on
other parameters besides length; generators that are not necessarily capable of outputting all of the instances
in the language satisfying the input constraint; and generators where the output instance does not need to

satisfy the input constraint exactly. Several results are proved about the existence of such generators for
various types of languages.

Key words, generation, construction, string length, sparse languages, NP, oracles
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1. Introduction. Consider a well-known language in NP, such as the set of Hamil-
tonian graphs in a suitable language encoding. Given a length, it is straightforward to
determine whether or not there exists a string in this language having that particular
length. Also it is quite easy to construct such a string if it exists: after determining n
and m such that a graph with n vertices and m edges has an encoding with the given
length, and such that m n, simply construct a Hamiltonian cycle and then add extra
edges if necessary. With a little more thought it is also possible to come up with an
efficient (polynomial-time) nondeterministic or probabilistic procedure that can output
all Hamiltonian graphs having a given encoding length (or equivalently, having a given
number ofvertices and edges), although this procedure will probably include repetitions
and will not necessarily output the graphs with uniform probabilities. In this paper
we investigate whether such efficient construction or generation procedures exist for
all languages in P or NP. It turns out that most (although not all) well-known languages
in NP appear to have such construction and generation algorithms, but that determining
whether this is true for all NP languages is a hard problem and cannot be resolved
without answering some major open question in complexity theory.

There are several ways in which a machine that generates instances of a language
can be defined. The various factors to be considered include the following:

How many instances are generated on each run; that is, does the machine output
one, some, or all of the instances of the language that satisfy the input constraint each
time it is run?
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How tightly does the input specification control the properties of the output?
For instance, if the input is a specified length, does an output instance have to have
exactly the length specified, or can it be within some given range of the input length?

Should the machine be deterministic, nondeterministic, or should it be required
to output instances uniformly or with a given probability distribution?

Several of the models of generation that can be obtained by various answers to
the above questions have theoretical interest and/or practical applications. In this
paper we have chosen to investigate generation models where the machine outputs
one instance of the language each time it is run. We also impose no distribution
requirements on the generators. We look at two types of generating machines. The
first, called a constructor, is deterministic. Given an input, it outputs exactly one string
in the language having the specified input length, if such a string exists. A generator
is nondeterministic and may output different strings in the language using different
computations on the same input. Furthermore, we require that for any string in the
language satisfying the input constraint, there be some computation of the generator
on this input that produces the string.

Other models of generation complexity have been studied in the literature. Jerrum,
Valiant, and Vazirani in [17] use the concept of p-relations (relations that can be
checked in polynomial time) to model the construction and uniform generation of
solutions for given problem instances. Uniform language instance generation for
languages in P is a special case of the generation considered in [17], since instance
generation of a language L can be modeled by the relation R/, where xRLy if and
only if x specifies a length and y is a string in L having length x. Thus it follows from
results in [17] that if L is any language in P, it is possible to generate uniformly in
polynomial time all instances of L of a given length, using a probabilistic Turing
machine equipped with a P oracle or a 2;-oracle. Note that it is easy to see that
construction (and in fact existence) can be done in polynomial time for all p-relations
if and only if P NP. Such a result is not at all apparent, however, in the context of
language instance generation. If P= NP, then it can indeed be shown that all P and
NP languages must have polynomial-time constructors and (nonuniform) generators.
However, we will show that the converse cannot be proved using techniques that
relativize.

Another model of language instance generation that is related to cryptography
and interactive proof systems is investigated by Abadi et al. [1], Hemachandra et al.
14], and Feigenbaum, Lipton, and Mahaney [9]. These papers investigate the existence
of invulnerable generators for languages in NP. If L is a language accepted by machine
M, then an c-invulnerable generator for L is a machine that on input 1 generates pairs
(x, w), where x e L, Ix] n, and w is an accepting computation for x in M; moreover
the pairs are generated according to a distribution under which any polynomial-time
adversary who is given x fails to find an accepting computation for x, with probability
at least a, for infinitely many lengths n. The emphasis in [1], [14], [9] is on the hardness
of the distribution generated.

Other work dealing with the generation in polynomial time of specific structures,
such as graphs having certain properties, may be found in [28], [2], [26]. See also
related work in [15].

This paper is organized as follows. Section 2 contains preliminary definitions and
notation. Section 3 presents some results on polynomial-time generation with oracles.
Section 4 presents the main results about the existence of polynomial-time constructors
and generators for languages in P and NP. Section 5 examines the properties of
polynomial-time generators when viewed as NP machines. Section 6 deals with the
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existence of polynomial-time constructors for languages in the polynomial-time
hierarchy. In 7 we examine other more general and less restrictive definitions of
generators, and we give several results about these types of generators and their relation
to the generation model studied in the rest of the paper. Section 8 contains relativization
results pertaining to the existence of constructors and generators for languages in
P, NP, and co-NP.

2. Preliminaries. Our Turing machine (TM) model is defined as in 16]. A Turing
machine may be deterministic (DTM) or nondeterministic (NDTM). A Turing machine
that (when it halts) either accepts or rejects its input is called an acceptor. A Turing
machine that, in addition to the input and work tapes, has an output tape is called a
transducer. An oracle Turing machine (OTM) is also defined as in [16].

The language classes in the polynomial-time hierarchy are defined as in [25]. We
let E U c->0 DTIME(2Cn), and NE U c_->o NTIME(2Cn)

A nondeterministic Turing machine acceptor M is categorical if for each x there
exists at most one computation of M on input x that leads to acceptance. The class
of languages in NP that are accepted by categorical NP machines is called UP [27].
We have pc_ UP c__ NP; it is not known whether these inclusions are proper.

The class Dp consists of all languages that are intersections of a language in NP
and a language in co-NP [21]. NPc__ Dp, co-NPG Dp, and NP= Dp if and only if
NP co-NP.

A language L is sparse if the number of strings in L of length n is at most p(n),
for each n -> 1, for some polynomial p. A tally language is a language over a one-letter
alphabet. A language is P-printable if there exists a polynomial-time procedure that
given input 1" outputs all strings in the language of length n. Note that if a language
is P-printable it must be sparse. An infinite language is P-immune if it has no infinite
subset in P.

We denote the set of natural numbers by N and the set of positive integers by
N+. Some of the proofs in the paper make use of the pairing function p(n, m)=
(n+ m)(n+ m+ 1)/2+ n. This function is polynomial-time computable, is one-to-one
and onto from N x N to N, and it has the property that p(n, m) >= nm for all n, m N.

We assume without loss of generality that NP machines make only two-way
nondeterministic branches and that the polynomial bounding the computation time is
of the form nk for some integer k. Given an NP machine M with time bound n k, we
say a string of length n k codes a computation of M on an input of length n, if the
bits ofthe string encode the nondeterministic branches that M makes in the computation
(with extra padding O’s allowed).

3. Generation with oracles.
DEFINITION 3.1. A nondeterministic oracle Turing machine transducer equipped

with an oracle A generates a language L if on input 1" and querying oracle A, it
outputs a string in L of length n, if such a string exists, and outputs A otherwise.
Moreover, for each string x of length n in L there should be at least one computation
of the machine on input 1" that produces x.

DEFINITION 3.2. Let L be a language. The padded prefix closure of L is defined as

={x#mly such that xy L and lYl m}.

PROPOSITION 3.1. (1) A language L can be generated by a nondeterministic poly-
nomial-time Turing machine equipped with an oracle for L.

(2) For k >= 1, if L ,, L can be generated by a nondeterministic polynomial-time
Turing machine equipped with a ,Pk-oracle.
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Proof (1) Given input 1", a generator for L constructs a string of length n in L
(if one exists) bit by bit, consulting the oracle at each step to determine how to add
the next bit in order to form a valid prefix of a string of length n in L.

(2) If LE for k->_ 1, then is also in E. The result then follows from part
().

The above proof uses part of a technique that was used in [17] to show that
uniform generation for p-relations can be done by a polynomial-time machine equipped
with a P oracle.

It follows from Proposition 3.1 that (nonuniform) generation for NP languages
can be placed within the second level of the polynomial-time hierarchy. A major
question investigated by this paper is whether generation for NP languages can in fact
be placed in the first level of the hierarchy. Note that in [17] it is shown that uniform
generation for p-relations can be placed within the third level of the polynomial-time
hierarchy.

4. Construction and generation for P and NP languages.
DEFINITION 4.1. (1) A polynomial-time detector (PTD) for a language L is a

deterministic Turing machine transducer that runs in polynomial time and that on input
1" outputs 1 if there exist strings of length n in L and outputs 0 otherwise.

(2) A polynomial-time constructor (PTC) for a language L is a deterministic Turing
machine transducer that runs in polynomial time and that on input 1" outputs a string
in L of length n, if such a string exists, and outputs A otherwise.

(3) A polynomial-time generator (PTG) for a language L is a nondeterministic
Turing machine transducer that runs in polynomial time and that on input 1 outputs
a string in L of length n, if such a string exists, and outputs A otherwise. Moreover,
for each string x L of length n there should exist some computation of the generator
on input 1" that outputs x.

(4) A categorical PTG for a language L is a PTG for L such that, for each string
x L of length n, there is exactly one computation of the generator on input 1" that
outputs x.

LEMMA 4.1. (1) If a language has a PTG it has a PTC; if a language has a PTC
it has a PTD.

(2) If a language has a PTG it is in NP.
(3) A language in NP has a PTC if and only if it has a PTG.
Proof (1) and (2) are clear from the definitions. To show (3), let Lbe in NP and

have PTC C/. A PTG G for L may be defined as follows. On input 1" G nondeter-
ministically constructs a string z of length n. It then runs a polynomial-time NDTM
acceptor for L on input z. If this machine accepts, then G outputs z. Otherwise, G
simulates C on input 1" and outputs the string produced by C/ (or A if C outputs
A).

Note that the argument in the above proof cannot be used to show that all NP
languages have PTGs, because a PTG can output A only if there are no strings of the
specified length in the language.

Since only languages in NP can have PTGs, a natural question to ask is whether
in fact all languages in NP have PTGs. If not, do at least all languages in P have
PTGs? By part (3) of the above lemma this is equivalent to asking whether or not all
languages in P or NP have PTCs. We will show that, although these questions are
hard to answer, to determine whether or not all NP languages have PTDs, PTCs, or

detector is called a tallier in [24].
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PTGs, it suffices to answer the question for languages in P. The same pattern is repeated
for other types of generating machines dealt with later in this paper.

As mentioned in the introduction, it appears fairly easy to construct PTDs, PTCs,
and PTGs for most well-known languages in P and NP. As an example, consider the
NP-complete language corresponding to the 3-satisfiability (3SAT) problem 10]. Each
instance of this problem consists of a set of variables {xl,..., xn} and a set of clauses
{c,..., Cm}, where each clause consists of the logical disjunction of three literals (each
literal is of the form xi or i for some i). The resulting formula is satisfiable if there
is a truth assignment for the variables that simultaneously makes every clause true.
Let 3SAT denote the NP-complete language consisting of encodings of all such
satisfiable formulas. We assume that the length of the string encoding each instance
is polynomially related to the parameters n and m, where n denotes the number of
variables and rn the number of clauses. To construct an instance of 3SAT with n
variables and rn clauses, randomly assign a truth value T or F to each of x, x2, , xn.
Let u x if xi was assigned T, u--ffi otherwise. To form each of the m clauses first
randomly choose some ui, thus ensuring that the clause is true, and then randomly
choose any two more variables for the clause from among xl, x2, , xn, :, , , n.
Clearly each satisfiable formula with n variables and m clauses is generated in this
manner. Moreover the number of times a particular satisfiable formula is generated is
proportional to the number of different assignments that satisfy it.

There are, however, languages in NP for which no PTC is known. Such a language
is the set of prime numbers (encoded in binary notation) [22]. Nevertheless there does
exist a trivial PTD for the set of prime numbers, since for sufficiently large n there
always exists a prime of length n (Bertrand’s postulate, see [19]).

4.1. Polynomial’time detectors (PTDs).
PRor’osITION 4.1. The following are equivalent"
(1) All tally languages in NP have PTDs.
(2) All languages in NP have PTDs.
(3) All languages in P have PTDs.
(4) There are no tally languages in NP-P.
Proof For any language L in NP, let LT--{1" ]:lx L with Ixl n}. Note that L

has a PTD if and only if L has a PTD. Thus (1)<::> (2). Also it is clear that a tally
language is in P if and only if it has a PTD. Hence we have (1):>(4). It is also clear
that (2):=>(3).

To complete the proof it will be shown that (3)(4). Let L be any tally language
in NP and let M be a polynomial-time NDTM that accepts L and that runs in time
bounded by n on inputs of length n. Define the language Ls to consist of all strings
x of length n such that, if M is given input I and if M follows the computation
coded in x, then M accepts. Ls is in P, and hence by assumption Ls has a PTD. Note
In is in L if and only if Ls has a string of length n k, and thus L is in P. [51

4.2. Polynomial-time constructors (PTCs) and polynomial-time generators
(PTGs). Book shows in [5] that there are no tally languages in NP-P if and only if
E NE, while Hartmanis shows in [13] that there are no sparse languages in NP-P if
and only if E NE. Thus it follows from the previous proposition that if all sparse
NP languages have PTCs (or PTDs), then there are no sparse languages in NP-P. (See
also 12].)

If we assume that there are no sparse langu.ages in NP-P, and if L is any sparse
language in NP, then its padded prefix closure L is also sparse and in NP, and hence
in P. From the argument in the proof of Proposition 3.1 it follows that L has a PTC
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and in fact is P-printable. Clearly also if a language is P-printable it has a PTC. We
therefore have the following corollary of Proposition 4.1.

COROLLARY 4.2. All sparse languages in NP have PTCs (PTDs) if and only if all
sparse languages in NP are P-printable.

The above corollary can also be derived from a more direct argument (bypassing
the E NE connection). Assume all sparse languages in NP have PTCs and let L be
any sparse language in NP, with p(n) bounding the number of strings of length n in
L, where p is a polynomial. Let the language L’ contain, for each n, a single string of
length p(n, p(n)), consisting of the concatenation, in lexicographic order, of all strings
of length n in L, padded with extra symbols (, E) to achieve the required length.
Clearly L’ is sparse, and we can also show that L’ is in NP, as follows. Define

Le {l(n’’ ::i at least m strings of length n in L}. Le is a tally language in NP. By
our assumption Le must have a PTC, implying that it is in P, and therefore L’ is in
NP. Therefore by assumption L’ has a PTC, and it immediately follows that L is
P-printable.

It is an open question where the converse of the last corollary is true, or
equivalently, whether if all languages in NP have PTDs then they all must have PTCs.
However, we can show the following.

THEOREM 4.3. If there are no sparse languages in DP-P, then all languages in

NP have PTCs.
Proof Let L be a language in NP and consider the language LF consisting for

each n of the lexicographically first string of length n in L,,if such a string exists. This
language is sparse and is in Dp. Its padded prefix closure LF is also sparse and in Dp.
Hence if there are no sparse languages in Dp- P, F is in P and so by Proposition
3.1 LF has a PTG, and hence also a PTC. This PTC is also a PTC for L.

Thus if all NP languages have PTCs, then there are no sparse languages in NP-P.
On the other hand, if there exists some NP language that does not have a PTC, then
there is a sparse language in Dp-P (implying of course that P NP). Hence one
cannot hope to resolve the question of whether or not all NP languages have PTCs
without resolving some major open question in complexity theory.

There are certain languages that are particularly easy to generate, namely, those
languages whose padded prefix closures are in P. In fact it follows from the proof of
Proposition 3.1 that all such languages have categorical PTGs.

DEFINITION 4.2. The language class Prefix-P consists of all those languages whose
padded prefix closures are in P.

Note that Prefix-P P.
PROPOSITION 4.4. If a language is in Prefix-P it has a categorical PTG.
PROPOSITION 4.5. Prefix-P P if and only if P NP.
Proof Consider the language post-3SAT consisting of all strings of the form yx,

such that y is a satisfiable 3SAT formula and x is a truth assignment satisfying y. It
is clear that post-3SAT is in P, but post-3SAT cannot be in Prefix-P unless P NP.

If P # NP, the class of languages that have PTGs is not restricted to those languages
in Prefix-P. For instance, 3SAT and post-3SAT have PTGs even though, unless P NP,
neither of these languages is in Prefix-P. However, any language that has a PTG can
be characterized as the image of another language in Prefix-P under a polynomial
mapping of a certain type.

DEFINITION 4.3. A language L is prefixable if there exists a language L’ in Prefix-P,
a polynomial f that is one-to-one on the positive integers, and a polynomial-time
computable onto function g:L’- L such that Ixl =f(Ig(x)l) for all x L’.

THEOREM 4.6. A language has a PTG if and only if it is prefixable.
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Proof Suppose L is prefixable, and let L’,f, g have the required properties as
stated in the definition. Since L’ is in Prefix-P, it has a PTG G/,. A PTG GL for L can
then be defined as follows. On input 1 n, G/ computes f(n) and simulates G/, on input
lYn. If G, outputs A, then G/ outputs A. If G/, outputs a string x, then GL outputs
y=g(x).

Suppose conversely that L has a PTG G that runs in time bounded by n k on
input 1 n. Let L’ consist of all strings of the form xy (Z), where n => 1, lyl- n,
[xl n k, and if G follows the computation coded in x, GL outputs y. Then L’ is in
Prefix-P (recall that a computation of G can output A on input I only if there are
no strings of length n in L). Thus we can define f(n)= n + 1 + n , and g" L’-> L by
g(xy) y. l-]

The following theorem shows that to decide whether or not all NP languages have
PTGs, it is sufficient to resolve the question for languages in P.

THEOREM 4.7. All languages in NP have PTGs if and only if all languages in P
have PTGs.

Proof (sketch). The same technique that was used in the last proof can be used
to prove this theorem. Let L be any language in NP, recognized by NDTM M, with
time bound n k. Let L’ consist of all strings of the form x#y, where n_-> 1, lYl n,
Ixl n k, and if M on input y follows the computation coded in x, M accepts. Then
L’ is in P, and if L’ has a PTG, it is not hard to see that L must also have a PTG. [3

Finally, another fact that has bearing on the question of whether or not all
languages in NP have PTGs is the existence of a language in NP that is complete in
this regard.

THEOREM 4.8. There exists a language K in NP such that K has a (categorical)
PTG if and only if all languages in NP have (categorical) PTGs.

Proof The proof uses the same technique that was used in the second proof of
Corollary 4.2. Let N1, N2,’’ ", be an effective enumeration of all of the NP Turing
machine acceptors. Let machine Ni have time bound Pi, where each pi is a one-to-one
polynomial. For each pair of positive integers i, n, code each string of length n accepted
by Ni into a string of length p(i, pi(n)), padding the string with .’s to achieve the
required length. Let the language K consist of all strings formed in this way from all
such pairs. Note that K is just the standard universal NP-complete language coded
into strings of special lengths. It is not hard to see that if K has a PTG, then all NP
languages have PTGs. [3

COROLLARY 4.9. All NP languages have (categorical) PTGs if and only if all
NP-complete languages have (categorical) PTGs.

4.3. Categorical and lexicographic polynomial-time generators (PTGs). Not only
do most well-known NP languages have PTGs, but many also have PTGs with the
property that the number of times each string is produced is equal to the number of
accepting computations for the string in some NP acceptor for the language. An
interesting question is whether or not all NP languages have such generators.

DEFINITION 4.4. A language L is machine-categorically generable if for every NP
machine M that accepts L, there exists a PTG G4 for L such that the number of times
each string x in L of length n is generated by G4 on input In equals the number of
accepting computations for x in M.

If a language is in P, it has a deterministic polynomial-time acceptor, and the
PTG corresponding to this acceptor according to the above definition would be
categorical. Thus if we restrict our inquiry to languages in P and to the deterministic
polynomial-time machines accepting these languages, then the question becomes
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whether or not all languages in P have categorical PTGs. Again it turns out that to
answer the question about NP languages, it suffices to answer the question for languages
in P, as is shown by the following theorem.

TIEOREM 4.10. All languages in Phave categorical PTGs ifand only ifall languages
in NP are machine-categorically generable.

The proof of this theorem uses the same argument used in the proofs of Theorems
4.6 and 4.7. (See [24] for details.)

In the following definition, we assume all computations of a PTG with time bound
n k on input 1" are described with strings of length n k, padded with O’s if necessary.

DEFINITION 4.5. Let G be a PTG for a language L with time bound n k on input
1". G is lexicographic if for all x, y, w, z such that x, y L, Ixl lyl n, Iw] Izl n k,
and w-< z, if G on input 1" and following the computation coded in w outputs x, and
G on input 1" and following the computation coded in z outputs y, then x =< y.

PROPOSITION 4.11. Let L be a language. The following are equivalent:
(1) L is in Prefix-P.
(2) L has a lexicographic PTG.
(3) The language ti.,-{xyllxl--lyl, zt such that x<=z<-_y} is in P.
Proof We will show that (1)3(2)(3):=>(1). (1)3(2) follows from the proof

of Proposition 3.1. (3)3(1) is easy, as determining whether x is a padded prefix
of a string in L is equivalent to asking whether x0"l x l is in Lint.

To prove that (2)3(3), let G be a lexicographic PTG for L, where G runs in
time bounded by n k on input 1". We may construct another PTG G’ for L that always
makes exactly n k nondeterministic branches in its computations and still has the
lexicographic property. To determine whether x lly is in Li,,, where Ix[ =[y[ n,
perform a binary search on the set of strings of length n k, to determine whether there
exists a string w of length n k such that if G’ is run on input 1" following the computation
coded in w, then G’ outputs a string z such that x =< z_-< y. This can be done in time
O((log 2nk)/1 k) O(r/2k).

Another interesting question is whether or not all P or NP languages have
lexicographic PTGs. As is the case for ordinary PTGs, it suffices to answer this question
for languages in P. In this case the question turns out to be equivalent to whether
P NP. This is because by the above proposition all languages in P have lexicographic
PTGs if and only if P Prefix-P, which is equivalent to P NP.

COROLLARY 4.12. P NP ifand only ifall languages in P have lexieographic PTGs.

5. Some properties of polynomial-time generators (PTGs). The results ofthis section
show that even should it be the case that not all NP machines have PTGs, PTGs are
rather diversified, both with regard to their properties and with regard to the types of
languages that have PTGs.

TrEOREM 5.1. (1) If P NP, then there exists a PTG for a language in NP-P.
(2) If P # UP, then there exists a categorical PTG for a language in UP-P.
Proof (1) This follows from the fact that many NP-complete languages, e.g.,

3SAT, have PTGs.
(2) Let L be a language in UP-P, where L is recognized by a categorical machine

M that makes exactly n k moves on inputs of length n. Define the language L’= L1U L2.
L1 consists of all strings of the form xy, where Ix[ n, [y] n k, and if M is run on
input x following the computation coded in y, M rejects. L2 consists of all strings of
the form x, "/1, where x L. Thus L’ is in UP-P, and L’ has a categorical PTG" on
input 1 m, where m n + 1 / n k, this PTG randomly constructs strings x and y of lengths
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n and nk, respectively, and runs M on input x following the computation coded in y.
k+lIf M rejects, the PTG outputs xy; otherwise, it outputs x.n [3

DEFINITION 5.1. An NP machine for a language L is traceable if there exists a
polynomial-time procedure that on input x L outputs an accepting computation of
the machine on input x.

A PTG for a language L can be used as an NP recognizer for L. In terms of PTGs
viewed as NP machines, traceability has the following meaning: a PTG for a language
L is traceable if there exists a polynomial-time procedure that on input x L outputs
some computation of the PTG that on input 1 outputs x. Clearly any language that
has a traceable PTG must be in P, but it is not necessarily true that all PTGs for
languages in P must be traceable. It is not hard to see, however, that if a language in
P has a PTG it has a traceable PTG (using the argument in the proof of Lemma 4.1).

Borodin and Demers show in [6] that if P NP co-NP there is an NP machine
for 5;* that is not traceable. Similarly it follows from results by Grollmann and Selman
[11] that if P UP co-UP, then there is a UP machine for a language in P that is
not traceable. These hypotheses also imply the existence of nontraceable PTGs, as
seen in the following theorem.

THEOREM 5.2. (1)P NP if and only if all PTGs are traceable.
(2) P UP if and only if all categorical PTGs are traceable.
(3) P= UP.co-UP if and only if all categorical PTGs for languages in P are

traceable.
(4) If P NPT)co-NP, then there exists a PTG for a language in P that is not

traceable.
Proof The (3) implications in (1), (2), and (3) are true for all NP machines, not

just PTGs (see proofs of similar results in [11]). The (=) implications in (1) and (2)
follow from Theorem 5.1.

To prove the () implication in (3), let L be a language in (UP co-UP)- P. Let
M, M2 be categorical machines accepting L and L-, respectively, where n k bounds the
number of moves made by both M1 and M2 on inputs of length n. Define languages
L1 and L2 as follows. L U J V. U consists of all strings of the form xy, where
Ix[ n, [Yl n k, and M on input x and following the computation coded in y rejects.

k+lV consists of all strings of the form x." where Ix] n and x L. L2 U U V2. U2
consists of all strings of the form x%y, where Ix] n, ]y[ nk, and M2 on input x and
following the computation coded in y rejects. Vz consists of all strings of the form
x* "k+l, where Ix n and x . As seen in the proof of Theorem 5.1, L, L2 have
categorical PTGs. L 71 L2 is empty, hence a categorical PTG G can be constructed for
L U L2 whose first branch point consists of deciding whether to output a string in L
or L2. It is evident that L1 U L is in P. However, G cannot be traceable for then L
would be in P.

(4) Let L be a language in (NP co-NP)-P. Define the language L’ as follows"
L’={lxlxL}{OOylyZ*}. So ’={lxlx}{Olyly,*}. L’,’ are bothin NP
and have trivial PTCs; hence they have PTGs. We may then define a PTG for Z* whose
first branch point consists of deciding whether to output a string in L’ or L’. This PTG
cannot be traceable, since that would imply that L is in P. [3

6. Construction for languages in the polynomial-time hierarchy. This section con-
tains results about the existence of PTCs for language classes in the polynomial-time
hierarchy. These results are generalizations of results proved earlier for languages in
P and NP.
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THEOREM 6.1. All languages in A have PTCs if and only if all languages in E
have PTCs.

DEFINITION 6.1. If L is any language, let Lp denote the language consisting of
all strings formed by taking the concatenation of any sequence of m distinct strings
of length n from L, and padding the resulting string with .’s, to form a string of length
p(n,m).

PROPOSITION 6.2. Let c be any class of languages such that, ifL , then Lp is

also in . Then if all languages in have PTCs, then all sparse languages in are
P-printable.

Proof Let L be any sparse language in c and let p(n), where p is a polynomial,
bound the number of strings of length n in L. Since L is in c, L is in , and by
assumption Lo has a PTC C. To print out all of the strings of length n in L in polynomial
time, simulate C on inputs p(n, p(n)), p(n, p(n)- 1),. ., etc., until a string other than
A is produced. This string, must contain all strings of length n in L. 1

Note that for any k0, the language classes A, Z, and 1-I all satisfy the
hypothesis of the above pro.osition. We therefore have the following.

COROLLARY 6.3. (1) If all languages in A have PTCs, then all sparse languages
in A are P-printable.

(2) Ifall languages in Z,..P have PTCs, then all sparse languages in Z are P-printable.
(3) Ifall languages in I-[ have PTCs, then all sparse languages in II are P-printable.
Part (2) of the above corollary can be strengthened as follows. The proof of this

theorem is similar to the second proof of Corollary 4.2.
THEOREM 6.4. All sparse languages in ZP have PTCs if and only if all sparse

languages in ZP are P-printable.
The next theorem is a generalization of Theorem 4.3.
DEFINITION 6.2. For k >_-1, define Diffk {L1- L2] L1, L2 Z}. Note Diffl Dp.
THEOREM 6.5. If there are no sparse languages in Diffk-P, then all languages in

Z have PTCs.

7. Other types of generators. To distinguish the generators defined in earlier
sections from the different types of generators introduced in this section, the former
generators will be referred to as length-restricted generators.

7.1. Parameter-based generation.
DEFINITION 7.1 Let 11, , lk be polynomial-time computable functions,/ :Y*-

N for 1 <-_j<-_k, and q, r be polynomials such that l(x)<-_q(Ixl) for 1 <-_j<-_k and

Ixl <- r(ll(X)," , lk(X)) for all x. An (11, ,/k)-PTG for a language L is a polynomial-
time NDTM M that on input 1 1 12... 1 k, either outputs a string x in L such that
for 1 _-<j _-< k, l (x)= v, or outputs the symbol A indicating that no such string exists.
Furthermore for every string x in L such that/ (x)=vj for 1 _-<j_-< k there exists some
computation of M on input 1, 1 2 1 k that outputs x.

THEOREM 7.1. Let (l,. ., lk), q, r be as in the above definition. If all languages
in NP have length-restricted PTGs, then all languages in NP have (11,. .,/k)-PTGs.

Proof Suppose all languages in NP have length-restricted PTGs, and let L be any
language in NP. By repeated compositions of p it is possible to define a polynomial

Nk+lfunction Pk+l N on k+l variables that is one-to-one and for which
Pk+l(nl, ", rig+l) >- nl nk+l for all nl, , nk+ N. For each x L, let f(x)
Pk+l(ll(x)+ 1,’.’, lk(X)+ 1, r(ll(X),’’’, lk(X))+ 1) and let s(x) be the string of length
f(x) consisting of the concatenation of x and (f(x)- [xl) padding symbols. Define
S {s(x) lx L}. S is clearly in NP, so S has a PTG Gs, which can be used to define
an (/1,’",/k)-PTG G for L as follows. On input 1 .1, G computes
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m Pk+l(/)l + 1,. , vk -- 1, r(vl," , l)k)- 1) and simulates Gs on input 1 m. Gs then
outputs a string y of length m in S (if such a string exists); this string will contain as
a prefix a string x L with parameter values /)1, l)k. ["]

7.2. Semi-polynomial-time generators (semi-PTGs). A PTC outputs at most one
string of each length from its associated language. A PTG, on the other hand, must
be capable of outputting (in some nondeterministic computation) each string in the
language. It is possible to define a type of machine that in generating power lies
between a PTC and a PTG.

DEFINITION 7.2. A semi-PTG for a language L is a nondeterministic Turing
machine transducer that on input In outputs some string of length n in L, if such a
string exists, and outputs A if no such string exists. If G is a semi-PTG, Gen(G)
denotes the set of all strings generated by G.

DEFINITION 7.3. A semi-PTG G for a language L is maximal if there exists no
semi-PTG G’ for L that outputs infinitely more strings than G.

Clearly if a language in NP has a semi-PTG, it has a PTC, and hence it has a
PTG, which is a maximal semi-PTG. So the question of whether a language has a
maximal semi-PTG is interesting only for languages that are not in NP.

DEFINITION 7.4. A language L is honestly paddable if there exists a polynomial-
time computable function P" E* E*-* that is one-to-one in its second argument,
such that x L if and only if P(x, y) L for all x, y, and such that there exists a
polynomial p such that p([P(x, y)])-> Ix[ +IY[ for all x, y.

DEFINITION 7.5. A language L is augmentable if there exists a polynomial-time
computable function S such that x L if and only if S(x) L, and IS(x)l > [xl for all
x. We call S an augmenting function for L.

A proof of the following lemma may be found in [20].
LEMMA 7.1. If a language is honestly paddable, it is augmentable.
(The proof of the following theorem is a variant of a proof from [20] that shows

that recursive sets that are not in P and that are honestly paddable have no maximal
P-subsets.)

THEOREM 7.2. Ifa language L is not in NP and is honestly paddable, then it cannot
have a maximal semi-PTG.

Proof Let L be a language that is not in NP and is honestly paddable. By the
lemma, L is augmentable, say with augmenting function S. Suppose G is a maximal
semi-PTG for L. Since Gen(G) is in NP, L-Gen(G) is infinite. Let Xo be any string
in L-Gen(G), and consider the sequence L,o= {Xo, xl, X2, }, where X --S(Xi_l)
for i-> 1. Each of these strings is distinct, hence Lxo is an infinite subset of L. Moreover,
using G and Lx we can construct a semi-PTG G that outputs all strings in Lo, as
follows. Given input n, G computes Xo, xl,"’" until it finds a string Xk such that
IXk[ >----n. If Ixkl n, G outputs Xk; otherwise, it simulates G on input 1 and outputs
the string produced by G (or A if G outputs A).

Note that if L,o- Gen(G) is infinite, then G cannot be maximal and we have
derived a contradiction. So we may assume that for each Xo (L-Gen(G)) there exists
some string x Lx such that Ix[ -> [xol, x : Gen(G), and S(x) Gen(G). Consider the
set

H={xlx L,x! Gen(G), and S(x) Gen(G)}
By the discussion in the above paragraph, each string in L- Gen(G) gives rise to some
longer string in H, so H is infinite. Consider the following semi-PTG G1 for L. On
input 1 G nondeterministically constructs a string y of length n. It then computes
S(y) and runs G on input 1 Is(yl. If G outputs S(y), this means S(y) Ly L, so
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G1 outputs y. Otherwise, G1 simulates G on input 1" and outputs the string produced
by G. Note that H c_ Gen(G), so G outputs infinitely more strings than G, which
again is a contradiction. Hence G cannot be maximal.

A type of semi-PTG that is of special interest is a generator that outputs all but
a sparse subset of the strings in the language. Clearly if all languages in co-NP have
PTGs, then NP co-NP. This conclusion can also be reached from the weaker assump-
tion given in the following theorem.

TEOREM 7.3. Suppose each co-NP language has a semi-PTG that outputs all but
a sparse subset of the strings in the language. Then NP co-NP.

Proof If all co-NP languages have semi-PTGs, then all co-NP languages have
PTCs. By Corollary 6.3, this implies that there are no sparse languages in co-NP-P.

Let L be any language in co-NP, and let GL be a semi-PTG for L such that
L-Gen(GL) is sparse. Then L-Gen(GL) is a sparse set in co-NP, and hence in P.
Since Gen(GL) is in NP, L is in NP. Hence NP= co-NP.

7.3. Variable-length outputs. Another way to make generators less restrictive is to
relax the condition that the output string must have exactly the length specified by the
input. Since it is desired to output longer strings with longer inputs (otherwise, a trivial
generator that outputs only a finite number of strings can always be found), we require
that on input I the generator or constructor output a string of length at least n.
However, we allow the string to be longer than n, up to some length specified by a
function g.

DEFINITION 7.6. A function g" N+- N+ is unary polynomial-time computable
(UPTC) if there exists a polynomial-time Turing machine that given input 1 outputs

DEFINITION 7.7. Let g" N+- N+ be a UPTC function such that g(n)>- n for all
n>=l.

(1) A g-PTC for a language L is a deterministic Turing machine transducer that
runs in polynomial time and that on input 1" outputs a string in L of length m, for
some m such that n <= m <= g(n), if such a string exists, and outputs A otherwise.

(2) A g-PTG for a language L is a nondeterministic Turing machine transducer
that runs in polynomial time and that on input 1" outputs a string in L of length m,
for some m such that n-< m =< g(n), if such a string exists, and outputs A otherwise.
Moreover, for each string x in L such that n =< Ixl _<- g(n), there exists some computation
of the generator on input In that outputs x.

DEFINITION 7.8. A language has a loose PTG if it has a g-PTG for some UPTC
function g.

As with length-restricted PTGs, if a language has a loose PTG it must be in NP.
In addition, for any UPTC function g, an NP language has a g-PTG if and only if it
has a g-PTC. If a language has a PTC, it clearly has a g-PTC for any UPTC function
g. It would be difficult to exhibit an NP language that has a g-PTC for some function
g, but that does not have a length-restricted PTC, since this would imply that not all
NP languages have PTCs, and thus that P NP. The next theorem shows that at least
for certain functions g, the existence of g-PTCs implies the existence of length-restricted
PTCs.

DEFINITION 7.9. Let L be a language and g" N+- N+ a computable function
such that g(n)_-> n for all n => 1.

(1) The function Crg is defined recursively as follows. Crg(1)= 1. For n > 1, Crg(n)=
g(crg(n-1))+ 1. (Note that Crg(n)>= n and that Crg is a strictly increasing function.)

(2) The language Lg consists of all strings of the form x.%(Ixl)-Ixl, where x L.
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THEOREM 7.4. Suppose g is such that tg is unary polynomial-time computable. Then
if all NP languages have g-PTCs, then all NP languages have length-restricted PTCs.

Proof. Suppose all NP languages have g-PTCs and let L be any language in NP.
Because Crg is UPTC, Lg is also in NP, so Lg has a g-PTC Cg. Because rg(n + 1)
g(trg(n)), on input l(nCg can only output a string of length exactly Crg(n). So a PTC
for L can be defined that on input I simulates Cg on input 1%(n, and outputs the
n-length prefix of the string produced by Cg, if any.

Which types of function g satisfy the hypothesis of the preceding theorem? The
following lemma provides one class of such functions.

LEMMA 7.2. Ifg is UPTC and trg is bounded above by apolynomial, then Crg is UPTC.
Proof This follows from the fact that computation of trg(n) involves n 1 compu-

tations of g on arguments, each of which is bounded above by a polynomial in n.
COROLLARY 7.5. Let g(n) n + c [n/], where c, r, s N, c >-_ 1, and 0 <- r < s. Then

Crg is UPTC.
Proof It can be shown by induction on n that O’g(n)=< cSn for n _--> 1.
(Note that if we set g(n)= n + cn, then Crg is no longer UPTC.)
THEOREM 7.6. Let L be a language in P. The following are equivalent:
(1) L is augmentable.
(2) Both L and L have loose PTGs, and there exists a polynomial p such that for

all sufficiently large positive integers n there exist strings x L, y L such that n <-Ixl <-_

p(n) and n<-Iyl<-_p(n).
Proof (1)O(2)" Suppose L is augmentable with augmenting function S. Let Xo

be the smallest string in L and let IXol no. Let p be a nondecreasing polynomial such
that IS(x)l<-p(Ixl) for all x. We define a p-PTC C for L as follows. On input 1 ", if
n < no, C outputs A, and if n no C outputs Xo. Otherwise, C computes the sequence
of strings Xl, x2 where for > 0, xi S(Xi_l), until an Xk is found for which IXkl >= n.
C then outputs xk. Note that since Ix -,l<n, Ixl-lS(x-,)l<-p(lx,-,l)<-p(n). An
identical argument shows that L also has a p-PTC.

(2)O(1)" Assume L has a g-PTC C and L has a g2-PTC C2. Let polynomial p
have the properties specified in (2). We define an augmenting function S for L as
follows. Ifx L and Ix[ n, determine the smallest m _>- n + 1 such that gl(m) p(n + 1).
Note we must have rn <-p(n + 1). Run C on inputs 1 n+l,...,1 until C outputs
something other than A. This must occur at some point since there exists a string in
L having length between n + and p(n + 1). Let S(x) equal the string produced by
C Note IS(x)l--> n / 1 > [x]. If x L compute S(x) similarly using C.

COROLLARY 7.7. If L is honestly paddable, then L has a loose PTG.
Proof If L is honestly paddable, then it must be augmentable. Since the proof

that (1)0=>(2) above does not use the fact that L is in P, the result follows.
Theorem 7.6 applies only to languages in P. However, as is the case for length-

restricted PTGs, the existence of loose PTGs for NP languages depends only on the
existence of loose PTGs for languages in P.

THEOREM 7.8. All languages in P have loose PTGs if and only if all languages in
NP have loose PTGs.

Proof Suppose all languages in P have loose PTGs, and let L be any language
in NP. As noted in a previous section, L can be "prefixed" by a language in P. In
other words, there exists a language L’ in P, a strictly increasing polynomial p such
that p(n) _-> n for all n => 1, and a polynomial-time computable onto function g" L’- L,
such that Ixl p(Ig(x)[) for all x 6 L’. By assumption, L’ has an f-PTC C,, where f is
bounded above by a polynomial q. We define an h-PTC C for L, where h is computed
as follows. Given positive integer n, compute m =f(p(n)), find the largest k such that
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p(k)<-_ m, and set h(n)= k. We have h(n)<=f(p(n))<-_q(p(n)), so h is unary poly-
nomial-time computable. CL on input 1" will simulate CL, on input 1 pC,). If Co, outputs
A, then there are no strings having length between p(n) and f(p(n)) in L’. This in
turn implies that there are no strings having length between n and h(n) in L, so CL
should output A. If CL, outputs a string x, then Cc should output g(x). V1

8. Relativizations. This section presents relativization results pertaining to some
of the open questions regarding the existence of PTCs and PTGs for various language
classes. Details of these constructions, which are only sketched below, may be found
in [24] and [23].

DEFINITION 8.1. Let A be an oracle set.

(1) A language L has a PTC relative to A if there exists a polynomial-time
deterministic oracle Turing machine transducer that on input 1 and querying oracle
A outputs some string x L of length n, if such a string exists, and outputs A otherwise.

(2) A language L has a PTG relative to A if there exists a polynomial-time
nondeterministic oracle Turing machine transducer that on input 1 and querying
oracle A outputs some string x 6 L of length n, if such a string exists, and outputs A
otherwise. Moreover, for each string of length n in L there exists some computation
of the generator on input In that outputs x.

8.1. Polynomial-time constructors (PTCs) for NP languages.
THEOREM 8.1. There exists an oracle A such that there exists a sparse language in

(DP)A_ pA and such that all languages in NPA have PTCs relative to A.
Proof (sketch). The construction uses techniques from [3], [18], [7], and [8].

Information about PTCs for NP languages is coded into the oracle; for each NP
machine and for each length, the lexicographically first string of that length that is
accepted by the machine querying the oracle, together with its prefixes, are coded into
the oracle A. At the same time strings are put into the oracle to ensure that the language
LA--{W[ (::lz G A such that Iz[ 2[w[) and --q(::iy such that wy A and Iwl lY[}, which
is clearly in (DP)A, is not in pa, and is sparse. [

THEOREM 8.2. There exists an oracle B and a language L pB such that L does
not have a PTC relative to B.
This follows from a simple diagonalization construction.

The last two theorems show that the question of whether or not all NP (or P)
languages have PTGs cannot be resolved using techniques that relativize, even under
the assumption that P NP. Note also that Theorem 8.1 shows that the converse of
Theorem 4.3 cannot be proved using techniques that relativize.

8.2. Categorical polynomial-time generators (PTGs).
THEOREM 8.3. There exists an oracle C such that all languages in NPc have PTCs

relative to C but such that there exists a language L pC that does not have a categorical
PTG relative to C.

Proof (sketch). As is done in the construction for Theorem 8.1, information is
coded into the oracle C to ensure that all languages in NPc have PTCs relative to C.
At the same time strings are put in::,o the oracle to ensure that the language C pC
does not have a categorical PTG relative to C. V]

COROLLARY 8.4. There exists an oracle D such that there are no sparse languages
in NPD- pD and such that there exists a language in pD that does not have a categorical
PTG relative to D.

8.3. Polynomial-time constructors (PTCs) for co-NP languages. The following
results can be proved using techniques from [3].
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THEOREM 8.5. There exists an oracle E such that NPe= co-NP and such that
there exists a language in Pe that does not have a PTC relative to E.

THEOREM 8.6. There exists an oracle F such that NPF# co-NPF and such that
there exists a language in pF that does not have a PTC relative to F.

THEOREM 8.7. There exists an oracle G such that all languages in NP have PTCs
relative to G, and such that there exists a language in co-NP that does not have a PTC
relative to G.

8.4. P-immunity and PTCs (polynomial-time constructors) for NP. Any infinite set
that has a PTC has an infinite subset in P, namely, the set of strings that are generated
by the PTC. It therefore follows that if all NP languages have PTCs, then NP has no
P-immune sets. The converse cannot be proved using techniques that relativize, since
combining the result of Theorem 8.2 and an oracle construction by Blum and Impa-
gliazzo [4] relative to which no infinite NP language is P-immune, the following can
be derived.

THEOREM 8.8. There exists an oracle H such that NPn has no infinite P-immune
sets but such that there exists a language in pH that does not have a PTC relative to H.
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RED-BLUE INTERSECTION DETECTION ALGORITHMS,
WITH APPLICATIONS TO MOTION PLANNING

AND COLLISION DETECTION*

PANKAJ K. AGARWAL’ AND MICHA SHARIR

Abstract. Let F be a collection of n (possibly intersecting) "red" Jordan arcs of some simple shape in
the plane and let F’ be a similar collection of m "blue" arcs. Several efficient algorithms are presented for
detecting an intersection between an arc of F and an arc of F’. (i) If the arcs of F’ form the boundary of
a simply connected region, then the following can be detected: a "red-blue" intersection in time
O(As(m) log m+(As(m)+ n) log (n+ m)) where As(m) is the (almost-linear) maximum length of (m, s)
Davenport-Schinzel sequences, and where is a fixed parameter, depending on the shape of the given arcs.
Another case where an intersection in close to linear time can be detected is when the union of the arcs of
F and the union of the arcs of F’ are both connected. (ii) In the most general case, an intersection in time

O((mv/As(n)+ n/As(rn)) logL5 (m + n)) can be detected. For several special but useful cases, in which many
faces in the arrangements of F and F’ can be computed efficiently, randomized algorithms that are better
than the general algorithm are obtained. In particular when all arcs in F and F’ are line segments, a

randomized O((m + n)4/3+e) intersection detection algorithm, for any e > 0, is obtained. The algorithm in
(i) is applied to obtain an O(As(n) log n) algorithm (for some small s>0) for planning the motion of an
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In this paper, we present several efficient algorithms for detecting a red-blue
intersection that avoid the overhead of having to examine many red-red or blue-blue
intersections. Our algorithms are based on the recently developed theory of Davenport-
Schinzel sequences (see [HS86] and [AShSh87]). The maximum length As(m) of an
(m, s) Davenport-Schinzel sequence is almost linear in rn for any fixed value of s, and
satisfies the following bounds (where c(m) is the extremely slowly growing functional
inverse of Ackermann’s function)"

A(m) m, A2(m) =2m- 1 (trivial),

Aa(m)=O(ma(m)) [HS86],

A4(m)=O(m. 2’)) [AShSh87],

A2s+:(m) O(m. 2’")1+1))) for s> 1 [AShSh87]

A2s+a(m) O(m. 2’")lgm)l+l))) for s=> 1 [AShSh87],

A2s+2(m) =O(m" 2’’))) for s> 1 [AShSh87].

Our first algorithm considers the case when the red arcs in F do not cross one another
and form the boundary of a simply connected region, for example, segments bounding
a simple polygon. In this case, we can detect a red-blue intersection in time

O(As+E(m) log2 m + (As+2(m) + n) log (m + n))

where s is the maximum number of intersection points between a pair of arcs of F’.
Thus we obtain an almost linear solution to the intersection detection problem in this
special case. In the more special case, where each red arc and each blue arc is a
straight-line segment, we can use the ray-shooting technique of [CG89] to detect an
intersection of each red segment with the blue polygon in O(log n) time, after O(n log
log n) preprocessing, thus obtaining an improved algorithm for intersection detection.
However, for general arcs, no such efficient "arc-shooting" procedure is known.

Our algorithm uses a recent result of [GSS89], which shows that the combinatorial
complexity of a single face in an arrangement of n arcs, each pair intersecting in
at most s points, is O(hs+2(n)), and that such a face can be computed in time
O(hs+2(n) log2 n). We also extend our algorithm to arbitrary collections of intersecting
arcs F and F’, provided the union of all red arcs is a connected set, as is the union of
all blue arcs; in this extension the algorithm runs in time O(As+E(m q- n) log2 (m + n)).

These results have several applications in motion planning and collision detection
for a simple polygon. For example, Maddila and Yap [MY86] study the problem of
moving (translating and rotating) an n-sided simple polygon around a right-angle
corner in a corridor. They show that the problem can be reduced to testing a single
canonical motion of for intersection with the corridor walls, which in turn can be
reduced, by studying the problem in a coordinate frame attached to , to testing
whether intersects some resulting collection of algebraic arcs describing the relative
motion of the corners and walls of the corridor. Our intersection detection algorithm
can then be used to obtain an O(h(n) log2 n) motion planning algorithm (for some
small s > 0), considerably improving the O(n2) algorithm given in [MY86]. More
generally, we can use our procedure to obtain fast algorithms for testing a prescribed
motion of a simple or "curved" polygon for collision with a given collection of
obstacles. Under reasonable assumptions on the simplicity of the motion of (for
example, along algebraic paths of low degree) and on the shape of the boundaries of
the obstacles and of , we can obtain close to linear collision detection procedures.
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In the general case of the red-blue intersection detection problem, our algorithms
are less efficient, but are still significantly better than quadratic algorithms. In a nutshell,
our first algorithm is efficient because it can restrict the problem of detecting a red-blue
intersection to a single face in the blue or the red arrangement. For arbitrary red and
blue arrangements this is not possible in general, and we need to calculate and search
for an intersection in many such faces. We then face the problem of obtaining sharp
bounds for the complexity of many such faces, and of their efficient calculation. For
general arcs, when such procedures are not available, we present a deterministic
algorithm that detects a red-blue intersection in time

O((m/A+2(n)+ n/A+(m)) log1" (m+ n)).

For certain special types of arcs, for which many faces in their arrangements can be
computed efficiently, we obtain improved (albeit randomized) algorithms. For example,
if all arcs are line segments or unit circles, then we can detect an intersection using a
randomized algorithm whose expected running time is O((m + n)4/3+e), for any e > 0,
exploiting the results of [CEGSW88], lEGS88], and [EGH*89].

We believe our algorithms can be extended to obtain all red-blue intersections in
an output-sensitive fashion; if all arcs are line segments, then we have an algorithm
that produces all k red-blue intersections in time O((m/-ff+ n/--+ k)log (m+ n)),
using the ray-shooting technique of [CG89].

The paper is organized as follows. Section 2 presents the efficient algorithm for
the case of a simple (curved) polygon, and 3 gives applications of this algorithm to
motion planning and collision detection. Section 4 describes algorithms for general
red-blue intersection detection. Section 5 mentions a few additional applications of
the general algorithm. Finally, in 6 we conclude by mentioning some open problems.

2. Intersection between a simple polygon and arcs. In this section, we give an
efficient algorithm for the case when the red arcs in U are nonintersecting line segments
that form the boundary of a simple polygon (see Fig. 1) or, more generally,
nonintersecting Jordan arcs whose union is the boundary of a simply-connected region.

FG. 1. Red arcs and blue polygon.
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Let .if(l-") denote the arrangement of 1-", that is, the planar map induced by these arcs;
its vertices are the intersection points of the arcs and their endpoints, its edges are
maximal connected subsets of the arcs that do not contain any vertex, and its faces
are maximal connected subsets of the plane that do not contain a vertex or edge. Let
z denote a distinguished point on 0. The following lemma is a simple but key
observation that allows us to obtain an efficient algorithm.

LEMMA 2.1. Let be the face of g(I") containing the point z. Then O and I"
intersect if and only if O and 03 intersect.

Proof The "if" part is obvious. For the "only if" part, simply follow 0 from z

in, say, the clockwise direction until the first intersection with F’ is encountered, which
necessarily lies on 0-.

The above lemma suggests that we do not have to look at the entire arrangement
of F’, whose combinatorial complexity might be f(m2) in the worst case, but instead
we only need to compute a single face of (F’). Guibas, Sharir, and Sifrony [GSS88]
(see also [PSS88]) have studied the complexity of a single face in an arrangement of
Jordan arcs. They have shown the following lemma.

THEOREM 2.2 [GSS89]. Given a collection ["= {Yl, Y2," ", y,,,} ofm Jordan arcs
in the plane so that each pair of them intersect in at most s points, the complexity of a
single face of M(F’) is bounded by O(hs+2(m)) and it can be computed in

O(hs+2(m) log2 m) time, under an appropriate model of computation.
Remark 2.3. If the arcs in F’ are closed or bi-infinite Jordan curves, then the

bound on the combinatorial complexity of (respectively, the time to compute) a single
face of their arrangement can be replaced by O(h(m)) (respectively, O(hs(m) log2 m))
(see [SS87] and [GSS89]).

The combinatorial bound is obtained by showing that the circular sequence of
arcs in the order in which they appear along the boundary of the given face can be
written as a Davenport-Schinzel sequence of order s+2. The algorithm given by
[GSS89] uses a divide-and-conquer approach. It divides F’ into two subsets F
{y,... y,,/}andF={y,,/+, ., y’,,}, and recursively computes the face of
(F) and the face 2 of sC(IP) containing the point z. The desired face is the
connected component of f3 2 that contains the point z. Using a relatively simple
line-sweeping algorithm, a subsequent "red-blue merge" procedure then obtains
from 1 and 2 in O(h+2(m)log m) time. Hence, the overall running time is
O(A+2(m) log2 m).

Remark 2.4. Here and later we assume a model of computation in which various
basic operations involving the given arcs are assumed to require O(1) time. These
include finding the intersection of a pair of arcs, or of an arc with a line, testing whether
a point lies above or below an arc, and finding the points of vertical tangency along
an arc. Thus we are more interested in the combinatorial complexity than in the algebraic
complexity of manipulating such arcs, which is an interesting subject in its own right.

Having computed o, all we have to do is test whether or not 0 and 0@ intersect.
This is easily done by a variant of the Bentley-Ottmann Algorithm [BO79] in time
O((A+2(m) + n) log (m + n)). Thus, we can conclude Theorem 2.5.

THEOREM 2.5. If the arcs in I" form the boundary of a simple ("curved") polygon
Yd, then an intersection between F and F’ can be detected in time

O(,L+(m) log2 m + (As+2(m) + n) log (m+ n))

where s is the maximum number of intersections between a pair of arcs in F’.
Proof The proof is immediate from Theorem 2.2 and the discussion given

above. El
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Remarks 2.6. (i) If the arcs in F’ are also line segments, then we can use the
ray-shooting technique of [CG89] to detect an intersection of a blue arc with the red
polygon in O(log n) time, after O(n log n) preprocessing.

(ii) If the arcs in F’ are closed or bi-infinite Jordan curves, we can replace s + 2
by s in the preceding results.

The above technique can be extended further to detect an intersection between F
and F’ when each of (F) and (F’) is a connected planar graph. Let p be an endpoint
of an arc in F’ and let ff be the face of (F) containing the point p. Then we have
Lemma 2.7.

LEMMA 2.7. The arcs in I" and F’ intersect if and only if O and I" intersect (see
Fig. 2).

FIG. 2. (F) and s(I") are connected planar graphs" Solid arcs denote F, dashed.arcs denote F’, and
bold arcs denote .

Proof The "if" part is obvious. For the "only if" part, let q be a red-blue
intersection point. Since sg(F’) is a connected graph, there exists a connected path H
from p to q along the edges of (F’). Follow H from p until its first intersection with
(F), which necessarily lies on 0.

Thus, we can reduce the problem of detecting an intersection between F and
F’ to the problem of detecting an intersection between I" and a simply connected
region if, which we can solve using the preceding technique. Therefore, we obtain
Theorem 2.8.

THEOREM 2.8. If each of (F) and (I’) is a connected planar graph, then an
intersection between F and F’ can be detected in time O(As+2(m d- n) log (m + n)), where
s is the maximum number of intersections between a pair of arcs in I or in F’.

Proof. Using Theorem 2.2, we can compute the face in time O(A+e(n) log n).
From Lemma 2.7 it follows that we only have to detect an intersection between cgff

and F’ that, by Theorem 2.5 and the following remark, can be done in time

O(As+2(m) log m + (As+2(m) + A+2(n)) log (m + n)),
and hence the overall running time is

O(A+2(m logz m + n + A+2( n log2 m + n O(A+2(m + n log m + n ). 1-1

Remarks 2.9. (i) Note that we do not require any bound on the number of
intersections between a given blue arc and a given red arc, because our algorithms
stop as soon as one such intersection is detected. However, the algorithm still assumes
that an intersection between a blue arc and a red arc can be detected in O(1) time.
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(ii) If the maximum number of intersection points between a pair of arcs in F
(respectively F’) is s (respectively, s’), then the running time of the above algorithm is

O((hs+2( n + As,+2(m )). log2 m + n )).

Moreover, if the arcs in F (respectively, F’) are closed or bi-infinite curves, then we
can replace s + 2 (respectively s’+ 2) by s (respectively, s’).

3. Applications to collision detection and motion planning. Using the intersection
detection algorithm of the previous section, we present an efficient algorithm for the
following problem:

Given a simple polygon 3 that is allowed to translate and rotate in the plane,
a set of polygonal obstacles, and a prescribed continuous motion of 3, check
whether collides with any obstacle during this motion.

We begin by reducing this problem to that studied in the previous section. Let
O= {O1, O2,’", O} denote the given set of polygonal obstacles having pairwise
disjoint interiors. We can represent their boundaries as a collection of "walls" W
{W1,’’’, Win} where each W/ is an edge of some obstacle. We also define two
coordinate systems: the environment-frame and the object-frame. The environment-
frame is the usual coordinate system in which the obstacles are fixed and moves.
On the other hand, the object-frame is rigidly attached to , so in it 3 is fiXed and
the positions of the obstacles vary depending on the position of in the environment-
frame. The position of , in the environment-frame, can be described by a pair
Z IX, 0], where X (x, y) is the position of a fixed point p in , which is taken to
be the origin of the object-frame, and 0 is the orientation of the x-axis Px of the
object-frame, relative to the environment-frame (see Fig. 4 of 3.2). Formally, for any
such placement Z of we obtain an Euclidean transformation z that maps a point
: in the object-frame to its position w in the environment-frame as follows:

(3.1) x(w) x + x(). cos 0 -y(sC) sin 0,

(3.2) y(w)=y+x(), sin 0+y(:) cos 0.

In the object-frame, the position of any obstacle Oi depends on the position Z of
in the environment-frame and is obtained by the corresponding inverse map q-Z.

Let II denote a continuous motion of g, given as a continuous path H’[0, 1]-->
2x 6e1. We call II a basic path if II([0, 1]) is an algebraic curve in x, y and tan 0/2
having a fixed and small degree. Examples of basic paths are translation along a
straight line or along a low-degree algebraic curve, rotation, sliding with a fixed pair
of vertices of 3 touching a fixed pair of walls, etc. For exposition sake we keep the
notion of a basic path somewhat loose and informal and therefore, for example, we
do not specify precisely how low do we want its degree to be, etc. We assume that II
is either a basic path or a concatenation of basic paths. The complexity of II, denoted
by IIl[ k, is the number of basic paths from which it is composed, and we write

rI-11=11’’’ 11. We use the term n to denote the map that sends each point :
in the object-frame to

{nt)() [0, 1]}.

fil is defined symmetrically for the inverse transformation -.
LZMMa 3.1. Let q be a fixed point in the environment-frame and let 3 move along

a basic path II. Then {ll(q) is also a basic path (albeit its maximum degree might be
higher). Similarly, if W is a wall, then {i1( W) is a region whose boundary consists of
a constant number of algebraic curves offixed degree.
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Proof Let q=(p, or) be a fixed point in the environment-frame and let H(t)=
[x(t), y(t), 0(t)] denote the placement of at time as it moves long II. Suppose
(:, st)= ,(q); then by (3.1) and (3.2)

p x(t) + sc. cos 0(t) ’. sin 0(t),

r =y(t)+ so. sin O(t)+ . cos O(t).

Therefore,

(3.3)

(3.4)

(p x( t)) cos O( t) + (cr- y( t)) sin O( t),

=-(p-x(t)) sin O(t)+(tr-y(t)) cos O(t).

Since II is an algebraic curve of fixed degree, x(t), y(t), sin O(t) and cos O(t) (or
equivalently, tan O(t)/2) are related by a pair of polynomial equations:

(3.5) P(x, y, tan ) =0,

(3.6) Q(x, y, tan ) =0

of some fixed degree. Eliminating these three variables from the four equations (3.3),
(3.4), (3.5), and (3.6) (cf. [VdW70]), we get an algebraic curve (in : and r) of fixed
degree, showing that l(q) is a basic path.

Now let us consider the area swept by a wall W (see Fig. 3). Without loss of
generality let us assume that W is a portion of the y-axis. It is easily checked that any
point on the boundary of I(W) either lies on one of the paths (q), at)’(q2)
where q, q2 are the endpoints of W, or lies on the envelope of the parameteric family
of curves {,)(g)" [0, 1]}, where t is the y-axis (see [Co36] for details). For each
t[0, 1], let II( t) [x( t), y( t), 0(t)]. Then, the points (, r)ht(g) in the object
frame satisfy the following equation, as is implied by (3.1), (3.2)

(3.7) x(t)+ cos O(t)- sin O(t)=0.

FIG. 3. Area w swept by a wall W.
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Let f(, ’, t) denote the left-hand side of (3.7). The envelope of f(:, sr, t)=0 (with, " as independent variables and as a parameter) is found by eliminating from the
pair of equations f(:, sr, t) (O/Ot)f(, , t) =0 (see [Co36]). In our case these equations
are

( cos 0(t) " sin 0(t) -x(t),

: sin 0(t) + sr cos 0(t)
(t)
O(t)

Rewriting these equations, we obtain

(t): --X(t) COS 0(t) q- sin 0(t),
(3.8)

(t)r x(t) sin 0(t) 4-- cos 0(t)

where both right-hand sides are algebraic in x(t), y(t), tan 0/2, as is easily checked.
Eliminating these three variables as was done in the case of a point shows that the
envelope is algebraic (of degree generally larger than that of H, but nevertheless
having fixed maximum value, depending on the degree of H). Thus, the boundary of
(W) consists of a constant number of connected subarcs of three basic paths

h(q), a’(q2) (I), where this constant depends on the pattern of intersections of
these paths. U

3.1. The algorithm. In this section we give an efficient algorithm for the collision
detection problem, defined in the beginning of the section. A simple approach to solve
this problem is to compute the region swept by every edge ei of as moves along
II and test whether it intersects any wall W. Since for each basic path 7rj, the region
swept by ei is of fixed complexity, we can check in O(m) time if it intersects with any
W. There are k basic paths and n edges, so the total time spent will be O(k. m. n).
Using the algorithm of 2, we show that we can do much better than this naive approach.

Without loss of generality, we can assume that the initial position of in H is a
free position. In practical applications this can be expected to be the case; in general,
we can run a standard line sweeping algorithm (such as that of [BO79]), to verify that

starts at a free placement, in O((n+m)log (n+m)) time. Let j (W) denote
the region in the object-frame swept by the wall W when moves along 7r, and let
y denote its boundary, thatis y=0q-(W) and letFw={y 3’2 Yk}; by Lemma
3.1, each yj is the union of O(1) algebraic arcs.
Lz 3.2. intersects a wall W while moving along II ifand only ifO intersects

h(W) in the object frame. Therefore either O intersects an arc in I’w, or O lies
"inside" one of the regions .

Proof We only prove the first statement ofthe lemma because the second statement
is an obvious consequence. Since the initial position of is free, collision between
W and implies that there exists a placement Zo II such that 0 and W intersect
at some point " Zo(0)71 W. But then it follows by definition that

-1,I,(’) a n +o(W).
Hence, if intersects a wall W while moving along II, then 0 intersects the area
swept by W in the object frame.

We thus first test, in O(mk) time, whether the origin p lies in any of the regions
t. If so, an intersection has been detected and we can stop right away. If not, the
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previous lemma implies that it suffices to determine whether 0 intersects an arc in
F= U Fw. Hence we obtain Theorem 3.3.

WW

THEOREM 3.3. Given a polygon with n vertices, a path II= 1111"" I1,
composed of k basic paths zrl, 7rk and a set ofpolygonal obstacles 0 with a total of
m walls, we can check in time

O(Xs( mk) log2 (mk) + n +(ink) log n + ink))

if collides with any of the obstacles in 0 when it moves along II. Here s is a constant

depending on the maximum algebraic degree of the basic paths of II.
Proof. It requires only O(mk) time to check whether the origin p lies inside any

of the regions j(W), the area swept by the wall W when moves along the basic
path zrj. We can compute F, the collection of the boundary arcs of all the regions ,
in time O(mk), and Theorem 2.5 implies that we can detect an intersection between
F and o in time

O(A(mk) log2 (mk) + n + A,(mk)) log n + mk))

where s- 2 is the maximum number of intersections between a pair of arcs in F. [3

3.2. Applications to motion planning. In this section we describe some applications
of the above collision-detection algorithm. This algorithm is useful when mk n,
because in this case it takes only O(As(n) log2 n) time to determine if the polygon
collides with any obstacle in O while moving along the prescribed path II. Two such
typical cases are the following: (i) there are O(n) walls in the environment and the
path of consists of O(1) basic paths; and (ii) the environment is of a small fixed
size, i.e., has only O(1) walls, but the path H may consist of as many as O(n) basic paths.

On the other hand, if mk >> n, nk m, and the number of objects O(1) (that
is, there are not many obstacles though each obstacle can have many edges), then we
can use a similar approach in the environment-frame instead of the object-frame. The
basic idea is as follows. Let , for 1 =<j-< k, denote the area swept by the edge e of, when N moves along the basic path zrj. Let yj =Oj and 1-’e= {71,’’’, Yk}. Using
Lemma 3.2 we can again show that N collides with an obstacle Or if and only if either
Or lies inside any of j or 0Or intersects F Ue Fe. Let mr be the number of edges
in Or. Since it takes only O(nk) time to check whether Or lies inside any of the regions
j, it follows from Theorem 2.5 that we can detect an intersection between F and OOr
in time

O(hs+2(nk) log2 nk+(mr+ hs+2(nk))log (nk+ mr))

where s is the maximum number of intersections between any pair of arcs in F.
Summing over all obstacles, the total time required to detect a collision is

O(As+2(nk) log2 nk+(m+ As+(nk)) log (nk+ m))= O(As+:(m) log: m),

because nk m and l= O(1). Note that this argument assumes that each obstacle O
is simply connected.

The main advantage of either of these two variants of our approach is therefore
that the resulting complexity bound does not involve the term O(mn), which seems
to be unavoidable in any standard motion planning algorithm that explicitly constructs
the configuration space.

Returning to our application, there are certain motion planning problems in which
we can define a single canonical motion, and show that if there exists a collision-free
motion from the initial to the final position, then this canonical path is also collision-free.
In such cases we can apply our collision detection technique to obtain an improved
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motion planning algorithm. Such a case is given by Maddila and Yap [MY86], who
have studied the problem of moving a simple n-sided polygon around a right-angle
corner in a corridor. They have presented an O(n2) algorithm for planning such a
motion; using our techniques, we obtain an improved, almost linear algorithm.

A corridor with one right-angle corner is an infinite L-shaped region, where the
two sides of the corridor extend in the -x direction and the /y direction, respectively
(as shown in Fig. 4). The problem of moving a polygon around the corner is to
move g from a given initial position Zx -[Xl, yx, 0] in the left side of the corridor,
to a final position ZF- [XF, YF, OF] in the other side of the corridor, without colliding
with the corridor walls. In some applications ZF may not be given and we only have
to find out whether g can be moved around the corner from some given initial
placement ZI. We will first analyze the former problem and then show how to handle
the latter variant.

O,
FIG. 4. Simple polygon inside a corridor.

It is shown in [MY86] that a collision-free motion from Z to ZF exists if and
only if the following canonical motion of is collision-free:

(i) Translate in the -y-direction, until touches the horizontal wall of the
convex corner of the corridor.

(ii) Translate in the x-direction until touches the vertical wall of the convex
corner.

(iii) Slide while touching the two walls ofthe convex corner until the orientation
becomes OF; this is the only nontrivial part of the motion, and we denote it by II.

(iv) Translate in the y-direction until y(p)= YF.
(V) Translate in the -x-direction until x(p)= XF.

If Z and ZF are free positions, then all of the translational motions are collision-free.
Thus all we have to do is calculate the path II in (iii) and verify that it is also
collision-free. This is done by applying our algorithm in the object frame to detect an
intersection between and the concave corner and adjacent walls of the corridor.
The efficiency of the algorithm obviously depends on the complexity of II, that is, the
number of basic paths composing it that is analyzed as follows.

We can parameterize H using the orientation of as it changes monotonically
and continuously along II (see [MY86] for details). At any orientation, the rightmost
vertex u of touches the vertical wall of the convex corner and the bottommost vertex
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V of touches the horizontal wall of the corner. Except at a finite number of critical
orientations, where an edge of the convex hull of adjacent to u (respectively, v)
becomes vertical (respectively, horizontal), the supporting pair (u, v) is unique and
does not change between any pair of consecutive critical orientations. The path formed
by sliding with a fixed pair of vertices touching a fixed pair of walls is known as a
glissette [Lo61]; each point on traces an elliptic arc, and the path (as a mapping
into ct2X ,O91) is easily seen to be a basic path.

LEMMA 3.4 [MY86]. The sequence (ui, vi) of supporting pairs encountered along
II changes in an orderly manner; (u, vi) change in the order in which they appear along
the convex hull of J. Moreover, the number of supporting pairs is at most 2n and they
can be found in O(n) time.

The above lemma implies that II consists of at most 2n basic paths, and by Lemma
3.1 the arcs describing the "inverse" motion of the walls in the object frame of are
algebraic curves of some fixed low degree. Thus, we obtain Theorem 3.5.

THEOREM 3.5. It takes O(A(n)log n) time (for some small value of s>0) to
determine whether can be moved around a right-angle corner in a corridor.

Proof. The proof is immediate from Lemma 3.4 and Theorem 3.3, noting that m
is constant and k <- 2n. [3

If ZF is not specified, the moving around the corner amounts to sliding it as
in the above canonical motion until it reaches an orientation OF at which it can be
translated vertically into the upper portion of the corridor, for which it is necessary
and sufficient that the width of in the direction perpendicular to OF should be less
than the width of the upper portion of the corridor. This observation enables us to
find the smallest such OF in O(n) time using the standard "rotating calipers" method.
Having found OF, the problem reduces to the one just studied, and the same algorithm
can be applied.

We can extend our algorithm to a more general corridor in which the exterior
angle of the concave corner is not less than the interior angle of the convex corner
(see Fig. 5(a)). Indeed, our algorithm relies on the ability to reduce any collision-free
motion of around the corner to a canonical one in which slides along the walls
of the lower convex portion of the corridor. The conditions assumed are easily seen
to imply that a "retraction" similar to that used above, that is first translate to the
right until it touches the right wall, and then slide it downward along the walls until
the lowest vertex of touches the lower horizontal wall of the corridor, can be applied
in this case. Once again, we can show that this canonical motion consists of at most
2n basic paths, leading to an algorithm similar to that presented above. Figure 5(b)

(a): 0 > 0i (b): 0r < 0i
FIG. 5. General corridors.
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gives an example where such a retraction is not continuous when the above conditions
are not satisfied.

If is a star-shaped polygon, we can somewhat improve the algorithm, because
we can replace the calculation of a single face in M(F) (as in [GSS89]) bythe calculation
of a certain lower envelope of F, where F is the collection of arcs describing the inverse
motions of the walls as above. To this end, let " be a point in the kernel of , and
consider each arc y of F as a function r 7(0) in polar coordinates about r in the
object frame; if necessary, we break each arc y into a constant number of pieces, each
monotone with respect to 0. The lower envelope d/tr of F in these coordinates is defined
as

r(O)=min{y(O)}.

LEMMA 3.6. collides with a wallforming the concave corner of the corridor while
moving along the canonical path ifand only if intersects the lower envelope agr defined
above.

Proof. Lemma 3.2 implies that collides with a wall W while moving along the
canonical path H if and only if and I(w) intersect. Therefore, intersection of
r and implies that collides with some W while moving along II.

Conversely, let sc be an intersection point of and 0I/’l(W). The point sc lies
on one of the curves in F, and if : d//r, then some other point tr on the segment ’:
must lie on this lower envelope. Since is star-shaped and " lies in its kernel, the
entire segment r, and thus also r, lies inside . Therefore, r and intersect. [3

An intersection between r and can be easily detected as follows. Let a
breakpoint ofr denote either an endpoint of some arc 3’ F, a point of radial tangency
on such an arc, or a point where r is simultaneously attained by two arcs in F. Sort
the breakpoints of r in angular order about " and similarly sort the vertices of
in angular order about ’. Note that the latter sorted list is the same as the order of the
vertices of along its boundary. Merge these two lists to obtain an overall list of
orientations about ’, with the property that for each interval between any pair of
consecutive orientations in , r is attained over by a single arc y and the portion
of 0 seen from sr in directions in is a portion of a single edge ey. We can thus
detect in constant time an intersection between and r within the angular sector
defined by o. There are O(hs(n)) breakpoints in d//r (for some small fixed s >0), so
the length of w z.nd the time required to detect an intersection between r and are
both O(hs(n)). d/r can be calculated (in the required sorted order) in time
O(h(n) log n), using a standard divide-and-conquer technique [At85]. We thus have
Theorem 3.7.

THEOREM 3.7. It takes only O(h(n) log n) time (forsome small s > O) to determine
whether a star-shaped polygon can be moved around a corner in a corridor.

Remark 3.8. A similar technique applies if is a monotone polygon, in which
case the radial lower envelope is replaced by appropriate lower and upper envelopes
in the direction of monotonicity of ; we leave details of this easy extension to the
reader.

4. Red-blue intersection detection in general. If the arcs in U or in U’ do not form
a simply connected region, or they are arbitrarily intersecting and their arrangements
are disconnected, then Lemma 2.1 does not hold and we may have to search for an
intersection in more than one face of M(U’). Two difficulties can then arise. One is
that the complexity of many faces in such an arrangement can be much higher than
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linear. Second, the algorithm of [GSS89] does not generalize to many faces, at least
not for general arcs.

As discussed earlier, a sweep-line approach is doomed to be quadratic in the worst
case, because it may have to sweep across many red-red or blue-blue intersections. A
technique of Chazelle for point location in algebraic manifolds [Ch85] (see also [CS88])
can be used in the case of algebraic arcs to obtain a slightly subquadratic algorithm,
but otherwise we are not aware of any previous algorithm that achieves substantially
subquadratic performance for this general red-blue intersection detection problem. In
this section we present algorithms of this kind. We first describe a deterministic
algorithm that works for general arcs, and then obtain in several restricted but useful
special cases more efficient randomized algorithms.

Throughout this section we assume that the arcs in F and F’ are x-monotone.
Note that if the arcs are algebraic curves, or intersect a vertical line in at most O(1)
points, this assumption does not pose any restriction because any nonmonotone arc
can be split into O(1) x-monotone subarcs. Note that this assumption is also implicit
in the algorithm of [GSS89], which we have used in 3.

4.1. Deterministic algorithm. Our deterministic algorithm consists of three phases.
In the first phase, we partition F’ into {’< m r’ sets F, 1-!1, F, F,, where r’ is
a parameter to be chosen later, so that (i) for 1 =<j-< ,e,, every 1’ has r’<- mj <2r’ arcs
and M(F) forms a connected planar graph, (ii) [’ (possibly empty) contains the
remaining arcs of F’ and each connected component of M(I’) has less than r arcs.
For each 1-<j_-<,e’, we check whether an arc of F intersects an arc of I’, using a
modified version of the technique of 2 (to be described below). In the second phase,
we partition I’ into ,e< n r sets, [’o, F, I’2,’’", Fe, satisfying conditions analogous
to those of the partition of I", and for each 1 _-<j =< re, we check whether I’j intersects
I". Finally, in the third phase we check whether I’ and I’o intersect. Together, the
three phases will detect an intersection between I’ and [", if one exists.

The first phase of the algorithm proceeds as follows. We partition [" into
I’, F,..., F, using a line sweep approach [SH76]. We sweep I" from left to right
witha vertical line; every time we sweep through an intersection point of two arcs,
we merge the connected components of M(F’) containing them, and whenever a
component is found to contain more than r’ arcs, we remove all these arcs from F’:
In more detail, as in any standard line sweep algorithm we store the arcs currently
intersecting the sweep line in a list Q, sorted in increasing order of y coordinate of
their intersections with the sweep line. In addition we maintain the connected com-
ponents of M(F’f-)h-), where F’ is the set of arcs that have been encountered by the
sweep line so far but have not yet been deleted by the algorithm, and h- is the half
plane lying to the left of the sweep line. For each arc 2,’ F’, we store the connected
component c(2,,) that contains it. If an arc y’ has not been encountered by the sweep
line, (y’) is not defined. At every event point of the sweep, that is an endpoint of
one arc or an intersection point between two arcs in F’, we perform the standard list
and priority queue updating operations as well as the following additional tasks.

(i) If we reach the left endpoint of some arc y’, then we create a new connected
component cO(y,) containing only y’. Sweeping through the right endpoint of an arc
requires no special action.

In what follows we use the term "connected component" of an arrangement to refer to a component
of the union of its arcs, whereas the term "face" will continue to refer to a connected component of the
complement of the union of these arcs.
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(ii) If we reach an intersection point of two arcs y’ and y", and (y’) is different
from (y"), then we merge the two connected components containing y’ and y",
respectively.

(iii) If any connected component is found to have more than r’ arcs, then we
output it as a set F, and delete and all of its arcs from F’ as well as Q. Note that

need not be a full component of (I"), but may be only a subset of such a component.
We also remove all endpoints and intersection points along these arcs from the priority
queue. The priority queue is also updated by inserting into it all the intersection points
between newly adjacent pairs of arcs in Q.

It is easy to see that the number of arcs in each connected component processed
during the sweep is between r’ and 2r’. The arcs not deleted by the sweep are put into
the set I’. See below for analysis of the time complexity of this sweep.

Next for each l_-<j-< ’, we check whether F intersects F using the following
procedure.

We first construct the arrangement M(F) of the arcs in F using a line sweep
technique. If the two endpoints of an arc y F lie in two different faces of M(F),
then obviously y intersects some arc of F. If they lie in the same face f of M(F),
then y need not intersect F; however if it does, it has to intersect a subarc lying on
the boundary off (as in Lemma 2.1). Therefore the next step is to determine, for each
arc y F, the faces that contain the endpoints of y. This can be easily done during
the line sweeping procedure that produces M(F) (see also [Pr79]), in overall time
O((r’2 + n) log (r’ + n)). To reiterate, our sweep performs the following steps for
each 3’ F.

(i) If the two endpoints of , lie in two different faces of s(F), then we have
found a red-blue intersection and we stop.

(ii) If the two endpoints of 7 lie in the same face f/of s(Fj), we assign y to f.
Thus if the sweep does not detect an intersection, it produces a partition F,. .,
of F, for p O(r’:), such that all arcs in F have both of their endpoints in the face
f of the arrangement. Let n II’1. As argued above, it suffices to check the arcs of
each F for intersection with the edges of f. A simple way of doing it is to take an
arc of F and check its intersection with all edges of f. But in the worst case f may
be bounded by l(r’) arcs and all arcs of F may lie in this face, in which case this
naive procedure will be too expensive. The following lemma suggests a way to improve
this procedure by exploiting the property that the boundary of each face in (F) is
connected.

LEMMA 4.1. Letfi be a simply connectedface ofM(FJ), and let i be the unbounded
face of (I’). An arc / I’, intersects I’ if and only if Oi and Of intersect (see Fig.
6). For unboundedfaces fi of M(I’j), take i to be the face ofM(I’f) that contains some
point of Of.

Proof. Using the argument of Lemma 2.1, we can prove that F and F intersect
if and only if 0f and F intersect. By assumption, 0f is a simple closed Jordan curve,
or a simple unbounded Jordan arc. Take any point z 0f, and let i be the face of
M(F) that contains z; it is easily verified, using the x-monotonicity of the arcs in F,
that iff is bounded then i is the unbounded face of M(F). The claim now follows
from another application of Lemma 2.1, in which the roles of F and F’ are inter-
changed.

We thus compute one face i for each F, as prescribed by Lemma 4.1, and then
detect an intersection between any cf and Oi by performing another line sweep.

This completes the description of the first phase of our algorithm. The second
phase proceeds in a completely symmetric manner, where we partition F into connected
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FIG. 6. Illustration for Lemma 4.1.

components of size roughly r (to be specified later) instead of r’. For the final phase,
we first construct the full arrangements (F) and sO(F0). Then by sweeping the two
arrangements with a vertical line we check whether an edge of (F) intersects an
edge of ([’o).

The correctness of the algorithm follows easily from the analysis given above. As
to analysis of its time complexity, we first need the following simple lemma.

LEMMA 4.2. If each connected component of 1([’) has at most r arcs, then 1(1-’)
has only 0(nr) vertices.

Proof. Let F1," ", Fk denote the sets of arcs constituting each connected com-
ponent of (F). If two sets Fi and Fj have at most r/2 arcs each, we merge them.
We repeat this process until there are no two such subsets. Then each F (except
possibly one) has at least r/2 but less than r arcs, so the number of these sets is at
most 2n/r+ 1 and each (F) has O(r2) vertices. Since (F) and (Fj), for j i,
do not intersect, there are only (2n/r+ 1) x O(r) O(nr) vertices in (F). 0

LEMMA 4.3. Partitioning F’ into F, , F’e, in the first phase of the algorithm can
be accomplished in O(mr’ log m) time.

Proof. Inspecting the line sweeping algorithm used to produce the partitioning,
we see that most of its steps can be performed quite efficiently. For example, maintaining
the connected components of (F’) (creating new connected components and merging
pairs of components) can be easily done in time O(ma(m)) using the union-find data
structure [Ta83]. Also, the time needed to delete arcs from Q every time a component
is produced is O(m log m) because each arc is deleted only once. The most expensive
part of the algorithm is the maintenance of the priority queue, which takes time
O(K log m), where K is the number of endpoints and intersection points encountered
by the algorithm. Therefore, to prove the lemma, we only have to show that K O(mr’).

Let F, F,..., F, be the connected components produced by the algorithm.
Since the algorithm merges connected components whenever it sweeps through an
intersection point of two arcs lying in two different components, it never encounters

and "an intersection point between arcs of two different F F, more precisely, it may
have added such points into the priority queue, but it never reaches these points during
the sweep. Moreover, at every intersection swept by the line, only a constant number
of events are added to the priority queue. Hence, the total number K of intersections
encountered by the algorithm is proportional to the number of intersections swept
through, which in turn is at most the total number of vertices in all the subarrangements



312 P.K. AGARWAL AND M. SHARIR

for (I’j) for 0_-<j_-<e’. For j_>- 1, Fj has less than 2r’ arcs, therefore s(I’j) has O(r’2)
vertices. Furthermore, each connected component of 4(17) has less than r’ arcs, so
by Lemma 4.2 4(I’) has only O(mr’) vertices. Since g’< [m/r’], the total number of
intersection points K is O(mr’). Hence, it takes only O(mr’ log m) time to partition
F’ into F,...,F,.

LZMMA 4.4. The time spent in the first phase of the algorithm is bounded by

( m )O mr’ log (m + n) +1,+2(n) log2n

Proof. It follows from the previous lemma that I’;,..., F}, can be obtained in
time O(mr’ log m). Therefore, we only have to bound the time spent in detecting an
intersection between F, for 1 _-<j_-< g’, and F.

If IFl=n, then Theorem 2.2 implies that 0o can be computed in time
O(+2(n) log2 n). By using a line sweep technique we can determine in time

O((mi if- As+2(ni)) log (ni + mi))

whether 0i and f intersect, where mi is the number of edges in Of. Summing these
costs over all faces f of ([’;), we get

p

Y O(mi log (hi q- mi) q- hs+2(ni) log2 hi)
i=1

O mi log (n + m)+ hs+2(n) log n
i=1 i=1

The total number of edges in s(I’j) is bounded by O(r’), so m O(r’). Since
every arc of F is in exactly one 1-’, 2f_ n n, and s(F) and F,..., Fz can be
computed in time O(r’ log r’) and O((r’2 + n) log (r’ + n)), respectively. Thus, the total
time spent in detecting an intersection between IP and 1-’ is

O(r’2 log (r’ + n) + h,+2(n) log2 n).

Since, l’< [m/r’], the overall time spent in the first phase, including the overhead of
partitioning I’, is at most

O(mr’ log m) + 0 log (n + r + 7/s+2(n) log2 n

O m. r’ log (n + m) +--. hs+2(n) log2 n l-]

Using a symmetric analysis, it follows that the second phase requires

O n.rlog(m+n)+-.h+2(m)logm

time. As to the third phase, Lemma 4.2 implies that s(l-’) has only O(mr’) vertices
therefore, we can easily compute it in time O(mr’ log m). Similarly, s(Fo) has O(nr)
vertices and can be computed in time O(nr log n). Once we have ’(F) and s(Fo),
we can easily check in time O((mr’+ nr)log (m + n)) whether they intersect, which
bounds the running time of the third phase. We thus obtain the main result of this
section.



RED-BLUE INTERSECTION DETECTION ALGORITHMS 313

THEOREM 4.5. Given a set of n "red" Jordan arcs F, and another set ofm
Jordan arcs F’, we can detect in time

"blue"

O((mv/As+2(n)+ nx/As+2(m)) log’’s (m+ n))

whether F and F’ intersect, where s is the maximum number of intersections between a
pair of arcs in F or in F’.

Proof. Summing the cost of all the three phases of the algorithm and choosing
r’= (As+2(n) log (m + n)) 1/-, r (A+2(m) log (m + n))/, the overall running time
becomes

O((mx/A+2(n)+ nv/A+2(m)) log15 (m+ n)).

Remarks 4.6. In some special cases we can do somewhat better as follows.
(i) If the maximum number of intersections between a pair of arcs in F (respec-

tively, F’) is s (respectively, s’), then the running time of the above algorithm becomes

O((mx/As+2(n)+ nx/’A,+2(m)) log1" (m+ n)).

(ii) If F’ can be partitioned into subsets of the appropriate size r so that the
boundary of each face in the arrangement of each subset of F is simply connected,
then we do not need the last two phases of the above algorithm. Therefore, it easily
follows that the running time of the algorithm becomes O(mx/A/2(n) logL5 n), which
is certainly better than the running time of the above algorithm for n >> m. A case in
which we can ensure that each f is simply connected is when the arcs in F’ are
concatenated to one another at their endpoints to form a single connected (possibly
self-intersecting) chain. This situation typically arises in collision-detection problems
of the sort studied in 2 and 3.

(iii) Another special case in which we can get a slightly improved bound is when
the arcs in F are nonintersecting. Again, we do not need the last two phases. We
partition F’ arbitrarily into [m/r’] set F, each of size at most r’, and then, for each
F, as in the first phase of the general algorithm, we .compute Fs,,... Fs. Since arcs
in F are nonintersecting we do not have to compute any specific face of F, but instead
we can detect an intersection between Of and F by performing a line sweep. By
choosing r’=v/if, we can easily check that the overall running time is bounded by
O( mx/- log n ).

(iv) Again, if all the arcs in F (respectively, F’) are closed or bi-infinite Jordan
curves, then we can replace s+2 (respectively, s’+2) by s (respectively, s’) in the
preceding results.

4.2. Reporting red-blue intersections. In this section we consider the problem of
reporting all red-blue intersections. If the arcs in F and in F’ are nonintersecting,
Mairson and Stolfi [MS88] have given an optimal O((m + n) log (m + n)+ K) algorithm
to report all K red-blue intersections. In the special case where all arcs are line
segments, the algorithm by Chazelle and Edelsbrunner [CE88] for segment intersections
can also be applied to report all red-blue intersections in the same time (see also [C189]
and [Mu88]); unlike [MS88], the algorithm of [CE88] cannot be extended to general
arcs. However, when red-red or blue-blue intersections exist, all these algorithms are
forced to process them as well, thus failing to achieve output-sensitive behavior. Here
s>0.

We also do not have an algorithm for the general case, but if all the arcs in F
and F’ are (possibly intersecting) line segments, we can extend our previous algorithm
to report all red-blue intersections in time that depends on the output size. Again, the
algorithm consists of three phases. We partition F into subsets Fj, for 0-<j_-< {, and
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F’ into subsets F, for 0_-<j-< ’, as described above. In the first phase we report the
intersections between F and F’-F, in the second phase we report the intersections
between F and F-Fo, and finally in the third phase we report the intersections
between F and Fo.

The first phase proceeds as follows. As in the detection algorithm, we consider
each F separately. Each face of 4(F) is a simple polygon, or "semisimple" in the
sense that its boundary may touch itself when two sides of a segment bound the same
face, but cannot cross itself. We preprocess each face of (F) for answering ray-
shooting queries using the techniques of [CG89] or [GHLST87] (which also apply to
semisimple polygons). Let p and cr be the endpoints of a segment / F and let fp,f
be the faces of (F) containing these endpoints, as determined in the first phase of
the detection algorithm. By performing a ray-shooting query we find out the edge e
of f that - hits first. If there is no such edge, then y does not have any red-blue
intersection; otherwise the intersection point r/ is obviously a red-blue intersection
and we report it. Let f, be the other face of 4(F) incident to e. We now repeat the
same process for the segment - in f,, We continue this until we reach the other
endpoint cr of y. Since for each arc 7 F all ray-shooting queries except the last one
return distinct red-blue intersections, we can charge the last query to y and the remaining
queries to the intersections. The preprocessing of face f requires O([f[ log [f[) time,
or O([f[ log log [f[) using a more involved algorithm of [GHLST87], and a ray-shooting
query can be answered in time O(log r’). Therefore all k red-blue intersections between
F and F can be reported in time O(n log r’+ r’2 log r’/ k log r’). Using the same
argument as in Lemma 4.4 we can show that the total time spent in the first phase is
O(mr’ log (m + n) + nm/ r’) log m + k’ log m), where k’ is the number of red-blue inter-
sections between F and F’-F. Similarly, all k red-blue intersections between F and
F-Fo can be reported in the second phase in time O(nrlog (n+m)+(mn/r)log n/
k log n). Since in the third phase we can afford the calculation of red-red and blue-blue
intersections, we can report all red-blue intersections by sweeping over all the arcs in

F and Fo. Thus, summing up all the costs and choosing r’= x/ and r x/, we obtain
Theorem 4.7.

THEOREM 4.7. If all the arcs in F and I" are line segments, then all K red-blue
intersections can .be reported in time O((mx/+ nx/-+ K) log (m + n)).

Remark 4.8. The above algorithm also shows that if all arcs are line segments,
then the red-blue intersection detection problem can be solved deterministically in
time O((mx/+ nx/) log (m + n)), which is slightly better than the running time of
the general algorithm. See the concluding section for recent developments that imply
an improvement of this bound (using a considerably more complicated algorithm).

4.3. Relation between many faces and red-blue intersection detection. In this section
we explore the close relationship between the problem of computing many faces in
the arrangement of a given set of Jordan arcs and the red-blue intersection detection
problem for those arcs. That is, we show that an efficient algorithm for the former
problem can be used to obtain an efficient algorithm for the latter one. The basic idea
is that a red-blue intersection can be detected by knowing only a few faces of 4(F)
and (F’). We formalize this idea in the following lemma.

LEMMA 4.9. Let = {Of, Of2,.’’, Ofk} (respectively, ’= {Of, Of,..., Of’k,})
be the collection of the (connected components of the) boundaries of the faces in
M(F) (respectively, M(F’)) that are either unbounded or contain at least one endpoint
of a bounded arc either in F or F’. Then F and F’ intersect if and only if and ’intersect.
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Proof. The "if" part is obvious. For the "only if" part, suppose first that all arcs
in F and F’ are bounded, and again recall our assumption that all these arcs are
x-monotone. Let o- be a red-blue intersection point. Let (F) (respectively, 4(F’))
denote the connected component of 4(F) (respectively, 4(F’)) containing the point
cr (see Fig. 7). It is obvious that the rightmost point r’ of ’(F’) lies in its unbounded
face f’, therefore its boundary Of’ is in the set if’. Let r be the rightmost endpoint of
s4(F); again, r must lie in the unbounded face f of 4(F), so that Of is in . Without
loss of generality assume that r is to the right of r’, which implies that r lies in f’.

There exists a connected path lI in (F) from r to o’. Follow Of’ from r’ until
a red-blue intersection point r* is encountered. Such an intersection must be encoun-
tered because either r lies on Of’ or Of’ intersects H. Since r* Of’ and also on the
boundary of the face of (F) containing r’, 5 and ’ intersect.

If F or F’ contains unbounded arcs, we reduce the analysis to the bounded arcs
by drawing a sufficiently large circle that contains all bounded arcs and intersection
points of F tA F’, cuts each unbounded arc in two points, and traverses only unbounded
faces of 4(F), 4(F’). The "clipped" arrangement now consists of only bounded arcs,
and the unbounded face of each of them is the union of all unbounded faces in the
original arrangement. Applying the preceding analysis, the claim follows easily in this
case too. I3

If F IJ F’ has unbounded arcs, then there are at most 2(m + n t) endpoints and
the total number of unbounded faces is at most 2t. Therefore, the above lemma shows
that it is enough to compute only 2(m+n-t)+2t=2(m+n) faces of each of 4(F)
and (F’) instead of computing the whole arrangement that can have f(n2) (or f(m2))
faces. Let fl(k, n) (respectively,/3’(k, m)) denote the maximum number of edges in k
distinct faces of 4(1-’) (respectively, 4(F’)), and let A(k, n) (respectively, A’(k, m))
denote the time required to compute these faces. We can easily show Theorem 4.10.

THEOREM 4.10. Let I" be a collection of n red Jordan arcs and let I be a collection
of m blue Jordan arcs. Then, in the above notation, an intersection between I and I
can be detected in time

O(A(2(m + n), n) +A’(2(m + n), m)

+((2(m+n),n)+’(2(m+n),m)). log (m + n)).

Proof By the previous lemma, it suffices to compute 2(rn + n) faces of ([’) and
of 4(I"), which can be done in time A(2(rn + n), n) and A(2(rn + n), rn), respectively.
Once having computed these faces, an intersection between them can be detected in

FIG. 7. Illustration for Lemma 4.9.



316 P.K. AGARWAL AND M. SHARIR

time O((/3(2(m + n), n)+/3’(2(m+ n), m)) log (m+ n)) by using a line sweep. Thus,
the overall running time is bounded by

O(A(Z(m +n), n)+ A’(Z(m + n), m)

+ (/3 (2(m + n), n)+/3’(2(m + n), m)). log (m + n)). El

[CEGSW88], [EGS88], and [EGH*89] have studied the complexity of many faces
in arrangements of certain classes of Jordan curves and for some special cases they
have obtained bounds that are either optimal or optimal within logarithmic factors,
together with comparably efficient randomized algorithms for calculating many such
faces, which are based on the random sampling technique of [C187] and [HW87].
Using these results and Theorem 4.10, we obtain Corollary 4.11.

COROLLARY 4.11. If each of F and F’ is a set of line segments, of unit circles, or

ofpseudolines (that is, unbounded arcs, each pair of which intersect at most once), then
an intersection between [’ and I" can be detected by a randomized algorithm whose
expected running time is O( m + n)4/3+ ), for any e > 0 (where the constant ofproportional-
ity depends on e ). If I" or I" is a set of arbitrary circles, and the other set is either a set

ofcurves in one ofthe above classes or is also a set ofarbitrary circles, then an intersection
between I’ and [" can be detected in randomized expected time O((m + n)7/5+), for
any e > O.

Proof The proof follows immediately from the results of [EGS88], [CEGSW88],
and [GSS89]. For line segments, in [EGS88] it has been shown that m faces in an
arrangement of n line segments have O(mZ/3-n2/3+2+ na(n)) edges, and that they
can be computed in randomized expected time

O(mZ/3-ert2/3+2e -k- na(n) log2 n log m),

for any e > 0. In this case we have

A(m+n,n)=A’(m+n,m)

(/3(2(m + n), n)+/3’(2(m + n), m)) log (m + n)

=O((m+n)4/3+)

for any e > 0, so Theorem 4.10 implies the claim. Similar bounds for arrangements of
the other kind of curves, as established in [CEGSW88] and [GSS89], imply the claim
in all other cases. V1

If the arcs in F are nonintersecting, then s4(F) has only one face and there are
only n edges in it. Moreover, it is enough to detect an intersection between F and the
faces of 4(F’) that are unbounded or contain the endpoints of bounded arcs in F.
There are at most 2n faces of 4(F’) containing endpoints of arcs in F; the unbounded
faces of 4(F’) can be regarded as a single connected face if we clip each unbounded
arc of F’ at two sufficiently distant points, as in the proof of Lemma 4.9. We thus
obtain Corollary 4.12.

COROLLARY 4.12. If the arcs in F are nonintersecting, then an intersection between
F and F’ can be detected in time O(A’(2n, m)+/3’(2n, m) log (m+ n)), where A’(n, m)
is the time needed to compute n faces of 4(F’), and ’(n, m) is the maximum number
of edges in n such faces.

5. More applications. In this section, we mention some applications of the general
red-blue intersection detection algorithms. We describe only two applications and leave
it to the imagination of the reader to roam free in search of further applications.
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Consider the following problem:

Given a billiard table in the shape of an arbitrary k-sided convex polygon,
and n billiard balls of equal size lying on the table, suppose we shoot one
of these balls B in a given direction, and allow it to bounce rn times off the
sides of the table. Will B hit any of the other balls?

This problem can be solved using our red-blue intersection detection algorithm
as follows. Since all balls have the same radius, it is easy to see that if B collides with
any other ball Bi, it does so on the plane that passes through the centers of all the
balls. Without loss of generality let us assume that this is the xy-plane. Therefore we
can consider this problem as a two-dimensional collision-detection problem, in which
the moving object is a circle, all obstacles are also circles, and we want to determine
whether the moving circle collides with any other circle while following the path of B.

Let y* denote the circle obtained by projecting Bi on the xy-plane and let y* be
the projection of B. We expand each circle y* by the radius of y*, so we obtain a set
of n possibly intersecting circles, F (see Fig. 8). Next we shrink the table by the radius
of B, let R denote this convex polygon; R has at most k edges. It is easy to see that
this procedure reduces the moving ball to a single point z in the sense that B collides
with any other ball B if and only if z intersects any circle of F while moving on the
path followed by the center of B (strictly speaking, the projection of the path on the
xy-plane). The path II followed by z can be determined in time O(rn log k) after O(k)
preprocessing, using a trivial ray-shooting algorithm in a convex polygon. Let F’ denote
the set of segments forming II. It follows from the above discussion that B collides
with any other ball B if and only if F and F’ intersect.

.1

FIG. 8. Expanding the circles and shrinking the table.

Hence, we can solve the above problem by applying our general algorithm for
red-blue intersection detection. Since the arcs in F are closed curves such that no two
of them intersect in more than two points, and the arcs in F’ intersect in at most one
point, it follows from Theorem 4.5 that we can detect an intersection between F and
F’ in time

O((nv/ma(m) + mx/-ff) log3/2 (m + n)).
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However in this problem the arcs in F and F’ have some additional properties
that improve the running time of the algorithm. For example the segments in F’ form
a connected path, so F’ can be partitioned into subsets of appropriate size with the
property that the boundary of every face in the arrangement of each subset is connected.
Hence by the remark following Theorem 4.5, the running time of the above algorithm
is O(mv/ log3/2 n).

On the other hand, observe that B collides with any other obstacle if and only if
the unbounded face of ’(F) and II intersect. Kedem et al. [KLPS86] have proved
that the complexity of is O(n), and that it can be computed in time O(n log2 n);
as a matter of fact, this can be improved to O(n log n), using the Voronoi diagram of
the centers ofthe circles (see [OY85], [LS87]). Since the edges in are nonintersecting,
by the remark following Theorem 4.5 we can detect an intersection between and 17’
in time O(mx/-ff log n + n log n).

Finally, the circles in F have the same radius, Corollary 4.11 implies that we can
detect an intersection between F and F’ in randomized expected time O((m + n)4/3+e),
for any e > 0. Therefore, we can conclude Theorem 5.1.

THEOREM 5.1. The "billiard ball" problem defined above can be solved:
(i) Deterministically in time O(mv/-ff log n + n log n);
(ii) In randomized expected time O((m + n)4/3+), for any e > O.
Remark 5.2. We can extend our deterministic algorithm in several ways. For

example, we can generalize our algorithm for balls with different radii. In fact our
algorithm works for balls of other shapes as well.

Another application, more related to computer graphics, is the following multiple
ray-shooting, or the "death squad" problem:

Given m rays in the plane and a collection of objects bounded by n algebraic
arcs (of small degree), does any ray hit any object?

Again this problem can be reduced to an instance of the red-blue intersection detection
problem by considering the boundaries of the objects as a collection of red arcs and
the rays as a collection of blue arcs. Hence, assuming the objects are nonintersecting,
we can solve this problem in (deterministic) time O(mx/-fflog n) by Remark 4.6(ii)
following Theorem 4.5, or in randomized expected time

O(rt:z/3-em:/3+:ze -1- ma(m) log2 rn log n),

for any e > 0, using Corollary 4.12.
If instead of rays we shoot identical bullets of some convex shape having small

and fixed complexity, we expand each object by the bullet shape to reduce the problem
to the original ray shooting problem. In this case we can detect an intersection, using
our general algorithm, in time O((mx/hs+2(n)+nx/ma(m))logL5 (m+n)), where s is
the maximum number of intersections between any two expanded objects. Again, the
running time can be improved by exploiting several special properties of the problem
structure. Note that the arcs in 17’ are rays rather than segments. It has been proved
in [ABP88] that a single face in an arrangement of m rays has only O(m) complexity
and can be calculated in O(m log m) time, therefore the running time becomes
O((mx/hs+2(n) log5 (m + n.) + nx/- log (m + n)). Finally, if all the objects being shot
at are convex, and all bullets are identical and convex, any pair of arcs in F intersect
in at most two points (cf. [KLPS86]), and the union of all expanded objects can be
computed in time O(n log n). As in the billiard-ball problem it suffices to detect an
intersection between the unbounded face of /(17) and 17’, therefore we can detect an
intersection in additional O(mx/-ff log n) time. Hence, we can conclude Theorem 5.3.
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THEOREM 5.3. (i) The multiple ray shooting can be solved deterministically in

O(m. x/" log n + n log (m + n))

time, or in randomized expected time

O(n2/a-m2/a+2mt(m) log2 m log n).

(ii) The multiple bullet shooting problem can be solved deterministically in time

O(mv/As+(n) log15 (m + n)+ nx/ log (m + n)),

which reduces to

O(mv/-h log n + n log n)

when all objects are convex.
Remark 5.4. Our techniques also allow us to solve efficiently various other

extensions of the above problem. For example, if the bullets being shot have a finite
range, then we need to detect an intersection between a collection of segments and
the given objects. Similarly, in the case of a "stone-throwing squad," where all the
stones move along parabolic trajectories in, say, the x-z plane, or along other
(algebraic) trajectories, we need to detect an intersection between those trajectories
and the objects.

6. Conclusions. In this paper we have obtained several efficient algorithms for the
red-blue intersection detection problem. Our algorithm for the case when each of M(F)
and M(F’) is a connected planar graph is close to optimal, and our general (deterministic
and randomized) algorithms are faster than previously known algorithms. We have
applied these algorithms to obtain fast algorithms for several problems in motion
planning and collision detection. However, there are still several open questions, as
listed below"

(i) The most important question is whether the running time of our deterministic
algorithm for the general case can be improved. Theorem 4.10 shows that an efficient
algorithm for computing many faces in the arrangement of a given set of Jordan arcs
also yields a fast algorithm for the red-blue intersection detection problem, therefore
one way of improving the running time is tofind an efficient deterministic algorithm
to compute many faces in an arrangement of Jordan arcs.

(ii) We have also obtained randomized algorithms for several special cases that
are faster than our deterministic algorithm, but at present we do not have any such
algorithm for the general case.

(iii) Another open question is whether a red-blue intersection can be detected in
randomized expected time O((n + m) log(1) (m + n)) if all the arcs are line segments.
This appears to be a very difficult problem because it is closely related to Hopcroft’s
problem that calls for detecting an incidence between a set of points and a set of lines,
for which no solution better than roughly (m + n)a/3 (see [Ag89], lEGS88], [GOS88])
is known.

(iv) Finally, can we report all red-blue intersections in an output-sensitive fashion
for general ares as well?

Since the submission of this paper, there have been further developments that
imply certain improvements on.some of the results obtained in this paper. Recently,
Agarwal [Ag89] has given a deterministic algorithm that counts red-blue intersections
for line segments in time O((m + n)4/3 log4 (m + n) log log (m + n)) or, more generally,
reports all red-blue intersections in the same time with O(1) overhead per intersection.
In the further special ease where there is no "red-red" or "blue-blue" intersection
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between the segments, Chazelle et al. [CEGS88] have given an O((m + n) log (m + n))
algorithm to count all red-blue intersections.

Acknowledgments. We thank the referees for their helpful comments that improved
the presentation of this paper.
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TOWARDS AN ARCHITECTURE-INDEPENDENT
ANALYSIS OF PARALLEL ALGORITHMS*

CHRISTOS H. PAPADIMITRIOU’ AND MIHALIS YANNAKAKIS

Abstract. A simple and efficient method for evaluating the performance of an algorithm, rendered as
a directed acyclic graph, on any parallel computer is presented. The crucial ingredient is an efficient
approximation algorithm for a particular scheduling problem. The only parameter of the parallel computer
needed by our method is the message-to-instruction ratio ’. Although the method used in this paper does
not take into account the number of processors available, its application to several common algorithms
shows that it is surprisingly accurate.

Key words, multiprocessing, parallel computation, communication delay, approximation, scheduling,
dag

AMS(MOS) subject classification. 68Q25

1. Introduction. Harnessing the massively parallel architectures, soon to become
available, into efficient algorithmic cooperation is one ofthe most important intellectual
challenges facing computer science today. To the theoretician, the task seems similar
to that of understanding the issues involved in the performance of sequential algorithms
(which motivated Knuth’s books, among other important works), only infinitely more
complex. In sequential computation the design process involves (a) choosing an
algorithm and (b) analyzing it (mostly, counting its steps). In the parallel context,
however, we have at least four stages: (1) Choose the algorithm (say, a directed acyclic
graph (dag) indicating the elementary computations and their interdependence, a
model in which evaluation of sequential performance is trivial). (2) Choose a particular
multiprocessor architecture. (3) Find a schedule whereby the algorithm is executed on
the computer. (4) Only now can we talk about the performance of the algorithm,
measured in elapsed time for computing the last result. In our opinion, it is this
multilayered nature of the problem that lies at the heart of the difficulties encountered
in the development of the necessary ideas, principles, and tools for the design of
parallel algorithms.

Are there ways to shortcut the process, thus improving our chances of finally
understanding parallel algorithms? The challenge here is to combine stages (2), (3),
and (4) into a single step whereby the performance of the algorithm chosen in (1) can
be evaluated in a simple, direct manner (at least in principle), pretty much as it is
done in sequential computation (stage (b)). At first, the task seems impossible, since
it is well known that the performance of a parallel algorithm depends critically on the
architecture adopted in stage (2), and the space of architectures is too rich to use as
a .parameter. A first attempt at this problem was made in [PU]. In that paper three
parameters of an algorithm-dag that are relevant in any architecture were isolated,
and thus can be used as first measures of the performance of the algorithm (these
parameters were as follows: elapsed time ignoring communication, total communication
traffic, and total communication delay). In [PU] nontrivial trade-offs between these
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parameters were shown for the pyramid (called "diamond dag" in [PU]). Those results
were not completely satisfactory for at least two reasons: First, [PU] bypassed the
problem of parametrizing architectures by considering many performance measures.
Second, no general principle or technique, applicable to all dags, was in sight (this
was mentioned as a challenging open problem in [PU]; the results presented here
apply to all dags, and, when restricted to the pyramid, imply Theorem 2 in [PU], thus
resolving that question).

In this paper we present a technique that, we feel, may lead to an important new
understanding of parallel computation. We are concerned with stages (2), (3), and (4)
alone. In other words, we start with the algorithm-dag given and fixed; usually, the
dag will in fact be a family thereof, indexed by its number of inputs, such as the
pyramid, the full binary tree, the fast Fourier transform (FFT), etc. We assume that
we are interested in the case in which the available number of processors is adequate
for dealing with the whole width of the dag (thus the number of processors involved
is no longer a parameter). It would seem then that the crucial measure of the complexity
of the dag would be its depth, since it is the depth that dominates its parallel complexity
in idealized models of computation, such as a parallel random access machine (PRAM).
The point is that in real parallel architectures there is a significant communication delay
between the time some information is produced at a processor and the time it can be
used by another, and depth fails to capture this delay. Such communication delay,
denoted r, is measured in units of elementary processor-steps (equivalently, nodes of
the dag).

The status of r as the single most important parameter of parallel computers was
pointed out by Bell [Be]. As a function of n, the number of processors, r can range,
depending on the architecture, from n (on a ring) to v/-ff (a grid) to log n (a hypercube).
For actual computers, one hears of values of r ranging from small constants (smaller
than one in the case of GFll [Be]) to several millions for slow clusters. We propose
that " is a parameter of the architecture that is important enough to be the basis of
our scheme.

Once we have parametrized away the choice of the architecture, we must concen-
trate on stage (3), scheduling the dag on the processors. But given -, and under our
assumption of enough processors, this is a concrete scheduling problem: Schedule a
dag of unit time tasks on an unbounded number of processors so that, if task is
executed at time on processor p and j is a parent of i, then either (a) j is executed
on p by time t-1, or (b) j is executed on some other processor p’ by time t-1-r.
The optimum makespan of this scheduling problem, always a function of ’, is therefore
a fair measure of the parallel complexity of the dag. Unfortunately, this is a nontrivial
function; the scheduling problem is NP-complete.

Fortunately, in this paper we propose a simple way to calculate the optimum
makespan within a factor of two. We compute a simple function e on the nodes of
the dag, visiting them depth-first, and show that this quantity is between half the
optimum makespan and the optimum makespan, and thus can serve as an adequate
estimate.

There may be a healthy suspicion that perhaps our method, by disregarding the
number of processors, will yield unrealistic, processor-wasteful algorithms. We present
strong evidence that this is not so" Using our method, we derive asymptotic upper and
lower bounds for the parallel complexity of common algorithms (the FFT, the pyramid,
the full binary tree), as a function of n, the number of inputs, and ’. Interestingly,
these bounds are achieved by time-optimal algorithms that are also processor optimal
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(for fixed time), and, furthermore, they are the most obvious and intuitive parallel
algorithms for the corresponding problem on a parallel machine with ratio -. They are
all simple variants of the algorithm directly suggested by our method. In fact, starting
from our lower bound for the pyramid, we can derive the execution time--communica-
tion delay trade-off in [PU].

2. The approximation algorithm. We are given a directed acyclic graph D V, A),
whose nodes are computational tasks of equal (unit) execution time requirements, and
whose arcs, as usual in parallel algorithms, represent both time precedence and
functional dependence. We are also given a positive integer -. A schedule S of D is a
finite set of triples S c V x to x to (the second component is the processor on which
the node is scheduled, and the third is the time), such that the following conditions
hold: (1) For each v V there is at least one triple (v, p, t) S. (2) There are no two
triples (v, p, t), (v’, p, t) S, v # v’. (3) If (u, v) A and (v, p, t) S, then either there is
another triple (u, p, t’) S with t’=< t-1, or there is another triple (u, p’, t’) S with
t’<_ t- l-..

In other words, we schedule the dag with possible repetitions of the nodes on an
unlimited number of processors, so that there is a delay - for communication between
the processors. Our goal is to minimize Tmax, the largest time appearing in S.

NP-completeness.
THEOREM 1. It is an NP-complete problem to decide, given a directed acyclic graph

(V, A), integer -, and deadline Tmax, whether there exists a schedule S such that no time

greater than Tma is used.
Proof. The problem is obviously in NP. NP-completeness follows by a reduction

from CLIQUE. We are given a graph G-(V, E) and an integer k. We may assume
that G has at least (k) edges, because otherwise G does not have a clique of size k.
We shall construct a dag D U, A), - and Tmax, such that D can be scheduled within
time Tmax if and only if G has a clique of size k.

D is constructed as follows: For each v V, we have in D a path (dl, ", d,lvi2),
with all arcs (di, d,i/l), i= 1,..., IvI2-1. Also, for each edge e=[u, v] E, there is
in D a node Ce. Finally, there is also a node in D. As for the arcs of D, there is an
arc (d, vl, Ce) from the last node ofthe path corresponding to v to any node correspond-
ing to an edge e, where v e. Finally, for all e E, there is an arc (Ce, t). We define- -Ivl2(k 1)+ (2k), and Tma --IVI2k + IEI. We claim that there is a clique of size k in
G if and only if there is a feasible schedule.

Suppose that there is a feasible schedule, and suppose that node q,,] executes
at processor p before time d V[2k+(2k). Since there is not enough time for any of
the chains corresponding to u and v to have executed in another processor with the
results sent to p, it follows that p has executed both of these chains. On the other
hand, must be executed at the same processor as all edges computed after or at time
d. This implies that there must be at most [E[- (k) such edges. Each of the () remaining
edges must be executed on the same processor that executed the paths of their nodes.
Since there is already not enough time to send the results, all these edges, and also
the remaining ones, and then t, must be executed on the same processor, which means
that this processor must execute at most Tmax-lEl/lVI 2-- k paths. However, this in
turn implies that there are k nodes in V that are adjacent to (k) edges, and thus a
clique of size k exists.

Conversely, if a clique of size k exists, a feasible schedule is the following: Execute
each path corresponding to a node not in the clique in a different processor, and
execute on the same processor the paths corresponding to nodes in the clique, followed
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by the edges between these nodes, then (exactly as all other messages arrive from the
other processors) the remaining edges, and finally t.

Note that this proof establishes that the same scheduling problem with recomputa-
tion not allowed is also NP-complete. This is because in the if direction we computed
each task once.

The Approximation Algorithm. Given a dag (V, A) and an integer ’, we can compute
the following function e" V to, inductively on the depth of the nodes of the dag:

(1) If v is a source, then e(v) 0.
(2) Otherwise, consider the set of all ancestors of v, ordered in decreasing e(u)

(recall that e has already been evaluated on the ancestors) e(ul)>= e(u2)=>
>= e(Up). Let k be the smaller of " + 1 and p. Then we define e(v) e(Uk) + k.

LEMMA 1. There is no schedule in which node v is scheduled before time e(v).
Proof By induction on the depth of v. The result certainly holds if v is a soOrce.

For the induction step, suppose that v can be scheduled at time < e(v), and consider
the k ancestors ul,"’, Uk of V that have the highest e value (recall the definition of
k in this context). By the induction hypothesis, each of these nodes ui was scheduled
on or after time e(ui)>--e(uk). Since t<e(v)=e(uk)+k<--e(uk)+’r+l, each of these
nodes u is scheduled less than -+ 1 before v, and thus must be scheduled on the same
processor as v. Since there are k such nodes scheduled between times e(Uk) and t, we
must have _-> e(Uk)-- k, or _>- e(v), contradicting our assumption.

LEMMA 2. For each node v there is a schedule in which node v is scheduled at time

2e(v).
Proof Again by induction on the depth of v. Clearly, any source can be scheduled

at 0. For the induction step, suppose first that v has p-< r + 1 ancestors. Then, we
can schedule all of them, including v, by time e(v)+ 1 -<2e(v) on the same processor.

Thus, assume that v has p > r+ 1 ancestors. Order them in decreasing e value:
e(u)>-e(u2)>=...>=e(Up). Since e(v)=e(u+)+-+l, we have that e(v)-r-l_->
e(uj) for j => " + 1. Thus, by induction, all ancestors of v except for the " first ones can
be scheduled (by separate schedules and in different processors) by time 2e(v)- 2r-2.
This means that starting at time 2e(v)-’-1 the " first nodes can also be scheduled
(in reverse order one after the other), and hence v can be finally scheduled by time
2e(v).

The proof of Lemma 2 suggests the following simple algorithm for scheduling the
nodes of the dag, so that every node v is executed by time 2e(v)" the processor that
computes node v computes the " highest (in e value) ancestors of v and receives the
rest from communication from other processors. Combining the lemmata, we have the
following theorem.

THEOREM 2. The above algorithm is an approximation algorithm for Tmax with a

worst-case ratio of two.

A generalization. By a rather complicated generalization of the algorithm, we can
obtain schedules with the same worst-case approximation ratio even when each node
v V has an execution time x(v) and a delay -(v); that is, if (v, u)A, u cannot start
until x(v)+ ’(v) time units have passed after v started at another processor, or until
x(v) time units after v started at the same processor. This models a situation in which
tasks have unequal processing times, and their results differ in size, and therefore in
transmission delay. In our original problem, all x(v)’s are one, and all -(v) are equal
(and equal to ’).

The following generalization of our algorithm computes the estimate e(v) for this
case" For any source node v, e(v) is zero, as before. For any node v other than a
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source consider the set of its ancestors, and for each such ancestor u compute the
function f(u)= e(u)+x(u)+r(u). Now sort the ancestors in decreasing f:f(ul)>=
f(u2) => (notice that f may not be monotonic with respect to the dag).

Consider an integerj (intuitively, this is a candidate value for e(v)), and suppose
that f(Uk)>j>--f(Uk+l). Let N(v) be the subdag of D consisting of all nodes ui, i=< k
for which there is a path to v using only nodes ui, i-< k. Consider then the following
scheduling problem S for the nodes of N(v) (excluding v)" The release time for job
vi is e(vi), where we have assumed that e(vl)>_- e(v2)>= => e(vl), and N(v) contains

nodes (plus v). Obviously, the optimum schedule has length Lj=
max/k=l [e(1)i)+q=l x(q)]. Now choose the leastj such thatj > Lj. This is the value of
e(v).

As in the previous case, we can use here also the e values to schedule the dag.
The algorithm is as follows. For every node v, the processor that computes v, computes
itselfthe nodes in Ne(v)(v), and receives the other ancestors of v from communication
from other processors. The nodes of Ne(v)(v) are executed by the processor of v as
soon as they become available, where a node u becomes available when the processor
knows every parent of u either by computing it itself or from communication from
another processor. If several nodes of N()(v) are available at the same time, then
the processor may choose an arbitrary one for execution.

THEOREM 3. The above algorithm is a polynomial-time approximation algorithm for
the generalized problem with a worst-case ratio of two.

Proof. We shall show first that no node can be scheduled before its e value. We
use induction on the depth of a node. Suppose that node v is scheduled at time j < e(v),
but all of its ancestors are scheduled on or after their e value. By the definition of
e(v), there is no way that all the nodes in N(v) can be scheduled at the same processor
as v (since L >j). On the other hand, if (u, w) is an arc of N(v), and w is scheduled
at the same processor as v (before or at time j), then the same must be true of u
because f(u)>j. Since every node u N(v) has a path to v through N(v), all nodes
of N(v) must be scheduled at the same processor as v. It follows that no node can
be s,.cheduled before its e value.

We next show that our algorithm executes every node v at or before time 2e(v).
The proof is again by induction on the depth of v. Any node w : N(o)(v) that is a
parent of a node u in Ne()(v) has f(w) <= e(v), and thus can be scheduled so that its
message reaches the processor of v at time 2e(w)+x(w)+r(w)<-e(v)+e(w)<=
e(v) + e(u). Thus, the assumption in the scheduling problem Se() that a task u N(v)(v)
is available for execution at time e(u) is valid, except for an additional delay of e(v)
time units. Thus, by shifting an optimum schedule for Se(), with makespan e(v), e(v)
time units to the right, we obtain a valid schedule in which v is executed at time 2e(v).
Obviously, the one-machine scheduling problem with release times is solved optimally
by any algorithm that is greedy, i.e., executes some node as long as there is one
available. It follows that our algorithm schedules node v by time 2e(v).

To show that the algorithm is polynomial, note that we repeat it for all v V, and
for each v and value of j we compute N(v) and L; these computations take time
Ial+[v[ log [vI. There are only vI values of f(v), and thus an equal number of
interesting values of j, for which we must repeat the computation of N(v) and L.
The result is an O(IV[:(Ial+lVloglVl))-time algorithm. With a more careful
implementation, we can save a factor of Ivl. t

If there are communication delays on the arcs (not nodes) of the dag, the same
technique yields a ratio of two. The only difference is that, instead of the criterion
based on the function f, N(v) is now constructed arc by arc, where an arc (u,w) is
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included in the subgraph if e(u)+x(u)+r(u, w)>j, and we keep only those nodes
that can reach v in this subgraph. The rest remains the same.

3. Applications to concrete problems. In this section we apply our technique to
three well-known families of dags: the full binary tree, the fast Fourier transform, and
the pyramid.

Full binary tree. Suppose that the dag is a full binary tree with n nodes. Recall
that our algorithm entails scheduling on the same processor with v its r highest (in e
value) ancestors. In the binary tree, these ancestors are at the log r next levels of the
tree. Therefore, in this case our algorithm degenerates to the following: Divide the
log n levels of the tree into log n/log r layers of height log r. Compute each of the n/r
resulting subtrees, with all subtrees at the same level computed in parallel. The time
is O(r log n/log r); since it is the result of our method, it is asymptotically optimal.
O(n/r) processors are used. The number of processors can be made optimal (number
of nodes divided by time) by simply letting the last layer of the tree have height
log (r log n/log r), instead of log r. The time at most doubles.

The fast Fourier transform. From the point of view of each output, the n-input
FFT is a full binary tree with n leaves, and thus the optimal time is, by the previous
subsection, O(r log n/log r). The proof of Theorem 2 suggests an algorithm that
computes each output separately.

However, the following obvious algorithm achieves the same bound: For k
r/log r, partition the FFT dag into stripes of height log k. Each stripe contains n/k
FFTs on k points. Each of these FFTs is executed in sequential time O(k log k)= r

by a processor, with all FFTs in a stripe executed in parallel. Once a stripe is completed,
the results are exchanged and the next stripe starts. The total time is O(r log n/log r)
(optimal), and there are O(n log r/r) processors (also optimal!).

The pyramid. Arguing in the pyramid with n nodes along the same lines as for
the full binary tree, the optimal time bound is obtained by computing, in the same
processor as node v, the subpyramid with r nodes with v as apex. The time required
is 2v/-. This method uses x/-v/ processors. However, the stripes method [PU], in
which each processor computes a diagonal stripe of width and processors are
synchronized in a pipelined fashion, gives the same asymptotic time and optimum
number of processors: x/n/r.

We can now reconstruct the idealized time-communication delay trade-off, shown
in [PU], as follows: Recall that the idealized time T of a schedule is the time required
if all delays are zero, and the communication delay d is the time required if all execution
times are zero and r 1. It was shown in [PU] that (in our notation), for the n-node
pyramid, Td fl(n). We need the following lemma, relating d and T with our Tmax
for any dag D.

LEMMA 3. If there is a schedule S with idealized time T and communication delay
d, then there is a schedule S’ with Tma T+ dr.

Proof We transform a legal schedule S under [PU] to a legal schedule S’ in our
framework. As in [PU], assign a delay to each slot of each processor. If a slot of
processor P executes a node u, and u is a source, then the delay is 0; if u is not a
source, the delay is the smallest integer such that for every parent w of u, either there
is an earlier slot of P that executes w with delay at most i, or there is an earlier slot
of another processor that executes w with delay at most i-1. The idealized delay d
of S is the maximum delay of any slot. For every processor P of S and every delay i,
we have a processor Pi in S’ that executes the slots of P that have delay i, shifted i-
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time units later. It is easy to see that S’ is a legal schedule in our framework, and its
makespan is T + dr. Thus, Tma T+ dr.

Continuing our argument for the pyramid with n nodes, since our 2-approximate
algorithm schedules the pyramid within time 2x/-, we know that for any r we must
have Tmax--> x/-n. Combining this inequality with Lemma 3 we conclude that T+ dr _->
v/-. Picking a r such that T=1/2x/-n, we have that dr > 1/2v/-, from which Td >

follows.

4. Open lroblems. Is there a polynomial-time approximation algorithm for the
scheduling problem with worst-case ratio better than two? We mention that, in the
case with no recomputation, another NP-completeness proof establishes that no
approximation ratio better than two is possible (unless P= NP). But, then again, we
know of no approximation algorithm at all for the problem without recomputation. If
r is a fixed integer (or even a fraction with a fixed numerator), Jungen, Kirousis, and
Spirakis (1988) showed that a dynamic programming approach yields a polynomial-
time algorithm (with the numerator of r in the exponent of the polynomial) for solving
the scheduling problem exactly.

Although our approximation algorithm is bound to. produce schedules with many
processors and a lot of recomputation, we observed that, in all examples considered,
the same bounds are achieved without recomputation. Is this a general pattern, namely,
that any parallel algorithm using recomputation can be simulated by an algorithm that
does not use .recomputation and has the same asymptotic time requirements? This is
an interesting question, akin to open problems proposed in [PU]. One can easily
produce dags with large out-degrees, for which recomputation is indeed necessary, so
the interesting question is the one in which the degrees of the dags are bounded, say
by two. Jungen, Kirousis, and Spirakis (1988) observed that the inverse full binary tree
(directed from the root to the leaves) requires logarithmic recomputation, on the
average.

Finally, since e, the central part of our method, is a rather simple parameter of
the dag, there is hope that we can develop the necessary algebraic tools to show tight
bounds for the parallel complexity of problems (not algorithms), e.g., for the discrete
Fourier transform, as opposed to the FFT, and matrix multiplication, as opposed to
the full binary tree, etc. Liu (1988) has recently shown that the (r log n/log r) lower
bound for the full binary tree holds for any tree with n nodes, and thus for any
algorithm for adding, multiplying, etc., n indeterminants, n x n matrix multiplication,
etc.

Aeknowlelgment. Many thanks to Gene Lawler for pointing out to us another
approximation algorithm (with a larger worst-case ratio) for the problem of the
subsection entitled "A Generalization," thus motivating that subsection.

[Be]
[JIS]

[Liu]
[PU]
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Abstract. It is possible to compute gcd (x, y) efficiently with only O(log xy) additions and subtractions,
when three arithmetic registers are available but not when there are only two. Several other functions, such
as x mod z, are also efficiently computable in a small number of registers, using only addition, subtraction,
and comparison.
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An addition machine is a computing device with a finite number of registers,
limited to the following six types of operations"

read x {input to register x}
x <---y {copy register y to register x}
x x + y {add register y to register x}
x x-y {subtract register y from register x}
if x_-> y {compare register x to register y}
write x {output from register x}.

The register contents are assumed to belong to a given set A, which is an additive
subgroup of the real numbers. If A is the set of all integers, we say the device is an
integer addition machine; if A is the set of all real numbers, we say the device is a real
addition machine.

We will consider how efficiently an integer addition machine can do operations
such as multiplication, division, greatest common divisor, exponentiation, and
sorting. We will also show that any addition machine with at least six registers can
compute the ternary operation x[y/zJ with reasonable efficiency, given x, y, z A
with z # 0.

Remainders. As a first example, consider the calculation of

x-y[x/yJ, if y#0;
xmody=

x, ify=O.

This binary operation is well defined on any additive subgroup A of the reals, and we
can easily compute it on an addition machine as follows:

P: read x; read y; z <-- z z;
ify >= z then

if z >= y then {y 0, do nothing}
else if x => z then while x _-> y do x - x-yelse repeat x <-- x + y until x _-> z

else if z _-> x then while y => x do x <-- x-y
else repeat x <-- x + y until z _-> x;

write x.
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(There is implicitly a finite-state control. A pidgin Pascal program such as this one is
easily converted to other formalisms; cf. [1].)

Program P1 handles all sign combinations of x and y; therefore it is rather messy.
In the special case where x >= 0 and y > 0, a much simpler program applies"

P2: read x; read y; {assume that x_-> 0 and y > 0}
while x _-> y do x - x-y;write x.

Any program for this special case can be converted to a program of comparable
efficiency for the general case by using the identities

-x=(x-x)-x;

(-x) mod (-y)=-(x mod y);

[y-(x mod y), ifxmody0;
(-x) mod Y 0, if x mod y 0.

General programs for multiplication, division, and the greatest common divisor (gcd)
can be constructed similarly from algorithms that assume positive operands. We shall
therefore restrict consideration to positive cases in the algorithms below.

Program P2 performs [y/x] subtractions. Can we do better? Yes; here, for example,
is a program that uses a doubling procedure to subtract larger multiples of y:

P3: read x; read y; {assume that x => 0 and y > 0}
while x _-> y do

begin z y;
repeat w - z; z - z + z until not x => z;
x<---x--w;
end;

write x.

This program repeatedly subtracts w= 2ky from x, where k [log2 (x/y)J; thus, it
implicitly computes the binary representation of Ix/yJ, from left to right. The total
running time is bounded by O(log (x/y)), which is considerably smaller than Ix
when Ix is large.

Further improvement, to a running time that is O(log(x/y)) instead of
O(log (x/y)), appears at first sight to be impossible, because an addition machine
has only finitely many registers and it cannot divide by 2. Therefore the numbers y,
2y, 4y, 8y,... must all apparently be computed again and again if we want to use a
trick based on doubling.

A Fibonacci method. Remainders can, however, be computed with the desired
efficiency O(log (x/y)) if we implicitly use the Fibonacci representation of Ix
instead of the binary representation. Define Fibonacci numbers as usual by

Fo=0; FI=I; F,=F_I+F,_, forn->2.

Every nonnegative integer n can be uniquely represented [9] in the form

M--Fllnt-Fl2nt-’’’nt-Fl, 11>>12>>... >> It >> 0,

where t_-> 0 and >> l’ means that l-l’-> 2. If n > 0, this representation can be found
by first choosing 11 such that

Fll n < F/I+I
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so that n- Ell < Fll+l- Ell- Ell_l, and then by writing

n Fll + (Fibonacci representation of n Fll).

We shall let

An ll and vn

denote respectively the index of the leading term and the number of terms in the
Fibonacci representation of n. By convention, A0 1.

Fibonacci numbers are well suited to addition machines because we can go from
the pair (Fl, Fl+l) up to the next pair (Fl+l, Fl+2) with a single addition, or down to
the previous pair (Fl-1, Fi) with a single subtraction. Furthermore, Fibonacci numbers
grow exponentially, about 69% as fast as powers of 2. They have been used as power-of-2
analogues in a variety of algorithms (see, for instance, "Fibonacci numbers" in the
index to [3]) and Matijasevich’s solution to Hilbert’s tenth problem in [6]).

If we let two registers of an addition machine contain the pair of numbers
(yF1, yFl+l), where is an implicit parameter, it is easy to implement the operations

and to test the conditions

x >- yFl, x < yFl+, 1.

Therefore we can compute x mod y efficiently by implementing the following pro-
cedure:

read x; read y;
if x _-> y then

write x.

{assume that x _-> 0 and y > 0}

begin 1;
repeat + 1 until x < yFl+l;
repeat if x >- yFI then x x- yFt;

ll-1;
until 1;
end;

The first repeat loop increases until we have

yF1 <- x < yFI+ 1,

i.e., until An, where n [x/yJ. The second loop decreases while subtracting

yFl, + YFI2 +" "+ yF, yn

from x according to the Fibonacci representation of n. The result, x-ny x mod y,
has been computed with

2An-2+ vn O(log (x/y))

additions and subtractions altogether.
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Here is the same program expressed directly in terms of additions and subtractions,
using only three registers:

read x; read y; {assume that x -> 0 and y > O}
if x => y then

begin z <- y;
repeat (y, z) <- (z, y + z) until not x _-> z;
repeat if x _-> y then x <-- x- y;

(y,z)(z-y,y);
until y >-- z;
end;

write x.

{x _-> y still holds}

The multiple assignment "(y, z)<-(z, y+ x)" is an abbreviation for the operation "set
y <--y + z and interchange the roles of registers y and x in the subsequent program";
the assignment "(y, z)<--(z- y, y)" is similar. By making two copies of this program
code, in one of which the variables y and z are interchanged, we can jump from one
copy to the other and obtain a legitimate addition-machine program; cf. [4, Ex. 7].

A formal proof of correctness for program P4 would establish the invariant relation

=l >__ l (y yoFl and z=yoFl+)

in the case Xo=> yo, where Xo and Yo are the initial values of x and y.
Multiplication and division. We can use essentially the same idea to compute the

ternary operation x [y/zJ efficiently on any addition machine. This time we accumulate
multiples of x as we discover the Fibonacci representation of [y/zJ:

read x; read y; read z; {assume that y >_-0 and z > O}
w<-O;
if y -> z then

begin <-- 1;
repeat - + 1 until not y >- ZFl+l;
repeat if y >-- zFt then w, y) (w + xFi, y ZFl);

ll-1;
until 1;
end;

write w.

The actual addition-machine code requires six registers, because we need Fibonacci
multiples of x as well as z:

read x; read y; read z; {assume that y => 0 and z > O}
W-W--W’,
if y _-> z then

begin u - x; v - z;
repeat (u,x)-(x, u+x); (v,z)-(z, v+z);
until not y _-> z; {y-> v still holds}
repeat if y _>- v then (w, y) - (w + u, y v);

<u,x)(x-u,u); <v,z)-(z-v,
until v _-> z;
end;

write w.
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The key invariant relations, in the case yo=> z0, are now

:ll>= 1 (u XoFl, x= XoFl+l, v-- ZoFl, 2-- ZoFl+l)"

::l n >__ O W xon, Y Yo- Zon ).

If we suppress x, u, and w from this program, the repeat statements act on (y, v, z)
exactly as the repeat statements in our previous program act on (x, y, z). Therefore, if
yo -> Zo, we have y Yo mod Zo Yo-zo[Yo/ZoJ after the repeat statements in the new
program. Hence w Xo [Yo/Zo] as desired. The total number of additions and subtrac-
tions is

4An -3 + 2,n O(log (yo/Zo)),

where n [yo/zoJ.
An integer addition machine can make use of the constant 1 by reading that

constant into a separate, dedicated register. Then we can specialize the ternary algorithm
by setting z 1 (for multiplication) or x <-- 1 (for division). Thus we can compute the
product xy in O(log min ([x[, ]Yl)) operations and the quotient [y/zJ in O(log
operations, using only addition, subtraction, and comparison of integers. (Multiplica-
tion and division clearly cannot be done unless such constants are used, since any
function f(x, y,...) computed by an addition machine that inputs the sequence of
values (x, y,...) must satisfy f(ax, cy,...) of(x, y,...) for all a > 0.)

Greatest common divisors. Euclid’s algorithm for the greatest common divisor of
two positive integers x and y can be formulated as follows:

read x; read y; {assume that x > 0 and y => 0}
while y > 0 do (x, y) <- (y, x mod y);
write x.

The while loop preserves the invariant relation gcd (x, y)= gcd (Xo, Yo). After the first
iteration, we have x > y_>-0; the successive values of x are strictly decreasing and
positive, so the algorithm must terminate.

We can therefore use our method for computing x mod y to calculate gcd (x, y)
on an integer addition machine:

P6: read x; read y; {assume that x > 0 and y => 0}
z<--y; zz+z;
while not y => z do {equivalently, while y > 0, since z 2y}

begin while x -> z do (y, z)<--(z, y+ z);
repeat if x _-> y then x <-- x-y;

(y, z)(z-y, y);
until y ->_ z;
(x, y) <-- (y, x); z <- y; z z + z;
end;

write x.

(Here the operation (x, y)<--(y, x) should not really be performed; it means that the
roles of registers x and y should be interchanged. The implementation jumps between
six copies of this program, one for each permutation of the register names x, y, z.)

This algorithm will compute gcd (x, y) correctly on a general addition machine,
whenever the ratio y/x is rational. Otherwise, it will loop forever.

The total number of operations performed by program P6 is

T(x, Y)=f(ql)+f(q2)+’"" +f(q,) + 6,
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where ql, q2,..., q,, is the sequence of quotients Ix in the respective iterations of
Euclid’s algorithm, and where f(q) counts the number of operations in one iteration
of the outermost while loop. If q 0 (this case can occur only on the first iteration),
we have one assignment, one addition, one subtraction, and four comparisons; so
f(0) 7. If q > 0 we have one assignment, Aq-1 additions, Aq+ uq-1 subtractions,
and 3Aq-2 comparisons; so

f(q)=5Aq+ uq-3.

We have f(1) 8, f(2) 13, and, in general, f(Fl) 51 2 for all >_- 2.
This three-register algorithm for greatest common divisor turns out to be quite

efficient, even though it uses only addition, subtraction, and comparison. Indeed, the
numbers in the registers never exceed 2 max (x, y), where x and y are the given inputs,
and we can obtain rather precise bounds on the running time.

THEOREM 1. Let N =max (x, y)/gcd (x, y). The number of operations T(x, y) per-
formed by program P6 satisfies

3 log4 N+ a <= T(x, y) <- 13.5 log4 N+ ]3,

for some constants a and , where b (1 + x/)/2.
Proof We can assume that x> y; then all the q’s are positive. If F/_-< q < FI+I,

we have Aq and 1 <- ,q <-_ l/2, hence

51-2<-_f(q)<-5.Sl-3.
Furthermore, we have 41-2_-< FI -< 4-1; hence

5 log (q + 1 2 -<f(q) _-< 5.5 log4 q + 8.

Summing over all values q,..., q,, gives

51og4 ((ql+l)’." (q,+ 1))-2m <_ T(x,y)-6<-5.Slog4 (ql""" q,,) +Sm.
Now let the values occurring in Euclid’s algorithm be Xo, X,,... ,xm+, where

Xo=X, X =y, xj+ Xj_ mod xj, Xm =gcd (x, y), and x,,+ =0. Then qj- [x_/x] for
1 _-<j_-< m, and we have

Xo Xl Xm--1
qq2"’" q,,,<-- <(q,+ 1)(q2+ 1)’’. (q,, + 1).

Xl X2 Xm
The product (Xo/X)(xl/x2)’" (X,,,-1/Xm)=Xo/X,, is just what we have called N.
Furthermore, we have m <_-log N by a well-known theorem of Lam6 [2, Thm. 4.5.3F].
This suffices to complete the proof. [3

When the inputs are consecutive Fibonacci numbers (x, y) (F,,, F,,+) with m _-> 2,
we have q 0, q2 q,,_ 1, q,, 2, and the total running time is

T(F,,,, Fm+,)=7+8(m-2)+ 13+6- 8m + 10.

This appears to be the worst case, in the sense that it seems to maximize T(x, y) over
all pairs (x, y) with max (x, y) <- Fm+. Computations for small n support this conjecture,
which (if true) would imply that the upper bound in Theorem could be improved
to 8 log N+ ft.

Stacks. Euclid’s algorithm defines a one-to-one correspondence between pairs of
relatively prime positive integers (x, y) with x > y and sequences of positive integers
(q,..., q,,), where each q -> 1 and qm ->- 2. We can push a new integer q onto the front
of such a sequence by setting (x, y) - (qx + y, x); we can pop q [x/yJ from the front
by setting (x, y) (y, x mod y).

Therefore an integer addition machine can represent a stack of arbitrary depth in
two of its registers. The operation of pushing or popping a positive integer q can be
done with O(log q) operations, using a few auxiliary registers.
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Here, for example, is the outline of an integer addition program that reads a
sequence of positive integers followed by zero and writes out those positive integers
in reverse order:

(x, y) <-- (2, 1); {the empty stack}
repeat read q;

if q => 1 then (x, y) (qx + y, x);
until not q _-> 1;
repeat (q, x, y)-([x/y], y, x mod y);

if y_-> then write q;
until not y => 1.

This program uses the algorithms for multiplication and division shown earlier. The
running time to reverse the input (ql, q2,..., qm, O) is O(m +log qlq2.., qm).

We can sort a given list of positive integers (ql, q2,..., q,,) in a similar way,
using the classical algorithms for merge sorting with three or more magnetic tapes that
can be "read backwards" [3, 5.4.4]. The basic operations required are essentially
those of a stack, so we can sort in O((rn + log qlq2" qm) log rn) steps if there are at
least 12 registers.

Exponentiation. We can now show that an integer addition machine is able to
compute

xy mod z

in O((log y)(log z)+log (x/z)) operations. The basic idea is simple: We first form the
numbers

x x v’ mod z

for 2_<- l_-< Ay; this requires one multiplication mod z for each new value of l, once

x2 x mod z has been found in O(log (x/z)) operations. Then we use the Fibonacci
representation of y to compute xy mod z with ,y-1 further multiplications mod z.
For example, x mod z is computed by successively forming the powers

X X
8+3

X X
2

X X

modulo z.
There is, however, a difficulty in carrying out this plan with only finitely many

registers, since the method we have used to discover the Fibonacci representation of
y determines the relevant terms F in reverse order from the way we need to calculate
the relevant factors x.

One solution is to push the numbers x2, x3,..., xy onto a simulated stack as they
are being computed. Then we can pop them off in the desired order as we discover
the Fibonacci representation of y. Each stack operation takes O(log z) time, since each
Xl is less than z; hence the stacking and unstacking requires only O((log y)(log z))
operations, and the overall running time changes by at most a constant factor.

But the stacking operation forms extremely large integers, having ((log y)(log z))
bits, so it is not a practical solution if we are concerned with the size of the numbers
being added and subtracted as well as the number of additions and subtractions. An
algorithm that needs only O((log y)(log z)) additions and subtractions of integers that
never get much larger than z would be far more useful in practice.

We can obtain such an algorithm if we first compute the "Fibonacci reflection"
of y, namely, the number

yR Fz+,y_/, _+_ Fz+,y_/z.+. ._+_ F2+ay_l
when y has the Fibonacci representation

y= Fh + Fl +. .+ F!,.
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Then we can use the Fibonacci representation of yR to determine the relevant factors
Xl as we compute them; no stack is needed.

Here is a program that computes yR, assuming that y > 0 and that both y and the
constant 1 have already been read into registers named y and 1.

u 1; v 1; w y; {u FI, v FI+I, 1}
repeat (u,v)(v,u+v) until not w>=v; {u=Ft, v=Fl+,y>=u}

{u Ft, v F+x, l= Ay}
r- 1; s- 1; t t-t;
repeat if w => u then

begin ww-u; t#t+s;
end;

(u,v)(v-u,u); (r,s)(s,r+s); {//-1}
until u _-> v.

Throughout this program we have u F! and v Fl/, where begins at 1, rises to Ay,
and returns to 1. During the second repeat statement we have also

r F+xy-l, s F2+xy-, t= (y- w) R.
The program terminates with 1 and w 0; hence we have

r Fa s-- FA +1 yRY Y

The full program for xy mod z can now be written as follows, using routines
described earlier:

readx; ready; readz;
(r, s, t)-(fxy, Fxy+, yR).,
x-xmodz; w-x; u- 1; {X=Xl, W=Xl+l, l= 1}
repeat if _-> r then

begin - t- r; u - (uw) mod z;
end;

(r,s)o(s-r,r); (x,w)-(w,(xw)modz); {//+1}
until r_-> s;
write u.

The invariant relations

X"-Xl, W’--Xi+I, r-- Fl+xy_l, S-- F2+,xy_

are maintained in the final repeat loop as increases from to Ay.
For example, if y 11 8 + 3 F6 + F4, we have Ay 6 and yR F2 + F4 + 3 4.

Hence r= 8, s 13, =4, u 1, and x w Xo mod Zo at the beginning of the final
repeat. The registers will then contain the following respective values at the moments
when the final until statement is encountered:

r s
5 8
3 5
2 3

2
1 1

u x w
4 1 xomodzo xmodzo
4 1 xomodzo x3omodzo
1 xomodzo xomodzo xmodzo
1 Xomodzo Xomodzo Xo8modzo
0 x’modzo Xosmodzo xmodzo

The statement "u (uw)mod z" can be implemented by first forming uw and
then taking the remainder mod z, using the multiplication and division algorithms
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presented earlier. But we can do better by changing the multiplication algorithm so
that the quantities being added together for the final product are maintained modulo
z: We simply change appropriate operations of the form a <--a +/3 to the sequence

if a _--> z then c - c z.

Then the register contents never get large. In fact, if Xo and Yo are initially nonnegative
and less than Zo, all numbers in the algorithm will be nonnegative and less than 2Zo.
We have proved the following result:

THEOREM 2. If O<-- X, y<z=<2n-l, the quantity Xy mod z can be computedfrom x,
y, and z with O((log y)(log z)) additions and subtractions of integers in the interval
[0.. 2"), on a machine with finitely many registers.

Indeed, the constant implied by this O is reasonably small. The algorithm just
sketched may therefore find practical application in the design of special-purpose
hardware for xy mod z, which is the fundamental operation required by the RSA
scheme of encoding and decoding messages [7].

Lower Iountls. Some ofthe algorithms presented above can be shown to be optimal,
up to a constant factor. For example, we obviously need l(log min (x, y)) additions
to compute the product xy; we cannot compute any number larger than 2k max (x, y)
with k additions, and if 2k ( min (x, y) this is less than min (x, y) max (x, y) xy.

Logarithmic time is also necessary for division and gcd, even if we extend addition
machines to addition-multiplication machines (which can perform multiplication as well
as addition in one step). An elegant proof of this lower bound was given by Stockmeyer
in an unpublished report [8]. We reproduce his proof here for completeness.

THEOREM 3 (Stockmeyer). An integer addition-multiplication machine requires
(log x) arithmetic operations to compute [x/2J, x mod 2, or gcd (x, 2), for infinitely
many x.

Proof If we can compute [x/2J or gcd (x, 2) in steps, we can compute x mod 2
x-2[x/2J =2-gcd (x, 2) in at most t+2 steps. So it suffices to prove that xmod2
requires l(log x) steps.

Any computation of an integer addition-multiplication machine on a given input
x forms polynomials in x and compares polynomial values. A t-step computation
defines at most 2’ different computation paths, depending on the results of if tests. For
convenience we assume that each statement of the form "write w" is changed to

if 0_-> w then write w else write w.

Then a program that computes x mod 2 must take a different path when x is changed
to x/l.

Each computation path is defined by a sequence of polynomial tests

q(x) 0, q2(x) :0, qs(x) 0

made at times t < t2(’" "< ts--< t. (Different paths have different polynomials in
general, although ql(x) will be the same on each path.) If qj(x) corresponds to a test
at time tj, the degree of qj(x) is at most 2:J-. Therefore the sum of the degrees of the
qj(x) is less than 2’. Therefore the total number of roots of all the polynomials qj(x),
taken over all computation paths of length t, is less than 22’.

Let m be the least integer _->22’ such that none of the polynomials described in
the previous paragraph has a root in the closed interval [m, m + 1]. Each root can
exclude at most two values of m; therefore m _-< 2’ + 22t+l. By definition, the addition-
multiplication program takes the same computation path when it is applied to x m
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and to x m + 1; therefore it does not compute x mod 2 on both of these values.
Therefore there is an integer x, in the interval [22’, 22’+2) such that the value x, mod 2
has not been computed at time on any of the computation paths. Therefore there
are infinitely many x for which the time to compute x mod 2 is f(log x).

So far we have counted both arithmetic operations and conditional tests as steps
of the computation. This also gives a lower bound on the number of arithmetic
operations, since we can assume without loss of generality that no computation path
makes more than (2) consecutive conditional tests when there are k registers. This
completes the proof. [3

Notice that Stockmeyer’s argument establishes the lower bound O(log x) on the
total computation time, even if the number of registers is unbounded, and even if the
programs are allowed to introduce arbitrary constants. A straightforward generalization
of the proof shows that an integer addition-multiplication machine needs l)(log (x/y))
steps to compute x mod y, uniformly for all y > 0 and for infinitely many x when y is
given. However, the argument does not apply to machines with unbounded registers
and indirect addressing; for this case Stockmeyer [8] used a more complex argument
to obtain the lower bound l)(log x/log log x). It is still unknown whether indirect
addressing can be exploited to do better than O(log x). When integer division is
allowed, as well as addition and multiplication, the bound f(log log log min (x,y)) on
arithmetic operations needed to compute gcd (x, y) has been proved by Mansour,
Schieber, and Tiwari [5].

Our efficient constructions have all been for addition machines that contain at
least three registers. The following theorem shows that 2-register addition machines
cannot do much.

THEOREM 4. Any algorithm that computes gcd (x, y) on an integer addition machine
with only two registers needs f(n- 1) operations to compute gcd (n, 1).

LEMMA. Consider a graph on unordered pairs {x, y} of nonnegative integers, where
{x, y} is adjacent to {x, x + y}, {x + y, y}, {Ix Yl, Y}, and {x, Ix yl}. The shortest path
from { n, 1 } to { 1, 1 } in this graph has length n 1, for all n >-_ 1.

Proof of the Lemma (by TomS.s Feder). Consider the following four operations
on unordered pairs {x, y}:

_A. Replace min (x, y) by x + y.
A. Replace max (x, y) by x + y.
_S. Replace min (x, y) by max (x, y) min (x, y).
S. Replace max (x, y) by max (x, y) min (x, y).

Then _AS AS _S_S identity and _SS S. Furthermore, _S is either S_A or SA, hence
_A_S and A_S are either _A or A. Any minimal sequence of operations must therefore
begin with ’s and end with A’s. But k applied to {n, 1} yields {n- k, 1}, for k < n;
and A’s do not decrease anything. Therefore the shortest path is n-. D

Proof of Theorem 4. As in the proof of Theorem 3, the sequence of if tests made
by an addition machine defines a computation path, dependent on the inputs. We say
that the test "if x => y" is critical if it is performed at a moment when the contents of
registers x and y happen to be identical.

Let M be a 2-register addition machine that produces the output M(a, b) when
applied to inputs (a, b). We assume that a and b are initially present in the two registers;
therefore the computation path corresponding to (a, b) will be the computation path
corresponding to (ma, rob) for all integers rn _-> 1.

Every computation path defines constants a and/3 such that M(a, b)= aa +b
for all (a, b) leading to this path. If M never encounters a critical test when applied
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to (a, b), it will follow the same path on inputs (am, brn) and (am+ 1, bin) for all
sufficiently large values of m. Therefore we will have M(am + 1, bm) M(am, bm) +
for all large m; and M cannot be a valid program for computing the gcd. We have
proved that every 2-register gcd program must make a critical test before it produces
an output.

Next we show that every 2-register gcd machine must make a critical test before
it uses any instruction of the form x x- x or x - x + x. Suppose M performs such
an instruction when it is applied to inputs (a, b); these inputs determine a computation
path defining constants a and/3 such that the other register, y, contains aa +/3b when
x x x or x x + x is performed. If no critical tests have occurred, the same computa-
tion path will be followed when the inputs are (aZbm + 1, abZm) and (a2bm, abZm + 1),
for all sufficiently large m. But gcd (a2bm+ 1, abZm)=gcd (aZbm, abZm+ 1)- 1; hence
y must contain an odd value when M is applied to (a2brn + 1, abZm) or (aZbm, abZm + 1).
(If y is even when x is being set to x-x or x + x, both registers will contain an even
value; hence M cannot subsequently output "1".) Hence o(a2brn+ 1)+(abZrn) and
a (abrn) + (ab2rn + 1) are odd, for all sufficiently large rn; hence a and/3 are both
odd. But gcd(2aZbm+l,2abZm+l) is odd, and the inputs (2aZbm+l,2abZm+l)
follow the same path as (a, b) for all large rn; hence a(2aZbrn+ 1)+(2abZrn+ 1)
must be odd, a contradiction.

Therefore every 2-register gcd machine must make a critical test, before which it
has performed only operations of the forms xx+y, yy+x. Such operations
correspond to the transformations considered in the lemma.

Suppose M is applied to the inputs (n, 1). When the first critical test occurs, we
have x y; and gcd (x, y) gcd (n, 1) 1, because gcd (x, y) is preserved by all of the
operations x x + y or y - y + x that have been performed so far. Thus x y + 1; the
algorithm must have followed a path from {n, 1} to {1, 1} in the sense of the lemma.
So the algorithm must have performed at least n-1 operations before reaching the
first critical test. This completes the proof.

Further restrictions. A "minimalist" definition of addition machines would elimi-
nate the copy operation x -y, because this operation can be achieved by

x-x-x; xx+y.

We can also simplify the if tests, allowing only the one-register form "if x _-> 0", because
a general two-register comparison "if x_-> y then c else/3" can be replaced by

x-x-y;
if x => 0 then begin x x + y;
else begin x - x + y; /3 end.

end

Similarly, we can do away with addition, if we add a new register , because
x x + y can be achieved by three subtractions"

Addition cannot be eliminated without increasing the number of registers, in general.
For we can prove that the operation xl - xl + x2 cannot be achieved by any sequence
of operations of the forms xi xi- xj, for 1-5 i, j _-< r. The proof can be formulated in
matrix theory as follows.

Let Eij be the matrix that is all zeros except for a 1 in row and column j. We
want to show that the matrix I + E12 cannot be obtained as a product of matrices of
the form I- Eo. Clearly we cannot use the matrices I E, whose determinant is zero;
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so we must use I-Eij with #j. But the inverse of I-Eij is I + E0, when i#j. So if

I + E12 (I- EilJl)*’,’, (I-

we have, taking inverses,

I- E12-- (I + Eimj) (I + E,,j,),

which is patently absurd, since the right side contains no negative coefficients.
Open questions.
(1) Can the upper bound in Theorem 1 be replaced by 8 log N +/3 ?
(2) Can an integer addition machine with only five registers compute x2 in O(log x)

operations? Can it compute the quotient [y/zJ in O(log ]y/zl) operations?
(3) Can an integer addition machine compute xy modz in o((logy)(logz))

operations, given 0 =< x, y < z?
(4) Can an integer addition machine sort an arbitrary sequence of positive integers

(ql, q2,..., q,,) in o((m+log qlq2"’" q,,) log m) steps?
(5) Can the powers of 2 in the binary representation of x be computed and output

by an integer addition machine in o(log x)2 steps? For example, if x 13, the program
should output the numbers 8, 4, 1 in some order.

(6) Is there an efficient algorithm to determine whether a given r r matrix of
integers is representable as a product of matrices of the form I + E?
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SEMANTIC CORRECTNESS FOR A PARALLEL
OBJECT-ORIENTED LANGUAGE*

J. J. M. M. RUTTEN’

Abstract. Different semantic models are studied for a language called POOL: parallel object-oriented
language. It is a simplified version of POOL-T, a language that is actually used to write programs for a
parallel machine. The most important aspect of this language is that it describes a system as a collection of
communicating objects that all have internal activities which are executed in parallel. For POOL, operational
and denotational semantics have been developed previously. The former aims at the intuitive operational
meaning of the language, whereas the main characteristic of the latter is compositionality. In this paper,
the author relates both models, which are quite different, and proves the semantic correctness of the
denotational semantics with respect to the operational semantics. These semantic investigations take place
in the mathematical framework of complete metric spaces. For the operational semantics a simple space of
functions from states to compact sets of streams (which are sequences of states) is used; for the denotational
semantics, a domain of processes is used, which is the solution of a reflexive domain equation over a category
of complete metric spaces. The main mathematical tool we use is Banach’s theorem, which states that
contractions on complete metric spaces have unique fixed points. Both the operational and the denotational
semantics are reformulated and are presented, as well as many operators on the semantic domains, as the
fixed point of a suitably defined contraction. In this way, a formal equivalence between both models is
established. For this purpose, an intermediate domain, which is first compared to the operational model by
means of an abstraction operator, is introduced. This function takes processes, which are treelike structures,
as arguments and yields sets of streams as results. Next, it is shown that both intermediate and the denotational
model are fixed points of the same contraction, from which their equality follows. From both facts, the
main result of this study follows: The operational meaning of a POOL program is equal to the denotational
meaning to which the abstraction operator is applied. In this manner, the correctness of the denotational
semantics with respect to the operational semantics is established.

Key words, operational semantics, denotational semantics, process creation, object-oriented program-
ming, semantic correctness, complete metric spaces, contractions
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1. Introduction. We study different semantic models for a language called POOL:
parallel object-oriented language. Although the theoretical foundations of object-
oriented programming in general, and of parallel object-oriented programming in
particular, have not been paid much attention to, this language has been extensively
studied in a formal semantic context: In [ABKR86(a)] and [ABKR86(b)], an
operational and a denotational semantics of POOL have been developed. The main
goal of this paper is to compare the two models, which are quite different, by proving
some formal relation between them, which at the same time will establish the correctness
of the denotational semantics with respect to the operational semantics. Before we
explain in some detail the language POOL and the contents of this paper, we first give
a short explanation of the notion of semantic correctness and the way it can be proved.

A semantics for a programming language is a mapping " D, where D is
some mathematical domain (a set, a complete partial ordering, a complete metric
space), which we call the semantic universe of ///. Sometimes /is called a model for. Traditionally, two main types of semantics are distinguished: operational semantics
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and denotational semantics. Without getting involved in a discussion about the precise
definitions, we state that in our view the main characteristic of the former is that its
definition is based on a transition relation [HP79], [P181], [P183]; a denotational
semantics is characterised by the fact that it is defined in a compositional manner: the
denotational semantics of a composite statement is given in terms of the denotational
semantics of its components. (As a second distinctive property one often considers the
way in which recursion is treated: The usual view is that an operational semantics
treats recursion by means of so-called syntactic environments (or body replacement),
whereas a denotational semantics uses semantic environments, in combination with
some fixed-point argument.)

Now consider an operational semantics "-D and a denotational semantics
@" D’. A natural question is whether is correct with respect to , that is, whether

makes at least the same distinction as does. (Often, makes more; see [KR88]
for a simple example.) If we define for a semantics " D" an equivalence relation

s ts t,

for all x, , then the correctness of with respect to can be formally expressed
by the condition

One way to prove the correctness of is to introduce a so-called abstraction
operator a" D’ D, which (is, in general, not injective and) relates the denotational
semantic universe with the operational one. If one can prove that

then a precise relation between and has been established, which moreover implies
the correctness of with respect to .

As a mathematical framework for our semantic descriptions we have chosen
complete metric spaces. (For the basic definitions of topology see [Du66] or [En77].)
In this we follow and generalize [BZ82]. (For other applications of this type of semantic
framework see [BKMOZ86].) We follow [KR88] in using contractions on complete
metric spaces as our main mathematical tool, exploring the fact that contractions have
unique fixed points (Banach’s theorem). We shall define both operators on our semantic
universes and the semantic models themselves as fixed points of suitably defined
contractions. In this way, we are able to use a general method for proving semantic
correctness: suppose we have defined as the fixed point of a contraction

If we next show that also a is a fixed point of then Banach’s theorem implies
that a . Thus complete metric spaces facilitate an equivalence proof that is
clearly structured and that, due to the uniqueness of the various fixed points involved,
is considerably shorter than it would have been in case, e.g., complete partial orders
had been used.

It is the approach sketched above that will be applied to the language POOL.
Before doing so, we sta in 2 with a toy language that is extremely simple but has
a construct for process creation in common with POOL. This section can be seen as
a prolongation of the introduction and tries to give the reader some feeling for the
techniques used. Since no definitions or results of this section are used in the other
sections it can be skipped without any problem.
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The language POOL is described in detail in 3. It is a simplified version of the
language POOL-T, which is defined in [Am85] and for which [Am86] and [Am87]
give an account of the design considerations. POOL-T was designed in subproject A
of ESPRIT project 415 with the purpose of programming a highly parallel machine,
which is also being developed in this project (see [Od87] for an overview). The language
provides all the facilities needed to program reasonably large parallel systems, and
several large applications and many small ones have been written in it.

In POOL, a system is viewed as a collection of objects. These are dynamic entities
containing data (stored in variables) and methods (a kind of procedures). Objects can
be created dynamically during the execution of a program and each of them has an
internal activity (its body) in which it can execute expressions and statements. While
inside an object everything proceeds sequentially, the concurrent execution of the
bodies of all the objects can give rise to a large amount of parallelism. Objects can
interact by sending messages to each other. Acceptance of a message gives rise to a
rendez-vous between sender and receiver, during which an appropriate method is
executed.

In 4, we follow [ABKR86(a)] in defining an operational semantics for POOL.
It is based on a transition relation and is given, and here we differ from [ABKR86(a)],
as the fixed point of a contraction. The semantic domain used is a complete metric
space of (functions from states to) compact sets of streams, which are sequences of
states.

In 5, we present a denotational semantics for POOL, very similar to the model
given in [ABKR86(b)]. We define a mapping from the set of POOL programs (called
units) to some reflexive domain of processes P (cf. [P176]), which is a complete metric
space with treelike structures for its elements. It satisfies a reflexive domain equation,
which is solved by deriving from it a functor on a category of complete metric spaces
and then taking the fixed point of this functor. The mathematical techniques to do so
are sketched in 2 of [ABKR86(b)] and presented in detail in [AR88]. Before we
assign a semantic value to the unit as a whole, we first define the semantics of expressions
and statements, which will be given by functions of the following type:

@ "LE AObj ContE - P and @s Ls - AObj Conts P,

where Le and Ls are the sets of expressions and statements and

Cont Obj- P, Conts P.

The semantic domain AObj stands for the set of (active) object names. Its appearance
in the semantics of expressions and statements reflect the fact that in POOL each
expression or statement is evaluated by a certain object. Further, a continuation will be
given as an argument to the semantic functions. This describes what will happen after
the execution of the current expression or statement. As the continuation of an
expression generally depends upon the result of this expression (an object name), its
type is Obj P, whereas the type of continuations of statements is simply P. The use
of continuations makes it possible to define the semantics, especially of object creation,
in a convenient and concise way. (For more examples of the use of continuations in
semantics, see [Br86] and [Go79].)

After having defined an operational and a denotational semantics for POOL, we
come to the main subject of our paper: The comparison of both models. This constitutes
a nontrivial problem, mainly because, first, the respective semantic domains are very
different and, second, because the denotational semantics is defined in terms of
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continuations, whereas the operational semantics is direct, that is, does not use continu-
ations. Moreover, the communication mechanism of POOL (consisting of message
passing with method invocation) is dealt with quite differently by the two models. The
solution that we propose consists of the introduction of an intermediate semantic
model, in 6, which has in common with the operational semantics that it is direct
(without continuations) and that it is based on the same transition relation, but which
has for its range the same reflexive domain of processes as does the denotational
model. Then, in 7, this intermediate model is related to the operational semantics by
means of an abstraction operator, which takes processes as arguments and yields sets
of streams. Next, it is connected with (an extended version of) the denotational
semantics by the observation that both models are fixed point of the same contraction.
As a result, it follows that the operational semantics of a unit equals its denotational
meaning to which the abstraction operator is applied.

Section 7 is followed by three appendices. Appendix I gives the mathematical
definitions we use; in Appendix II, the abstraction operator that is used in the proof
of the semantic correctness for POOL is defined in all formal detail. Finally, Appendix
III shows how the language POOL can be extended with so-called standard objects
and how the definitions and proofs can be adapted in order to obtain a similar
correctness result for the extended language.

Semantic treatments of parallel object-oriented languages in general are scarce;
we only know [C181], which gives a detailed mathematical model for an actor language.
This is done by defining a set of so-called augmented actor event diagrams, each of
which is a fairly complicated structure representing (the beginning of) a single computa-
tion. In order to deal with nondeterminism, a novel power domain construction is
used. As to the comparison of operational and denotational semantics for languages
with process creation, we only know of lAB88], where some simplified versions of
POOL are studied. None of these languages, however, contains the original POOL-T
constructs for communication (for message passing with method invocation), the
treatment of which, in the correctness proof, we consider to be an essential part of
this paper.

2. A very simple language with lrocess creation. Before we tackle the main problem
of this paper, we would like to start with a much simpler case" We introduce a very
small "toy" language Lr and present an operational and a denotational semantics for
it. Next, we shall compare these two models. All this can be regarded as a little exercise,
a "warming up" so to speak, aiming at a better understanding of what follows in the
next section: It turns out that for both the languages Lr and POOL (to be introduced
in the next section) the operational and denotational semantics can be compared in
very much the same way.

For the definition of Lr we need a set (a, b )A of elementary actions. (Throughout
this paper, we shall use the notation (x, y )X for the introduction of a set X with
typical elements x and y.) For A we take an arbitrary, possibly infinite, set. It will
contain a subset (c )C

_
A of so-called communications. Similarly to CCS [Mil80],

we define a bijection C-> C with -o--idc. It yields for every c C a matching
communication . In A\C we have a special element - denoting successful communi-
cation.

DEFINITION 2.1 (Syntax for Lr). The set of statements (s, )Lr is given by

s ::= alsl; s2[new (s).
Note that a A

_
C. To Lr we add a special element E, denoting the empty statement.

Note that syntactic constructs like s; E and new (E) are not in Lr.
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A statement is of one of the following forms. First, it can be an elementary action
a. Here elementary means that it is an uninterpreted action. Examples of possible
interpretations are assignments, or read and write actions. Second, a statement s can
be the sequential composition sl; s2 of statements sl and s2. Finally, it may be a
new-statement new(s), the execution of which amounts to the creation of a new process
that executes s. A more detailed explanation will follow below.

The operational semantics will be formulated using the notion of parallel state-
ments. A parallel statement is a finite sequence of statements that are to be executed
in parallel.

DEFINITION 2.2 (Parallel statements). Let (p, Try)Par be given by Par=(LT)*,
the set of finite sequences of statements. Typical elements will also be indicated by
(s,...,sn), for n->1. For p=(s,...,sn) and 7r=(t,..., t,,) we define p^Tr=
(S,,""", s,, t,"" ", t,).

Next we define the operational semantics of parallel statements. It is based on
the well-known notion of a transition relation (in the style of Hennessy and Plotkin
[HP79], [PI81], [P183].

DEFINITION 2.3 (Transition relation for Par). Let --> Par x A Par be the
smallest relation (writing p-a- p’ for (p, a, p’)-*) satisfying:

(1) (a)-a-->(E), (a;s)-a->(s),

(2) if (s)- a p, then (new (s))- a -> p,

(3) if (s, t)- a -* p, then (new (s); t)- a - p,

(4) if (sl; (s2; s3))-a-* p, then ((s; s2); s3)-a- p,

(5) if p a -* p’, then p^Tr- a --> p’^Tr and 7r^p a --> 7r^p ’,

(6) if p c - p’ and 7r t?- 7r’, then p^Tr r- p’^r’,

for a A, c C, s, t, s, s2, s3 6 LT-, and p, p’, 7r, 7r’ Par.
Intuitively, p a --> p’ tells us that starting in the parallel statement p the elementary

action a can be performed, resulting in the parallel statement p’. Interesting in the
definition above are (3), (5), and (6). According to (3), the parallel statements (s, t)
and (new (s); t) can perform the same elementary actions. In other words, evaluating
(new (s); t) results in a parallel statement (s, t). Thus we see that the length of a parallel
statement increases when new (s) is evaluated. Operationally, this can be viewed as
the creation of a process that starts evaluating s, while statement is being executed
in parallel. According to (5), a composite parallel statement p^Tr can perform all the
elementary actions that can be performed by either p or 7r. In (6) it is expressed that
if p can perform a communication action c and 7r can perform a matching communica-
tion action t?, then p^Tr, the parallel statement composed of p and 7r, can perform a r

action, denoting a successful communication.
Example. (new(c); a; new(t?); b)-a->(c, new(t?); b)" b-->(c, t?, E)-r-->(E, E, E).
Before we give the definition of the operational semantics of parallel statements,

we introduce its semantic universe P.
DEFINITION 2.4 (Semantic universe P). Let A (=A*L3 A)) denote the set of

finite and infinite sequences or words of elements of A; let e denote the empty word.
We extend this set by allowing as the last element of a finite sequence a special element
0, which denotes deadlock:

(w )A A*t_J A*. {0} [_J A%
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Now we define (p, q )P (A), the set of all non-empty and closed subsets of
A. Let d denote the usual metric onA (see the definition in 1.1.1). We take dp (d)H,
the Hausdortt metric induced by d, as a metric on P. According to Proposition 1.7, we
have that (P, dp) is a complete metric space.

DEFINITION 2.5 (Operational semantics 6). Let 6=Fixed Point (), where
d (Par P) (Par P) is given, for F _Par P, and p Par, by

ifp=(E,,...,E,
(F)(p)= {0} if Vamp [p-a/p’aC]^p(E,...,E),

J{a. F(p ): p-a-p ^aC} otherwise.

It is straightforward to show that is a contraction and thus has a unique fixed
point.

Note that an alternative equivalent definition of could be given in terms of
transition sequences, by putting, for instance, a word al"" an in p]] if and only if
there exists a sequence

p al - pl a2 - an - p,, E, ..,
Since our language does not contain any constructs for recursion, we need not

be able to describe infinite behavior. Therefore, it is not really necessary to define
using a contraction on a complete metric space. It would have been sufficient to take
P as an ordinary set without any metric, and define with an easy induction on the
structure of statements. Our motivation for nevertheless exploiting metric structures
here is given by the fact that in the next section we will deal with recursion and infinite
behavior. There the use of some mathematical structure that can handle these, such
as complete metric spaces, is obligatory. Our use of complete metric spaces at this
stage can be seen as part of the introductory function of this section.

The operational semantics can be best explained by giving a few examples.
Examples.

tgl[(a)]] a. (E)]] a. {e} {a},
[[(new (a))]] {a}, 6(c)]] {0},

(c, ’)]] {z}, (a; b)]] a. [(b)]] {ab},

eli(new (a); b)]] {a. (E, b)]]}, b. {[[(a, E)]]} {ab, ba}.
Note that a single communication (c), without a matching communication ? in parallel,
creates a deadlock.

Such an operational semantics is nice, because it is intuitively very clear. However,
it is not compositional with respect to the binary syntactic operators and ][. For
instance, there is no semantic operator : P x P- P, corresponding to ;, such that for
all s and

(s t)]] (s)]] (t)]].
This can be easily seen in the following argument. Suppose there is such an operator. Then

(new a ); b)]] [[(new a ))]] b)]]

[since (new (a))]] ?[[(a)]]]
6[[(a)]] (b)]]

which yields a contradiction, as can be seen from the examples above.
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The denotational semantics to be defined in a moment has the property that it is
compositional with respect to the syntactic operators in Lr.

First, we define a suitable semantic universe.
DEFINITION 2.6 (Semantic universe P). We define a complete metric space

(p, q )P by P= nc(A),
the set of nonempty and closed subsets of A. Let d be the usual metric on A; we
define dp d H"

The only difference between P and P is that the latter does not contain finite
sequences ending in 0.

DEFINITION 2.7 (Denotational semantics @). Let ’Lr-Cont-P, where
Cont P denotes the set of continuations, be given by

a]](p) a. p, E]](p) =p,

[new (s)(p)=p s((),

s tl(p)= [[sl(tl(p)),

with I1" P x P P as defined below.
A continuation p Cont denotes the semantics of the statement to be executed

after the one to which is applied. The meaning of a new-construct new (s) with
continuation p is determined as follows. The meaning of s is computed with the empty
continuation {e}, which indicates that after s nothing remains to be done. Since s is
to be executed in parallel with everything that follows, the result is composed in parallel
with p, which indicates the remainder of the program after s.

DEFINITION 2.8 (Parallel composition II), Let I1 P x P- P be such that it satisfies,
forp, qP,

P q=p[[_qUq[[_pUp]q,
where

p[[_q=[._J{a.(p. q)’p,,#JIU(q" e6p},

p lq=t,_J {’" (pc qe)" Pc Q qe},

with Pa {w: a. w p}, the set containing all the postfixes of a in p.
The above definition is self-referential and needs some justification. Formally, we

can define as the fixed point of a contraction " (/5 x/5 _/5) . (p /5 ./5) given, for
f6 Px P- P, by

xp’(f)(p, q) p[[_fq U q [[_fp U p

where

pkfq=..J(a" f(pa, q)’p,#}l,J{q" e6p},

p ]fq [._J {’r. (f(Pc, qe))" Pc # qe}.

Note that is compositional with respect to ";". The corresponding semantic
operator ;" ((P P) x (P- P)) - (P-* P) is not expressed explicitly in the definition
of 9. For completeness sake, we give its definition. We have, for f, g P P,

f’, g= Ap. f(g(p)).

2.1. Semantic equivalence of (9 and . After having defined and for Par and
LT, we next discuss the relationship between the two semantics. We shall compare (7

and @ by relating both to an intermediate semantics "Par--> P, given in the following
definition.
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DEFINITION 2.9 (Intermediate semantics (7’). Let &= Fixed point (O’), where

" (Par - P) - (Par - P) is given, for F Par - P and p Par, by

=(E,... ,E),{e} ifp

’)" ’}
O’(F)(p)

[._j {a F(p p a -> p otherwise.

Note that in ’, as opposed to , single-sided communication steps a C are
allowed. The difference between (7 and (7’ can be illustrated by giving a few examples:

The relationship between (7 and (7’ will be expressed using the following abstraction
operation.

DEFINITION 2.10 (Abstraction operator a). We define an abstraction operator
a’P->P by

{8} if Va[p # (=:>a C],
a(p)

[._j {a. (a(p,))" a C ^ po } U {e" e p} otherwise,

with po as in Definition 2.8. (For a justification of this self-referential definition see
the remark following Definition 2.8.)

The definition of a can be understood as follows. If all the words wp begin
with a communication action a C, we have operationally a deadlock, since no single
communication action is allowed. Therefore, we then have that a(p)= {}. In the last
case, a(p) contains all the words in p that begin with a noncommunication action
a A\C, with a recursively applied to p, the set of postfixes of a; additionally, a(p)
contains e if e p.

The following theorem can be proved straightforwardly.
THEOREM 2.11. For all F Par- P[(a F) a O’(F)].
Since and ’ are contractions and thus have unique fixed points, it follows that

we have Corollary 2.12.
COROLLARY 2.12. (7 a (7’.

Proof We have that a (7’= a ’((7’)=(a (7’). Thus both a (7’ and (7 are
fixed points of , which implies that they are equal.

The relationship between (7’ and ) can be elegantly expressed using the following
mapping.

DEFINITION 2.13. We define (LT -> Cont --> P) -> (Par-> P) as follows. We
denote, for F Lr-> Cont--> , --.(F) by i and put

F Ap Par. (F(s,)({e}) I1"" F(s,)({e})),

with p =(s, ,
A simple consequence, using the associativity of II, of this definition is i(p^-)

IT’(P) fi(’). If the function fi takes a parallel statement (s,..., s,) as an argument,
then the F values of all the substatements si supplied with the empty continuation {e}
are computed and next composed .in parallel.

Now we can prove that (7’= @. It is a corollary of the following theorem.
THEOREM 2.14. ’()=
Proof The proof uses induction on the structure of parallel statements. We treat

one typical case, leaving the other ones to the reader. Consider p^cr Par and suppose
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p # (E,. ., E) and r # (E,. ., E). Suppose we already know that @’()(p) (p)
and @’(@)(Tr)= (zr). We show that @’()(p^zr)= (p^zr).

’(4)(p^) U {a (t,’)" p^-a-,p’}
=[definition of--> (2.3(5) and (6))]

U{a" (p’^Tr)" p-a--> p’}UU {a" (p^Tr’)" r-a--> Tr’}

u U { (’^’)" p c- o’ ^ - ’}

[definition

U {a. ((p’) (r))" p a --> p’}

UU{a. ((p)II 4(-’)). 7"r- a-..-> -rr’}

u U {,,. (4(,o’)II (’,,")) ,o- c--,.,o’ ^ .,..,-- c-.-.-, -,.,-’}

[definitions [h and I]
(U{a" (p’)" p-a->p’}_(r))
U (U {a. (Tr’)" 7r- a --> 7r’} [[_ (p))
u (U { c. (p’). p c--> p’} U {" (#’)" # -> #’})

(’()(p) I1_ (-))u (’(-#)(-)ll (p))
U (’()(p) @’()(r))
[induction]

((p)ll ()) u ((,,,)11 (p) u ((p) ()))
(t,)II ()
(p or). t

COROLLARY 2.15. 0"= @.
Combining Corollaries 2.12 and 2.15 now yields the main theorem of this section.
MAIN THEOREM 2.16. C .
COROLLARY 2.17. For all s LT[G[[(s) c(s]]({e}))].
.3. The language POOL. In this paper, we compare different semantic models of

a language that we call POOL: Parallel Object-Oriented Language. It is a simplified
version of a language called POOL-T, which is defined in [Am85]. (For an account
of the design considerations for POOL-T, see [Am86] and [Am87].) The simplification
is twofold. First, we omitted certain language constructs from POOL-T (such as the
select statement and the method call) as well as some of the protection mechanisms
offered by the definition of classes (such as different classes having different instances
of variables and method definitions). We have done this in order to make life somewhat
easier: the semantic definitions are shorter and so are the proofs of the theorems. We
feel justified in doing so, since it is straightforward to extend the approach of this
paper to the full language. Second, we give an abstract syntactic description of POOL,
which is a simplified version of the formal description of POOL-T.

A POOL program describes the behavior of a whole system in terms of its
constituents, objects. Objects contain some internal data, and some procedures that
act on these data (these are called methods in the object-oriented jargon). Objects are
entities of a dynamic nature: they can be created dynamically, their internal data can
be modified, and they have an internal activity of their own. At the same time they
are units of protection" the internal data of one object are not directly accessible for
other objects.
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An object uses variables (more specifically: instance variables) to store its internal
data. Each variable can contain the name of an object (another object, or, possibly,
the object under consideration itself). An assignment to a variable can make it refer
to an object different from the object referred to before. The variables of one object
cannot be accessed directly by other objects. They can only be read and changed by
the object itself.

Objects can interact by sending messages to each other. A message is a request
for the receiver to execute a certain method. Messages are sent and received explicitly.
In sending a message, the sender mentions the destination object, the method to be
executed, and possibly a parameter (which is again an object name) to be passed to
this method. After this, its activity is suspended. The receiver can specify the set of
methods that will be accepted, but it can place no restrictions on the identity of the
sender or on the parameters of messages. If a message arrives specifying an appropriate
method, the method is executed with the parameters contained in the message. Upon
termination, this method delivers a result (an object name), which is returned to the
sender of the message. The latter then resumes its own execution. Note that this form
of communication strongly resembles the rendez-vous mechanism of Ada [ANSI83].

A method can accesss the variables of the object by which it is executed (the
receiver of a message). Furthermore, it has a formal parameter, which is initialized to
the actual parameter specified in the message.

When an object is created, a local activity is started: the object’s body. When
several objects have been created, their bodies execute in parallel. This is the way
parallelism is introduced into the language. Synchronization and communication takes
place by sending messages, as described above.

Objects are grouped into classes. All objects in one class (the instances of that
class) execute the same body. In creating an object, only its desired class must be
specified. In this way a class serves as a blueprint for the creation of its instances.

At this point, it might be useful to emphasize the distinction between an object
and its name. Objects are intuitive entities as described above. In this paper, there will
appear no mathematical construction that directly models a single object with all its
dynamic properties (although it would be interesting to see a semantics that does this).
Object names, on the other hand, are modeled explicitly as elements of some abstract
set Obj. Object names are only references to objects. On its own, an object name gives
little information about the object it refers to. In fact, object names are just sufficient
to distinguish the individual objects from each other. Note that variables and parameters
contain object names, and that expressions result in object names, not objects. If in
the sequel we speak, for example, of"the object a," we hope the reader will understand
that the object with name a is meant.

Now we describe the (abstract) syntax of the language POOL. We assume that
the following sets of syntactic elements are given:

(x )IVar (instance variables),

u TVar (temporary variables),

C CName (class names),

(rn MName (method names).

DEFINITION 3.1 (Expressions, statements, units). We define the set of expressions
(e )Le and the set of statements (s )Ls by

e ::= x u [el!m(e2) lnew(C)ls e ]self,
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S ":-- X el u - e answer m s sg_ if e then S else s2 fildo e then s od.

The set (U )Unit of units is defined by

U::=((CC=sl,’",C,s,), (mC=(u,e),...,m(u,e))).

We write C=s U if there exists an such that Ci C and si s. Similarly, we write
mC=(u, e) U.

An instance variable or a temporary variable used as an expression will yield as
its value the object name that is currently stored in that variable.

The next kind of expression is a send expression. Here, e is the destination object,
to which the message will be sent, m is the method to be invoked, and e2 is
the parameter. When a send expression is evaluated, the destination expression
and the parameter expression are evaluated successively. Next, the message is sent to
the destination object. When this object answers the message, the corresponding method
is executed, that is, the formal parameter is initialized to the name of the object in the
message, and the expression in the method definition is evaluated. The value that
results from this evaluation is sent back to the sender of the message and this will be
the value of the send expression.

A new-expression indicates that a new object is to be created, an instance of the
indicated class. Its body starts executing in parallel with all other objects in the system.
The result of the new-expression is (the name of) this newly created object.

An expression may also be preceded by a statement. In this case the statement is
executed before the expression is evaluated.

The expression self always results in the name of the object that is executing this
expression.

The first two kinds of statements are assignments, to an instance variable and to
a temporary variable, respectively. An assignment is executed by first evaluating the
expression on the right, and then making the variable on the left refer to the resulting
object.

An answer statement indicates that a message is to be answered. The object
executing the answer statement waits until a message arrives with a method name that
is specified by the answer statement. Then it executes the method (after initializing
the formal parameter). The result of the method is sent back to the sender of the
message, and the answer statement terminates.

Sequential composition, conditionals, and loops have the usual meaning.
Units are the programs of POOL. A unit consists of a number of definitions of

class bodies and methods. If a unit is to be executed, a single new instance of the last
class defined in the unit is created and execution of its body is started. This object has
the task to start the whole system, by creating new objects and putting them to work.

The relationship between POOL and POOL-T is the following: POOL is obtained
from POOL-T via two successive simplifications. First, certain language constructs
from POOL-T are omitted (such as the select statement) as well as some ofthe protection
mechanisms in POOL-T, which are offered by the definition of classes (such as different
classes having different variables and method definitions). Second, some syntactical
simplifications are performed and some context information is omitted (POOL-T is a
statically typed language, whereas POOL is not). The reason for making the first
simplification is simply lack of space, to which should be added the consideration that
it would be straightforward to extend our results to the full language. The sole reason
for making the second simplification is that POOL-T is a practical programming
language, for which readability, among others, is more important than syntactic
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simplicity. Therefore, it is convenient to take a simplified language, POOL, as the
semantic core of POOL-T.

If one compares the version of POOL described in this paper with the one given
in [ABKR86(a)] and [ABKR86(b)], some minor differences can be observed. (For
example, in the send expression of Definition 3.1 above only one parameter can be
specified whereas in the definitions of the papers mentioned an arbitrary number of
parameters is allowed.) However, it can easily be seen that it is straightforward to
adapt the definitions and proofs given in this paper such that they apply to the version
of POOL occurring in [ABKR86(a)] and [ABKR86(b)].

4. An operational semantics for POOL. In this section we give the definition of
an operational semantics for POOL, which is a modified version of the one given in
[ABKR86(a)]. (At the end of this section, we shall compare both models in some
detail.) It is based on a transition relation and will be defined as the fixed point of a
suitable contraction. For this purpose, we introduce a number of syntactic and semantic
notions.

First of all, we introduce the set of objects.
DEFINITION 4.1 (Objects). We assume given a set AObj of names for active objects

together with a function

u , AObj - AObj

such that u(X) X, for every finite X c__ AObj. Given a set X of object names, the
function u yields a new name not in X.

Further, we define

Obj AObj U SObj,

where SObj is the set of so-called standard objects, to be introduced in Appendix III.
A possible example of such a set AObj and function u could be obtained by setting

AObj =N, u(X) max {n: n X}+I.

In POOL, a few standard classes, the instances of which are called standard
objects, are predefined; examples are the classes of Booleans and integers. The semantic
treatment of these standard objects is somewhat different from the way the active
objects (which are created during the execution of a POOL program) are treated.
Because we want to formulate our semantic models as concisely as possible in order
to focus on the correctness proof, the standard objects are treated in Appendix III.

Next, it is convenient to extend the sets Le of expressions and Ls of statements
by adding some auxiliary syntactic constructs.

DEFINITION 4.2 (L,, Ls,). Let (e )L, and (s )Ls, be defined by

e ::= x] u [el!m(e2)[ new (C)I s e [self[ a [(e, b),

s ::= x <-- e u - e [answer m Sl slif e then s else s2 fildo e then s od

release (/3, s) (e, q)

with a, fl AObj, ch Lp, and q Lps. Here the sets of parameterized expressions
(oh Lp and parameterized statements d/ Lps are given by

4 ::= hu.e, q ::= hu.s,

with the restriction that u does not occur at the left-hand side of an assignment in e
or s. For a Obj, b Au. e, and q Au. s, we shall use b(a) and q(a) to denote the
expression and the statement obtained by syntactically substituting a for all free
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occurrences of u in b and q, respectively. The restriction just mentioned ensures that
the result of this substitution again is a well-formed expression or statement.

Let us explain the new syntactic constructs. In addition to what we already had
in L, an expression e Le, can be an active object a or a pair (e, 4) of an expression
e and a parameterized expression b. The latter will be executed as follows: First the
expression e is evaluated, then the result/3 is substituted in b and 4(/3) is executed.
As new statements we have release statements release (/3, s) and parameterized state-
ments (e, b). If the statement release (/3, s) is executed, the active object/3 will start
executing the statement s (in parallel to the objects that are already executing). The
release statement will be used in the description of the communication between two
objects (see Definition 4.8 below). The interpretation of (e, q) is similar to that of (e, b).

DEFINITION 4.3 (Empty statement). The set Ls,, as given in the definition above,
is extended with a special element E, denoting the empty statement. This extended set
is again called Ls,. Note that we do not have elements like s E or do e then E od in
Ls,. (There is, however, one exception: we do allow E in if e then s else E fi, which
is needed in Definition 4.8(A7) below.)

DEFINITION 4.4 (States). The set of states (tr) is defined by

, (AObj IVar Obj) (AObj - TVar Obj) n(AObj).

The three components of tr are denoted by (rl, tr2, tr3). The first and the second
component of a state store the values of the instance variables and the temporary
variables of each active object. The third component contains the object names currently
in use. We need it in order to give unique names to newly created objects.

We shall use the following variant notation. By cr{fl/a, x} (with x IVar) we shall
denote the state or’ that is as cr but for the value of cr(a)(x), which is/3. Similarly,
we denote by cr{/3/ce, u} (with u TVar) the state tr’ that is as cr but for the value of
cr(a)(u), which is/3.

DEFINITION 4.5 (Labelled statements). The set of labelled statements ((a,
s) )LStat is given by

LStat AObj Ls,.

A labelled statement (a, s) should be interpreted as a statement s that will be
executed by the active object a.

Sometimes, we also need labelled parameterized statements. Therefore, we extend
LStat:

LStat’ LStat AObj Lps ).

A pair (a, q) indicates that the active object a will execute the statement q as soon
as it receives a value that it can supply to q as an argument.

Before we can give the definition of a transition relation for POOL, we first have
to explain which configurations and transition labels we are going to use.

DEFINITION 4.6 (Configurations). The set of configurations (p )Conf is given by

Conf :an LStat ,.
We also introduce

Conf’ LStat’) ,.
Typical elements of Conf and Conf’ will also be indicated by (X, o-) and (Y, o-).
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We shall consider only configurations (X, tr} that are consistent in the following
sense. For X {(al, Sl)," , (ak, Sk)}, we call (X, r} consistent if the following condi-
tions are satisfied"

Vi, j{1,...,k} [ij=:aia] and {al,’’’,ak} _tr3.

Whenever we introduce a configuration (X, try, it will be tacitly assumed that it is
consistent.

A configuration (X, try, consisting of a finite set X of labelled statements and a
state tr, represents a "snapshot" of the execution of a POOL program. It shows what
objects are active and what statements they are executing; furthermore, it contains a
state , in which the values of the variables of the active objects as well as the set of
object names currently in use are stored.

DEFINITION 4.7 (Transition labels). The set of transition labels (A )A is given by

A {r} U {(a, l !m(fl2)): a, fll e AObj, 82 Obj} U {(8 ?m): 8 e AObj}.

These labels will be used in the definition of the transition relation below and are
to be interpreted as follows. The label r indicates a so-called computation step. Next,
(O, ill!m(/32)) indicates that object a sends a message to object /31 requesting the
execution of the method m with parameter/32. Finally, (/3 ?m) indicates that the object
fl is willing to answer a message specifying the method m.

Now we are ready to define a transition relation for POOL.
DEFINITION 4.8 (Transition relation). Let U Unit. We define a labelled transition

relation

U -+ c_ Confx A x Conf’.
Triples (Pl, A, P2)- U-+ will be called transitions and are denoted by

R1-U, AR2.

Such a transition reflects a possible execution step of type , of the configuration p,
yielding a new configuration p2. The relation -U--> is defined as the smallest relation
satisfying the following properties.

AxioMs:

(A1)

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

(R1)

(R2)

({(,, (x, 4,))}, o->-u, ---, ({(,, (,(,)(x), ,/,))}, o-5.
<{(, (U, [//))}, O’>-- U, T--> <{(, (o’2()(b/), if.t))}, 0->.
<{(a, (, ]m(2), ))}, )- U, (a, (, ]m(2))) <{(a, )}, ).

({(a, (new (C), 6))}, )- U, r ({(a, (, 6)), (, Sc)}, ’), where

({(a,z)}, )-U, r({(a,E)}, {/a,z}) for zeIVarU TVar.

({(a, answer m)}, )- U, (a ?m) ({(a, E)}, g).

({(a, do e then s od)}, )- U, r

({(a, if e then (s; do e then s od) else E fi)}, ).

RULES:

then ({(, z e)}, )- U, A p, for a IVar TVar.

If ({(a, s)), )- U, A ({(a, s’)} U X, ’),
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then ({(ce, s t)}, 0-)- U, A --> ({(ce, s’ t)}LI X, 0-’)
(read instead of s’; if s’= E).
if ({(a, s)}, 0-)-U, A --> ({(a, q,)}U X, 0-’),
then ({(a, s t)}, 0-)- U, A --> ({(a, Au. (q,(u) t))} t2 X, 0-’).

(R3) If ({(a, si)}, or)- U, A --> p, then ({(a, if /3 then Sl else s2 fi)}, 0-)- U, A --> p,
where

s, if/3 tt,
Si

s2 if/3 =ff
(R4) If ({(a, t), (/3, s)}, 0-)- U, A -->/9, then ({(a, release (/3, s) t}, 0-)- U, A --> p

(read release (/3, s) instead of release (/3, s) if E).

(R5) If ({(a, (e, Au. if u then s, else s2 fi))}, 0-)- U, A --> p,
then ({(a, if e then s else S2

(Here s2 is allowed to be E.)

(R6) If (((ce, ((el, Au,. (e2, Au2" u!m(u2))), p))}, 0-)- U, A --> p,
then ({(a, (e!m(e2), ,))}, 0-)- U, A --> p.

(R7) If ({(a, s (e, q,))}, 0-)- U, A --> p, then ({(a, (s e, ,))}, or)- U, A --> p.

(R8) If ({(a, (e, Au. (b(u), p)))}, 0-)- U, A --> p,
then ({(a, ((e, b), ,))}, 0-)- U, A -> p.

(R9) If ({(a, (/3))}, 0-)- U, A --> p, then ({(a, (/3, q,))}, 0-)- U, A --> p, for/3 Obj.
If ({(a, q,(a))}, 0-)- U, A --> p, then ({(a, (self, p))}, 0-)- U, A --> p.

(R10) if (X, 0-)- U, A --> (X’, 0-’), then (XU Y, or)- U, A --> (X’ U Y, 0-’).

(Rll) If (X, 0-)-U,(a, fl!m(z))-({(a,q,)t_JX’,0-) and
Y, 0-)- U,

then (X t_J Y, 0-)- U, "-->

{(1, (e,,, Au" (um <-" O’2(l)(Um) release (c, (u)); s)))} U X’U Y’, or’),
where 0-’=o’{/32//31, u,,}, and m(u,,, e,,,) U.

(End of definition.)
The general scheme for the evaluation of an expression is very similar to the

approach taken in lAB88]. Expressions always occur in the context of a (possibly
parameterized) statement, such as x e. A statement containing e as a subexpression
is transformed into a pair (e, q) of the expression e and a parameterized statement
by application of one of the rules. (In our example, x e becomes (x, Au. x u) by
an application of (R1).) Then e is evaluated, using the axioms and rules, and results
in some value/3’ Obj. (Applying (A1) transforms (x, Au. x - u) of our example into
(/3’, Au. x u), for some/3’ Obj.) Next, an application of (R9) will put the resulting
object/3’ back into the original context $ (yielding x /3’ in our example). Finally,
the statement q(/3’) is further evaluated by using the axioms and the rules. (The
evaluation of x /3’ results, by using (A6), in a transformation of the state.)

Let us briefly explain some of the axioms and rules above.
In (A4) a new object is created. Its name/3 is obtained by applying the function

u to the set 0"3 of the active object names currently in use and is delivered as the result
of the evaluation of new (C). The body Sc of class C, defined in the unit U, is going
to be evaluated by/3. Note that the state 0" is changed by extending 0"3 with/3.

In (R8), the evaluation of an expression pair (e, 4), where 4 is a parameterized
expression, in the context of a parameterized statement q is reduced to the evaluation
ofthe expression e in the context ofthe adapted parameterized statement Au. (b (u), ).
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Rule (Rll) describes the communication rendez-vous of POOL. If the object ce
is sending a message to object ill, requesting the execution of the method m and if
the object/31 is willing to answer such a message, then the following happens: The
object/31 starts executing the expression era, which corresponds to the definition of
the method tn in U, while its state cr2(/3) is changed by setting u,, the formal parameter
belonging to m, to/32, the parameter sent by the object a to/31. After the execution
of e,, the object 1 continues by executing u, -O2(l)(Um) which restores the old
value of u,, followed by the statement release(a, 4,(u));s. The execution of
release (ce, 4,(u)) will reactivate the object a, which starts executing 4,(u), the statement
obtained by substituting the result u of the execution of e, into 4’. Note that during
the execution of e,, the object a is nonactive, as can be seen from the fact that ce does
not occur as the name of any labelled statement in the configuration resulting from
this transition. Finally, the object fl proceeds with the execution of the statement s,
which is the remainder of its body.

(Note that we have not incorporated any transitions for the standard objects; this
is done in Appendix III.)

Now we are ready for the definition of the operational semantics of POOL. It will
use the following semantic universe.

DEFINITION 4.9 (Semantic universe P). Let (w)E=E*UE U E*. {0}, the set
of streams. We define

(p, q )P E + )ncompact(,),

where 9nco,pact(E) is the set of all nonempty compact subsets of, and the symbol
0 denotes deadlock. The set P is a complete metric space when supplied with the usual
metric (see Definition 1.6).

The elements of P will be used to represent the operational meanings of statements
and units. For a given state e, the set p() contains streams w e, which are
sequences of states representing possible computations. They can be of one of three
forms. If w e E*, it stands for a finite normally terminating computation. If w e, it
represents an infinite computation. Finally, if w e * {0}, it reflects a finite abnormally
terminating computation, which is indicated by the symbol 0 for deadlock.

DEFINITION 4.10 (Operational semantics for POOL). We define the operational
semantics of finite subsets of labelled statements. Let, for a unit U Unit, the function

v ((LStat) P) ((LStat) P)

be given, for F (LStat) P and X (LStat) by

{e} ifVVs[(,s)Xs=E],
v(F)(X)=A. {0} if(X,)-U,r andas[sEA(a,s)eX],

{’. F(X’)(’)" (X, )- U, (X’, ’)} otherwise,

where

<x, o->- u, =- + =mx’ -’ [<x, ,>- u, - + <x’, ’>]..

Now the operational semantics 6t:.(LStat)+ P is given as

t Fixed point (t).

It is straightforward to prove that t is a contraction and thus has a unique fixed
point.



SEMANTIC CORRECTNESS FOR POOL 357

The definition of t is very similar to the definition of in the previous section
(Definition 2.5). If, for a given X n(LStat) and o- Z, we have that --q(X, r)- U, z,
then no computation steps, which are indicated by z, are possible from (X, o-). The
transitions that are possible are of the form

(X, o’)- U, (a, ,8,!m(fi2)) p or (X, or)- U, (a?m)- p’,

denoting attempts of a single object a to perform a communication action without
any matching object being present. This is an instance of deadlock and therefore we
here have that fftX]](cr)= {0}. On the other hand, for every transition

(x, )- u, - (x’,

the set ffX]](o-) includes the set or’. fftX’]](cr’), in which the transformed state
is concatenated with the operational meaning of X’ in state or’.

Finally, we can give the operational semantics of a unit.
DEFINITION 4.11 (Operational semantics of a unit). Let . .]] Unit --> P be given,

for a unit U=((..., Chgs.),...), by

u ((.(), s.)}.

The execution of a unit U ((. , C, s,), .) consists of the creation of an object
of class C, and the execution of its body. Its name is given by ,(), the name of the
first object.

Comparison with [ABKR86(a)]. In [ABKR86(a)], an operational semantics for
POOL is defined which differs from t: in a number of respects. There, a transition
relation without labels is used whereas we have a labelled transition relation here;
further, in [ABKR86(a)] communication is modelled by means of a so-called wait
statement as opposed to the release statement we use here; also our use of parameterized
expressions and statements is new. All these differences can be seen as minor variations
of the semantic definitions and are motivated by the main goal of this paper, which
is to relate the operational semantics with the denotational one. There is one major
difference, however, which we shall treat in some detail" In Definition 4.10 of this
paper, t is given as the fixed point of a contraction, whereas in [ABKR86(a)] the
operational semantics is defined in terms of finite and infinite sequences of transitions.
In order to show the equivalence of both approaches, we now define an operational
semantics in the style of [ABKR86(a)], for which we next shall prove that it
equals

DEFINITION 4.12 (Alternative operational semantics). Let, for a U Unit, the
function

(Y*, yi,, LStat) -> P

be given as follows. Let X fi(LStat) and rZ. We put for a word w

w (* Xll ,
if and only if one of the following conditions is satisfied:

(1) w cr r and there exist X, , X such that

(X, o-)-U, z--(X, o-)-U, z- U,z-(X.,r) and /(a,s)X[s=E].

(2) w= crier2’’’ and there exist X, X2,’" such that

(x, )- u, -, (x, ,)- u, - (x, )- u, -. .



358 J.J.M.M. RUTTEN

(3) w o’1. O’n 0 and there exist Xl, X such that

(X, o-)- U, r + (X, rl)- U, " + U, " + (X,, r,) and

3(a, s) X,[s E] and (X,, r,)- U, ’-.

It is not straightforward that the sets *X]](o-) are in P, that is, that they are
compact; we prove this fact in the following lemma.

LEMMA 4.13 (Compactness of). For everyX ,(LStat) and cr E" *X](o’)
is compact.

Proof. Let (wi)i be a sequence of words in *X]](cr) (___E), say
2

Wi O- O" O"

We show that (wi)i has a converging subsequence with its limit in X]](r). Assume
for simplicity that all words wi are infinite. Since wi X(o-), for every i, there
exist infinite transition sequences such that

(X, o’)--) (X1 o’i)--) (X2

(omitting the labels U, ’). From the definition of it follows that the set

{(x’, ’): (x, )+ (x’, ’)}

is finite. (This follows from the observation that according to the axioms only a finite
number of transitions is possible from an arbitrary configuration; this property is
preserved by all the rules.) Thus there exists a pair (X, r) such that for infinitely
many i’s:

(Xi o.)__ (X 0.1)"

Let fl "N+ N be a monotonic function with, for all i,

(X>(i) o=lf(i)) (X,,

Next we proceed with the subsequence (Wfl(i)) of (Wi) and repeat the above argument,
now with respect to the set

{(x’, ’): (x,, m)+ (x’, ’)}.

Continuing in this way, we find a sequence of monotonic functions (f), defining a
sequence of subsequences of (wi)i, and a sequence of configurations ((X, o-)) such
that

Vk VjVi<=k[tr}()=tri] and (X, r)+(X, O’l)-->(X2, (Y’2)’->

and, moreover, such that the sequence (wA+,<i))i is a subsequence of the sequence of
(w<i))i. Now we define

Then we have

g(i) -f(i).

lim Wg(i 0"10"20"

Thus we have constructed a converging subsequence of (Wi) with its limit in* U]](r).
(In case the words wi are not all infinite a similar argument can be given.)

It is not difficult to show that (Tu ff.
THEOREM 4.14. flu *.
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Proof We prove that is also a fixed point of ta, from which the equality
follows. Let X ,(LStat) such that there exist (a, s) X Is El, let erg and let
wE. If w =0 then

w .()(x)()w x().

Now suppose w O. We have

wX()’ X’ .(LStat) w’

[<x,> <x’, ’>A w=’. W’A W’ X’(’)]

[definition u

w e e(e)(x)().

So we see that U u(U).

5. A denotational semantics for POOL. The denotational semantics that is defined
in this section was already presented (in a slightly different form) in [ABKR86(b)].
(For a comparison of the two models we refer the reader to the end of this section.)

Our denotational model has a so-called domain (a solution of a reflexive domain
equation) for its semantic universe. In [BZ82] it was first described how to solve these
equations in a metric setting. Then, in JAR88], this approach was generalized in order
to deal with equations of the following form: P... P..., a case that was not
covered by [BZ82]. For a quick overview of the main results of [AR88], the reader
might want to read } 2 of [ABKR86(b)].

Fuher, our model is based on the use of continuations. For an extensive treatment
of continuations and expression continuations, which we shall use as well, we refer
to [Go79].

We start with the definition of a domain P, the elements of which we shall call
processes from now on.

DZNtTION 5.1 (Semantic process domain P). Let (p, q e)P be a complete ultra
metric space satisfying the following reflexive domain equation:

where rr, p )Stepp is

with

P {Po} U id,/2( -+ compact(Stepp)),

Stepp Compp I,.J Sendp I,.J Answerp,

Compp x P,

Sendp Obj x MName x Obj x Obj -+ P) x P,

Answerp Obj x MName x Obj -+ Obj -+ P) -+ 1p).

(The sets {po}, E, Obj, and MName become complete ultra-metric spaces by supplying
them with the discrete metric.)

In JAR88], it is described how to find for such an equation a solution that is
unique up to is_omorphy. Let us try to explain intuitively the intended interpretation
of the domain P. First, we observe that in the equation above the subexpression idl/2
(defined in Appendix I, 1.6(e)) is necessary only to guarantee that the equation is
solvable by defining a contracting functor on c, the category of complete metric spaces.
For a more operational understanding of the equation, for example, it does not matter.
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A process p P is either P0 or a function from E to compact(Stepp), the set of all
compact subsets of Stepp. The process Po is the terminated process. For p P0, the
process p has the choice, depending on the current state tr, among the steps in the set
p(tr). If p(o’)= , then no further action is possible, which is interpreted as abnormal
termination. For p(o-) , each step zr p(o-) consists of some action (for instance,
a change of the state o- or an attempt at communication) and a resumption of this
action; that is to say, the remaining actions to be taken after this action. There are
three different types of steps r Step.

First, a step may be an element of E x P, say

,).r (r ,p

The only action is a change of state: o-’ is the new state. Here the process p’ is the
resumption, indicating the remaining actions process p can do. (When p’= Po no steps
can be taken after this step zr.)

Second, might be a send step, zr Sendp. In this case we have, say

r=(a, m, fl, f p),

with a Obj, m MName, fl Obj, f Obj - P), and p 6 P. The action involved here
consists of an attempt at communication, in which a message is sent to the object a,
specifying the method m, together with the parameter ft. This is the interpretation of
the first three components a, m, and ft. The fourth component f, called the dependent
resumption of this send step, indicates the steps that will be taken after the sender has
received the result of the message. These actions will depend on the result, which is
modelled by f being a function that yields a process when it is applied to an object
name (the result of the message). The last component p, called the independent
resumption of this send step, represents the steps to be taken after this send step that
need not wait for the result of the method execution.

Finally, zr might be an element of Answerp, say

r =(a, m, g)

with a Obj, m MName, and g Obj - Obj - ) lfi). It is then called an answer
step. The first two components of rr express that the object a is willing to accept a
message that specifies the method m. The last component g, the resumption of this
answer step, specifies what should happen when an appropriate message actually
arrives. The function g is then applied to the parameter in this message and to the
dependent resumption of the sender (specified in its corresponding send step). It then
delivers a process which is the resumption of the sender and the receiver together,
which is to be composed in parallel with the independent resumption of the send step.

We now define a semantic operator for the parallel composition (or merge) of two
processes, for which we shall use the symbol ]]. It is auxiliary in the sense that it does
not correspond to a syntactic operator in the language POOL.

DEFiNITiON 5.2 (Parallel composition). Let I["/5 x P- P be such that it satisfies
the following equation"

p q ho-. ((p(cr)_q)U(q(cr)[[p)U(p(cr)1 q(o’))),

for all p, q eP\{Po}, and such that Po q=q po-po. Here, X]]q and X 1 Y are
defined by

X_q={cr ] q" ’X},

xl Y=l{r [p" rX,p Y},
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where r i q is given by

(o", p’) i q (o", p’ q),

(a,m,,f,p) iq=(a,m,,f, pl[q}, and

(a, m, g) i q=(a, m, Aft. hh. (g(fl)(h) q)),

and zr I P by

g(fl)(f)I[ P)) if zr=(a, m,/3,f,p) and p =(a, m, g}
zr[p= or p=(a,m, fl, f,p) and 7r=(a,m,g),

otherwise.

We observe that this definition is self-referential, since the merge operator occurs
at the right-hand side of the definition. For a formal justification of this definition see
the appendix of [ABKR86(b)], where the merge operator is given as the unique fixed
point of a contraction on/3 x/5

_
1/5.

Since we intend to model parallel composition by interleaving, the merge of two
processes p and q consists of three parts. The first part contains all possible first steps
of p followed by the parallel composition of their respective resumptions with q. The
second part contains similarly the first steps of q. The last part contains the communica-
tion steps that result from two matching communication ,,steps taken simultaneously
by process p and q. For zr Stepp the definition of 7r q is straightforward. The
definition of zr 1 p is more involved. It is the empty set if zr and p do not match. Now
suppose they do match, say zr (a, m,/3, f, p) and p (a, m, g). Then 7r is a send step,
denoting a request to object a to execute the method m, and p is an answer step,
denoting that the object a is willing to accept a message that requests the execution
of the method m. In 7r [ p, the state o- remains unaltered. Since g, the third component
of p, represents the meaning of the execution of the method m, it needs the parameter
/3 that is specified by a. Moreover, g depends on the dependent resumption f of the
send step 7r. This explains why both/3 and f are supplied as arguments to the function
g. Now it can be seen that g()(f)II P represents the resumption of the sender and
the receiver together. (In order to get more insight into this definition it is advisable
to return to it after having seen the definition of the semantics of an answer statement.)

The merge operator is associative, which can easily be proved as follows. Define

e sup {d,((p q)[] r, p (q r))}.
p,q,rP

Then, using the fact that the operator satisfies the equation above, one can show
that e-<_1/2, e. Therefore e 0, and is associative.

Now we come to the definition of the semantics of expressions and statements.
We specify a pair of functions (@6, s) of the following type:

L - AObj - Cont fi, s" Ls - AObj - Conts - fi
where

Cont Obj- P and Conts P.

Let s Ls, a AObj, and p P. The semantic value of the statement s is given by

s()(p).
The object name a represents the object that executes s. Second, the semantic value
of s depends on its so-called continuation p" the semantic value of everything that will
happen after the execution of s. The main advantage of the use of continuations is
that it enables us to describe the semantics of expressions in a concise and elegant way.
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The semantic value of an expression e c L, for an object a and an expression
continuation f Cont,, is given by

ee](a)(f).

The evaluation of an expression e always results in a value (an element of Obj), on
which the continuation of such an expression generally depends. The function f, when
applied to the result/3 of e, will yield a process f(/3) P that is to be executed after
the evaluation of e.

Please note the difference between the notions of resumption and continuation. A
resumption is a part of a semantic step 7r Stepp, indicating the remaining steps to be
taken after the current one. A continuation, on the other hand, is an argument to a
semantic function. It may appear as a resumption in the result. A good example of
this is the definition of Fs(x e) (in Definition 5.3(SI)) below.

DEFINITION 5.3 (Semantics of expressions and statements). Let

Qe L --> AObj -> Conte -> p, Qs Ls "-> AObj -> Conts --> .
For every unit U Unit we define a pair of functions t (z, s) by

t Fixed point (q re),

where

t "(Q x Qs) (Q x Qs)

is defined by induction on the.structureof L and Ls by the fo_llowing clauses. For
F= (F, Fs) we denote u(F) by F= (F, Fs). Let p Conts P, f Conte Obj-> P
anda AObj. Then"

EXPRESSIONS:

(El, instance variable) Fe(x)(ce)(f)-- AO’" {(tY, f(O’l(a)(X)))}.

The value of the instance variable x is looked up in the first component of the state
o- supplied with the name a of the object that is evaluating the expression. The
continuation f is then applied to the resulting value.

(E2, temporary variable) Fe(u)(a)(f)- Ao’" {(o’,f(o’2(ce)(u)))}.

(E3, send expression)

Fz(el !m(e2))(a)(f)= F(el)(a)(A/31 F(e2)(a)(A2 Air. {(fl,, m,/2,f, Po)})).

The expressions e and e2 are evaluated successively. Their results correspond to the
formal parameters fl and 2 of their respective continuations. Finally, a send step is
performed. The object name 13 refers to the object to which the message is sent;
represents the parameter for the execution of the method m. Besides these values and
the method name m, the final step (]31, m, ]2f P0} also contains the expression
continuation f of the send expression as the dependent resumption. If the attempt at
communication succeeds, this continuation will be supplied with the result of the
method execution. The independent resumption of this send step is initialized at Po.

(E4, new-expression) F(new(C))(a)(f)= Atr. {(tr’,f(fl)II Fs(sc)(fl)(po))},

where

/3 (),
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A new object of class C is created. It is called /(O’3): the function v supplied with the
set of all object names currently in use yields a name that is not yet being used. The
state o- is changed by expanding the set 03 with the new name /3. The process
Fs(sc)()(po) is the meaning of the body of the new object /3 with P0 as a nil
continuation. It is composed in parallel with f(/3), the process resulting from the
application ofthe continuationfto/3, the result ofthe evaluation ofthis new-expression.
We are able to perform this parallel composition because we know from f what should
happen after the evaluation of this new-expression, so here the use of continuations
is essential.

(E5, sequential composition) F(s e)(a)(f)= Fs(s)(a)(F(e)(a)(f)).

The continuation of s is the execution of e followed by f. Note that a semantic operator
for sequential composition is absent" the use of continuations has made it superfluous.

(E6, self) F(self)(a)(f) =f(a).

The continuation of f is supplied with the value of the expression self, that is, the
name of the object executing this expression. We use f(a) instead of Aft. {(0",f(a))}
in this definition wishing to express that the value of self is immediately present: it
does not take a step to evaluate it.

STATEMENTS:

(S1, assignment to an instance variable)

Fs(s e)(a)(p)= Fe(e)(a)(hfl 10". {(0"’, p)}),

where 0"’= 0"{fl/a, x}. The expression e is evaluated and the result/3 is assigned
to x.

($2, assignment to a temporary variable)

Fs(u e)(a)(p)= F(e)(a)(Afl A0"" {(0"’, p)}),

where 0"’= 0"{/3/a, u}.

($3, answer statement) Fs(answer m)(a)(p)= A0". {(c, m, g)},

where

with

gm= A,8. Af. A" {(0"’, nl(em)(Oe)(h" A&" {(&’,f(]3’)II p>})},

’ ,;{/:3/c, u},

.t l.{ .2 Ol Um / Ol /’/m},

mC=(u,,, e) U.

The function g,, represents the execution of the method m followed by its continuation.
This function g,, expects a parameter/3 and an expression continuation f, both to be
received from an object sending a message specifying the method m. The execution
of the method m consists of the evaluation of the expression e,,, which is used in the
definition of m, preceded by a state transformation in which the temporary variable
u,, is initialized at the value/3. After the execution of e, this temporary variable is set
back to its old value again. Next, both the continuation of the sending object, supplied
with the result/3’ of the execution of the method m, and the given continuation p are
to be executed in parallel. This explains the last resumption: f(/3’)]l P.
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Now that we have defined the semantics of send expressions and answer statements
let us briefly return to the definition of r IP (Definition 5.2). Let r =(a, m, fl, f q)
(the result from the elaboration of a send expression) and p (a, m, g) (resulting from
an answer statement). Then r I, P is defined as

"rr ]o-P ((o’, g(fl)(f) q)}.

We see that the execution of the method m proceeds in parallel with the independent
resumption q of the sender. Now we know how g is defined we have

g(fl)(f)- Ar. {(o-’, F(e,,)(a)(Afl’. A#. {(6",f(fl’)II P)}))}-
The continuation of the execution of m is given by Aft’. A6-. {(6-’,f(fl’) p)}, which
consists of a state transformation followed by the parallel composition of the continu-
ations f and p. This represents the fact that after the rendez-vous, during which the
method is executed, the sender and the receiver of the message can proceed in parallel
again. (Of course, the independent resumption q may still be executing at this point.)
Moreover, the result fl’ of the method execution is passed on to the continuation f of
the send expression.

(S4, sequential composition) s(sl s2)(a)(p)-- ffTs(Sl)(a)(s(S2)(a)(p)).
($5, conditional)

Fs(if e then S else s2 fi)(a)(p)= FE(e)(a)(Afl. if fl tt

then Fs(Sl)(a)(p)

else Fs(s2)(a)(p)

($6, loop statement)

Fs(do e then s od)(a)(p)

hr. {(o’, FE(e)(a)(h). if/3 tt

then Fs(s)(a)(Fs(do e then s od)(a)(p))

else p

(End of Definition 5.3.)
It is not difficult to prove that u is a contraction and hence has a unique fixed

point @. As a matter of fact, we have defined u such that it satisfies this property.
Note that the original functions F and Fs have been used in only three places" in
the definition of the semantics of a new-expression, of an answer statement, and of a
loop statement. Here the syntactic complexity of the defining part is not necessarily
less than that of what is being defined. At those places, we have ensured that the
definition is "guarded" by some step Atr. {(tr’,...)}. It is easily verified that in this
manner the contractiveness of q’u is indeed implied.

DEFINITION 5.4 (Denotational semantics of a unit). We define ... ]]9" Unit- P.
For a unit U Unit, with U ((. , C, s,), ), we set

u]] s.(,())(po).

The execution of a unit always starts with the creation of an object of class C.
and the execution of its body. Therefore, the meaning of a unit U is given by the
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denotational meaning of Sc, the body of class Cn, supplied with v(), denoting the
name of the first active object, and with P0, the empty continuation.

Comparison with [ABKR86(b)]. There are some differences between the denota-
tional semantics (@E, @s) presented here and the denotational semantics given in
[ABKR86(b)]" The former model is given as the fixed point of a contraction t and
does not use so-called environments to deal with process creation (new (C)) and the
meaning of the execution of a method (answer m); the latter model is defined without
the use of a contraction and does use environments. In [ABKR86(b)], the semantics
of a unit U is given with the help of a special environment 7t, which contains
information about the class and method definitions in U and is obtained as the fixed
point of a suitably defined contraction. Another difference is the way the loop statement
is treated" In this paper, the definition of its semantics fits smoothly in the definition
of (@E, @s) as a fixed point. In [ABKR86(b)], a contraction is defined especially for
this case.

Another way to express these differences is that the three constructs for recursion
present in POOL (i.e., the new expression, the answer, and the loop statement) are
treated here by means of one fixed-point definition, whereas in [ABKR86(b)], environ-
ments are .used for the first two forms of recursion and a specially defined contraction
for the last one. However, we state (without proof) that the two definitions are
equivalent: it is straightforward how to translate the one approach into the other.

An additional difference between the denotational semantics of a unit given here
and the one presented in [ABKR86(b)] is the presence of a semantic representation
of the standard objects in the latter, whereas these are not treated in this section. As
mentioned before, we do not treat standard objects now because we want to concentrate
on the correctness proof. In order to show, however, that our proof (to be presented
in 7) can also deal with standard objects, we shall extend, in Appendix III, both our
operational and our denotational semantics with a semantic representation of standard
objects, and prove that the correctness result still holds for these extended models.

6. An intermediate semantics. After having defined an intermediate semantics t
for n(LStat) and a denotational semantics u for L and Ls we shall, in the next
section, discuss the relationship between the two. As we did in 2, we shall compare
t and v by relating both to an intermediate semantics ’(LStat)-> P, the
definition of which is the subject of this section.

DEFINITION 6.1 (Intermediate semantics t). Let U Unit. Let" ,(LStat) ->

P be given by

Fixed Point (),
where

p (LStat) -> P) --> (LStat) --> P)

is defined, for F 6 n(LStat)--> P and X ,,(LStat), as follows.
If for all a and s [(a,s)Xs=E], then p’c(F)(X)=po. Otherwise we have

(F)(X) Act. (CF SF AF)

where

CF {(or’, F(X’)): (X, or)- U, " - (X’, or’)},

SF {(/31, m, f12, Aft. F({(a, (fl))}), F(X’)):
(X, or)- U, (a,/3, !m(fl))- ({(a, 4)}U X’, or)},

AF {(a, m, g,,): (X, or)- U, (ce ? m)- ({(a, s)} L.I X’,
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with

grn A" Af" (A6". {(6-’, ’o’Eem(Oz)(A[3’’ A’" ((",f(/3’) F(((a, s)}))}))} F(X’)),
and

"-- ’{’2(Ol)(Um)/Ol, Urn},

m<=::(Um, ern) U.

(It is straightforward to show that is a contraction.)
The function differs from the operational semantics u in two ways. First, its

range is the semantic universe P, which is used for the denotational semantics @u,
instead of P, the semantic universe of ’u" For every set X ,(LStat) the function

yields a process (X) P, rather than a function from states to sets of streams
of states. Second, in addition to the computation steps (indicated by the set CF above)
single-sided communication steps are present in 6(X) (indicated by SF and AF, for
send and answer steps), whereas u(X) contains only computation steps. On the other
hand, the similarity between the definitionsof 6u and is obvious: both are based
on the transition relation -U--> for 6,(LStat).

At first sight, two facts regarding the relation between and u can be
mentioned. First, they have the same range, that is, the semantic universe P ofprocesses,
in which single-sided communication actions are visible. Second, u is defined compo-
sitionally with the use of semantic operators (like the merge [[), whereas the definition
of is based, as was mentioned above, on the transition relation -U -->.

In the next section the relationship between tu, (7, and @u will be formally
expressed. Let us, for the time being, try to elucidate the definition of (7 above by
explaining what communication steps are present in (X).

Corresponding with every send transition of the form

(X, O’)-- U, (0, fil !m(fl2))-> ({(a, )}U X’,
the set (X)(r), for a state r E, contains a send step of the form

(/3,, m,/3)_, Aft. ff’u({(a, (fl))}), 7,(X’)).

Here/31, m, and f12 indicate that a message specifying the method rn with parameter
/32 is sent to the object /31. The dependent resumption of this send step is
Aft. ’u({(a, q(/3))}): the meaning of the statement that will be executed by a as soon
as it receives the result/3 of the message. The last component of this send step, the
independent resumption, consists of (X’), which is the meaning of all the statements
executed by objects other than a. Thus it is reflected that these objects need not wait
till the message is answered; they may proceed in parallel.

Next, (X)(tr) can contain some answer steps. For every answer transition

(X, or)- U, (a ? m)--> ({(a, s)}U X’, o’)

the set (X)(tr) includes an answer step

with grn as in the definition above. It indicates that the object a is willing to answer
a message specifying the method m, while the resumption gm indicates what should
happen when an appropriate message arrives. This function grn, when supplied with
a parameter/3 and a dependent resumption f (both to be received from the sending
object), consists of the parallel composition of the process (X’) together with the
process

h’. {(", [[ern]](a)(h/3’. hd’. {(d",f(fl’)II ’({(,,
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(Note that we have used the function @e here; the definition of therefore depends
on its definition.) The process (X’) stands for the meaning of all the statements
executed by objects other than the object a- these objects may proceed in parallel
with the execution of the method m, the meaning of which is indicated by the second
process. Its interpretation is the same as in the definition of @sanswer m(a)(p) in
the previous section but for the fact that here the last resumption of this process consists
of f(/3’)II ({(a, s)})" the parallel composition of the dependent resumption of the
sender (supplied with the result/3’ of the method m) and the meaning of the statement
s, with which the object a will continue after it has answered the message.

7. Semantic correctness. We are now ready to establish the main result of this
paper. We shall relate the operational semantics t and the denotational semantics

@t by first comparing 6t and 6, the intermediate semantics defined in the previous
section, and next comparing 6 and @t. These relationships will be formally expressed
by means of suitably defined abstraction operations. From this we shall deduce the
fact that

U]e abstr( U]),

where abstr" P P is such an abstraction operation.

7.1. Comparing gv and . We start with the definition of abstr" P-> P, which
relates the semantic universes P and P of 6 and .

DEFINITION 7.1 (Abstraction operation abstr). Let abstr" P-> P be defined as
follows. We set abstr(po)= {e}. If p 6 P\{Po}, then

{{0} i,f p(o’) fq C, omp, (,
abstr(p) Act.

[._j {o" abstr(p )(or’): (r’, p’) p(r)} otherwise,

where Compp Z P. (Formally, we can define this operation correctly by giving it as
the fixed point of a suitably defined contraction on P P: See Appendix II for an
extensive formal treatment of the function abstr.)

The function abstr transforms a process p P into a function abstr(p) P -ncompact(-), which yields for every tr X a set abstr(p)(cr) of streams. (If one regards
the process p as a treelike structure, these streams can be considered the branches of
p.) Ifp(tr) f-) Compp , that is, ifp(r) is empty or contains only single-sided communi-
cation steps, then we have a case of deadlock because, operationally, single-sided
communication is not possible. Therefore we then have that abstr(p)(tr)={O}. If,
however, p(r) does contain a computation step (r’, p’), then we have that" o-’. abstr(p’)
(or’)

_
abstr(p)(er). The changed state o-’ is concatenated with abstr(p’)(cr’), in which

tr’ is passed through to abstr applied to p’, the resumption of (or’, p’). Thus the effect
of different state transformations occurring subsequently in p is accumulated.

Next, we use the operation abstr to relate t and .
THEOREM 7.2 (Relating Ov and ). For all F ,(LStat) -->

p[dpt(abstr F)= abstr ((F))].
Proof Let F , LStat --> P, X , LStat and tr 6 5;. Suppose Vc Vs

[(a,s)Xs=E]. If (X, tr)- U, ’->, then

t(abstro F)(X)(tr)= {0}

abstr(aP(F)(X))(tr),

since (F)(X)(r) 0 Compp . (Recall that Compo E x P.) If (X, r)- U, " ->, we



368 J.J.M.M. RUTTEN

have

di)u(abstro F)(X)(tr)= (._J {tr’. (abstro F)(X’)(tr’)" (X, o)- U, ’-->(X’,

(...J {o". (abstr(F)(X’))(tr’)" (X,

[see Definition 6.1]

abstr(Ao’. CI) (tr)

abstr(Atr. (CI (_J SF (.J AF))(o-)

abstr((F)(X))(o’)

(abstr (I)b(F))(X)(tr).

Since u and are contractions and thus have unique fixed points, the following
corollary is straightforward.

COROLLARY 7.3.

7.2. Comparing (.9 and v. To compare " :n(LStat)--> P and u Q x Qs
we define an extension of
(=(, ))Q x Q, with

Q’e L’z - AObj Con , Q’s L’s - AObj Con s
_,

which is as u but with the extended sets of expressions and statements L and L,
for its domain..(Recall that L is used in the definition of LStat AObj x L’s.) Next,
we extend to *v" n(LStat)/5, which takes sets of labelled statements for its
arguments.

DEFINITION 7.4 (). Let"(Q x Q’s)-(Q’ Q’s) be defined as follows. For
F=(Fe, Fs), we denote q(F) by F=(Fe, Fs). Let a AObj, p Conts= P and

f Conte Obj- P. Now F is defined similarly to v(F) (Definition 5.3) but with
the following clauses added:

F(fl)(a)(f) f() for/3 Obj AObj,

F((e, p))(a)(f)= F,(e)(a)(Afl. FF(q)(fl))(a)(f)),

Fs(E)()(p) =p,

#s(release (fl, s))(a)(p)=p s(S)()(po),

Fs((e, ))(a)(p)= Fz(e)(a)(Afl. Fs(tp(fl))(c)(p)).

Finally, we set

Fixed point ().

The meaning of (e, ) is obtained by first evaluating the expression e, then
substituting the result / into the parameterized expression and finally eval-
uating the expression (fl). The interpretation of (e,$)]] is similar. In
[[release (, s)]](a)(p), the meaning of the statement s (when executed by the object
fl and with the empty continuation Po) is computed and composed in parallel with
the process p, the continuation of the release statement.

DEFINITION 7.5 (). Let ’i(LStat)- P be given by
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where .--’(QxQs)-->(g,(LStat)-->P) is defined as follows. If F=(F,Fs), then
---(F), here being denoted by F is given by

F({(ce, S), , (Cek, Sk)})-- FS(S1)(Ce)(po) I1... fs(Sk)(ak)(Po).

(We put ()=P0.)
Note that we have that (X U Y)=/6(X) ][/3(y).
The omission of parentheses in the parallel composition above is justified by the

fact that is associative.
Given a finite set X of labelled statements (a, s), the value of *u(X) is obtained

by first computing the semantics of every labelled statement (a, s) X. This is given
by s[[S]](ag)(po), where the label ai indicates the name of the object executing the
statement and where Po indicates that after s nothing remains to be done. Next, all
the resulting processes are composed in parallel.

Now that we have extended the domain of @u to ,(LStat) we are ready to
prove the fact that @*u- ff. It is a straightforward corollary of Theorem 7.7 below.
The proof of this theorem makes use of the following lemma.

LEMMA 7.6. For all a AObj and b Lps we have

v/[(*)({(, (/))})= *({(, ,(/))})]

Ve L[O:(@*u)({(a, (e, ))})= @*u({(a, (e, ))})].

Proof. The proof uses induction on the complexity of expressions. We treat two
simple basic cases, being (lazy and) confident that these will show the reader how to
proceed in the other cases. So let a e AObj and e Lps and suppose that

V/[(*)({(, (/))})= *({(, ,(/))})].

For e =/3 we have

(*)({(, (/, ))})= (*)({(, ,(/))})

[hypothesis]

*({(, e(t))})

g’(t)]()(o)

(t, )()(po)

*({(, (t, ))});

if e =/3 !m(/3) then

(I)’u( u)({(a,(fl,.*’m(fl2), ))})= Air. {(/81 m, f12, Aft. *u({(a, b(/8))}), Po)}
Ao’. {(fl,, m, f12, Aft. e(fl)]](a)(po), po)}

2g/,]()(/i g/]()

(/i . {(/i, m,/, /. ge(/)](a)

(po), po>}
@’[[, !m(fl2)]](a)(hfl" ’s[[O(/3)]](a)(po))

(fl, !m(fl2), O)]](a)(po)

*u({(a, (ill !m(2), ))}).
TIqEOREM 7.7. @(*U)=*U"
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Proof. We show" VX,(LStat) [q(*)(X) (X)], using induction on
the number of elements in X.

Case 1. X ((a, s)), with a AObj, s L’s.
The proof uses induction on the complexity of the statement s. We treat some

typical eases.
(i) answer m"

with

,(@)({(a, answer m)})= Act.

gr. Aft. Af. AtY. {(tY’, z[[e,ll(a)(A/3’. A&. {(a’,f(fl’)II ({(a, E)}))}))}

AB. af. ae. {(’, ee](a)(a’ AS. {(8’,f(’))}))}.

(and 8’ and d’ as in Definition 6.1). If we compare this to the definition of sanswer m]
(Definition 5.3(S3)) we see

A" {(a, m, g)} sanswer m(a)(po)

({(a, answer m)}).

(ii) x & e" we distinguish two subcases. First, if e , then

b()({(, x )})= a. {({/, x}, po}}

()(a. a. {({/, x}, po)})

}x ()(po)

({(, x )}).

If e Obj, then

()({(a, x

()({(, (e, au. x u))})

[see (v) below]

({(, (e, au. x u))})

e()(a x*()(po))

}x e(a)(po)

({(<x e)}).

(iii) s s2: case analysis for s.
(iv) do e then s

()({(a, do e then sod)}). {(, ({(a, if e then s (do e then s od) else E fi)}))}. {{, e()(afl. if fl tt then

}s(a)(}do e then s od(a)(po)) else Po fi))}

}do e then s od(a)(po)

({(, e tuen s )}).
(v) (e, $)" by induction we have that the theorem holds for (a, (fl)), for every

fl e Obj. Now we can apply Lemma 7.6.
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Case 2. X ’n(LStat) and X has at least two elements. Suppose we have two
disjoint sets X1 and X2 in n(LStat) with X X1U X2 such that

+’(*)(X) *(X,)

for 1, 2. Assume X1, X2 {(1, E), , (c,, E)}. We shall show that from this
induction hypothesis it follows that

+t(*)(x, u x)= *(Xl u x).

(This is proved in very much the same way as the fact that (I)’()(p)= (p) and
(I)’()(r)=(r) implies ’()(p^’,’r)=(p^.rr), which occurs in Theorem 2.14
of 2.)

From the definition of-U - (Definition 4.8, (R10) and (Rll)) it follows that

Here

with

(I) ,( ,)(x u x:)= ,o-. (x" u x u z).

xl {(,’, 9*(x u x,_)): (x,, )- u, -(x, ’)}

u {(/1, m,/I2, A/I. j({(c, ())}), 9*u(X1Ux2))’’

(Xl, o’)- U, (o, 1 !m(:))--> (X U {(c, )},

U{(a, m, g,)" (X1, G)- U, (c ? m)--> (X U{(a, s)},

gm Aft" Af" (AG" {(t3-’, @Ee,](a)(Afl’ A&

{(d’,f(fl’)II ({(, )})>})>} (xl u x))
and e, #’ and ’ as in Definition 6.1. The set X[ is like X[ but with the roles of X1
and X2 interchanged. Finally,

Z {(’, ({(1, (era, Au" (Urn G2(I)(Um) release (a, (u)) s)))} U X U X[)):

(Xi, )- U (, 1 ]m(2))({(, )}U X, ) and

(, G)- U, (B1 ? m) ({(B1, s)} U Xj, G), for 1, j 2 or 2, j 1}

(and G’= G{B/B1, u), m(Um, e) U). The steps in Xy correspond to the transition
steps that can be made from X1UX as a result of a transition step from X (by an
application of (R10) in the definition of-U ), for i= 1, 2.

The set Z contains those steps that correspond with a communication transition
from X U X, which results from a send transition from Xi and an answer transition
from (for i= 1, j 2, or i= 2, j 1) by an application of (Rll).

Now we have

X ()(X,)()E(x),
X ()(X2)(G)E (Xl),
z=()(x,)()l’ *(9)(x)().

The proofs of these facts are not dicult (but tiresome and therefore omitted). It
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follows that

u (*)(x)() II_ *(x,)

u +(*)(x2)()I (*)(x)())
[induction hypothesis]. (*(Xl)() k *(x:)

*(x:)()

_
*(x)

u *(x,)(,)I *(x)())
[definition

*(x, u x).

This concludes the proof of Theorem 7.7. El
Since 6 and @*u are both fixed points of the same contraction , they must

be equal.
COROLLARY 7.8. @*U,

7.3. Collecting the results. We have proved that u abstr U"

Thus we have the following theorem.
THEOREM 7.9. u abstr *U"

From this theorem we deduce the main theorem of this paper.
THEOREM 7.10. U]]c abstr( U]).
Proof Let U ((. ., C=s),. .). Then

u u{((), s.)}]]

abstr(*u({(,(), s,)}))

abstr(sS,]](())(Po))

abstr(@sS,]](’())(Po))

abstr( U]]).

Appendix I. Mathematical definitions.
DEFINnqOY 1.1 (Metric space). A metric space is a pair (M, d) with M a nonempty

set and d a mapping d" M x M --> [0, 1 (a metric or distance) that satisfies the following
properties"

(a) Vx, y M[d (x, y) 0:> x y],
(b) Vx, y e M[d(x, y) d(y, x)],
(c) Vx, y, zeM[d(x,y)<=d(x,z)+d(z,y)].

We call (M, d) an ultra-metric space if the following stronger version of property (c)
is satisfied"

(c’) Vx, y, zeM [d(x,y)<=max{d(x,z),d(z,y)}].
Please note that we consider only metric spaces with bounded diameter: the distance
between two points never exceeds one.
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Examples I.l.1. (a) Let A be an arbitrary set. The discrete metric dA on A is
defined as follows. Let x, y A, then

[0 if x =y,
da(X, y)

1 ifxy.

(b) Let A be an alphabet, and let A= A*U A denote the set of all finite and
infinite words over A. Let, for x A, x[n] denote the prefix of x of length n, in case
length (x) >- n, and x otherwise. We put

d (x, y) 2-sup{n’x[n]=y[n]}

with the convention that 2-= 0. Then (A, d) is a metric space.
DEFINITION 1.2. Let (M, d) be a metric space, let (xi)i be a sequence in M.
(a) We say that (xi)i is a Cauchy sequence whenever we have" Ve >0 :INN

Vn, m > N[d(x,, x,,) < e].
(b) Let x M. We say that (x)converges to x and call x the limit of (x) whenever

we have Ve > 0:1 n 6 N Vn > N[d (x, x,) < e ]. Such a sequence we call convergent.
Notation: lim_. x x.

(c) The metric space (M, d) is called complete whenever each Cauchy sequence
converges to an element of M.

DEFINITION 1.3. Let (M1, dl), (Mz, d2) be metric spaces.
(a) We say that (Ma, d) and (M2, d2) are isometric if there exists a bijection

f" M1 M such that: Vx, y Ml[dz(f(x),f(y)) dl(x, y)]. We then write M M2.
When f is not a bijection (but only an injection), we call it an isometric embedding.

(b) Letf" Ma M be a function. We call fcontinuous whenever for each sequence
(x)i with limit x in M1 we have that lim_f(xi)=f(x).

(c) Let A => 0. With Ma A M2 we denote the set of functions f from M to M
that satisfy the following property: Vx, y M[d(f(x),f(y)) <= A. d(x, y)].
Functions f in M1 - M2 we call nonexpansive, functions f in M1 M2 with 0 _-< e < 1
we call contracting. (For every A => 0 and f M1 -A M2 we have that f is continuous.)

PROPOSITION 1.4 (Banach’s fixed-point theorem). Let (M, d) be a complete metric
space and f: M M a contracting function. Then there exists an x M such that the
following holds:

(1) f x x x is a fixed point off),
(2) Vy M[f(y) y=>y x] (x is unique),
(3) VXo M[lim,_.oof(")(Xo) x], where f(n+l)(Xo) f(f(’(Xo)) and f()(Xo) Xo.
DEFINITION 1.5 (closed and compact subsets). A subset X of a complete metric

space (M, d) is called closed whenever each Cauchy sequence in X has a limit in X
and is called compact whenever each sequence in X has a subsequence that converges
to an element of X.

DEFINITION 1.6. Let (M, d), (M1, dl)," , (M,, d,) be metric spaces.
(a) With M1 - M2 we denote the set of all continuous functions from M1 to M.

We define a metric de on M1 M2 as follows. For every fl ,fi e M1- M2

dv(fi,f)= sup {dz(f,(x),f2(x))}.
M

For A-> 0 the set M1 -AM2 is a subset of MI M2, and a metric on M1 -AM2 can
be obtained by taking the restriction of the corresponding dz.

(b) With M1 U (_J M, we denote the disjoint union of M,. ., M,, which can
be defined as {1} x M1 U. U {n} x M,. We define a metric dt on M1 U. UM, as
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follows. For every x, y M1 U M,

du(x’ Y) { dj(x’ if x, y {j} x l <-j <- n’

(c) We define a metric dp on M1 x... M, by the following clause. For every
(xl,’’’,x,),(yl,’’’,y,)eMlX’’’xM,

dp((xl ,’" ", x,), (Yl ,’" ", Y,)) max {di(xi, Yi)}.

(d) Let closea(M)={X" X_ MAX is closed}. We define a metric dn on
closed(M), called the Hausdorffdistance, as follows. For every X, Y closed(M) with
X,Y#

dn(X, Y): max Isup {d(x, Y)}, sup {d(y, X)}/,
I.xX y Y

where d(x, Z) _ay infz [d(x, z)} for every Z
_
M, x e M. For X we put

du(, X) du(X, J) l.

The following spaces:

compact(M) {X: X M ^ X is compact},

,,co,p,a(M) {X: X M ^ X is nonempty and compact}

are supplied with a metric by taking the respective restrictions of dH.
(e) Let c [0, 1]. We define: idc(M, d)- (M, c. d).
PROPOSITION 1.7. Let (M, d), (M1, dl),. ., (M,, d,), dF, du, dp, and dH be as

in Definition 1.6 and suppose that (M, d), (M1, dl)," , (M,, d,) are complete. We
have that

(a) (M --> M2, dF), (M, ._),A M2 dF),
(b) (M1 U U M,, du),
(c) (M, x... x M., d),
(d) g)clod(M), dH ), gorpc,(M), dH and g,co,,p,a(M), dH are complete metric

spaces. If (M, d and (M, d) are all ultra-metric spaces these composed spaces are again
ultra-metric. (Strictly speaking, for the completeness of M1-> M2 and M1 _>A M2 we do
not need the completeness of M1. The same holds for the ultra-metric property.)

The proofs of Proposition 1.7(a)-(c) are straightforward. Part (d) is more involved.
It can be proved with the help of the following characterization of the completeness
of the Hausdorff metric.

PROPOSITION 1.8. Let (god(M), dH) be as in Definition 1.6. Let (Xi) be a Cauchy
sequence in gtod(M). We have

lim Xi {lim xi xi Xi, (xi)i a Cauchy sequence in M}.

The proof of Proposition 1.8 can be found in [Du66] and [En77]. The completeness
of the Hausdorff space containing compact sets is proved in [Mi51].

Appendix II. The function abstr. The definition of abstr" P- P can be viewed as
a fixed-point characterization of a somewhat differently and more intuitively defined
operation

abstr*" P --> P,

which we introduce below. Next, we show that abstr abstr*.
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DEFINITION II.1 (abstr*). Let p /5 and o- , and let w E.
(1) We call w a finite stream in p(cr) if there exist (or1, pl)," , (crn, Pn) such that

W 0" O" A ’1 _-< < n[(o’i+l, Pi+l) pi(o’i)] A (o"1, pl) p(tr) ^ p =Po-

(2) We call w an infinite stream in p(tr) if there exist (rl, Pl), (tr2, p)," such that

w trlr ^ Vl _-< i[(tr,+l, Pi+l) p(tr)] ^ (trl, Pl) p(tr).

(3) We call w a deadlocking stream in p(r) if there exist (trl,p),...,
such that

w cr crn" 0 ^ V1 -< < n[(o-i+l, Pi+l) pi(o’i)]

A (trl, pl) p(tr) ^ p, # Po^ p, (tr,) f-) (E x P)

Now we define a function abstr*" P- P by

abstr* p =Atr. { w" w is a stream in p(r)}.

We have to verify that for every/9 P and tr E the set abstr*(p)(tr) is compact.
This is not trivial and is proved in Theorem II.3 below (which is a slightly generalised
form of Lemma AII.4 in [BBKM84]). The fact that we use in the definition of P
compact subsets rather than closed ones is essential for the proof. (For a process
domain defined with closed subsets, [BBKM84] provides a counterexample of the
theorem.)

In the proof of Theorem II.3 below, we need the following lemma.
LEMMA II.2. Let q lim_. q,, for q, q, P: assume (without loss of generality)

that for all n >= 0

d(q, q)-<2-<+1)

Let tr , and let (wi)i be a sequence in , with wi abstr*(qi)(tr), for every i>= O. Then

Vn :tu [wn[n] u abstr*(q)(tr)].

Proof. Let w[n] r try. (In the case of termination or deadlock the rest of
the proof is analogous to this case.) Now there must be ql,... q with

(trl, ql) q(tr) and (tri+l, q+l) q(cri

for l_-<i=<n. We shall show that there are t1,...,t] with (r,t])q(tr) and
(ri+l, ti+l) 0(o’i) for 1 <_- <- n. We do this inductively as follows. For i= 1 we observe
that d(q, q) =<2-"+1, so d(q(r), q (o’)) _-<2 _-<1/2. Because (trl, ql) q (tr), there must
be a with

(o-1, t]l) q(r) and d(q 1, tl)_-<2-n.

For the inductive step, let 1 _-< _-< n and let t be such that d(q i, ) < 2-++. Then

d(qi(o’i), i(o’i))<=2-n+i<= 1/2

qi+lBecause (tr+ ) q (r) there must be a +1 with

(O’i+l,i+li(o’i) and d(q i+l i+l)<2-n+i
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With tl, t suitably chosen, we can take u abstr*(tn)(tr,) arbitrary, and
then w,[n].u will be in abstr*(q)(tr).

TX-IEOREM I1.3. For every p P and r, the set abstr*(p)(tr) is compact.
Proof. Let (wi)i be a sequence in abstr*(p)(tr). We shall show that there exists a

subsequence of (wi) that has its limit in abstr*(p)(tr). First we introduce some notation.
For an arbitrary word wE, w(k) indicates the word that is obtained from w by
omitting the first k elements. We call Po P, tro= tr, and fo ida, the identity function
on the set of natural numbers. We shall inductively construct for every n -> 0 a function
f," , a process p P, and a state trn such that

1. ViO[wf.(i)[rt]=O’l" O’n].
2. li, 0 <- < n[(o’i+l, Pi+l) p,(o’i)].
3. :i(v,), in abstr*(p,)(cr,) li>= l[v,[i]=
4. f is monotonic and there exists a monotonic h with f =fn-1 h.

Once we have constructed such sequences (f),, (p),, and (trn), we are done. We
can define

g(i) =f(i).

This function is monotonic and we have

lim wg(i) o"1 0"2

Since trl. or2’’ " abstr*(p)(tr) we thus have found a subsequence (wg) of (wi),
which has its limit in abstr*(p)(tr).

The construction is as follows. Suppose we are at stage n---0. Let (,i) be a
sequence in abstr*(p)(o’) satisfying property 3, above. Let for every i=> 1

Then there are q’l, q,""" P with

(7", q)p,,(o’n) and ’j=> 1[(7"+1, qj+l) q(7")].

Since the set p.(r.) is compact, the sequence ((7"il, q))i has a converging subsequence
that is given by, say, the monotonic function h and that has a limit, say (7", q) in p. (r.).
We may assume

Vj__> l[7"hJ) 7" ^ d(qhl, q)__< 2-J+’].

Now we take

p.+a q, O’n+ 7", f.+ =fn h.

In order to show that this construction works, we must verify that Pn+l, trn+l, and
f,+a again satisfy properties 1-4 above.

1. We have for every >-1"

wf.+,()[n + 1] wf.+,()[n] wf.+,(,)(n + 1)

o’, r,,. w.+,)(n)(1)

o’1 tr,," ’hi)(1)
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----17-1 O- O’n+

2. We have (r,+l, p,+l) (z, q) p,(r,).
3. To prove this property, we are going to apply the following version of Lemma

11.2. For all q, ql, q_,’’" P, and for all Xl, x2,’’",
Vi>= lid(q, qi) <=2 -(i+1)

^ x abstr*(q)(r)]
==>::l(ui), in abstr*(q)(r) Vi>= l[y,[i]= x,[i]].

This we now use. Since

i -> l[d(p,,+l, qh(i))<=2-(i+l) A Ph(i)(1) abstr*(qha(’))(o’,,+l)]
there must exist a sequence (,) in abstr*(p,+l)(r,+l) with

Vi>_- 1[’[i]
Now

’h()(1)[i] ’h(i)[h(i)](1)[i]

=wy./,(i)(n)(1)[i]
wy,+,<i)(n + 1)[i1.

(Here we have used twice the fact that h(i)> i, for all i_-> 1.)
4. By definition.
This concludes the proof of Theorem II.3.
Next we show that the function abstr" P --> P, given in Definition 7.1, can be defined

as the fixed point of a contraction.
DEFINITION 11.4 (Formal definition abstr). We define ..’(P _>1 p)__>(p _.> p);

let F P __>1 p, p p, and tr X. We put

..(F)(po)(tr) {e},

..(F)(p)(r) {0} if p(r) (3 Cornp .
Otherwise, we set

Finally, we define

..(F)(p)(o’) U {o". F(p’)(tr’)" (or’, p’) p(o’)}.

abstr Fixed point (’).
It is straightforward to show is contracting. The fact that for every p P and

r the set ..(F)(p)(r) is compact needs some explanation. In order to prove this,
it is convenient to adapt the definition of E a little. Recalling that P
we define

.=.’. ((P x :) --->’ .oo,())-, ((P x ) --->’ .oo.()),
where the superscript 1 above the arrow indicates that we consider only nonexpansive
(and hence continuous) functions, by

..’(F)((p, tr))= U {tr’. F((p’, r’))" (tr’, p’) p(tr)}.
Now

..’(F)((p, or))= U {r’. F((p’, or’))}
(o",p’)p(o’)

U (" {/:((p’, ’))" (’, p’) e p()})

U (" F({(p’, ’5: (’, p’) p()})).
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This union can be seen to be compact by first observing that from the compactness of
p it follows that the union is finite" the set

{or’: ::lp’ P[(cr’, p’) p(cr)]}

is finite. The compactness of p(cr) further implies the compactness of the isomorphic
set

{(p’, or’): (or’, p’) p(cr)},

for every or’ 3:, which is preserved under the continuous mapping F and the concatena-
tion with or’. So we have a finite union of compact sets, which is again compact. Now
the compactness of ..(F)(p)(cr) follows straightforwardly from the compactness of
E’(F’)((p’, or’)), for arbitrary F’, p’, and or’. The fact that E(F) is again nonexpansive
is also easily verified.

We conclude this Appendix by showing that abstr and abstr* are equal.
THEOREM 11.5. abstr abstr*.
Proof. Consider p P-{Po} and cr E such that p(cr) (q (E x P) # . Then

w abstr*(p)(cr)cr>[definition abstr*]
::l r , Zl w o :lp w or’. w ^ w abs r* p cr

<=>[definition E]

w ..(abstr)(p)(cr).

The other cases are easy. We see: abstr*= ..(abstr*). Because .. is a contraction the
theorem follows. (Note the similarity of this proof and the one of Theorem 4.14.)

Appendix III. Standard objects. We want to extend the language under consider-
ation with a few standard classes of so-called standard objects, namely, the classes
Boolean and Int,eger. On these objects the usual operations can be performed, but
they must be formulated by sending messages. For example, the addition 23 + 11 is
indicated by the send expression 23! add (11), sending a message with method name
add and parameter 11 to the standard object 23. The set of expressions L, given in
Definition 3.1, is extended with these standard objects"

e ":= xlt/[el! m(e2)inew (C)[s elselfta,
where a SObj, with

SObj 7/ { tt, ff}.

Recall that we already defined (in Definition 4.1)

Obj AObj t.J SObj

AObj

_
{ tt, ff}).

Intuitively, the evaluation of the expression a, with cr SObj, results in that object
itself. For instance, the value of the expression 29 will be the integer 29.

Below, we shall first extend the definition of the operational semantics, next we
adapt the definition of the denotational semantics (following [ABKR86(b)]), and
finally we shall prove that the equivalence result of 7 still holds.

III.1. Standard objects in the operational semantics. We extend the set L,, given
in Definition 4.2, with the standard objects:

e ":= xlulel m(e2)lnew (C)[s elselflcl(e, ),

where now a Obj AObj t_J SObj.
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Next we add to the set of labelled statements (Definition 4.5) an abstract element
St that represents all standard objects and for which transitions will be specified in a
moment:

LStat* LStat [_J { S,}.

The following transitions are possible from

({St}, o-)-n ?add- ({St}, tr), ({St}, tr)-n ?sub-

({S,}, r)-b ?and- ({St}, r),, ({S,}, r)-b ?or-* ({S,},

({St}, o-)-b ?not. ({St},

for every n 77 and b {tt, ff}. (This list can be extended with transitions for other
operations.) Communication with a standard object is now modelled by the following
transitions:

If ({(c, s)}, tr)- (a, n!add (m))- ({(a, )},
then ({(a, s), S,}, o’)-y ({(a, d/(n+rn)),St}.
If ({(a, s)}, tr)- (a, b, !and (b2)) {(a, t}, o-),
then ({(a, s), St}, (r)- y ({(a, @(bl ^ b2)), St},

and by similar transitions for the other operations. The result of, for example, an
addition of the integers n and rn is computed and passed through to the parameterized
statement of the object requesting the execution of the method add.

Finally, the operational semantics of a unit (Definition 4.11) is changed by taking
into account the standard objects; we put

U]]{ tu{(/y(), srl), St}.

(In the operational semantics defined in [ABKR86(a)], the standard objects are treated
somewhat differently. There no special rules are given for the communication with a
standard object; instead, some axioms are added that replace in one step a send
expression that addresses a standard object by the corresponding value of the result.)

III.2. Standard objects in the denotational semantics. The denotational meaning
of a standard object a L is given by

[[o]](/3)(f) =f(a),

where/3 AObj, and f Cont.
We follow [ABKR86(b)] in introducing a process Pst P that represents the

denotational meaning of the standard objects. For this we have to adapt our semantic
process domain P. In Definition 5.1 the domain P is given by

P {Po} U id,/2(Y. co,,p,,ct(Stepp)).

In order to let the standard process Pst, to be defined below, fit into our semantic
domain nicely, we are forced to use closed subsets of steps rather than compact ones.
Let us indicate the process domain given in Definition 5.1 by Pco. We introduce here
Pcl, which satisfies

Pcl {Po} [-J id1/2(, - closed(Stepp,)).

We have, via an obvious embedding, that Po Pcl.
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Next we introduce Ps, Pct, which represents the meaning of all standard objects.
It satisfies the following equation"

Ps, Ao-. ({(n, add, g+): n 6 7}

U {(n, sub, g2>" n e 2}

U {<b, and, g,>" b{tt, ff}}

U {(b, or’, g,>: b {tt, ff}}

U {(b, not, g>-be{tt, ff}}),

where

g+, A Obj* Af Obj .> P. (if/ e :g then f(n +/) Ps, else Ps, fi),

gS=afie Obj*. xfe Obj-, . (if/3ieZ then f(n-/)lips, else Ps, fi),

g, Z/e Obj*. Zfe Obj-> ’. (if fie{tt, ff} then f(b ^/)Ilps, else Psi fi),

g; AB Obj* Afe Obj-> . (if/ e {tt, ff} then f(b v ) Ps, else Ps, fi),

g - ABe Obj* Af Obj -> P f -n b

This definition is self-referential since Ps, occurs at the right-hand side of the
definition. Formally, Ps, can be given as the fixed point of a suitably defined contraction
on Pcl.

We observe that Ps, is an infinitely branching process, which is an element of Pcl
but not of Po. This explains the introduction of Pi.

The operational intuition behind the definition of Ps, is the following: For every
n 7/ the set ps,(r) contains, among others, two elements, namely (n, add, g) and
(n, sub, g2). These steps indicate that the integer object n is willing to execute its
methods add and sub. If, for example by evaluating n !add (n’), a certain active object
sends a request to integer object n to execute the method add with parameter n’, then
g+, supplied with n’ and the continuation f of the active object, is executed. We have
that g+(n’)(f) is, by definition, the parallel composition of f supplied with the
immediate result of the execution of the method add, namely n + n’, and the process
PS,, which remains unaltered" g+( n’)(f f( n + n’) Psi. (A similar explanation applies
to the presence in ps,(tr) of the triples representing the Booleans.)

The standard objects are assumed to be present at the execution of every unit U.
Therefore we adapt the denotational semantics of a unit (Definition 5.4) as follows"

III.3. Semantic equivalence. Finally, we extend the arguments presented in 7 to
show that for the modified versions of U]]e and U]], as presented above, we still have

U]]e abstr( U]]).

We begin by adapting the intermediate semantics 7 (Definition 6.1), which will
now be of type

’u" .(LStat*) -> Pc,.

We put

e({s,}) =p,
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and for X
_
LStat*-{S,} (=LStat):

:(x {s,}) b(x) b({s,}),

with b(X) as defined according to Definition 6.1.
Next we extend the definition of abstr to an operation:

abstr*" Pc, -> (, -> (,)),
where abstr* is defined as in Definition II.1. Please note, however, that for processes
p P it is in general not the case that abstr*(p)(g) is a closed subset orE0 Founately
we can prove the following, which turns out to be all we need.

THEOREM III.1. For every p Po and " abstr*(p Pst)() is compact.
Proo The proof is analogous to the one for Theorem 11.3, given the additional

observation that for every p Po the set

is compact, which we prove now.
According to the definition of we have

(p ps,)()=p()ps, ps,()pp() ps,().

From the continuity of and the compactness of p() it follows that

(P()Pst) (E X ficl)= {(t, p, PSt)" (’, P’) P()}
is compact. Second, the set

(ps,()p) n (E x c,)
is empty. Finally, we show that

(p() Ips,()) n (E x P,)

is compact. Consider a sequence ((, q)) in this intersection. We show that it has a
converging subsequence ((, qk())). According to the definition of ] there exist
sequences ((i, mi, i,, P))i in p() and ((a, mi, g))i in ps() such that

q g(fl)() P.

Because p() is compact there exists a monotonic function k’NN such that

((a(,), m(,), fl(,),f(,),
is convergent. From the definition of the metric on P it follows that we may assume
that there exist a, m, and fl such that for all

ak(i) a, mk(i) m, ilk(i) fl"
The definition of Ps, implies that for every (a, m, g) in Ps,() the function g is entirely
determined by a and m. Thus

((a(,), m(i), g(i)))i ((a, m, g(i)))i ((a, m, g))i,

for some g. Suppose we have

f lim f() p lim p();

then (a, m, fl, p) p(q) and

lim (q, q) (q, g(fl)(f)1 p) (p(q)ps,(q)) (Z x P,).

COROLLARY III.2. abstr* b ,(LStat*) P.
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(Recall that P E ,compaet(E).)
THEOREM 111.3. tt abstr* .
This theorem can be proved by showing that in addition to fft also abstr*o

is a fixed point of u. This can be done analogously to the proof of Theorem 7.2.
From this observation and the fact that u is a contraction the theorem follows.

The definition of @, which is given in Definition 7.5, is also changed. It will be
a function of type

" (LStat*)-> Pcl,

that is, like the original 9" but for the clause that

A last step toward the goal of this third Appendix, which is to prove the semantic
equivalence of the denotational and operational semantics with standard objects
present, consists of the observation that Theorem 7.7, stating that

,(*)=*U,

can be proved for the new version of 9*t as well The extended proof involves some
new case analysis (within Case 2), concerning the communications with standard
objects. This being the last Appendix, this step being the last step towards our goal,
and the author being only human, we omit the details and state without proof:

THEOREM 111.4 (Extended version of Theorem 7.7) (9)= 9"U
COROLLARY III.5 (Extended version of Corollary 7.8) if’= 9"U
Finally we are ready to prove the extended version of the main theorem, Theorem

7.10, of our paper.
THEOREM III.6. U]]e abstr*( U]]).
Proof

u el{((), s.),

[Theorem 111.3]

abstr*(’v({( u((), s.), St}))

[Corollary 111.5]

abstr*(9*t({( u((,), s.), St}))

abstr*(gsS.l](u())(po) Pst)

abstr*( U]] ).
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ON THE DECOMPOSABILITY OF NC AND AC

CHRISTOPHER B. WILSONt

Abstract. It is shown for rationals a, b _> that NCaNCb gVa+b-1. As a consequence, if, for
some k _> and > 0, NCk NCk+, then NCk NC. A similar development can be applied to

circuits with unbounded fan-in. It is seen that ACaACb ACa+b, ACaNC NCa+b, and NCaAC

ACa+b-1. This shows for a >_ 0 and b >_ 1 that ACaAC ’’h]’(’;"ACb’-a+l and ACaNCt’ NCNa. An
oracle A is constructed for which Vk, YCkA C ACkA and, in fact, AC NckA+e =/= 0 for any < 1.

ASimilarly, there is an m so that Vk and < 1, NCkA+I --AckA+e = O, and hence ACA C NCk+1.

Combining, this yields an A such that, for all k and 0 < < 1, the classes ACkA and NckA+e are
incomparable.

Key words, parallel complexity classes, NC, AC, circuits, size, depth, relativization

AMS(MOS) subject classification. 68Q15

1. Introduction. In recent years the class NC has been established as one of
the preferred characterizations of those problems with very fast parallel algorithms
using a reasonable amount of hardware. It is a remarkably robust class, being invariant
when defined on quite different models of computation. The most common models are
parallel random access machines (PRAMs) with shared memory and uniform Boolean
circuit families (see [5],[7]). As we are concerned here with some detailed structural
theorems about the NC hierarchy, we will use the more basic model: that of circuits.
The structural issue in question is whether it is possible to decompose any level of
NC into components involving lower levels. We answer this affirmatively.

NCk is defined to be the class of languages that are accepted by uniform families
of circuits with bounded fan-in whose size grows polynomially with the length n of the
input and whose depth grows proportional to logk n. The classes of particular interest
are NCa supplied with an oracle from NCb. First we see that this is contained in

NCa+b-1 so long as b _> 1. Then for a >_ 1 and b >_ 0, NCa+b-1 can be expressed as

NCa relative to NCb.
This provides characterizations ofNC similar to those available for the polynomial

time hierarchy PH. The polynomial hierarchy was originally defined in terms of
one complexity class relative to another, and in [10] a characterization of each level
was provided in terms of polynomially bounded alternating quantifiers applied to a
polynomial time computable predicate. Here NC is defined in terms of increasing
depth, and we show that there is an equivalent characterization in terms of one level
of NC relative to another.

Using the above development, we get as a simple corollary a result first proved in
[4]" for integers k >_ 1 if NCk NCa+I, then NC NC. This provides a structural

Panalogy with the polynomial hierarchy" if EkP E+I, then E’ PH. However, the
NC hierarchy need not be discrete, since we can surely examine NCk for k rational
or real (here it is rational for reasons of constructibility). As a corollary of the main
result, we are able to show for rationals k _> 1 and _> 0 that NCk NCt+ implies
NCk NC.

The class ACk is the same as NCk except that unbounded fan-in gates are allowed.
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In 5 these techniques above are applied to the ACk classes. It is shown that ACACb
ACa+b, ACWeb NCa+b, and NCAC AC+b-1. This has several interesting
consequences, one being that the AC hierarchy may collapse in the same way as the
NC hierarchy: for rationals k >_ 0 and e > 0, k + e _> 1, if AVk ACk+e, then ACk
AC. Another consequence is for rationals a _> 0 and b _> 1 that .AAc_va J/(’a+".-ACbl
and ACC NcN+CI. That is, an NCk+I reduction provides no more power than
an ACk reduction when acting on any level of NC or AC.

In [12] an oracle A was constructed such that Vk, NCkA C NckA+I, where "C"
denotes proper containment. In 6 we take that development considerably further.

AThe same oracle A shows that Vk and < 1, ACA NC+ O. So in particular,

NCkA C ACkA. A different approach to oracle-based languages allows us to construct
Aan A for which Vk and e < 1, NCkA+I ACk+ 7 O, and hence ACkA C NCkA+I The

first construction allows an unbounded fan-in circuit to query a long sequence of large
strings. The second construction takes advantage of the fact that a bounded fan-in
circuit is charged less for a short query than for a long one, which is not true in the
unbounded case. The two constructions can be combined to produce an A such that

Afor any k and 0 < < 1, ACkA and NCk+ are incomparable.

2. Definitions and notation. A Boolean circuit is an acyclic directed graph
whose nodes are labeled with an operator. Nodes of indegree zero are labeled as
either input or constant gates, and those of outdegree zero are output gates. Nodes of
indegree one are negation or identity gates, whereas those of indegree two are and or
or gates. No nodes in the graph will be allowed to have indegree greater than two. A
node may be both an output gate and perform an operation. Since we are primarily
interested in deciding set membership, the circuits of use to us have only a single
output gate. The circuit accepts an input string if the length of the string in binary
is the same as the number of input gates of the circuit, and the circuit outputs the
value one when given the string on its input gates.

The size of a circuit is the number of nodes it contains, and its depth is the length
of the longest directed path in the graph. Intuitively, the size can be thought of as

measuring the use of the hardware resource, whereas the depth is a measure of parallel
time. A circuit family {On } accepts a set L if, for all n, cn has n input nodes and
accepts only those strings in L of length n. The circuit family has size s(n) and depth
d(n) if size(Cn) O(s(n)) and depth(cn) O(d(n)).

Another requirement put on circuit families is that of uniformity. This can be
described in several ways, as covered in [8].

DEFINITION 1. A circuit family {Cn} is u(n)-uniform if there is a deterministic
Turing machine which on any input of length n outputs an encoding of On using
O(u(n)) workspace.

A circuit family is UB uniform if it is depth(cn)-uniform, and it is UBC uniform if
it is log(size(c))-uniform. Other more complicated but technically more appealing
notions of uniformity involve determining the structure of the circuit’s connections on
an alternating Turing machine [8]. We will adopt UBC uniformity in the definitions
below, though the exact choice of uniformity does not seem to affect our results.

DEFINITION 2. gCk U(log n)-DEPTH(logk n).
DEFINITION 3. NC [.Jc=0 NCk.
There is a slight deviation in notation here. NCk is normally written as

NC here we will leave room for an oracle as superscript. Also notice that the
size of the circuits is not explicitly restricted to be polynomial. This, however, follows
automatically from the uniformity condition. A Turing machine operating in O(log n)
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space will only run for polynomial time (if it is going to halt), so it will only be able
to output descriptions of polynomial size circuits.

The notion of allowing an NC circuit access to an oracle has been addressed
in [5],[12]. The circuit is allowed oracle gates, through which it can determine the
membership of a string in the oracle set. An oracle gate that has k input bits (sufficient
for determining membership in the oracle of any string of length k) is defined to have
size k and depth [log2 k. If X is a set, we denote NCk relative to X by NC. If C is
a class of sets, then NC is (Jxc NC. The uniformity condition will be unaffected
by the presence of an oracle. The Turing machine that acts as a constructor of the
circuit family will not have access to the oracle. This issue is discussed in greater
detail in [12].

This is directly analogous to the notion of NCl-reducibility defined in [5], where
the reduction is from function to function.

DEFINITION 4. A is NCl-reducible to B, A NC1 B, if and only if A NC1B.
An unbounded fan-in circuit, which we will abbreviate hereafter as a UBF circuit,

is a Boolean circuit as above but with no restriction on the indegree of any node. A
class directly analogous to NC can be defined on this model.

DEFINITION 5. ACk U(log n)-UBF DEPTH(logk n).
DEFINITION 6. AC [.J=o ACk.
It is not too hard to see that for any k >_ O, NCk C_ ACk c_ NCk+. A discussion

of this class and related issues can be found in [5]. It is also known that the PARITY
function is not in ACo ([6]). This separates ACo from NC and AC, but it is the
only known such separation, aside from the obvious NCo ACo.

To handle an oracle in ACk, we will allow oracle gates as above. As in [3],
however, the size and depth of this gate is 1. (This is similar also to [4].) Intuitively,
this adheres to the spirit of unbounded fan-in, as we can also compute the and of k
bits in depth 1. On a bounded fan-in model, the k-bit and requires depth log k, as it
does to determine membership of a k-bit string in an oracle.

All logarithms are to the base two. In fact, by logn we will mean the function
max(l, [log2 n] ).

3. Oracles from NC. Initially we address the issue of allowing NC to have
oracles from NC. That is, we want to know how complex a set in NCaNcb can be.
This has been partially addressed in [5], where it is seen that NCk is closed under
<_NC,, which is to say, NC1Nck NC. Adapting the proof of that result yields

NCaNCb C_ NCab. This can be considerably sharpened.
THEOREM 3.1. For b >_ 1, NCNC C_ NCa+b-.
Proof. Consider an O(loga n) depth circuit with queries made to a language in

NCb. Look at any path from an input to the output. It has length O(log n), so the

series of queries ql,’", qk made on that path must satisfy Eik__l log Iqil -< c log n.
Each query q has length at most polynomial in n, so log Iql < d log n. We will replace
each query with an NCb circuit. In the new circuit, after replacement, the length of
the path will be the maximum of O(log n) (from the part of the path excluding the

queries) and Y.=I e logb Iq] (caused by replacing the query by an NCb circuit). The
latter value can be bounded.

k k

lg6 Iql lg6-x Iql" log Iql
i=1 i=1
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k

<_ eE(dlogrt)b-1 loglql
i=1

e(dlogrt)b-1 loglql
i=1

<_ e(dlogn)b-lclogart
O((logt)a+b-1).

Since b _> 1, we have a + b- 1 _> a, so the depth of the entire path becomes
O((logIt)a+b-1).

To show a containment in the other direction, we must take a uniform circuit
family and be able to divide each circuit into arbitrarily sized uniform subcircuits.

THEOREM 3.2. NCa+b-1 C_ NCNCb for rationals a >_ 1 and b >_ O.

Proof. Let us assume that b _> 1. Otherwise, if 0 _< b < 1, then trivially
NCa+b-1 Q_ NCa

_
NCaNCb.

Given a language S E.NCa+b-1, look at the family {an} of circuits accepting it.
The a, are generable by a Turing machine Ms in space O(log n) from any input of
length n, and each an has depth c(log n)a+b-1 for some constant c. Suppose that
on an input of size n outputs a sequence of p tuples of the form (i, li, ri, ti), where
and ri are the inputs to gate and ti indicates the type of gate i. In a fixed an, let
dist(i) be the maximum distance of gate from an input gate.

We will demonstrate the existence of an NCa circuit family using an oracle from
NCb and behaving the same as {an}. This will show that S NCNCb. The idea
is to divide each an into c log"-1 n levels, each of depth logb n. We then provide the
computation of each level as an oracle. Since each query will have at most polynomial
length, the depth of each query will be O(logn). There are at most clogS-in of
them in any series, so the resulting relativized circuit has depth O(log n). This NC
circuit family is easily seen to be log n-uniform.

A problem arises with the NCb subcircuits. It is not at all clear that they are

uniform, since generating them requires determining the depth of each node in
This seems to require transitive closure, a problem complete for NL and not known
to be solvable in O(logn) deterministic space. Instead we use a technique found in
Theorem 12 of [1] to construct from an an equivalent circuit/3n with a very regular
structure that can be easily subdivided.

Let K c(log )a+b-1 be an upper bound to the depth of cn. Also let p p(n)
bound the number of gates in cn. The circuit fin consists of K levels, each of p gates,
one for each gate of cn. Each level takes all its inputs from the previous level. Each
level Lj consists of gates gj,1, gj,2, gj,p.

In L0, if gate is an input node, then gate go,i will be a single gate, labeled as an
input gate. Otherwise, gate go,i will be a constant zero gate.

At level Lj, for j _> 1, each gate gj,i will take as inputs gj-l,li and gj-l,ri. That
gate will compute gj-,t o !Tj-1,r, where o is the operation determined by ti. Other
gates of indegree one and zero can be handled in an entirely similar manner. However,
if is an input gate in cn, then 9j,i will perform the identity operation on input gj_ 1,i.

This way, the original input values are passed from level to level.
Figure l(a) illustrates a sample circuit. Figure l(b) shows the transformation of

that circuit. The circled nodes indicate which nodes are relevant in the simulation of
the original circuit.
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FIG. 1. A circuit and its transformation.

The fact that fin performs the same as a can be shown by induction on the
depth of the gates of an. This follows from

Claim,. If dist(i) <_ j, then gate gj,i of/n outputs the same value as gate of
The claim is seen by induction on j. If dist(i) 0, then is an input and gate

go,i provides that input. Suppose then that dist(i) <_ j for j _> 1. If is an input
gate in an, then by definition gj,i provides that value. For not an input, look at its
left li and right ri predecessors. Since dist(l) _< j- 1 and dist(r) _< j- 1, by the
inductive hypothesis gj-l,li and gj-l,ri yield the same values as li and ri in an..Gate
gj,i computes the same operation on those values as gate in a does.

The circuit family {fin} thus accepts S. Each /,, is split into subcircuits B0,
B1,... ,Bclog,-, n. Bo is simply L0. Subcircuit Bt consists of levels L(t_l) logbn+
through Lt logb n" Each of these Bt is now log n-uniform, so each computes a function

ft in NCb. Here we see the need for a and b to be rational, for otherwise those levels
could not necessarily be determined. The language

F= { <y,i,l> [theithbitoff(y) isl }
is also in NCb, since b _> 1. Using F as an oracle, there will be an NC circuit
accepting S.

In the previous proof, notice that we split up the circuit and provide each level
as an NCb oracle. Unfortunately, each of these correspond to separate languages, but
the circuit can query only one language. As in [4], we provide information about all
the languages encoded into the language F. To perform the selection, we need at least
O(logn) depth, which is why b >_ 1 was necessary in the construction above. This
problem also arises in Theorem 5.2(b)-(c) when dealing with AC.

The method of encoding the problem of computing a function as a set recognition
problem used above could also be applied more generally. If NC and AC were viewed
as classes of functions, as they normally are, then the structural decompostions of
these classes derived in this paper could still be shown to hold.

4. Main theorem and applications. The main theorem follows directly from
Theorems 3.1 and 3.2.

THEOREM 4.1. For rationals a >_ 1 and b >_ 1, NCa+b-1 NCNC.
As corollaries to Theorem 4.1, we get fairly simple proofs of some other structural

properties.
COROLLARY 4.2. [5]. NCk is closed under __NC for k >_ 1.
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Proof. NCNC" NCI+k-1 NCk
COROLLARY 4.3. Let k >_ 1 be rational. If NCk NCk+I, then NCk NC.
Proof. First note that NCk+2 NC2Nck+l NC2NCk NCk+I NCk. The

fact that NCk NC follows by induction via this process. [:]

Corollary 4.3 has been proved in [4], holding only when k is an integer. Our
characterizations provide for a somewhat more general case. We can also show un-
der weakened assumptions that NC will still collapse. Consider, for example, the
assumption that NC3.5 NC4. Then

NC4.5 NC5C4 NC5c35 NC4 NC3.5,

so by Corollary 4.3, NC3.5 NC. This can be generalized.
THEOREM 4.4. Let k >_ 1 and > 0 be rationals. If NCk NCk+, then

NCk NC.
Proof. We will start to decompose NCk+I"

--NCk+eNCk+l N(’2_ 1V(’2_ NCk+l-e
.NC+ ,-NC NCk+I’2-2e V ’2--2e

,,-NC NCk+l_ce

after c iterations of this process. We must choose an integer c so that 2- ce _> 1
(recall that Theorem 4.1 needs a _> 1) and k + 1- ce _< k + e. Choosing c in the range
e-1 1 < c < e-1 will work. Therefore

NCk+I NCk+l-ce C_ NCk+ NCk.

Corollary 4.3 now yields the fact that NCk NC.
The powers need not always be rational. The theorems above would hold for

reals satisfying certain space-constructibility constraints (such as requiring a sufficient
number of bits, dependent on the length of the input, to be computable in O(log n)
space). The previous theorem also holds for arbitrary reals.

COROLLARY 4.5. Let c >_ 1 and 5 > 0 be real numbers. If NC NC+6, then
NC NC.

Proof. If c 1, then it is obviously rational. Pick rational e E (0, 5] and apply
Theorem 4.4. If a > 1, then choose rationals k and e satisfying k >_ a, > 0, and
kWe_< a+5. This can be achieved by picking k E [a,a+(5/2)] and (0,5/2].
Note that k + e _< a + (5/2) + (5/2) a + 5.

Then

NCk+ C_ NC+6 NC c_ NCk.

Because NCk NCk+ and k >_ 1, we can apply Theorem 4.4 and see that

NC NC} NCk+ c_ NC+6 NC.

Theorem 4.4 can, under a different assumption, show a collapse of NC below
NC1.

COROLLARY 4.6. Let k >_ 0 and > 0 be rationals, k + > 1. If NCk NCk+e,
then NCk NC.

Proof. If k >_ 1, then Theorem 4.4 applies. If k < 1, then NCk+ NCk C_ NC1.
In other words, NC NC+, where k+-I > 0. Theorem 4.4 shows that
NC- NC1 C_ NCk+ NCk.
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5. Unbounded fan-in circuits. In this section we apply the previous develop-
meat to the class AC. First, we will point out that the standard containment of ACk
in NCk+I holds for any oracle.

LEMMA 5.1. For any oracle A and k >_ O, NCA C_ AC C_ NckA+I.
AProof. The first containment is trivial. To see that ACkA c_ NC+, we can

expand any and and or gate into a bounded fan-in tree. Charging log s rather than 1
for the depth of an oracle gate of size s will increase the depth by a factor of O(log n),
since s is at most a polynomial in n. For a careful handling of the uniformity issue,
the reader is referred to [8]. [l

Similar to Theorems 3.1 and 3.2, we can see what happens when we give NCb
and ACb to NCa and ACa as oracles.

THEOREM 5.2.
ACAcb C_ AC+b for a >_ 0 and b >_ O.

(b) AC+b C_ ACACb for rationals a >_ 0 and b >_ 1.
(c) NCa+b C_ ACaNC for rationals a >_ 0 and b >_ 1.

(d) .NCa C_ ACa+b-1 for a _> 1 and b _> 1.

Proof. (a) In a UBF circuit of depth O(log n), look at the series of queries to ACb
made on a path from an input to the output. There are at most O(log n) of them,
since each has depth one. At worst, they are polynomial in size, so we will replace
each by a UBF circuit of depth O(logb n). The resulting UBF circuit is log n-uniform
and has depth O((logn)a+b).

(b) The uniform leveling technique in Theorem 3.2 applies just as well to UBF
circuits. In the same way, we can take a circuit of depth O((logn)+b) and split it
into O(log n) levels (each log n-uniform) of depth logb n. Each computes a function

fl (1 _< _< O(log n)) in ACb. The set

F { (y, i, Ithe th bit of fl(y)is 1 }

is also in ACb so long as b > 1. The queries to F have depth one, so the set accepted
by the original circuit family is in AC.

(c) The same leveling technique used in Theorem 3.2 and in the previous para-
graph applies here. The O(loga n) queries to NCb are of polynomial size but are made
by a UBF circuit in this context. Each will have depth one.

(d) Here we replace a series of queries in the NC circuit by ACb circuits. The
result will be a UBF circuit. Its depth will be O((logn)a+b-) by an appeal to the
techniques of Theorem 3.1. [3

Now we are able to provide other characterizations of NCk and ACk as in Theo-
rem 4.1.

THEOREM 5.3. Let a and b be rationals.
(a) AC ACa+b for a >_ 0 and b >_ 1.
(b) ACNC NCa+b for a >_ 0 and b >_ 1.
(c) ..NC ACbv ACa+b-1 for a >_ 1 and b >_ 1.

Proof. Part (a) follows from Theorem 5.2(a)-(b). Part (b) in one direction follows
from Theorem 5.2(c). To get containment in the other direction, we notice that

ACNC C_ NcN C_ NC+b

by Lemma 5.1 and Theorem 3.1. Part (c) is obtained by use of Theorem 5.2(d) and
the fact that

ACb ACbACa+b- C_ ACa_ C_ NCa
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by Theorem 5.2(b) and Lamina 5.1. rl

The AC hierarchy collapses like the NC hierarchy. Modifying the proof of The-
orem 4.4 sutfices to show this.

COROLLARY 5.4. Let k >_ O and e > O be rationals, k + e >_ 1. If ACk ACk+,
then ACk AC.

An interesting point that Theorem 5.3 shows is that AC is equal to NC+I if
oracles from ACb or NCb are used.

COROLLARY 5.5. Let a > 0 and b > 1 be rationals.
(a) AAC AYAC

’a a+l

(b) ACC NC
AC CycPro@ By Theorems 4.1 and 5.3, ACc AC+b ’+ and A

NCa+b NC.
We see that if oracles are chosen from ACb or NCb for b 1, then AC offers

no less power than NCa+I. This seems counterintuitive in light of the fact that
ACo is properly contained in NC We also see that ACC1 ArNC1 NCk+I’’k+l

ACSimilarly, 1’ AC. Note that this does not say that any NCa+I reduction can
be replaced with an AC reduction on sets from AC or NC. It does say that if A
NC+-reduces to B NC, then there is a C NCb such that A AC-reduces to
C. An interesting question is the relationship between B and C.

At lower levels of the NC and AC hierarchies, we are especially interested in
the containment NC AC1 NC2. Theorem 5.3 shows that AC NCC1 and
NC2 ACc. We could view this as evidence that AC1 is "closer to" NC2 than
NC1, since it needs a weaker oracle. However, AC1 has more power in accessing the
oracle than does NC, so we must be careful in making such interpretations.

In [4] there is a characterization of NC as a hierarchy similar to the polynomial
hierarchy"

EC NC and ENC ACck+l

It is shown that for all integers k 1 that EC NCa. This follows from Theo-
rem 5.3(b) as well. Also, AC1 can be replaced by NC2. Similarly, each ACa could be
defined in this manner:

EAC c

Ec AC andEAc AC (=NCy2
k+l

We have seen that if NCk NCj (ACk ACj) for k < j, then NC (AC)
collapses. A natural question is what happens if either NCk ACk or ACk NVk+l.
We cannot exhibit a hierarchy collapse, but the equalities translate upwards.

COROLLARY 5.6. Let k > 1 be rational.
(a) /f NCk ACk, then, for all rational j >_ k, NCj ACj.
(b) If ACk NCk+I, then, for all rational j >_ k, ACj NCj+I.
Proof. For part (a), assume that NCa ACk. For any rational 5 >_ 0,

ACk+ ACck ACCk NCk+.

Similarly for part (b), assume that ACk NCk+I. For any rational 5 >_ 0,

-NC+I Nc1A+Cs ACk+5NCk+I+6 -N’I+6

These follow directly from Theorems 4.1 and 5.3.



392 CHRISTOPHER B. WILSON

6. Separation with oracles. In [12] there is exhibited an oracle A so that, for
all k, NCk ANCk+1. Here we will apply the same method to separate NC from
ACk and ACk from NCk+I.

A language Lk+l (A) was introduced in [12] having the property that VA, Lk+I(A) E
ANCa+ 1. A specific oracle A was then constructed so that Vk, Lk+I(A) NCkA. It

turns out for any k and oracle A that La+I(A) ACkA. This suffices to give a
relativized separation of NCk and ACk.

THEOREM 6.1. There exists a recursive oracle A so that for any rational k >_ 0
Aand O <_ < l, ACA NC+ O.

Proof. We will describe the language Lk+I(A) and then point out why it is in

AC. La+I(A) is the set accepted by the following procedure.

Input x, Ixl n:

K -- [log+1 n]
for -- 1 to K- 1 do

if xOn-ilbi_l bl A then bi -- 1
else bi 0

if xO’-K lbK_I bl A
then accept x
else reject x.

A cursory examination of this algorithm would seem to indicate that Lk+I(A) is
in ACkA+I We can do better if we are careful. A UBF circuit can determine log n
bits bi at a time, so the maximum depth need only be O(logk n). To see that logn
bits can be determined in constant depth and polynomial size, let us illustrate how
to find the first log n bits bi. Let binary strings "), have length log n: 7 ,log /1.

Algn(xon-i19/i 71 A) where pl p0Define f. i=1 1"’" p and -p for Boolean
variable p. Then bi /,-.,=1 f" A similar process can be repeated to find the next
log n bits in constant depth and polynomial size, and so on. Thus, for all k and A,
Lk+I(A) ACkA.

Let (.,.) be a standard pairwise encoding function on integers. This can be
extended to handle more integers by composition. The ith circuit family is the one
constructed by :nachine Mi, where M1,M2,... is an enumeration of O(logn) space
transducers. At stage e (i, c,p, q, s, t), letting k p/q and e sit we ensure that
if Mi constructs a circuit family of depth at most c logk+ n, then that family cannot
accept Lk+I(A). This is done by choosing n appropriately, ensuring on an input of
length n that Mi constructs an c of depth at most c logk+ n, and, if so, diagonalizing
across the behavior of a. Initially, A will be empty, and strings will be added to it.
Once added, no string will ever be removed.

For the moment we are only concerned about queries of length 2n, those that
are relevant to membership in Lk+I(A). Given a circuit a, we will break it up into
independent query levels. Level 1 consists of those queries that depend on no other
query (that is, no other query lies on a directed path ending at that query). Level j
consists of those queries that depend on some query from level j 1. If c has depth
c logk+ n, then it can have at most (clogk+ n)/(log2n) <_ clog+-1 n such levels.

Construction of A. Stage e (i, c, p, q, s, t).
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Check that q % 0, t % 0, and e sit < 1. If not, skip this stage. Let k p/q.
Choose n large enough to satisfy the following constraints:. 2(log- n)/c is larger than the polynomial that bounds the size of the circuit

constructed by Mi on 0 and
2n is larger than anything queried or added to A at any previous stage.

Let a be the circuit constructed by Mi on 0n. If the depth of a exceeds c logk+ n,
then skip this stage. We now proceed in steps, and at each step fix

(logk+ n)/(clogk+e- n) (log2-e n)/c

bits bi. The steps will be numbered 1 through clogk+e-1 n. Fix x On as the input
to a.

Step m. Let j ((m- 1)/c)loge- n. (Invariant: No string of the form xzbj.., b,

Izl-n- j, has been queried by a at levels 1 through m- 1.) There are 2(lg- ’)/c

strings y of length (loge- n)/c. By the first constraint in the choice of n there must
be some y for which no string of the form xzyby...b, Izl n- lYl- J, has been
queried at this or any previous level. Pick such a y and for 1 to (loge- n)/c put
xO’-t-Jlyt- ylbj.., b into A if and only if yt=l. (End step m.)

Now that we have dealt with all levels of a, we can add strings of the form
xzbK_ b, K log+ n and Izl n- K + 1, to A without affecting the behavior
of a on x. The final step is to add xOn-K lbK-1 bl to A if and only if a with oracle
A rejects x. End construction.

Adding the final string to A cannot affect the behavior of a on x due to the
invariance condition.

The first constraint in the choice of n provides further assurance that a will be
unable to accept Lk+(A). Since it is certainly true that 2(g- n)/d > n, we must
have (log2- n)/d > log n or d < log- n. This implies that dlog+n < logk+ n,
the latter value being the depth within which an NC circuit could simulate the ACk
circuit accepting Lk+I(A) described above. [3

COROLLARY 6.2. There exists an oracle A so that for any rational k > O, NCkA
AC, where "" denotes proper containment.

An oracle was able to witness a separation between NCk and ACk, since an ACk
circuit is able to ask a dependent series of O(logk n) questions, each of length O(n).
An NCk circuit is not always able to do this. If we want to separate ACk and NCk+,
we will have to look at some advantage NCk+ has over ACk. One advantage is that
it can ask a series of O(logk+ n/loglogn) questions, each of length O(log2 n). A
bounded fan-in circuit benefits from asking shorter questions, whereas an unbounded
fan-in circuit has no easy way to do this.

THEOREM 6.3. There ezists a recursive oracle A so that, for any rational k > 0
and 0 < 1, NckA+ AckA+ O.

Proof. Consider the language Sk+(A) described by the following algorithm"

Input x, Ix[ n:

X0 olog n

K -- log2 n, L l;a+l’
log log n

for +- 1 to L do begin
for every 1 _< j _< K do in parallel
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if Xi_lOK-JlOj-1 E A then bj +-- 1
else bj 0

end parallel
Xi bgbg-1 bl
end

if xLOK A
then accept x
else reject x.

On an NC circuit, the depth to determine membership in Sk+I(A) is

1ogk+ n )loglogn
+ 1 log(21og2 n) O(logk+l ).

ASo for any A, Sk+I(A) NCk+1. The obvious UBF circuit for ’k+l(A) has depth
(logk+l n)/(log log n). We will show how to construct an oracle A such that, for all k,

AoZk+l(A) ACk+.
Similar to the previous construction, at stage e (i, c,p, q, s, t) if M constructs

a circuit family of depth no more than c log+ n, where k p/q and e s/t, then we
will ensure that this family will not accept Sk+(A). Initially, A will be empty, and
strings will be added to it. Once added, no string will ever be removed.

Given a circuit c, we will break it up into independent query levels, as above.
The number of independent query levels in a UBF circuit is clearly bounded above
by its depth.

Construction of A. Stage e (i, c, p, q, s, t}.
Check that q : 0, t : 0, and sit < 1. If not, skip this stage. Let k p/q.
Choose n large enough to satisfy the following constraints:

log’+ n > C logk+ n."10g log. 2og n exceeds c logk+ n plus the size (a polynomial) of the circuit constructed
by M on 0.
2 log2 n is larger than anything queried or added to A at any previous stage.

Let be the UBF circuit constructed by M on 0’. If the depth of c is larger
than clogk+n, then skip the rest of this stage. Fix 0’ as the input to a. This
stage proceeds in Steps 1 through (logk+ n)/(log log n). Initially, let x0 0gn,
K log2 n, and L (logk+ln)/(loglogn).

Step i. Find an x of length log n and Vj < i, x 7 xj so that for no z of length
log2 n is xiz queried at levels 1 through of a. This must exist, since 2lgn is larger
than the size of the circuit plus the number of its query levels. Where x bg... b,
add x_Og-jlOj-1 to A for each j satisfying by 1. (End step i.)

Finally, if a rejects 0’, then add XLOK to A. If a accepts, do not add it to A.
End construction.

Note that L is larger than the number of independent query levels of a, so by
construction c cannot have queried xLOK. For the A described by the construction,

Ait is the case for every rational k and < 1 that any AC+ circuit family cannot
accept Sk+ (A). V]
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COROLLARY 6.4. There exists an oracle A so that, for any rational k >_ 0,
ACkA C NckA+I, where "C" denotes proper containment.

A AIn fact, we have shown that NCk+ ACk+ contains a tally set. Another fact
worth noting is that the proofs of the two previous theorems could be interleaved to
construct an A where for all k, NCA C ACA C NckA+I As an even stronger result,
we can get the following.

COaOLLAaY 6.5. There exists an oracle A such that for all rationals k >_ 0 and
0 < e < 1, ACkA and NckA+ are incomparable.

In [2],[131 there is introduced a notion of relativized space that is a reasonable
measure to compare with relativized depth. One is referred to the original papers
for details, but essentially the oracle Turing machine can put partially constructed
queries into some storage mechanism, say a stack. In this way we define, for an oracle
A, the classes sLA, stack log-space relative to A, and sNLA, the nondeterministic
version (an important consideration here is that the nondeterministic machine must
act deterministically while the stack is not empty). In [13] it is shown, for any A,
that NC1A c_ sLA and sNLA C_ NCaA. The proof of the latter containment can
easily be modified to show that sNLA C_ ACA. Compare these to the unrelativized
NC1 C_ L C_ NL C_ AC1 C_ NC2.

Corollary 6.5 now shows that there is an oracle A so that, for any e < 1, sLA-

ACA is not empty, because NCA and ACA are incomparable. This indicates that
it may be difficult if not unlikely to improve upon the containment NL C_ ACt. By
improvement, we mean in terms of depth, as it is known that NL is contained in the
semi-unbounded class SAC1 [11]. Similarly, for any e < 1, NcA+- sNLA is not
empty.

7. Conclusion. The NC and AC hierarchies provide an interesting structural
contrast to other hierarchies. In many respects they behave like the polynomial hier-
archy. This is especially true when considering that for these hierarchies a collapse at
one level spreads upward, and this collapse can be shown by a decomposition of the
higher levels. Unlike the polynomial hierarchy, the NC and AC hierarchies are dense.
In this, they act like the classical space/time complexity classes. This is reasonable:
NC and AC are defined by allowing progressively more and more parallel time. For
NC and AC, however, no separation results are known (aside from ACo NC1
[6]). A statement about the NC hierarchy that combines features of both the other
hierarchies is the following:

For any two rationals r < t there exists an s such that NCr C_ NC8 C_
NCt and if NCs is equal to either NCr or NCt, then NC collapses
at least to NC.

An interesting open question raised by Corollary 5.5 is the relationship between
ACa and NCa+I reducibilities. For example, are they the same on L or NL" is

AcL Nc+L 1.v Under what circumstances can we say that A _<NC"+I B implies
that A <_AC, B? Answering these questions should help us pinpoint the relationship
of AC to NCa+l.

In 7 we saw oracles A so that, for any rational k, NC C AC and ACA C
ANCa+. We would like to see oracles B and C where, for any k, NC C AC

N c. c cCa+ and NCk ACa C NCk+ 1. This would raise an intriguing possibility.
We conclude this paper by pointing out that although the method presented here

may seem a natural way to provide NC and AC with an oracle, the corresponding
problem for space-bounded classes has been much more difficult ([2],[9],[13]). This
has been especially true when comparing relativized NC to relativized space.
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Abstract. A directed cycle separator of an n-vertex directed graph is a vertex-simple directed
cycle such that when the vertices of the cycle are deleted, the resulting graph has no strongly
connected component with more than n/2 vertices. It is shown that the problem of finding a directed
cycle separator is in randomized NC. It is also proved that computing cycle separators and conducting
depth-first search in directed graphs are deterministicMly NC-equivMent. These two results together
yield the first randomized NC algorithm for depth-first search in general directed graphs.

Key words, depth-first search, directed graphs, parallel algorithms, RNC, cycle separators
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1. Introduction. Depth-first search is one of the most useful tools in graph the-
ory [13], [2]. The depth-first search problem is the following: given a graph and a dis-
tinguished vertex, construct a tree that corresponds to performing depth-first search
of the graph starting from the given vertex. In the setting of parallel computation,
this problem has been studied by a number of authors. For lexicographic depth-first
search, Reif shows that the problem is P-complete even for general undirected graphs
[11]. Ghosh and Bhattacharjee provide an NC algorithm for lexicographic depth-first
search in acyclic directed graphs [5]. Their algorithm has an error and is corrected by
Zhang [14]. For unordered depth-first search, Smith gives the first NC algorithm for
planar undirected graphs [12]. The processor complexity of his algorithm is reduced
to linear by Ja’Ja and Kosaraju [8] and independently by He and Yesha [7]. Anderson
provides an RNC algorithm to find a maximal path of a general undirected graph
[3]; a maximal path is the first branch of a depth-first search tree. Aggarwal and
Anderson give an RNC algorithm for general undirected graphs [1]. Kao provides a
deterministic NC algorithm for planar directed graphs [9]. In this paper, we give the
first RNC algorithm for general directed graphs.

Our general directed depth-first search algorithm uses a divide-and-conquer strat-
egy similar to that used by Aggarwal and Anderson for general undirected depth-first
search [1]. In addition to this strategy, a crucial idea used in the paper is that of di-
rected cycle separators. This idea was originally introduced by Kao for planar directed
depth-first search [9]. At the very highest level, our algorithm finds and removes a por-
tion of a depth-first search tree of a given directed graph. The algorithm then recurses
on strongly connected components as well as certain weakly connected subgraphs of
the resulting graph. To limit the depth of recursion, directed cycle separators are
used to divide the given graph into small pieces. While the undirected and directed
depth-first search algorithms have similar structures, directed graphs require more
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work. For instance, a major difference between the two algorithms arises in the con-
struction of separators. Both of the algorithms construct separators by repeatedly
joining paths until only a single path remains. However, a key idea in the undirected
case is to carry out bisection by traversing and joining the longer half of a path; in
the directed case, it is not possible to choose the direction of traversal. Therefore,
joining directed paths requires a, more sophisticated idea. Another major difference
is in the application of the separator that allows the problem decomposition. In the
undirected case, once a path separator is given, the decomposition of the graph is
almost immediate. In the directed case, however, while the removal of a directed
cycle separator makes all resulting strongly connected components reasonably small,
the resulting graph may still have large weakly connected subgraphs. In order to suc-
cessfully divide the graph for the recursive calls, certain weakly connected subgraphs
also must be reduced, which requires a fair amount of work.

The parallel computation model used in this paper is the EREW PRAM model,
i.e., no two processors are allowed to simultaneously read from or write into the same
memory cell. Many of our complexity results are expressed in terms of MM(n),
which denotes the sequential time, currently O(n2"376), for multiplying two n x n
integer matrices in Strassen’s model [2], [4]. This paper is organized as follows. Sec-
tion 2 introduces the concept of directed cycle separators and discusses a number
of preliminary results. Section 3 gives the first major result of this paper, estab-
lishing a deterministic NC-equivalence between finding directed cycle separators and
performing directed depth-first search. Section 4 describes an NC reduction from
the problem of finding a directed cycle separator to a particular kind of a matching
problem. Section 5 combines these results together, estimates time complexity and
processor bounds, and discusses open problems and extensions.

2. Directed cycle separators. A separator of a graph is a subgraph whose
removal disconnects the graph into small pieces. Most of the works on parallel depth-
first search rely on finding some form of graph separator. The general undirected
depth-first search algorithm uses path separators [1]. The pianar undirected depth-
first search algorithms employ undirected cycle separators [12], [7], [8]. The planar
directed depth-first search algorithm uses directed cycle separators and other kinds
of separators in vertex-weighted graphs [9]. This paper follows the directed separator
definition given by Kao [9]: a separator of an n-vertex directed graph G is a set of
vertices S such that G- S has no strongly connected component with more than
n/2 vertices. A directed path separator is a vertex-simple directed path whose vertices
form a separator; a directed cycle separator is a vertex-simple directed cycle whose
vertices form a separator. A single vertex is considered a cycle of length zero; thus,
if the removal of a vertex separates a graph, the vertex is a cycle separator. Kao has
shown that every directed graph has a directed path separator and a directed cycle
separator [9]. Furthermore, such a path separator is computable in linear sequential
time, and such a cycle separator is computable within a log n factor of the optimal
linear sequential time. Here we modify his proof and obtain the optimal sequential
time bound.

THEOREM 2.1. Every directed graph has a directed cycle separator. Such a

separator can be found in O(n + e) sequential time for any directed graph of n vertices
and e arcs.

Proof. Because every directed graph has a directed path separator and such a
path separator can be found in linear time [9], it suffices to show that any directed
path separator can be converted into a directed cycle separator in linear time. In the
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following discussion we describe such a conversion in two steps.
Let G be a directed graph of n vertices. For a subgraph S and a vertex v in S,

let Ri,(v, S) (or Rot(v, S)) denote the set of vertices that can reach (or respectively,
can be reached from) v through directed paths in S. A directed path separator
P Xl,.." ,x) is called semiminimal if Rout(x,, G- {Xl,"" ,Xp_l}) has more than
n/2 vertices and Ri(x,G- {x.,... ,Xp}) also has more than n/2 vertices. Given
such a P, a directed cycle separator can be built in linear time as follows. There are
two cases: p 1 and p > 1. If p 1, then x alone forms a cycle separator. If p > 1,
then because both Ri,(Xl, G- {xe,...,Xp}) and Rot(xp, G- {x,...,Xp-1}) have
more than n/2 vertices, the two sets share at least one common vertex. Consequently,
there is vertex-simple directed path P from xp to x such that P is completely in
the two sets. Because the two sets and P share only Xl and Xp, P and P form a

vertex-simple directed cycle. Because P is already a separator, the cycle is a directed
cycle separator. This step takes linear time because P can be found in linear time.

To finish the proof, we show how to cut any directed path separator Q y,..., yq
into a semiminimal one in linear time as follows. The idea is that if Iout(Yq, G-
{y,"’,yq-1}) has no more than n/2 vertices, then Q’= y,...,yq_ is still a path
separator. Otherwise, let C be the strongly connected component in G- Q such
that C contains more than n/2 vertices. Because Q is a separator, C must con-
tain yq. This implies that C is a subset of Rout(Yq, G- {y,... ,Yq--1}), which is
a contradiction. We can extend the above idea: if t is the largest index such that
Rot(yt, G-{y,’",yt-}) has more than n/2 vertices, then Q" y,’",yt is
still a path separator. The index t can be identified easily in linear time by using
the following recurrence formula. Let Rout, denote Rot(y,G- {y," ",y-}) for

1, ..., q- 1. Then Rot, Rot,i+ Rot(y, G- Rot,i+l {yl,"", y- }). After
t is found, we perform the same computation on Q" at the other end by computing
Rin. After both ends of Q are processed, we have a semiminimal directed path sep-
arator. Since each end of Q can be cut in linear time, the whole process takes linear
time. [:]

3. Using cycle separators to conduct depth-first search. Kao has also
shown that given a directed depth-first search forest, finding a directed path separator
is in deterministic NC, and given a directed path separator, finding a directed cycle
separator is also in deterministic NC [9]. In this section, we will show that given an
oracle for computing a directed cycle separator, conducting directed depth-first search
is in deterministic NC. These results immediately imply the following theorem.

THEOREM 3.1. For general directed graphs, computing a directed path separator,
computing a directed cycle separator, and conducting directed depth-first search are

deterministically NC-equivalent.
We now discuss how to use directed cycle separators to conduct directed depth-

first search in parallel. Suppose that we want to perform depth-first search in an
n-vertex directed graph G starting from some vertex r. Any such search will visit
exactly the vertices reachable from r using directed paths. We call a graph rooted at
a vertex if the vertex can reach all other vertices through directed paths. We assume,
for the moment, that G is rooted at r and our goal is to build a directed depth-first
search spanning tree rooted at r for G. We will recursively construct, in parallel, such
a tree using directed cycle separators.

We first explain why the straightforward recursive approach used in the undirected
case [12], [1] does not work for directed graphs. Given a directed cycle separator, we
can efficiently build a directed path separator Pr starting from r by finding a directed



400 A. AGGARWAL, R. J. ANDERSON, AND M. Y. KAO

path from r to the cycle separator. The path and the cycle separator form a directed
path separator with a certain arc on the cycle removed. The path separator Pr will be
a branch of the final depth-first search tree for the directed graph G. Now let G be
the remaining graph that is not searched by Pr, in other words, G G-P. Suppose
that we continue to search G starting from a vertex r that is not in P but is the
end vertex of an arc starting from the last vertex of P. This time we recurse on the
subgraph G, that consists of all the vertices reachable from r using directed paths
in G. Because Pr is a separator of G, every strongly connected component of G
has at most n/2 vertices. However, G, may contain several such strongly connected
components. Consequently, G, may still be too large for small depth recursion. To
avoid this problem, we describe below a more sophisticated subroutine that removes a
set of directed paths from G such that the remaining directed graph has small rooted
subgraphs. These removed paths will form a subtree in the final depth-first search
tree.

A partial depth-first search tree in a rooted directed graph is a subtree of a depth-
first search tree such that the graph and two trees are rooted at the same vertex. Let
T be a partial depth-first search tree of G. Let Xl, x2,..., at be the vertices of T listed
in the post-order traversal sequence of depth-first search, i.e., in this sequence xi is
marked right after all its descendants in T are marked. For any xi, let Yi,1,’",
be the vertices that are not in T but are the end vertices of the arcs starting from
x. The order of yi,1,..., yi,k is arbitrary, and a y vertex may have several different
indices if it is adjacent from several x vertices. For a directed graph D and a vertex
xED, let R(a, D) denote the set of vertices that can be reached from x using directed
paths in D. We call a subgraph of G a dangling subgraph, denoted by DSG((i,j),T),
with respect to (i, j) and T if it is formed by the vertices in G-T that can be reached
frown y, but not from y,,j, for any (i’, j’) such that either i’ < or (i’ and j’ < j).
In other words, DSG((i,j),T)= R(y,j, G-T)- {R(y,,,,G- T)I either i’ < or

(i’= and j’ < j)}.
Observe that a depth-first search tree of G is simply the union of the arcs in

T, the set of arcs (xi,yi,j) for which DSG((i,j),T) is nonempty, and an arbitrary
depth-first search tree rooted at Yi,j for each nonempty DSG((i,j),T). Also observe
that because the dangling subgraphs are disjoint, we can simultaneously compute
an arbitrary depth-first search tree for each nonempty dangling subgraph. These
observations together provide a natural way to recursively and concurrently extend a

partial depth-first search into a complete depth-first search tree.
To achieve small depth recursion, the nonempty dangling subgraphs must be

small. Keeping this in view, we call a dangling subgraph heavy if it has more than
n/2 vertices, otherwise we call it light. Similarly, we call a partial depth-first search
tree heavy if it has a heavy dangling subgraph, otherwise we call it light. If a partial
depth-first search tree is light, the recursion can be readily applied to its nonempty
dangling subgraphs. So we may assume that the tree is heavy. Because all dangling
subgraphs are vertex-disjoint, the tree has exactly one heavy dangling subgraph, de-
noted by DSG((io,jo), T). Let H denote the rooted acyclic directed graph induced
by contracting the strongly connected components of DSG((io,jo),T). Furthermore,
let a vertex in H be assigned the weight equal to the number of vertices in the cor-
responding strongly connected component. Since DSG((io,jo), T) is heavy and since
H is acyclic and rooted, there exists a vertex in H such that the total weight of this
vertex and its descendants is greater than n/2 but the weight of each of its children
and the weights of this child’s descendants sum up to at most n/2. Call such aver-
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tex a splitting vertex, and call the corresponding strongly connected component in
DSG((io,jo),T) a splitting component. There may be several splitting vertices and
splitting components. Now pick an arbitrary splitting vertex s, and denote its cor-
responding splitting component by Gs. Next use the given oracle to obtain a cycle
separator C8 in Gs. Furthermore, build an arbitrary vertex-simple directed path Po in
DSG((io, jo), T) that goes from Yio,jo to an arbitrary vertex of C and then traverses
C except its last arc. Po will be a branch of the final depth-first search tree of G;
more precisely, let the new tree be T’ T U {(Xio, Yio,jo)} [2 Po. Observe that T’ is
still a partial depth-first search tree of G. If T has no heavy dangling subgraph, then
we have achieved our goal of building a light partial depth-first search tree. So we
may assume that T has a heavy dangling subgraph.

LEMMA 3.2. If T is a heavy partial depth-first search tree, then every splitting
component of T is a strongly connected component of Gs- Po, and consequently,
consists of at most IG]/2 vertices.

Proof. To locate the heavy dangling subgraph ofT’, observe that DSG((xo, yo), T)
is the union of G Po and the dangling subgraphs of T rooted at vertices that
are both in G8- Po and adjacent from Gs Po. This guarantees that the heavy
dangling subgraph of T is rooted at some vertex that is both in G- Po and adjacent
from G Po. To further locate the splitting components of Tt, recall that from the
definition, G corresponds to a vertex s in H such that the weight of each child of
s and the weights of this child’s descendants sum up to at most n/2. This implies
that G8 Po must include all splitting components of T. Therefore, every splitting
component of T is a strongly connected component of G Po. Furthermore because
Po contains the cycle separator C of G, every splitting component of T has at most
IGI/2 vertices.

From the above lemma, it is readily seen that after O(log n) such phases of cutting
up splitting components, any resulting splitting component is left with a single vertex.
If we now extend the partial depth-first search tree to include the vertex of an arbitrary
splitting component, we can obtain another partial depth-first search tree T that is
light so that recursion can be performed.

We now summarize the above discussion. To construct a depth-first search tree,
we start from the partial depth-first search tree T that consists of only the root r. It
takes O(log n) cuts of splitting components to extend T into a light partial depth-first
search tree. Each cut takes an oracle call to find a cycle separator in addition to
O(log2 n) time and MM(n) processors for computing transitive closures of suitable
graphs with at most n vertices. To build a complete depth-first search tree, we recurse
on the nonempty dangling subgraphs of T. This recursion has depth O(log n). So if
a directed cycle separator of an n-vertex strongly connected directed graph can be
computed in To(n) parallel time using Pc(n) processors, then a depth-first search tree
of any n-vertex rooted directed graph can be computed in O(log2 n(Tc(n) + log2 n))
time using Pc(n)+ MM(n) processors.

The above discussion applies only to rooted directed graphs. We now extend the
discussion to any general directed graph G. Our goal is to find a depth-first search
spanning forest with r being the first root. We first decompose G into rooted directed
graphs as follows. Arrange the vertices of G in an arbitrary order Ul,"’, Un with

ul r. Let D(ui) be the set of vertices that can be visited by depth-first search
starting from ui but cannot be visited starting from ul,...,u_; in other words,
D(ui) R(ui, G)- [.Jj<iR(uj, G). Clearly, each nonempty D(ui) is a directed graph
rooted at ui. Now a complete depth-first search of G starting from r can be conducted
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by computing an arbitrary depth-first search tree for each nonempty D(ui) with the
root being ti. These nonempty D(ui)’s can be computed in O(logn) time and
MM(n) processors. Hence, from this discussion, we obtain the following theorem.

THEOREM 3.3. Suppose a directed cycle separator of any n-vertez strongly con-
nected directed graph can be computed in T(n) time using P(n) processors. Then a
depth-first search spanning forest of any n-vertez general directed graph can be com-
puted in O(log2 n(T(n) + log2 n)) time using P(n) + MM(n) processors.

4. Constructing a directed cycle separator. A directed multipath separator
is a set of vertex-disjoint vertex-simple directed paths whose vertices form a sepa-
rator. For obtaining a directed cycle separator of any n-vertex directed graph, in

4.1 we describe a routine REDUCE that given a directed multipath separator f of
2. ([log nJ + 2) paths or more, reduces the number of paths in ft by at least one half
so that the resulting set is still a directed multipath separator. Initially 2 is the di-
rected multipath separator that consists of any In/2] vertices in G, each vertex being
a directed path of length zero. Since each call to REDUCE decreases the size of Ft
to at most one half of its original size, O(log n) calls are sufficient to reduce the size
of Ft to snaller than 2. ([log nJ + 2). Once f has fewer than 2. ([log nJ + 2) paths,
we will merge the paths, one by one, into a single directed path separator, and then
convert this path separator into a directed cycle separator. These last two steps are
described in 4.2.

In the following discussion, the lower segment of a directed path P x,..., xk
refers to the directed path Xl,.. ",X[k/.], and the upper segment of P refers to the
directed path x[/.]+l,...,x. For a set ft of m directed paths, we use Ifl rn to
denote the number of paths in f. In unambiguous cases, we often refer to a directed
path when, in fact, we mean the vertices of that directed path. For example, G- P
denotes the induced subgraph where all the vertices contained in P are removed, and
G- 2 denotes the induced subgraph where all the vertices contained in the paths of
f are removed.

4.1. Reducing the number of paths while maintaining the separator
property. As highlighted in the Introduction, the basic idea used in the routine
REDUCE is similar to that used by Aggarwal and Anderson for general undirected
depth-first search [1]. The undirected depth-first search algorithm constructs a path
separator by repeatedly joining paths until only a single path remains. A key idea in
the undirected case is to carry out bisection by traversing and joining the longer half
of a path. This bisection idea is not applicable in the directed case because it is not
possible to choose the direction of traversal in directed paths. One of the new ideas
for the directed case is that given two paths L and S, we find a directed path P that
goes from L to the lower segment of S so that we can always traverse the longer half
of S. To make this idea work, the directed REDUCE uses several other new ideas
that are described in the following discussion.

The routine REDUCE takes as input a multipath separator ft of rn paths with
m _>. 2. ([log nJ + 2). REDUCE will operate for O(loge n) phases to reduce the size
of 2 by at least one half so that the resulting set still forms a directed multipath
separator. At the beginning of REDUCE, 2 is partitioned into two sets A and P.
The set F is further partitioned into two sets, the set of active paths and that of
inactive paths, denoted by P and Fi,, respectively. These five sets are modified in
the phases of REDUCE such that ft has at most rn/2 paths at the end of REDUCE.
To be precise about the size of these sets, let a [m/(2[log nj + 4)1 in the following
discussion.
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FIG. 1. II joins F and A.
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FIG. 2. Rearrange two paths.
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At the very beginning of REDUCE, Irl r, Iraqi 0, and IAI
m a. The assumption ]ft[ rn >_ 2. ([log nJ + 2) is needed to ensure F is
not empty, otherwise, REDUCE would never get started.
At the very end of REDUCE, F] a, Irl (Log3 + 1)., na I1 0.
Consequently, lrl Ir l + Ir,,I (Llogn3 + 2)., and [[ IF[ + [A[
([lognJ + 2).a. The value of a is chosen to be [m/(2[lognJ + 4)J so that

lal
To achieve this reduction, in each phase we find a set of paths H that joins paths
in in a suitable manner. (See Fig. 1.) More precisely, let A and At denote the
sets of, respectively, upper segments and lower segments of the paths in A. H is
maximal set of vertex-disjoint vertex-simple directed paths that go from F to
such that for each directed path P in H, the first vertex belongs to a path in F, the
last vertex belongs to a path in At, and the interior vertices are tken from G-
Each directed path in F At contains an end vertex of at most one pth of H. Of
course,, there may be directed paths in F At that do not contain any end vertices
of the paths in g. Below we describe the basic step in using H to rearrange paths in. (See Fig. 2.) Suppose that a directed path P g joins directed paths L F and
S A, and that P has end vertices and y where L UxL" and S SyS". In
each phase of REDUCE, L is replaced by UPS", and S is replaced by S. The path
L" is either added to Fi or is discarded from . The conditions under which L" is
discarded from and those under which L" is added to Fi will be discussed later.
Irrespective of whether L" is discarded from or added to F, note that the directed
path S has been reduced to hMf its original length because S is only subpath of
the lower segment of the original S. Furthermore, the paths in F nnd those in A do
not increase in number; in fact, the number of paths in Fa and A may have decreased
if some paths of H have been joined to the lowest end vertices in At. However, the
number of paths in F may increase, which may, in turn, lead to an increase in the
total number of paths in F F F. If the size of A does not decrease, then the
increase in IF[ can increase the number of paths in F A. We have mentioned
above that H is a maximal set, and in the following discussion, we will specify another
property of g that will help in eventually reducing the number of directed paths in
rather than increasing it.

We introduce two kinds of notation to describe a more detailed picture of how
H is used to reduce the cardinality of (see Fig. 3)" (1) F, denotes the set of
all paths of the kind UPS". F denotes the set of all paths of the kind L".
denotes the set of all paths of the kind S. (2) denotes the set of all pths in F
that are not connected by any paths in H to any paths in At. denotes the set of
paths in A whose lower segments are not connected by ny paths in H to any paths
in F. Also t and denote the sets of, respectively, lower segments and upper
segments of paths in . We can now specify the additional property for H: g is
such that there are no directed paths from U F to t usin9 vertices in G
Clearly H is a maximal set and we call it a mazimal joinin9 set from F to A. Later
in this section we will discuss how to compute such H. Here we continue to explain
how H is used to reduce the cadinality of . Let scc(D) denote the size of the largest
strongly connected component in any directed graph D. The properties of H imply
that F a and t cannot have vertices in the same strongly connected component
of (G H) (F ) t. This and the fact that H U is a separator of G in
turn imply either scc((G- -H)(F)) 5 n/2, or scc((G- -H)t) 5 n/2,
or both. Based on these bounds, we hve two cases for updating the sets A, F, and



PARALLEL DIRECTED DEPTH-FIRST SEARCH 405

FIG. 3. Notation for the subroutine REDUCE.

Fi,; the new version of these sets will be used in the next phase of REDUCE.
Case 1. If scc((G l-I)U/l) _< n/2, we add lrI to but discard /l from, and observe that the new t is still a directed multipath separator. Moreover, we

perform the following replacements"
A -- A, U,
Fa Fa,new Fa, and
Fin Fin U F.

Case 2. If scc((G H) U (F U)) n/2, we add H to but discard F U a,
and note that the new is still a directed multipath separator. The number of paths
in F may drop below a, which is the size of F t the very beginning of REDUCE.
To restore this size, we take enough paths from A U and add them to F until

Fa is restored to its original cardinality orA U is exhausted. Let A denote the
set of paths taken from An U . Now we employ the following replacements:

AAU-A,
F F,n U A, and
F remains unchanged.

(See Fig. 4 for a brief summary of the routine REDUCE.)
LEMMA 4.1. If we hav a directed multipath separator of m paths with m

2. (LlognJ + 2), then aster executing O(log n) phases oS REDUCE, we can obtain a
directed multipath separator with at most m/2 paths.

Pro@ First of all, observe that remains a directed multipath separator after
the replacements in each phase. Consequently, at the end of the routine, is still a
directed multipth separator. To reduce the size of , REDUCE is executed until A
becomes empty. In the following discussion, we will first discuss the situations under
which A gets exhausted. We will then estimate Fal, [Fn, and ][ ]F[ + IFI + A[
as at the end of REDUCE.
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routine l-lEDUCE(ft):
Partition into A and F, and further partition F into F and Fin;
while A is not empty do

begin
Find a maximal joining set H from F to A;
f scc((a a ) 5) /2

then
begin

A A u;
Fa a,newUa;

end
else {Common,t: ((a a n) U (r; u )) /e}

begin
A A U- A;
F F, U A;
Fin remains unchanged

end
end

FIG. 4. A brief summary of REDUCE.

(equivalently,We divide Case 2 given above into two cases. Case 2a: IF] _> 7. a

(equivalently, Ial > 1/2 ). Also, let t t2a andIf’l < 51 O). Case 2b: Ir:l < " ,
t2b, respectively, denote the numbers of phases in which Cases 1, 2a, and 2b occur.
In all three cases, IA[ never increases and may sometimes decrease. This decrease
happens when a path of A is taken to replenish F in Cases 2a and 2b, or when a

path of A is cut sufficiently many times in Cases 1, 2a, and 2b. If a path is cut,
it is cut by at least one half because it is replaced either by a subpath of its lower
segment or by its upper segment. There are two situations in which. A may become
empty. One situation is that the paths of A are primarily cut off. Because a path has
at most n vertices, it can allow at most Llogn] + 1 cuts. After these cuts, the path
becomes empty. In Case 1, all paths in A are cut; in Case 2a, at least . a paths
are cut; in Case 2b, the number is insignificant for our analysis. Because originally
]A m- c, after tl - t2a + t2b phases, A is left with a reserve of at most C1 cuts

a). Some of the paths in Awhere C (m-c). ([lognJ + 1)-tl "(m-()-t2a’(g
may be taken away to replenish F in Cases 2a and 2b. The effect of this happening
is canceled out in the estimate. Now, if C is negative or zero, then A must be
empty. C1 can be negative or zero if t _> [log nJ + 1 (referred to as condition 1) or if
t < [lognJ + 1 but t >_ 4. ([ognJ + 2). ([lognJ + 1) (referred to as condition 2a).
The other situation is that the paths of A are primarily taken away to replenish F in
Cases 2a and 2b. The number of paths moved from A to F is [FI. In Case 2b, this
number is at least .c; in Case 2a, this number is insignificant. After tl + t2a -I- t2b
phases, IAI is at most C2 (m--()--t2b.( .). So if C2 is negative or zero, then A
must be empty. Ce can be negative or zero if t < [log nJ + 1 but te _> 4. ([log n] + 2)
(referred to as condition 2b).

Now we estimate Iral, Iraqi, Irl Irl + Iraqi, and lal Irl + Izxl. Originally
Irl . Irl do ot change in Case 1 and does not increase in Cases 2a and 2b.
So Irl _< throughout the execution of REDUCE. Because Iraqi may ’increase by at
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most [F[

_
a in Case 1 and does not change in Cases 2a and 2b, after tl + t2a + t2b

phases, IF/n[

_
tl"a and consequently, [F

_
a+tl.a. Furthermore, [F

_
m/2 if any

one of the conditions 1, 2a, or 2b is true. REDUCE can achieve at least one of these
three conditions within (Llog nJ +1) + {4. (log nJ +2). ([log nJ + 1)} + {4. ([log nJ +2)}
phases. Hence, within O(log n) phases, [gt [F[ _< m/2. [:]

To complete the description of REDUCE, we explain how to compute H as fol-
lows. Recall that II must be a maximal joining set from F to A. Here we give a

stronger property for H. For the previously described path P in the set l-I, we assign
a cost equal to the length of the cut-off segment of L, namely, the number of vertices
in L’. We call II a minimum-cost maximum-cardinality joining set if II has the max-

imum number of paths from Fa to /kl, and if II also minimizes the total cost under
the maxinmm-cardinality constraint. Below we prove that if H is a minimum-cost
maximum-cardinality joining set from F to A, then H is a maximal joining set from F
to A: Because II is of the maximum-cardinality, there can be no directed path from
a to l using vertices in G- l-I; if there were such a path, this path could be
added to II and the original II would not be of the maximum cardinality. Because II
is also of the minimum total cost, there can be no directed path from F to/kl using
vertices in G l-I; if there were such a path, then a certain path of 1] could be
replaced by this smaller cost path while H maintained the same maximum cardinality.

In view of the above discussion, to find a maximal joining set II from F to A,
we only need to find a minimum-cost maximum-cardinality joining set from F to
A. Aggarwal and Anderson have shown how to reduce an undirected version of
the problem of finding a minimum-cost maximum-cardinality joining set to that of
finding a minimum-weight perfect matching in a bipartite graph [1]. Essentially the
same reduction can be used to solve our problem of finding II. The reader is referred
to their paper for details. Here we simply state the result as follows. Let P,m(n)
and Tmm(n) denote the number of processors and the parallel time to compute a

minimum-weight perfect matching of any n-vertex bipartite graph that has an integer
weight of at most n on each of its arcs. Then a maximal joining set II from F to A
can be found in exactly the same complexity. We summarize the discussion of this
section in the following theorem.

THEOREM 4.2. Let Prom(n) and Tmm(n) denote the number of processors and
the parallel time to compute a minimum-weight perfect matching of any n-vertex bi-
partite graph that has an integer weight of at most n on each of its arcs. Then the
routine REDUCE can be used to obtain a directed multipath separator of fewer than
2. ([logn] + 2) paths in O(log3 n. (Tmm(n) + log2 n)) time using Pmm(n) + MM(n)
processors.

Proof. Initially we have the directed multipath separator that consists of any
[n/2 vertices in G, each vertex being a directed path of length zero. From Lemma
4.1, if Igt] _> 2. ([lognJ + 2), then a call to REDUCE cuts IFt[ by at least one half.
Therefore, O(logn) calls to REDUCE are sufficient to obtain a directed multipath
separator of the desired size. Each call has O(log2 n) phases. Each phase does two
major computations: (1) computing a maximal joining set H, and (2) computing the
strongly connected components of an n-vertex directed graph in O(log2 n) time using
MM(n) processors. So the total complexity is O(log3 n. (Tmm(n) + log2 n)) parallel
time and Pmm(n)+ MM(n) processors. [:]

4.2. Constructing a cycle separator from a small set of separating
paths. Given a directed multipath separator with fewer than 2. (log nJ + 2) paths,
we explain below how to construct a directed path separator and convert this path sep-



408 A. AGGARWAL, R. J. ANDERSON, AND M. Y. KAO

arator into a directed cycle separator. The idea is to repeatedly join two paths of gt into
a new path, whereas the other paths stay untouched and, together with the new path,
remain a directed multipath separator. To join two paths, we first recall that Kao has
given an NC algorithm to convert any directed path separator into a directed cycle
separator [9]. In fact, the proof of Theorem 2.1 can also be used to do the conversion
in parallel. The idea of joining two directed paths into one is almost the same as con-
verting a directed path separator into a directed cycle separator. The only difference is
that in the path-to-cycle conversion we merge the two ends of the given directed path
separator, whereas in the path-to-path conversion we merge the ends of two paths,
one end from each path. More precisely, let t {P1," ,Pk} with k < 2.(Llognj +2);
also let / {P3,"’, Pk}. Below, we describe how to merge P1 and P2 into a single
path P so that P and Ft form a multipath separator. We will process P1 and P2
in essentially the same way as the proof of Theorem 2.1. Let P1 Xl,...,Xpl. Find
the largest index t such that Rout(Xt, G- {Xl,"" ,xt-1} P2 ’) has more than
n/2 vertices. If t does not exist, then let P P2 and observe that P and gt form a
multipath separator. If t exists, then let P x,..., xt and note that P, P2, and Ft
form a multipath separator. Now let P2 y,’", yp. Find the smallest index s such
that Rn(y,G-{Y+I,’",Yp.}-P- ’) has more than n/2 vertices. If s does not
exist, then let P P and observe that P and form a multipath separator. If s

exists, then let P Ys,’", yp, and observe that P, P, and t form a multipath
separator. Now find a vertex-simple directed path Q from xt to ys with internal ver-
tices belonging to G- P P gt’. Let g’ be the path formed by P, Q, and P. It
is readily seen that P and gt form a multipath separator.

After repeating the above process k- 1 times, we can obtain a directed path
separator. We then convert this path separator into a cycle separator. The complexity
for merging two paths or converting a path into a cycle is O(log2 n) time and MM(n)
processors because the only major computation in the merge is to find transitive
closure of an appropriate directed graph. Moreover, because t has O(logn) paths,
the total complexity of merging into a directed cycle separator is O(log3 n) time and
MM(n) processors. This discussion and Theorem 4.2 immediately yield the following
theorem.

THEOREM 4.3. Let Pmm(n) and Tmm(n) denote the processor and time com-
plexities for computing a minimum-weight perfect matching of any n-vertex bipartite
graph with an integer weight of most n on each arc. Then a directed cycle separator of
any general n-vertex directed graph can be found in O(log3 n(Tmm(n) + log2 n)) time
using P,,(n) + MM(n) processors.

5. Discussions. Using Theorems 3.3 and 4.3, we can now state the other main
results of this paper.

THEOREM 5.1. Let Tmm(n) and Prom(n) denote the parallel time and the number
of processors to compute a minimum-weight perfect matching of any n-vertex bipartite
graph with an integer weight of at most n on each arc. Furthermore, let MM(n)
denote the sequential time complexity of multiplying two n n integer matrices in
Strassen’s model. Then a depth-first search forest of any general n-vertex directed
graph can be computed in O(log5 n(Tmm(n) + log2 n)) time using Prom(n)+ MM(n)
processors.

Muhnulcy, Vazirani, and Vazirani give an RNC minimum-weight perfect match-
ing algorithm such that Tram(n) O(log2 n) and Pmm(n) n. MM(n) [10]. Conse-
quently, the above theorem has the following implication.

THEOREM 5.2. For any general n-vertex directed graph, a depth-first search forest
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can be constructed probabilistically in O(log7 n) time using n. MM(n) processors.
Finally, we conclude the paper with two challenging open problems. One problem

is to devise a deterministic NC algorithm for general directed depth-first search. For
the time being, we can only show that general directed depth-first search can be
conducted deterministically in O(log11 n. v/-) time using O(n3) processors. The result
is obtained from modifying an undirected maximal joining set algorithm by Goldberg,
Plotkin, and Vaidya [6]. The other problem is to find a more efficient RNC algorithm
for general directed depth-first search. Because depth-first search is extremely useful
in graph theory, an RNC algorithm with almost linear processor-time product will
have significant impacts.
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Abstract. A framework that admits the characterization of nonuniform complexity classes in terms of
logical expressibility is presented.

In the case of classes that are defined by means of bounded-depth Boolean circuits, group theoretic
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Association for Computing Machinery, New York, 1983, pp. 347-354] and Gurevich and Lewis [Inform.
and Control, 61 (1984), pp. 65-74], and provides a unique fashion of proofs for the results.

In the last section the computing power of generalized branching programs is related to logical
expressibility.
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1. Introduction. Usually, a computationalproblem is given by a finite alphabet and
a language over this alphabet. Moreover, we can confine ourselves to languages over
{0, 1}.

Equivalently, we may think of a problem as a class of finite structures of a finite
relational signature. Doing so, it is natural to ask whether a complexity class can be
characterized by means of logical invariants of its structure classes. It turns out that,
in many cases, the expressive tools used to define the structure classes are such
invariants.

This approach to complexity theory originates in [5], where it has been proved
that a problem belongs to NP if and only if it can be expressed by means of existential
second-order logic. Much work has been done to characterize other complexity classes
in an analogous way. The papers [8] and 11] are good surveys on the results obtained
so far.

In this paper we are concerned with so-called nonuniform complexity classes.
Among the various definitions of nonuniform computation, the striking point is that a
completely separate computational device (finite automaton, Turing machine, advice
in addition to a Turing machine, Boolean circuit, etc.) may be used for each input size.

Corresponding to this notion of computation, nonuniformity must be reflected by
the logical description of problems belonging to a complexity class. For this reason
we introduce a logical framework appropriate for our purposes, admitting a logical
characterization of the nonuniform complexity classes NU-LogSpace, NU-NLogSpace,
and NU-PTime as well as of the circuit complexity classes AC, AC[MODq], and
NC 1. Finally, we show that some results on generalized branching programs can be
proved by means of our characterization results.

The paper is organized as follows. Section 2 provides the logical tools. In 3 the
results are presented, whereas 4 and 5 are devoted to the proofs.

2. Tools from logic.
2.1. Throughout this paper, by a logic we will understand a system :, defined by

the following:
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(1) A class of symbols that, independently of a concrete signature, may be used
to build formulas. (We will refer to these symbols as logical symbols.)

(2) Syntactical rules to construct formulas with respect to a given signature
(We will confine ourselves to signatures consisting of relation and constant symbols
only.)

(3) For each tr, a class of structures of this signature.
(4) A semantics, i.e., a relation

where is an (tr)-structure and an (tr)-sentence formula where all variables
are bounded by quantifiers).

2.2. We will regard finite structures only. To the logical symbols we always include
the binary relation symbols < and = as well as the constant symbols min and max.
We require that in any structure < and are to be interpreted as a linear ordering
and the identity on the universe, respectively, min and max will be interpreted as the
least and greatest element as regards the ordering <. Thus we may assume that our
universes are the sets In] {1,..., n} with the natural ordering, up to isomorphism.

Combining these conventions with the usual syntax and semantics of first-order
logic, we obtain a variant of first-order logic for finite structures. We will denote it by
FO.

To avoid trivial cases, our general convention on the cardinality of structures will
be n => 2. We extend this convention to the input size of computational problems, i.e.,
from now on we will regard finite structures of cardinality greater than or equal to
two and computational problems for inputs of length greater than or equal to two only.

2.3. We will extend FO by new logical symbols, the interpretation of which
depends only on the cardinality of a given structure. This idea is related to the concept
of nonuniform computation, where a separate computational device may be used for
each input size.

A k.ary nonuniform relation over N is a sequence R (Rn),r of relations Rn __.
In] .

Similarly, we define a nonuniform constant to be a sequence c (c),r of natural
numbers c, In].

Now we can determine the components of a logic FO, as follows:
(1) In addition to the symbols of FO (e.g., logical connectives, quantifiers, vari-

ables, brackets, < and we introduce a k-ary relation symbol R for each k-ary
nonuniform relation R, and a constant symbol e for each nonuniform constant c.

(2) Given a relational signature tr, formulas are built from these symbols as in
first-order logic.

(3) An FOnu(tr)-structure consists, up to isomorphism, of a universe In] (n N)
together with an appropriate interpretation of

(4) Given an FO,u(cr)-structure over In] and an FO,u(r)-sentence 9, we
interpret the symbols for nonuniform relations and constants possibly occurring in
by the corresponding relations and constants over In] (R, for R, c, for c), and then
we define

as in first-order logic.

2.4. It is well known that the expressive power of first-order logic can be increased
by adding the least fixed point operator, thus permitting the formalization of inductive
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definitions. The importance of this concept with regard to complexity theory is pointed
out, for example, in [8]. The basic idea is as follows.

Assume that is a formula of the signature o’U {P}, where P is a new k-ary
predicate symbol not occurring in tr, and let xl,’’ ", xk be the free variables in . For
each or-structure, M (In],...) q defines an operator

’n’ P([n]k) P([n]k),
R _c in] k--> {el e [n] (, R) #()}.

Moreover, if the new predicate symbol P occurs only positively in (i.e., under an
even number of negation symbols), then this operator r, is monotone. Hence it has
a least fixed point which will be denoted by

LFPff,,[ ].

It is obvious how to add this construct to the syntactical and semantical rules of
first-order logic, thus obtaining a new type of formula:

yl," ", Yk) LFPp.[q].

The transitive closure operator may be viewed as a special case of the least fixed point
operator. Given a formula p(:, 3), where x, )3 are k-tuples of free variables,

M(d, f) TC.y[p] if and only if (,/) belongs to the reflexive, transitive
closure of the 2k-ary relation defined by p over the universe of M.

We use (a, 3) dTC,y[p] as an abbreviation of

(a, )e TC,[(, )A v[(, )-.= ]],

thus obtaining the operator of deterministic transitive closure.
The expressive power of these and some other variants of the least fixed point

operator with respect to complexity theory has been studied intensively (see, for
example, 13]).

2.5. Given a logic , we will regard mainly (H), the instance of on a signature
with a single unary predicate symbol H. Clearly, any interpretation of H over [n]
corresponds in a canonical way to a word w {0, 1} and vice versa.

We call a language L_ {0, 1}* (H)-definable if and only if there exists an
(H)-sentence such that for all w e {0, 1}*

w e L([Iwl], n) .
We will apply this notion of definability to logics that are obtained from FO,, by
adding various forms of the least fixed point operator, such as, for example, the
following’ (FO,, + dTC), (FO,, + TC), etc.

3. Presentation of the results.
3.1. We start our discussion with a characterization of the classical (uniform)

complexity classes LogSpace, NLogSpace, and PTime, consisting of all problems that
are computable in logarithmic space, nondeterministic logarithmic space, and poly-
nomial time, respectively.

For these classes the following results have been proved:
(1) LogSpace {K

_
Struc(o,)lr is a finite relational structure and K is definable

by an (FO+ dTC)(cr)-sentence} [10],
(2) NLogSpace={KStruc(cr)ltr is a finite relational structure and K is

definable by an (FO+ TC)(cr)-sentence} ([10] together with [12] and [22]).
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(3) PTime={K
_

Struc(r)[tr is a finite relational structure and K is definable
by an (FO+ LFP)(tr)-sentence} [9], [24].

3.2. There are canonical nonuniform counterparts to the classes LogSpace,
NLogSpace, and PTime. Among the various mutually equivalent variants used to make
precise the notion of nonuniform computation, we choose the following approach
originating in 14].

L
_

{0, 1}* is said to be in NU-LogSpace if there are a polynomially length bounded
advice function a N- {0, 1}* and a language L’ e LogSpace such that for all w e {0, 1}*,
w e L if and only if w"a(Iw[)e L’. That is, nonuniformity is performed by adding to
the input word an advice that is of polynomial length and depends only on the length
of the input. The definitions of NU-NLogSpace and NU-PTime are analogous.

Now we shall show that there are logical characterizations of these classes,
analogous to that of the uniform case (see 3.1), but with FOnu in place of FO.

THEOREM 33. Let L be a language over {0, 1}. Then
(1) Le NU-LogSpace ifand only ifL is definable by an (FOnu + dTC)(H)-sentence.
(2) Le NU-NLogSpace ifand only ifL is definable by an (FOnu + TC)(H)-sentence.
(3) Le NU-PTime if and only if L is definable by an (FOn,+ LFP)(H)-sentence.
The proofis based on the characterization ofthe corresponding uniform complexity

classes (see 3.1). Since the arguments are similar for each of the three assertions we
will point out how to prove (1) only.

Given a finite relational signature r, it is quite simple to regard finite g-structures

as words over {0, 1} as follows. Let be a g-structure over the universe [n], and let
R be a k-ary relation symbol from or. Define code(R) to be the listing of all values
of the characteristic function of R with respect to the lexicographic order on In] k.
For a constant symbol c from tr, code(c) is defined analogously. Let code(s4) be the
concatenation of the codes of 4-interpretations of all relation symbols and constant
symbols occurring in tr. We will make use of this construct in the proof of (1).

Let us assume first that L {0, 1}* is in NU-LogSpace. Then there are an advice
function a :N-{0, 1}* and a language L’e NU-LogSpace such that

L={we{0, l}*lw^(lwl)L’}.
Without loss of generality we may assume that

(1) la(n)[= n k for some keN and
(2) If u e L’, then lu[ l+ k for some. e N.

Let tr be a signature consisting of a unary predicate symbol H and a k-ary predicate
symbol B, and denote by K’ the class of all finite or-structures A for which code(s4) e L’.
Using the notation of [10] and [13], K’ is a "problem" belonging to LogSpace. From
3.1 it follows that there is an (FO+ dTC)-sentence p’ defining K’, i.e.,

g’= {4 e Struc(r)[ ,;’}.

Now replace the occurrences of B in q’ by the nu-relation symbol/3, where code(fin)
a(n). Denote the resulting (FOn,+ dTC)(H)-formula by q. Then for each we {0, 1}n:

([n], code(w)) q’:> ([n], code(w), a(n)) q,

i.e., p is an [FOn,+ dTC)(H)-definition of L.
Conversely, assume that a (FOnu+ dTC)(H)-sentence q defines L. Replace in q

the nu-relation and nu-constant symbols by new nonlogical symbols. This gives a
sentence q’ in an enriched signature. According to 3.1, q’ defines a problem K’ in
LogSpace. The code of an arbitrary structure 4 =([n], H, .-.)e K’ consists of
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code(H), followed by the code of the new nonlogical relations and constants. This
additional information is of polynomial length and, since it originates in nu-relations
and constants, it depends only on n. Hence we can use it as an advice function
a :N{0, 1}*. Let L’={code(C)]lK’}. Then

L= {w {0, 1}!
But L’ is in Log,Space, and this completes the proof of (1).

3.4. Now we turn to complexity classes that are defined by circuits. We shall
regard here the nonuniform versions, i.e., a completely separate computational device
may be used for each input length n. Recently, these classes have gained more and
more interest in complexity theory, and some interesting separation results have been
proved [6], [18]-[20].

Let us start with the so-called AC-circuits. A language L_ {0, 1}* is said to be
in AC if and only if there is a sequence (C,),N of Boolean circuits, such that

(1) The circuits consist of AND- and OR-ga,tes of ar.,bitrary, fan-in;
(2) Each Cn has input nodes I1," ", In, I1," ", In,0, 1 corresponding to n

Boolean inputs, their negations and two constant .inputs, respectively;
(3) There is a polynomial bound on the size of the Cn’s;
(4) The depth of the Cn’s is bounded by a constant; and
(5) Cn accepts exactly those inputs belonging to :=Lf3{0, 1} n.

Admitting additionally MODq-gates of arbitrary fan-in, we obtain the classes
AC[MODq] (MODq(w)= 1 if and only if the sum of the inputs is congruent to 0
modulo q).

AC and its extensions AC[MODq] (qN, q->_2) are contained in a wider class
called NC, which is defined as follows.

L_ {0, 1}* belongs to NC if and only if L can be accepted (nonuniformly) by a
sequence (Cn)nN of usual combinational circuits such that

(1) Each .Cn may consist of binary AND-gates, binary OR-gates, and unary
NOT-gates, respectively;

(2) The input nodes of Cn are labeled by I1,’’ ", In, 0, 1; and
(3) The depth of Cn is bounded by an O(log (n)).

It is known that AC forms a proper subset of each AC[MODq] [6], and that, if q
is a prime, AC[MODq] is properly contained in NC (see [18] for q 2 and [20] for
the general case). On the other hand, many questions concerning the relations between
AC[MODq] and AC[MODr] or between AC[MODq] (q arbitrary) and NC are
still open. A structural description of these nonuniform complexity classes has been
given in [3], using the framework of nonuniform deterministic finite automata.

3.5. Let us define the logical tools we need to characterize AC, AC[MODq],
and NC in terms of expressibility.

Given a logic, L(tr).and a finite group G, by a G-representation in L(tr) we
understand a set G {lg G} consisting of k-tuples of constant symbols, for some
k, such that the mapping g-- is 1-1.

The expressive power of L(cr) can be increased by admitting a new type of formulas
which we shall refer to as (G-II)-formulas. Their syntax is given by the following
G H)-formation rule.

Supp,ose that
(1) G is a G-representation (by k-tuples);
(2) For each g G, Xg() is a formula containing the/-tuple of free variables.
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Then

rI [x, ]

is a formula. Here x, fi are/-tuples of variables, and is a k-tuple. The variables x, y,
occur free in the new formula, whereas the variables t (from X) are bounded by the
(G H)-construct.

To describe the semantics of the new formulas, let < denote the usual lexico-
graphic order on N. The (G-H)-semantics rule is

if and only if
(1) The interpretation of the constant vectors in yield pairwise different

k-tuples over n;
(2) For any [n] there is exactly one g G such that X(), i.e., the

elements of In] are "colored" by group elements g G;
(3) Either and for some g G,

x()=,
or a < and there are sequences a0 a < a < < a b of lexicographically
consecutive elements of [hi , o,""", of elements of G, such that

i=0," ",m

where

g= H g O.
i=0,.,.,m

In other words, a(G-H)-formula expresses that the G-product of "colors" over an
< rinterval is a ceain group element. To manage the coloring and to code the value
of the G-product, the (G-H)-formula needs a G-representation by constants.

Evidently, the (G-H)-semantics rule can be expressed by means of the LFP-
operator. Moreover, in view of the "exactly one" phrase in condition (2), the dTC-
operator is sucient.

To illustrate the expressive power of the new formulas, we show how to count
modulo q using the (Z-H)-construct.

Let (x) denote an arbitrary L()-formula, and put X() (x), Xo(X) (x),
X(x)(x= x) for each m Zg, m #0, 1. Assume that Z9 is a Zg-representation.
Then for any e Struc(),

It is not hard to verify that the (Z -H)-construct is of the same expressive power
as the sequence of the following quantifiers.

kQx()the number of k-tuples satisfyin is consruent to 0 modulo q.
THEOREM 3.6. Let L be a language ouer {0, 1). en
(1) L AGo if and only if L is dOnable by an FO,,(H).sentence.
(2) LeAC[MOD] if and only if L is dOnable by an (FO,,+Z-H)(H)-

sentence;
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(3) LNC if and only if L is definable by an (FOnu+G-H)(H)-sentence for
some finite nonsolvable group G.

Part (1) has been proved in [10] and 13] and is a special case of a more general
result in [7]. However, it is possible to prove all these results in a unique fashion using
the algebraic ideas of [3]. This will be pointed out in 4.

3.7. The last group of results concerns branching programs. A branching program
over n Boolean inputs is a finite, directed, acyclic graph with some additional structure"

(1) There are exactly one source node s and two sink nodes a ("accept") and r
("reject").

(2) Each nonsink node is labeled by one of the Boolean input variables
{xl,..., xn} and has outdegree 2.

(3) One of the two edges leaving an arbitrary nonsink node is labeled by 0, the
other one is labeled by 1.
Given n input values, there is a unique path from the source to one of the sink nodes"
while the actual node is not a sink, check the Boolean input assigned to it and go
along the 0- or 1-edge, respectively. The program accepts or rejects the input word
depending on whether this path terminates at the a- or r-sink, respectively. The size
of a branching program is the number of its nonsink nodes.

A language L___ {0, 1)* can be computed by a sequence (P)N of polynomial-size
branching programs if and only if it belongs to NU-LogSpace (see [17] for a proof).

In [15] the notion of a branching program was generalized by introducing a new
type of nonsink nodes. Let f be a set of binary Boolean functions. In an f-branching
program every nonsink node either is an ordinary query node, as defined above, or it
is labeled by an to . Given an input word w, a Boolean value is assigned to each
node of the program by induction"

vat(a) := 1, val(r) := 0.

If b is a query node labeled by xi, and if bo, b are the successors of b via the
0-edge and the 1-edge, respectively, then

val( bo) if wi O,
vat(b):=

val(bl) otherwise.

If b is labeled by to f and has successors as above, then

val b := to vat(bo), vat b)).

An l-branching program accepts w {0, 1}* if and only if val(s)= 1.
It has been pointed out in [15] that there are only four relevant sets f of binary

Boolean functions" { v }, { ^ }, {MODe}, and { v, ^ }.
Denote by P_np the class of all languages over {0, 1} that can be accepted

(nonuniformly) by sequences of polynomial size f-branching programs. These classes
have been characterized [15] as follows.

THEOREM 3.8. (1) P{v}-BP NU-. NLogSpace, P{^)-BP NU- NLogSpace.
(2) NU- LogSpace

_
Pa4OD-BP -- NU- PTime.

(3) P(
_
np NU PTime.

Using the framework of nu-logic it is easy to prove the same results. This will be
pointed out in 5.

4. Proof of Theorem 3.6.
Fact 4.1. FO,,(H)-definable languages belong to AC.
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To prove this fact, let q be an FO,u(H)-sentence. For structures with universe
[n], we simulate 0 by a circuit C, in such a way that, for all w {0, 1}",

([ n ], Hw) o Cn accepts w.

We do this by induction on the construction of o.
If o is atomic and has the form H(i), i [n], then it can be simulated by the ith

input node. Atomic sentences that are built from nonuniform relation and constant
symbols have fixed evaluations over [n] and hence may be interpreted by constant
inputs.

It is evident how to simulate negated atomic formulas.
If q -= q ^ (492, then two circuits simulating (o and q:’2 are connected by an AND-

gate.
Quantifiers can be simulated by OR-gates (AND-gates, respectively) of fan-in n"

think of :lxo(x) as V,,t, q(m). Since there is a constant number of quantifier
simulations to be executed, the size of the resulting circuit is bounded by a polynomial
in n.

PRoPosrrIoy 4.2. (1) For an arbitrary finite group G, the FO, + G-H)(H)-
definable languages belong to NC 1.

(2) The (FO,u+ Zq-II)(H)-definable languages belong to AC[MODq].
Proof We must introduce some new constructions into the inductive argument

of Fact 4.1.
(1) Note that the simulation of ::l-quantifiers can be established by binary OR-

gates in depth O(log (n)). Now suppose that we must simulate (8, b, ) G I-IgG[gg
by a circuit, and assume that NCl-circuits for each of the sentences Xg() (g G,
In] k) are constructed. Using these circuits, it is easy to check points (1) and (2) of the
(G-H)-semantics rule ( 3.5) by combinational circuits of depth O(log (n)). Next we
build a combinational circuit of constant depth with 2. ]G inputs and ]G] outputs,
simulating the multiplication of two elements of G" the output corresponding to g G
is on if and only if there are gl, g2 6 G such that gl gz g and the inputs corresponding
to g in the first input block and to g2 in the second one are on.Using these multiplication
circuits and those for X(t), from the <k-interval [, b], we can determine the
product of "colors" over this interval in depth O(log(n)).

(2) Having AC[MODq]-circuits for Xg(a)(g Zq), we easily check parts (1) and
(2) of the (G-H)-semantics rule in constant depth and polynomial size. To handle
(3) also, observe that we can check whether the number of elements between and
colored by some fixed g 6 Zq is congruent m modulo q. This is done by feeding
for those a together with an appropriate number of constant 1 inputs into an MODq-
gate. Thus we can produce an AC[MODq]-circuit having output nodes for the relations
"the number of occurrences of g as a color in [8,/] is congruent m modulo q." From
these outputs we easily construct the desired circuit by adding AND- and OR-gates,
increasing the depth by a constant only.

4.3. To go the other way around, i.e., to obtain formulas from circuits, we will
use the results of [3]. In each of the three cases (Theorem 3.6(1)-(3)) our arguments
will be of the same fashion:

(1) To the circuit defined complexity class Y{ we assign a finite alphabet A.
(2) To every {0, 1}-language L Y{" we assign a word function

WL" {0, 1}* A*

and an "acceptance language" AecL over A with the following property.
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For all n and for all w {0, 1}", w L if and only if Wt(w) Acct.
(3) We show that the languages Acct are definable in an appropriate way. Exploit-

ing some ’,nice" properties of Wt, we translate the defining sentence for Acct into the
desired (FO,,, +. )(H)-sentence.
Parts (1), (2), and the "nice" properties mentioned in (3) are essentially based on the
techniques of [3]. We omit details here. Instead, we list the results in a form we need
for our proofs.

The alphabets Ao, AMoo corresponding to ACo and AC[MODq (q > 1), respec-
tively, are defined as follows:

ao {0, 1, [^, ]^, Iv, ]v}, AMOD--- {0, 1, [A, ]^, Iv, IV, [MOD, ]MOD}"
In the case of NC let us fix a finite nonsolvable group G as our alphabet.

4.4. Let B be a finite alphabet. Remember that a language L
_
B* is called aperiodic

if and only if there is a k N such that for all x, y, z B*, xykz L if and only if
xyk+lz L [16].

To define yet another class of regular languages we need additional notation.
Assume that Lo, L1 are languages over B, and fix some b B. Then we denote by
[Lo, b, L1,0]q the set of all words over B that cannot be written in the form wobwl
with Wo Lo, w L1. For 0 < k <= q, [Lo, b, L, k]q denotes the set of all words for
which the number of factorizations wobwl (Wo Lo, wl LI) is congruent k modulo q.
Now we can define a hierarchy of regular languages by induction:

oMq(B)= {qb, B*},
i+1 } BCMq (B)=Mq(B)I..J{ILo, b,L,k]qIbB, Lo, LMq(B),O<=k<= q where BC

denotes the closure with respect to Boolean operations.
According to the results of [3] the acceptance languages for AC are regular

aperiodic languages over A0, and in the case. of AC[MODq] they belong to

...JiN Miq(AMoD). Moreover, to an L NC1 we can assign a word function Wt {0, 1}*
G* such that w L if and only if H Wt(w) e, where 1-I denotes the product taken in
G and e denotes the neutral element of G.

This completes the list of results related to (1) and (2) of 4.3.
FACT 4.5. Let Wt be one of the word functions from (2) of 4.3, and let A denote

the corresponding alphabet. Then:
(1) If IWll-lw_l, then ]W(Wl)[-lw,(w:)l;
(2) The length Wt(w)] on inputs w of length n is polynomially bounded;
(3) For fixed n N, the letter on a fixed position m in WL(w) (w {0, 1}’) depends

on at most one input. More precisely, either all WL(w) (w {0, 1}’) have the same
letter on position m, or there are two letters bo, bl A and some iN such that
wi =0==>io Wt(w), bo is on position m, w= 1 in W(w), b is on position m.

These are the "nice" properties cited in (3) of 4.3.

4.6. In order to get a link from these results to logic we sketch how to regard
words over an alphabet B as structures of a logic FOw(rB). We will call those structures
word models, and later we will use them to produce the desired logical descriptions of
AC, AcO[MODq], and NC 1o

Fix an arbitrary finite alphabet B. As symbols of FOw we take those of FO. The
signature rn contains, for each b B, a unary predicate symbol pb. The syntax is as
usual. Structures have as universes one of the sets n (n N) and satisfy the following
restriction on the interpretation of the predicate symbols of rB.

For each m [n] there is exactly one b B (the letter at position m) such that m
satisfies pb.
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Thus we can think of an FOw(trn)-structure over [n] as a B-word of length n
and vice versa.

Of course it is possible to add LIP-constructs to FOw. In order to make sure that
the (G-II)-construct (see 3.5) always gives a sense, we include a G-representation
into the logical symbols, thus obtaining (FOw,O + G-H)(trn). According to the conven-
tion that all structures under consideration are of cardinality greater than or equal to
two, two new constant symbols will be enough to construct a G-representation.

LEMMA 4.7. (1) L is a regular aperiodic language over B ifand only ifL is definable
by a FOw(trn)-sentence;

(2) LrMq(B) if and only if L is definable by an (FOw,+Zq-H)(tr)-
sentence;

(3) If G is a finite group, then the (FOw,8 + G-II)(o’)-sentence

rI [Pg(x), ]
rain

expresses that the product of the letters of a G-word differs from,e e G. (Here . denotes
the sequence of constant symbols representing e e G as regards G.)

Part (1) is a well-known theorem (see, for example, [16] or [23]). The proof of
(2) is based on the fact that the (Zq- II)-construct admits counting modulo q (see the
remark at the end of 3.5). The crucial step in the proof is to construct sentences
defining languages of the type [Lo, b, L1, k]q. Part (3) is obvious. El

4.8. Now we are in position to prove the converse of Fact 4.1.
Fix an arbitrary language L e AC and apply Fact 4.5 of (2) to find a constant

k e N such that the words W.(w) (w e {0, 1}") (from (2) of 4.3) are of length at most
n k. So we can identify the positions in the words WL(W) (W e {0, 1} n) with an initial
segment of the k-tuples over In] in their lexicographic order.

Now we apply (1) and (3) of 4.3 to define, for all letters a, ao, aleAo, the
following nonuniform relations:

P(rl," ", rk) :) all words WL(W) (w e {0, 1}") have the letter a at the posi-
tion coded by (rl, , rk).

Pa’(i, rl,..., rk) for all words WL(w) (we{O, 1}"), if wi=O then ao is at
position (rl,’" ", rk), otherwise al is at the position coded by (r,...,

Furthermore, we define mn and max to be k-tuples of nonuniform constants coding
the beginning and the end of the words WL(W) (we{O, 1}"), respectively.

Using the nu-symbols for these new relations and constants, we show how an
arbitrary FOw(trAo)-Sentence can be translated into an FO,u(H)-sentence ’ such that

WL(W)FOw(O-Ao)(([I], nw) ,u P’.
Variables in p become k-tuples of variables in p’, we do the same with the constant
symbols min and max. The relation symbols < and are translated into <k and k,

the nu-symbols for lexicographic order and identity of k-tuples, respectively.
Any atomic formula of the type Pa(x) (a e Ao) will be transformed to

pa(x1,’’’,Xk)

bA bA

Finally, the ::l-quantifiers of FOw(tro) of the form :ix. are translated into

:tx Bxk(min <----k(X," ", Xk) <--k max ^ ).
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According to Lemma 4.7 there is an FOw(trAo)-Sentence oL defining the aperiodic
language AccL (see 4.3(2)). To p we apply the translation procedure just described,
thus obtaining the desired FO,u(H)-sentence defining LAC. This completes the
proof of Theorem 3.6(1).

Similar arguments are applied in the proofs of Theorem 3.6(2) and (3). [3

5. Proof of Theorem 3.8.
5.1. Assume (Pn)nN to be a sequence of polynomial-size O-branching programs.

Without loss of generality we may assume that size(Pn) <= n k for some k N. Hence it
is possible to enumerate the nodes of each Pn by elements of In] k. Having fixed such
enumerations, nonuniform relations can be defined as follows:

Queryn(xl, ", Xk, i, Yl, ", Yk, g, Zk) the k-tuple numbers a
query node in Pn, labeled by the ith input, and the corresponding 0- and
1-edges lead to the nodes of P, with the numbers 33 and , respectively.

to Branchn(x , Xk, y ", Yk, gk) : : numbers a nonsink node
in P,, labeled by the to l, and the corresponding 0- and 1-edges lead to the
nodes of Pn with the numbers 33 and , respectively.

Furthermore, select nonuniform constants

Sin)nN, (an)nN,i (rn)nzN,i (1 --<-- i=< k),
k ksuch that (S,’’’,sk), (an,’’’, an), (r,-.., rn) are the numbers of the source,

accepting and rejecting nodes in the enumeration of Pn, respectively.
Now we are in position to invoke the result Theorem 3.3.

5.2. If f {/} then the language accepted by (P,)nN is defined by the following
(FOnu + TC)(H)-sentence:

(, ) TCa[ =k Z3 V ::li::lv(Query(t, i, v, ) ^ -H(i))
v ::li:t(Query(, i, , 3) ^ H(i))

v ::l(/-Braneh(, v, v))v ::l(/-Branch(, v, ))].
In the case of f- {/} an analogous formula would work.

If f {/, /}, then the following (FOn + LFP)(H)-sentence will do the job"

LFPa.p[a --k V ::li:lo::l,(Query( i, o, 1) ^ -H(i) ^ P(vo))
v :it:lwo:lwi(Query(u, i, Wo, v) ^ H(i) ^ P(w))
v :lo=l(/-Branch(, o, ) ^ P(o) ^ P())
v lo:ll(/-Branch(, o, v) ^ P(o)) v ::lo::ll(/-Branch

(t, #o, #,) ^ P(#,))].
In the case of f {MODe} we must be more careful to keep the "induction

predicate symbol" P positive in the formula. This can be established by representing
the possible values 0 and 1 of nodes in Pn (see the definition of acceptance behavior
in 3.7) by an additional variable. Set

#(a, v) -= [(v min ^ =k)V(v=max ^ =k)]
V ::li::lo::i,(Query( i, o, 1) ^ -1H(i) ^ P(o, v))
v ::li::lo::l#,(Query(t i, o, 1) ^ H(i) ^ P(,, v))
v ::lo::l::l3o::lt3(MOD2- Branch(t Vo, #) ^ P(o, Vo)

^ P(’,, v,) ^ Vo v,)],
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then

’, max) e LFPa,v,e[ q , v

expresses that the node of P, with number ’ has value 1 with regard to the input word
that is coded by H. Hence

(s, max) e LFPa,,p[q,(, v)]

is the desired sentence.

5.3. To complete the proof of Theorem 3.8 it remains to verify

NU- NLogSpace c_c_ P(V)-Be and NU- PTime

_
We will do this by using other characterizations of the nonuniform complexity

classes NU-NLogSpace and NU-PTime, respectively. For more background we refer
the reader to 17]. A language L_c {0, 1}* belongs to NU-NLogSpace if and only if it
can be recognized by a sequence of polynomial-size directed switching networks. These
networks can be simulated by {V}-branching programs of size at most quadratic in
the network size: branchings in the network, i.e., vertices of outdegree >_-2, become
iterated {/}-branchings, whereas the switching edges correspond to usual query nodes.
This proves (1) of Theorem 3.8. Part (2) is a consequence of (1) and the results of
[12] and [22].

To conclude with 3.8.3 we remark that a language L c__ {0, 1}* is in NU-PTime if
and only if it can be accepted by a sequence of polynornial-size combinational circuits
over {V,/} (fan-in 2!) and Boolean inputs I1," ", In, I1,. ., I,, 0, 1. But these circuits
trivially may be regarded as {/,/}-branching programs: simply replace the inputs
and negated inputs by corresponding query nodes leading to a or r, respectively.

6. Concluding remarks. We have tried to show that several nonuniform complexity
classes can be characterized by the expressive tools that are needed to formulate a
computational problem belonging to these classes. From the separation results in [18]
and [20] it follows that some of the logical arguments we used essentially differ in
their expressive power. Meanwhile, similar approaches to nonuniform complexity
classes have been discovered independently by some other researchers, also [1], [2],
[21]. An alternative characterization of NC has been given in [4]. However, the
question remains open whether new separations can be proved using logical characteri-
zations of the complexity classes in question.

Acknowledgments. I thank B. Graw, C. Meinel, and S. Waack, who have supported
this research by many discussions and encouraged me to write this paper. Thanks also
to a referee who gave useful comments on this paper.
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DECIDING EQUIVALENCE OF FINITE TREE AUTOMATA*

HELMUT SEIDLf

Abstract. It is shown that for every constant m it can be decided in polynomial time whether or not
two m-ambiguous finite tree automata are equivalent. In general, inequivalence for finite tree automata is

DEXPTIME-complete with respect to logspace reductions, and PSPACE-complete with respect to logspace
reductions, if the automata in question are supposed to accept only finite languages. For finite tree automata
with weights in a field R, a polynomial time algorithm is presented for deciding ambiguity-equivalence,
provided R-operations and R-tests for 0 can be performed in constant time. This result is used to construct
an algorithm deciding ambiguity-inequivalence of finite tree automata in randomized polynomial time.

Finally, for every constant m it is shown that it can be decided in polynomial time whether or not a given
finite tree automaton is m-ambiguous.

Key words, finite tree automata, equivalence, complexity, ambiguity, semirings

AMS(MOS) subject classifications. 68D35, 68D30, 68F10, 68C25, 20M35

0. Introduction. Finite tree automata were defined in the late sixties by Thatcher
and Wright and Doner as generalizations of finite automata accepting word languages
to finite state devices for tree languages [ThaWri68], [Do70]. Their main interest in
tree automata was a logical point of view. Finite tree automata can describe classes
of (finite or infinite) models for formulas of monadic theories with multiple successors
and therefore can be used to get effective decision procedures for these theories
[ThaWri68], [Do70], IRa69], [Tho84]. For other possible applications see [GeStei84].

In this paper we investigate finite tree automata accepting tree languages of finite
trees from a complexity theoretical point of view. Especially, we want to analyze the
equivalence problem for finite tree automata. Two finite tree automata A1 and A2 are
called equivalent, if and only if they accept the same tree language. We find that the
inequivalence problem for finite tree automata is logspace complete in DEXPTIME,
and the inequivalence problem for finite tree automata that accept only finite languages
is still logspace complete in PSPACE. These problems for finite word automata are
known to be PSPACE- and NP-complete with respect to logspace reductions, respec-
tively. Actually, our proofs extend proofs of the corresponding results for finite word
automata.

Since the equivalence problem for finite tree automata is provably difficult in
general, it seems natural to look for adequate subclasses such that equivalence can be
decided in polynomial time, at least for automata of such a restricted class. One
parameter that attracts attention in this context is the degree of ambiguity. A finite
automaton is called m-ambiguous, if for every input there are at most rn accepting
computations. In [SteHuS1], [SteHu85] Stearns and Hunt III give a polynomial time
algorithm that decides equivalence of m-ambiguous finite word automata for every
fixed constant m. They employ difference equations for their decision procedure. Kuich
[Kui88] simplifies their constructions. Although not stated explicitly, Kuich’s proof
can be used to show that the equivalence problem for m-ambiguous finite word
automata is even in NC. Kuich uses semiring automata and the formalism of formal
power series. Semiring automata are obtained from ordinary automata by giving weights

* Received by the editors April 25, 1988; accepted for publication (in revised form) May 22, 1989. A
previous version ofmy paper appeared in the proceedings ofSTACS’89 (Springer, Lecture Notes in Computer
Science 349, pp. 480-492).

t Fachbereich Informatik, Universitit des Saarlandes, D-6600 Saarbriicken, Federal Republic of
Germany.
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in some semiring to transitions and initial states. In particular, Kuich shows how the
equivalence problem for m-ambiguous word automata can be reduced to the ambiguity-
equivalence problem for unambiguous automata with weights in the field of rational
numbers .

For tree languages the concept of formal power series seems to be much more
involved than for word languages [BeReu82]. Therefore, we avoid using this concept,
but show how some basic ideas of Kuich can be carried over to tree automata. Thus,
we introduce finite tree automata with weights in some semiring R and show how to
reduce the equivalence problem for m-ambiguous finite tree automata to the ambiguity-
equivalence problem for unambiguous finite tree automata with weights in Q or even
in 7p for some prime number p > m.

We then consider the problem of deciding ambiguity-equivalence for finite tree
automata with weights in a field R. We are able to prove the appropriate generalization
of Eilenberg’s equality theorem [Ei74, Thm. 8.1] to tree automata, i.e., we give an
explicit upper bound for the depth of a witness for ambiguity-inequivalence. Further-
more, analyzing the proof we get a polynomial time algorithm that decides ambiguity-
equivalence of finite tree automata with weights in R, provided we are allowed to
perform R-operations and R-tests for 0 in constant time. Note that this does not
automatically lead to a polynomial time algorithm deciding ambiguity-equivalencefor
ordinary finite tree automata (viewed as automata with weights in Q), since the only
upper bound for the lengths of occurring integers given by the algorithm is exponential
in the input size. However, we get a polynomial time algorithm deciding equivalence
of m-ambiguous tree automata. As another consequence, we are able to construct a
randomized polynomial algorithm deciding ambiguity-inequivalence of arbitrary finite
tree automata.

For reasons of completeness we finally show that it is also possible to detect
whether or not our polynomial equivalence test is applicable, i.e., it can be decided
in polynomial time for every constant m whether or not a given finite tree automaton
has a degree of ambiguity less than m.

A subsequent paper [Se89] considers the finite degree of ambiguity for its own
sake, showing that it can be decided in polynomial time whether or not the degree of
ambiguity of a finite tree automaton is finite. Furthermore, we will give a tight upper
bound for the maximal degree ofambiguity ofa finitely ambiguous finite tree automaton.

1. General notations and concepts. In this section we give basic definitions and
state some fundamental properties. Especially, we show that for the equivalence or
ambiguity-equivalence problems of finite tree automata, it suffices to consider finite
tree automata of rank <_-2.

A ranked alphabet 2; is the disjoint union of alphabets Eo, , Et. For a 2;, the
rank of a, rk(a), equals m if and only if a E,,. Ty denotes the free E-algebra of
(finite ordered E-labeled) trees, i.e., T. is the smallest set T satisfying (i) Eo c T, and
(ii) if a E,, and to," ", t,,_ T, then a(to,. ", tm-) T. Note that (i) can be viewed
as the subcase of (ii) with m 0.

The depth of a tree t, depth(t), is defined by depth(t) 0 if Eo, and depth(t)
1 + max {depth(to),. ", depth(t,,_)} if a(to,. , t,,_) for some a 2;,,, m > 0. Let
[o denote the set of all nonnegative integers, and let No* denote the set of all finite
sequences of nonnegative integers. The set of nodes of t, S(t), is the subset of
defined by

m--1

S(t) {e}U U j" S(tj)
j=0
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where a(to,..., t,,_) for some a Er, with m _>-0. defines a map h,(_)" S(t) E,
mapping the nodes of to their labels. We have

fa if r= e
At(r)

At,(r’) if r-j. r’

A finite tree automaton (abbreviated: FTA) is a quadruple A (Q, E, QI, 6), where
Q is a finite set of states,
Qx Q is the set of initial states,
E is a ranked alphabet, and
6
_

[._),,=>o Q x E,, x Q" is the set of transitions of A.
rk(A) max {rk(a)la 6 Z} is called the rank of A.
Let t--a(to,..., tm-)6 Ty. and q 6 Q. A q-computation of A for consists of a

transition (q, a, qo, ", q,,-) 5 for the root and qy-computations of A for the subtrees
t, j {0,..., m- 1}. Especially, for m 0, there is a q-computation of A for if and
only if (q, a, e) 6. Formally, a q-computation th of A for can be viewed as a

map b:S(t)->Q satisfying (i) b(e)-q and (ii) if A(r)--aE,,, then
(b(r), a, th(r" 0)... th(r" (m-l)))6 6. is called accepting computation of A for t,
if th is a q-computation of A for with q Qx. For 6 T and q Q, A,o(t) denotes
the set of all q-computations of A for t, and A.O,(t) denotes the set of all accepting
computations of A for t.

nA(t)q A,q(t) is the number of different q-computations of A for t, the Q-tuple
(nA(t)q)qeQ is denoted by hA(t); finally daA(t)= tA,O(t), the number of different
accepting computations of A for t, is called the ambiguity of A for t.

The following proposition is an easy consequence of these definitions.
PROPOSITION 1.1. Assume a(to, , t,,_l) T. Then

(1) nA(t)q= Z na(tO)qo na(t,,_)q
(q,a,qo qm-1)6

(2) daa( t)
q Q1

The (tree) language accepted by A, L(A), is defined by L(A)= {t T,IdPA,Qt(t (}.
The degree of ambiguity of A, da(A), is defined by da(A)= sup {daa(t)[t T}. A is
called

-unambiguous, if da (A) <- 1;
-ambiguous, if da A > 1;
-m-ambiguous, if da(A) <-_ m;
-finitely ambiguous, if da(A)<; and
-infinitely ambiguous, if da (A) c.
Two FTAs A, A2 are called
(1) ambiguity-equivalent (written A1 =- A2), iff daa,(t)= daa2(t) for all t T.
(2) equivalent, iff L(A1)= L(A2).

Clearly, AI-= A2 implies L(A)= L(Az). Moreover, if A and A are unambiguous,
then A -= A2 if and only if L(A1) L(Az).

For describing our algorithms we will mostly use Random Access Machines
(RAMs) with the uniform cost criterion (see [Aho74] or [Paul78] for precise definitions
and basic properties). If we allow multiplications, divisions, or the manipulation of
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registers not containing nonnegative integers, we will state this explicitly. For measuring
the computational costs of our algorithms relative to the size of the input automata in
question, we define

Ial E (m +2).
(q,a,qo"" qm-1) 6

An FTA A (Q, Z, QI, 6) is called reduced, if
-Im>=O, aE," Q{a}Qmfq6(.
-[q Q :q T,, t dPa,Q,( )" qim (b).
The following proposition is well known:
PROPOSITION 1.2. For every FTA A=(Q,E, QI, 6) there is an FTA At=

Qr, Er, Q,, 6r) with the following properties:

(2) Ar is reduced; and
(3) At=- A.
Ar can be constructed from A by a RAM (without multiplications) in time

Actually, the construction of A is analogous to the reduction of a context-free
grammar.

Next, we observe that we may restrict our attention without loss of generality to
automata .of rank _<-2 (nonetheless we always will give the constructions for arbitrary
rank L).

Consider the (injective) tree homomorphism 0 that maps symbols of rank >2
onto a tree of binary symbols as shown in Fig. 1. One easily proves"

FIG.

m-2

PROPOSITION 1.3. For every FTA A (Q, Z, Q,, 6) exists an FTA A’ with the
following properties:

(1) daA(t)= daA,(O(t)) for all T;
(2) L(A’)= O(L(A)).
(3) A’ can be computed from A in time O(]AI).
2. The complexity of the inequivalence problem. Before we give a polynomial time

algorithm that decides equivalence of m-ambiguous FTAs, we analyze the complexity
of the inequivalence problems for unrestricted FTAs and FTAs accepting finite
languages, respectively. For nondeterministic finite word automata these two problems
are known to be PSPACE-complete and NP-complete (with respect to logspace reduc-
tions), respectively [MeSto72], [StoMe73]. We find these problems for FTAs to be
DEXPTIME-complete and PSPACE-complete, respectively.

im (b) denotes the image of the map h.
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For the upper bounds we construct Turing machines that simulate the computations
of the subset automata corresponding to the FTAs to be tested for inequivalence. For
an FTA A (Q, E, QI, 6) the corresponding subset automaton P(A) is defined by

P(A)=(P(Q),,, QI, 6), where
P(Q) denotes the power set of Q,
i { Q’ - Q IQ’ QI }, and
(Q’,a,Q’o’"Q’-I) iff Q’={qQlZlqoeQ,...,q,,,_Q’,,_l’(q,a, qo

qm-1) G 6}.
Let t T. Define Q(t)={q Q]a.q(t)#(}. Then Q(t) is the unique subset Q’

of Q such that there is a Q’-computation of P(A) for t. This uniqueness is usually
called "bottom-up determinism." It is well known that L(P(A))-L(A) [Do70],
Especially, L(A) if and only if Q(t) f3 QI .

THEOREM 2.1. (1) For two FTAs A1, Az it can be decided in time O(2 L) whether
or not L(A) L(A2), where L is the maximal rank, n is the maximal number of states

ofA and A2, and c > 0 is a suitable constant independent of n and L.
(2) The inequivalence problem for FTAs is hard in DEXPTIME with respect to

logspace reductions.

Proof The proof is an appropriate generalization of a proof showing PSPACE-
completeness for deciding inequivalence of finite word automata. Where in the word
case, the computations of the subset automata could be simulated by a nondeterministic
polynomially space bounded Turing machine, we need an alternating Turing machine
in the tree case. For the hardness part instead of coding the word problem for
nondeterministic linear space bounded Turing machines into the inequivalence prob-
lem, we can, in the tree case, encode the word problem for linear space bounded
alternating Turing machines into the inequivalence problem.

Ad(1): Construct an alternating Turing machine M that on input (A, A2) simu-
lates topdown the computation of P(A1) and P(A2) for a witness for inequivalence.
M needs space O(L. n) on its worktape to verify that for the current pair of state sets
(01),2)), Oi)___Q;, i=1,2, guessed ace and guessed tuple of pairs
(O(o), ((o2)) (()-1, O)-), ((i), a, O(o)... ()_1) is a transition of P(ai), i= 1, 2.

Since by [ChaKoSto81] ASPACE(L. n)=[..Ac>oDTIME(2L"), assertion (1)
follows.

Ad(2): Assume M is an alternating n-space bounded Turing machine with tape
alphabet F, and w FN for a fixed natural number N. We construct a ranked alphabet
Z and an FTA A with alphabet Z having O(N) states such that L(A) Tx if and only
ifM has an accepting computation for w. This construction will be possible in logspace.
Thus, every problem in ASPACE (n) can be reduced to the inequivalence problem of
FTAs. By the simulations given in [ChaKoSto81] the result follows.

Without loss of generality we assume that
-M has only one accepting state f and no transitions in state f;
-M has no negating states;
-in M, universal states have always exactly two successors.

Without loss of generality the work tape of M on a computation for w always
contains N symbols. Therefore, configurations of M can be denoted by wl wzq where
ww FN is the current inscription of the work tape, ’ F stands left to the position
of the read/write head of M, and q represents the current state.
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Define E by
Zo {f},
Z1 F U { } U {q q existential state of M},
2 {qlq universal state of M}, and
Z., for all m > 2.
Note that every accepting computation tree of M for w can be represented by

some T.
We construct an FTA A such that L(A) { T]t is not an accepting computation

tree for w}. Given an input tree t, A nondeterministically performs one of the following
tasks:

(1) Test whether does not start with the initial configuration ’wqo of a computa-
tion of M for w;

(2) Test whether contains an "ill-formed configuration," i.e., whether contains
a sequence of unary symbols such that there are more or less than N symbols of F
and more or less than one ’ between two states;

(3) Test whether contains an incorrect transition between two configurations,
i.e., whether one of the tape symbols is not copied correctly, whether ’ has moved
more than one step, or whether there is no transition of M to cause the change of
current input symbol, state, or head position;

(4) Test whether contains a configuration of M with universal state such that
the two following configurations in do not correspond to two different transitions of
M.

Each of these tasks can be implemented with O(N) states. Since (a description
of) A can be constructed from w in logspace, and from ASPACE(n)=
[,_J >o DTIME (2c’) [ChaKoSto81 ], the result follows.

THEOREM 2.2. The inequivalence problem for FTAs accepting finite languages is
PSPACE-complete with respect to logspace reductions.

Similar to the proofofTheorem 2.1, the proof ofTheorem 2.2 will be an appropriate
generalization of a proof for the NP-completeness of deciding inequivalence of finite
word automata accepting finite languages. In the case of finite word automata the
bound on the length of the witness for inequivalence allows one to construct an
NP-algorithm; in the case of tree automata the bound on the depth of a witness for
inequivalence allows one to construct a polynomially space bounded algorithm. Accord-
ingly for the hardness part, instead of satisfiability of conjunctive normal forms that
can be encoded into the inequivalence problem for finite word automata accepting
finite languages, we can encode arbitrarily quantified conjunctive normal forms into
the inequivalence problem for finite tree automata accepting finite languages.

Before giving a detailed proof of Theorem 2.2, we state an immediate corollary.
COROLLARY 2.3. The inequivalence problem for finitely ambiguous FTAs is

PSPACE-hard.
Proof FTAs accepting finite languages form a subclass of the class of finitely

ambiguous FTAs.
Proof of Theorem 2.2. We need the notion of branches of trees. For a ranked

alphabet E define EB as the (ordinary) alphabet

EB {(a,j)I a ( .m, m > O,j 6 {0, , m 1}}.

Assume T, r =j "jk S(t) is a leaf of t, and al," ", ak is the sequence of
labels of the nodes on the path from the root of to r (omitting the label of the leaf
itself), i.e., aK-At(j1"" "jK-1) for K 1,..., k. Then (al,jl)’’" (ak,jk) is called the
branch of corresponding to r.
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Now assume Ai (Qi, E, Q,o, ti), 1, 2, are two FTAs accepting finite languages,
#Qi<-n and rk(E)= L. The computations of P(A1) and P(A2) for a witness for
inequivalence can be simulated by a nondeterministic Turing machine M that uses its
worktape as a pushdown store (with entries of size O(n) to hold pairs of sets of states).
M accepts if and only if it has simulated correctly the computations of P(A1) and
P(A2) on some in the symmetric difference of L(A1) and L(A2). Since L(A1) and
L(A) are finite, depth (t)< n. Therefore, during an accepting computation of M, the
pushdown store never contains more than L. n pairs of sets of states. It follows that
M has only polynomial space complexity.

PSPACEohardness: By [StoMe73] the following set B is known to be PSPACE-
complete with respect to logspace reductions"

B {(Xl, Yl, Xk, Yk, B)[k >- O, B conjunctive normal form containing variables
from xl, Yl, Xk, Yk such that :lxl gy :::ixk [Yk B(Xl Yl Xk, Yk)}.

Therefore, fix some k_-> 0, pairwise different variables Xl, , Xk, Yl, ", Yk and
a conjunctive normal form B(Xl, Yl,’’’, Xk, Yk). We want to construct FTAs A1, A
accepting finite languages such that

L(A1) L(A2) iff <Xl, Yl ,’’’, Xk, Yk, B) B.
Let E denote the ranked alphabet with Eo {# }, E2 {0, 1} and Ej otherwise.

Both the integers 0 and 1 and the corresponding two elements in E will be used to
represent the truth values "false" and "true," respectively.

Define a set T(k) T. inductively by

T(={#}, and T(k)---{a(tl, t2)[a2, tl, t2 T(k-l)} for k>0.

Obviously, depth(t)= k for every T(k. Define an FTA A2 of size O(k) such
that T(k= L(A2). Clearly, A2 can be constructed by a logspace Turingmachine.

We construct an FTA A1 with L(A1)_ Tk and L(A1) Tk iff :Ixl Vyl... :lXk
Vyk B(xl, Yl, ", Xk, Yk).

Given an input tree t, A1 behaves as follows:
(1) A1 checks whether is in T(k) and rejects any other tree. So, without loss of

generality assume T(k).
(2) A guesses a clause c of B and a branch (:l, r/)... (:k, r/k) and accepts

whenever

A1 can be constructed in logspace as well.
For the correctness of the construction we observe that 3X1Vyl’’" ]Xk fYk

B(x1, Yl," Xk, Yk) if and only if there is a tree T(k) such that satisfies (*):

B(:I, r/l,"" ", k, r/k)= 1 for all branches ((1, r/)... ((k, r/k) of t.

However, by the construction of A1, A accepts exactly those trees in T(k) that
do not satisfy (*). Thus,

L(A1) # L(A2) itI IX Vyl" =lXk Vyk B(Xl, Yl, ", Xk, Yk).
3. Semiring automata. We extend our notion of a finite tree automaton by allowing

the transitions and initial states to have weights in some semiring R. The advantage
of this extension is twofold.

On the one hand the resulting automata have nice algebraic properties that make
it possible to "eliminate" finite ambiguity. These properties are studied in this section.
On the other hand, the extension enables us to use methods from linear algebra to
decide ambiguity-equivalence. This will be investigated in the next section.
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A commutative semiring with 0 and 1 is a structure (R, +,.), where 0 and 1 are
two different elements of R; + and are commutative and associative operations on
R; and the following equations hold for arbitrary a, b, c R"

a. (b+c)=(a. b)+(a, c), 1 a=a, 0+a =a, 0. a=0.

If + and are understood, we write R instead of (R, +,.). Moreover, since all
semirings we will use are commutative and have 0 and 1, we will call them semirings
for short. Assume R is such a semiring. A finite tree automaton with weights in R
(short: R-FTA) is a quadruple A (Q, E,/, 6), where

Q is a finite set of states;
E is a ranked alphabet;
I (Iq)qo R is the Q-tuple of initial ambiguities; and
6 is a map 8" ..J,,>=o Q x E, x Q" R denoting the transition multiplicites.
Let V= R denote the set of Q-tuples of semiring elements. Taking equations

(1) and (2) of Proposition 1.1 as a definition, we define
(1) a map ha" T. -’> V by na(l) na(t))q Q, where

nA(t)q E (q, a, qo, qm-1) rla(to)qo lla(tm-1)q
qo"" qm- Q

for t= a(to,. ", t,,-1), and

(2) a map dam" T- R by daa( t) EqO I1 na( t)q.
ha(t) is called ambiguity vector of A for in V; daa(t) is called the ambiguity

of A for in R. Note that by (1), every a E,, defines a multilinear map a" V" V
which in particular yields, when applied to the ambiguity vectors of A for the subtrees
tj, j 0,- -, rn- 1, the ambiguity vector of A for a(to,. ",

Finally, the language L(A) accepted by A is defined by L(A) {t Tldaa(t) 0}.
Similar to the case of FTAs, the size of the R-FTA A, IAI, is defined by

IAI- Y (m +2).
iS( q,a,q

An R-FTA A is called unambiguous if and only if daA(t){O, 1} for all t T.
Two R-FTAs A1, A2 are called equivalent if and only if L(A1)= L(A2). They are

called ambiguity-equivalent (denoted" A1 A2) if and only if dam,(t) daaz(t) for
every tree t.

An FTA A (Q, E, Q, 6) can be viewed as the definition of an R-FTA AR
(Q, E, 1 o,, tR ), where

1 if q QI
lo,,q=

0 else

and

1
6R(q, a, qo" qm-1)-

0

We make the following observations.
PROPOSITION 3.1. For all T"
(1) If No is a subsemiring of R, then

if (q, a, qo’’" qm-1) 6

else.

(1.1) nAn t)q nA( t)q for all q Q;

(1.2) daAR( t) daA( t).
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(2) Ifp > 1 is a natural number, then

(2.1) (nAzp(t)q nA(t)q mod p) for all q Q;

(2.2) daAzp( t) daA( t) mod p.

(3) If B is the Boolean semiring defined by 1 + 1 1, then

(3.1) (nA(t)q=l
(3.2) daAa (t)= 1

if[ nA( t)q > O) for all q Q;
if[ daA( t) > O.

Proof. In all three cases there are semiring homomorphisms PR "o- R with
pg(0)=0 and fiR(l) 1. Thus, the subcases (_.2) follow directly from the subcases
(_.1), and the subcases (_.1) follow by induction on the depth of t.

For convenience we no longer distinguish between an FTA A and its corresponding
o-FTAA

Let R denote a semiring. The next three lemmas provide constructions for linear
combination of R-FTAs, products of R-FTAs, and constant R-FTAs.

Assume Ai--(Q, E, I(), i), i= 1, 2, are two R-FTAs and/,/z R. By/zA +
/z2A2 we denote the R-FTA (Q, E, I, 8), where Q is the disjoint union of Q1 and Q2;

/zIq) if q Q1
.(2)

2" if q e Q2

81(q, a, qo qm-1) if q, qo, qm-1 Q,
t(q,a, qo" q,,_l)=82(q,a, qo qm-,) ifq, qo,...,qm_,Q2

else

By A1 A2 we denote the R-FTA ((, Z,/7, g), where

Q Qa X Q2;

p,q) Ip)" -q1(2) for p Q q e Q; and

g((p, q), a, (po, qo)"" (p-, q-))= (p, a, po"" pm-) :(q, a, qo"" q-,).

Finally, for every j R we define the constant R-FTA

({q}, Z, j, 1), where al(q, a, qm)= 1 for all aE., m>=O.

PROPOSITION 3.2. For all Tx:

nA,(t)q if q Q1
(1) n/zlal+/z2a2(t)q

na2(t)q if q Q

(2) da,a,+2A2( t) tz,daA,( t) + tzdaA2 t). ]

PROPOSITION 3.3. For all T.:
(1) nA,A:(t)(p.q)= nA,(t)p" nA:(t)qfOr all pc Q1 and q Q2;
(2) daAlA(t)= daA,(t)" daA:(t).
PROPOSITION 3.4. For all Tx:
(1) nj(t)- nj(t)q 1
(2) daj( t) =j.
The proofs of the Propositions 3.2-3.4 are omitted. Their assertions (1) can be

verified by induction on the structure of terms, whereas assertions (2) immediately
follow from the definitions and the assertions (1).

In [Kui88] Kuich describes a transformation transforming an m-ambiguous finite
word automaton into an unambiguous Q-automaton A’ such that L(A)= L(A’). The
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only properties that are needed are the presence of constructions for the linear
combination and product of automata (as we have proved to exist for R-FTAs as well
in 3.2 and 3.3) and the existence of automata accepting every word with a fixed
ambiguity (similar to the R-FTA’s j). Thus we get Proposition 3.5.

PROPOSITION 3.5. Assume A is an m-ambiguous FTA. Then

un(A)
(-1)J+’
[A]j

=1 j!

is an unambiguous Q-FTA where [A]= Ax (A- 1) x- x (A-(j- 1)). Furthermore,
L(un(A))=L(A).

Proof If k=daa (t)>0, then datajj(t)=k. (k-l) (k-j+ 1), and hence

daun(A)(t) 2 (-1)J+l k
2 (-1)J+l 1.

,i=1 j j=l j

If daa(t) 0, then da[A]j(t) 0 for all j > 0, and hence also daun(A)(t) O. I-]

Note that un(A) can be constructed on a Random Access Machine (RAM) (without
multiplications) in time O(IAlm).

We relativize the construction of un (A) modulo a suitable prime number p. The
reason for this is to keep the numbers occurring in our algorithms small. Assume p is
a prime number greater than m. By Bertrand’s postulate (see [HaWri60, Thin. 418])
such a prime p exists in the range between m and 2m. Since p > m, the multiplicative
inverse (j! mod p)-i is defined in 7p for all j {1,..., m}. Therefore, we can define
a/p-FTA un(A)p by

un(A)p E (-1)J+l(J mod p)-l[A].
j=l

As a consequence of Proposition 3.1(2) and Proposition 3.5 we get the following
theorem.

THEOREM 3.6. For every m-ambiguous FTA, A, and every prime number p > m,
un (A)p is an unambiguous Zp-FTA with L(A) L(un (A)p ).

Since for unambiguous R-FTAs equivalence coincides with ambiguity-
equivalence, Theorem 3.6 can be used to reduce the equivalence problem for m-
ambiguous FTAs to the ambiguity-equivalence problem for unambiguous 7/p-FTAs.

4. Deciding ambiguity-equivalence. In this section we present an algorithm decid-
ing ambiguity-equivalence for R-FTAs, provided R is a field. This algorithm relies on
a generalization of Eilenberg’s equality theorem [Ei74, Thm. 8.1] to finite tree automata.

MAIN LEMMA 4.1. IfR is afield, andA is an R-FTA with n states, then thefollowing
holds.

(1) A 0 iff daa(t) 0 for all Ty. with depth (t) < n.
(2) Whether or not A 0 can be decided in polynomial time on a RAM which

is allowed to hold elements of R in its registers and to perform the R-operations +,
-,., and R-tests for 0 in constant time.
As an immediate consequence we get Theorem 4.2.

THEOREM 4.2. If R is a field, and A and A2 are R-FTAs with nl and n2 states,
respectively, then the following holds.

(1) AI=-A iff daA,(t)=daA2(t) for all t T with depth(t)<nl+n2.
(2) Whether A1 =- A2 can be decided in polynomial time on a RAM which can hold

elements ofR in its registers and performs the R-operations +, -,., and R-tests for 0
in constant time.
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Proof A1 =-A2 iff A1-A2 -= 0. Thus, Theorem 4.2 follows from the Main Lemma
4.1.

Proof of 4.1. Assume A=(Q,,, 8, I) and rk(A)=L. Let V denote the n-
dimensional R-vector space V RQ. For k->_ 0 define Vk (nA( t) depth( t) <- k), i.e.,
Vk is the subspace of V generated by the ambiguity vectors of trees with depth (t) <-_ k.
Clearly, Vo VI_"’_ Vk Vk+I "’’_ V.

Recall that every a 6 E defines a multilinear map a" V - V; and we have

Vk+l--(ay.a(Wk,
We conclude

(i) If V V/ for some k =>0, then V V/, for all 1 > 0; and therefore, since
dim (V)= n

(ii) V,_ V =O__>o V.
(iii) If B is a basis of V, then B’k+=Bt3CJ,,>o{a(Vo, v,-)la,,,,

B} is a generating system for V/I.
(iv) The following three statements are equivalent:

(a) E Iqna(t)q =0 for all t T;
qQ

(b) Iqvq 0 for all v (Vq) qQ Vn-1;
qQ

(c) Iqvq 0 for all v (vq)qo Bn-1 of some basis Bn_l of Vn_.
qQ

By (iii) there is a basis B_ of V,_ consisting only of vectors hA(t) for some

T of depth less than n. This proves (1).
Note that this proof results from Eilenberg’s proof by using multilinear maps

instead of linear maps.

Ad(2)" For one k > 0, computing B from Bk needs O(4E. n L. IA[) operations
(E denotes the number of elements of E). B contains O(n L. 4,) elements. By the
Gaussian elimination method we can compute from B a basis for Vk in O(n
steps. Without loss of generality we may assume n <_-IAI. Thus, a basis for V_ can
be computed in time O(n+EIA ,). Since testing whether qoIqvq=O for all
v=(Vq)qO B_ can be done in time O(n2), this is already the final complexity. By
Proposition 1.3 we may assume L_-<2. Hence, assertion (2) follows.

Note that the RAM performing our test for A 0 makes intensive use of unrestric-
ted multiplication. Especially, if A is an FTA the entries of the basis vectors to be
considered may grow very rapidly. The only upper bound for these entries given by
the algorithm is l’l ’L+L2+’’’+L’’. Thus, for L> 1 the occurring integers may have length
O(L". log n). However, we can restrict the lengths of occurring numbers by employing
the fields 77p (p a prime number) instead of Q as domains for the weights of the FTAs
in question. Thus, for testing equivalence of m-ambiguous FTAs we can construct a
deterministic polynomial algorithm; whereas for testing ambiguity-inequivalence of
arbitrary FTAs we are able to give at least a randomized polynomial algorithm.

THEOREM 4.3. The equivalence problem for m-ambiguous FTAs is P-complete with
respect to logspace reductions for every fixed constant m > O.

Proof. Assume A, 1, 2, are two m-ambiguous FTAs. By Theorem 3.6 it suffices
to decide whether un(A1)p un(A2)p for a prime number p > m. The 77p-FTms un(Ai)p,
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i--1, 2, can be constructed in polynomial time, and the algorithm of Theorem 4.2(2)
needs only the 7/p-operations +, -,., ". Therefore, deciding equivalence of m-ambiguous
FTAs is in P. Since the emptiness problem for context-free grammars can be reduced
in logspace to the equivalence problem even of unambiguous FTAs, the result
follows.

For the following proposition, again let A1, A2 denote two FTAs with rank L and
-<n states. To avoid trivial subcases, we assume n > 1. For k > 0 let Pk denote the kth
prime number.

PROPOSITION 4.4. Define K log (n) (L + 1)2" (where log (_) denotes the
logarithm with base 2).

(1) A1 -= A2 iff (Al,zpk---- A2,zpk for all k <- K).
(2) If Ko>= 2K and p {Pl," ", PKo} is randomly chosen (with respect to the equal

distribution) then

(2"1) irA1 A2 then prob {Al,z=- A2,zp} 1; and

(2.2) ifA A2 then prob {Al,z, A2,p} >- 1/2.

Proof:

Ad(1): If A - A2, then by Proposition 3.1(2) Al,z; =- A2,.p. Now assume A1 and
A2 are not ambiguity-equivalent. By Theorem 4.2 there is some T with depth(t) < 2n
such that daA,(t)#daA2(t). The bound on the depth of implies that daa,(t)<=
nl+L+...+L2,, (L+I)< n Since Hk_<__K Pk 2/ n(t+l)2" it follows from the Chinese
Remainder Theorem that a prime number p{pk]k<-K} exists such that
daal(t) mod p daaz(t) mod p, and therefore

Ad(2): Assertion (2.1) is again the immediate consequence of Proposition 3.1(2).
By Theorem 4.2 there is some T such that z := daal(t) da&(t) # 0 and
Since z contains at most K primes as a factor, assertion (2.2) follows.

THEOREM 4.5. The ambiguity-inequivalence problem for FTAs is in RP, i.e., the
class ofproblems with randomized polynomial algorithms.

Proof Assume A (Q, , Q,, 6i), 1, 2, are two FTAs with 4# Q _-< n. By Propo-
sition 1.3 we may assume without loss of generality that L max { rk (a)l a E} __< 2.

Define K log (n) (L+ 1)2" as in Proposition 4.4. Since Pk O(k" log (k)) (see
[Ap76] or [RoSchoe62]), one can choose constants c, c’> 0 such that P[2] < 2c" and
the cardinality of the set {PIP prime, p<2"} is at least c’(2"/n). We construct a
probabilistic polynomial algorithm A that on input A1, A2 behaves as follows:

(i) If A1---A2, then prob {A outputs: "ambiguity-equivalent"} 1;
(ii) If A1 A2, then prob {A outputs: "not ambiguity-equivalent"}_-> c’/2n.

If we repeat this algorithm N times, where N >-2n/c’, we get an algorithm A’ that
satisfies (i) but outputs: "not ambiguity-equivalent" with probability ->_1/2 if A A2.

The algorithm A behaves as follows:
(1) A guesses a nonnegative integer p {0,..., 2c"- 1}.
(2) A constructs the 7/p-FTA A A,zv-A2,zp.
(3) A tries to compute the linearly independent set ofvectors B2,-1 {ha(t)[ T}

according to the algorithm given in the proof of 4.1(2).
If the multiplicative inverse of some q 7/p has to be computed, then A tests

whether qp-l__ 1.
If qp-1 1, then A outputs: "ambiguity-equivalent".
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If qp-l_. 1, then A computes qp-2 which in this case is the multiplicative inverse
of q.

(4) A computes z(v):-qQ,,, vq-qQ2, Vq for all v B2n-1. If z(v)-0 for all
vB2n_, then A outputs "ambiguity-equivalent". If not, then A outputs: "not
ambiguity-equivalent."

Clearly, this algorithm runs in polynomial time. We show that A has the properties
(i) and (ii).

Assume A-= A2. We distinguish two cases"

Case I. A succeeds to compute B2n_ B2n_ (nA(t)l T). Therefore, by Proposi-
tions 3.1-3.2 we have for all v B2-I ::It Tx:

z(v)=da,(t)

(daA,(t) daA(t)) mod p

Hence, A outputs "ambiguity-equivalent."
Case II. A does not succeed to compute B2n_ Then A always outputs "ambiguity-

equivalent." Therefore, A has property (i).
Now assume A A_. Assume p {0, , 2 1} is the integer randomly chosen

in step (1). Then p is a prime number with probability => c’/n. If p is a prime number,
then Zp is a field and hence the algorithm in the proof of 4.1(2) works correctly.
Especially, for every q 7/p, qP-= 1 and qp-2 is the multiplicative inverse of q; thus
A outputs "not ambiguity-equivalent," if and only if Al,p A2,p. By Proposition
4.4(2), A,A2,, with probability =2.

>- Therefore, A outputs "not ambiguity-
equivalent" with probability >=c’/2n. Hence, A has also property (ii). This finishes the
proof.

5. Finite degree of ambiguity. We have seen that bounding the degree of ambiguity
by some fixed constant rn yields a class of FTAs with a polynomial equivalence problem.
Therefore, for the sake of completeness we show in the following theorem"

THEORE 5.1. For every FTA A and m > 0 the following holds.
(1) There is an FTA A(") (Q(), E, Q/’), 6(’)) such that L(A(m))

{t Txl daA(t) >-_ m}. Especially, L(A(")) if[ da(A) < m.

(2) If rn is a fixed constant, then it can be decided in polynomial time whether or
not da(A) < m.

Proof. Assume A= (Q, E, Q, 8), where #Q= n and rk(A)= L. Let [0, m] denote
the set {0, 1..., rn}. Consider the semiring ([0, m], (+), .) with "absorbing upper
bound," i.e., (+) and are defined by

m if m d- m2 >- m
m (+) m2 m + m2 else

and

m if ml" mzm
m m2--

ml tn2 else

Define Q(m) {V [0, m]l #{qlvq #0}-< m}.
(As usual, for a Q-tuple v we adopt the convention that Vq denotes the qth element

in v.)
Define Qm)= {v Q’I (+) qo, vq m}.
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If m>-n, define (m) as follows. For every a GEk and Vo,’’’, Vk_6[0, m],
(v, a, Vo," ", Vk-) is in 6(m iff Vq=(+)(q,,,,qo...q_,) Vo,qo*""" * Vk-l,q_, for all q Q.

If m<n, define 6(’) as follows. For every a6Ek, 6’___ 8, with #3’-<_m and
Vl," Vk C Qm, (v, a, Vo’’" /)k-l) is in 8 (") if and only if Vq
(-’)(q,a,qo...qk_t) 8, l)O,qo g * Vk_l,qk_l for all q c Q. By the restriction to the cardinality
of 6’, # {q[ Vq 0} _-< m.

We omit the proof that the above constructed automaton has the property stated
in assertion (1).

If m < n is a fixed constant, then A(m) can be constructed in time O([AIm. rnm).
Recall that an FTA accepts the empty set if and only if the corresponding reduced
FTA has an empty state set. By Proposition 1.2 the reduced FTA for A(m) can be
constructed in time O([A("[)_-< O([AI" rn"). Therefore, it can be decided in time
O([A[’. rn"), whether L(A(’) is empty or not. Since we may assume L=< 2, it can
be decided in polynomial time whether or not da(A)< m.
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A NONTRIVIAL LOWER BOUND FOR AN
NP PROBLEM ON AUTOMATA*

ETIENNE GRANDJEAN’i"

Abstract. An NP problem L is linearly NP-complete if each NTIME (n)-problem is reducible to L in
linear time on a deterministic Turing machine. This implies that L DTIME (cn) for each c >- 1. Let R.I.S.A.
(Reduction of Incompletely Specified Automata) be the following NP-complete problem (quoted AL7 in
the classical book [M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979]. INSTANCE: a positive integer K and an incom-
pletely specified deterministic finite state automaton A (Q, :E, 8, qo, F), where 8 is a "partial" transition
function from Q 5; into Q, and Q, E, qo, F are defined as usual. QUESTION: Can 8 be extended to a
total transition function from Q E into Q in such a way that the resulting completely specified automaton
has an equivalent "reduced automaton" with K or fewer states?

It is proved that problem R.I.S.A. is linearly NP-complete. The proof uses a notion of generalized
spectrum of a first-order sentence, which has the form ty Ai<p ;i(Y)-" i(Y) where each ffi, i is a word
of the form fk’’" f2fl, k >= O, and each f is a unary function symbol.

Key words. NP-complete problem, Turing machine, random access machine, linear time reduction,
spectrum of first-order sentence, reduction of automata, incompletely specified automaton.

AMS(MOS) subject classification. 68Q

1. Introduction. In 1982, Cook [Co2] noticed that none of the many classical
NP-complete problems (listed in [GaJo]) had a known time lower bound at this
moment. In the present paper as in a previous one [Gr3], we present a linearly
NP-complete problem (a problem is linearly NP-complete if each problem of
NTIME (n) is reducible to it in linear time [De]). From a result of [PPST]"

1,3 DTIME (cn) NTIME (n).
cl

It follows that such a problem does not belong to DTIME (cn) for any c,>_- 1.
The linearly NP-complete problem defined and studied in [Gr3] is a satisfiability

problem (denoted SAT< (N)) for a simple class of formulas interpreted over integers.
We feel that SAT< (N) is a natural problem but we may object that it has been exhibited
and studied because of its linear NP-completeness.

The present paper studies an NP-complete problem known and studied for a long
time [PaUn], [Ko], [Pf], [ReMe] and listed in [GaJo, problem AL7]. This is the
Reduction of Incompletely Specified Automata (R.I.S.A.).

INSANtE. An incompletely specified deterministic finite state automaton A=
(Q, E, 6, qo, F), where Q is the set of states, E is the input alphabet, 6 is a "partial"
transition function from Q x E into Q, qo Q is the initial state, and F Q is the set
of "accept" states, and a positive integer K.

QtJES’rON. Can the transition function 6 be extended to a total function from
Q x E into Q in such a way that the resulting completely specified automaton recognizes
the same language as a finite automaton with K or fewer states?

THEOREM 1.1. Problem R.I.S.A. is linearly NP-complete.
As in [Gr3] the proof of Theorem 1.1 uses a (rather technical) simulation of a

nondeterministic Turing machine (NTM) by a Nondeterministic Random Access

* Received by the editors July 21, 1987; accepted for publication (in revised form) August 23, 1989.
? Laboratoire d’Informatique, Universit6 de Caen, 14032 Caen Cedex, France.
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Machine (NRAM). More essentially, our proof uses the (finite) generalized spectrum
(see [Fa]) of a first-order sentence (with only one variable y) of the form:

dp =_ Vy ./k i(Y)= i(Y)

where each i, is a word of the form fk’’" f2fl, with k-> 0, and each f is a unary
function symbol. The notion of generalized spectrum with bounded resources (bounded
number of quantifiers and bounded arity) was studied in several papers [Ly], [Grl],
[Gr2], [Gr3], [Gr4]. We are convinced that the notion of generalized spectrum (used
for simulation of NRAMs) is the right one to prove the linear NP-completeness of
natural problems.

Despite the superficial feeling that finite first-order structures are hard to manipu-
late, we think that they have a great expressiveness: in [Gr4] we exhibit some first-order
sentences with only one variable which define some arithmetical functions on finite
structures; in the present paper we obtain a very simple sentence (cf. above) by
using some predefined arithmetical functions on the universe of each finite structure.

Our paper is divided into seven sections. Section 2 presents some preliminaries.
Because of the length and technicality ofthe proof of Theorem 1.1, 3 gives a simplified
idea of its proof, which is expounded in 4, 5, and 6. Section 4 recalls some definitions
and a result of [Mo], [Gr3] on an efficient simulation of NTMs by NRAMs. Section
5 presents the simulation of an NRAM by a first-order generalized spectrum with only
one variable (the proof is omitted but can be found in [Gr3]); moreover, we prove
that the first-order sentence can be reduced to the simple form above. Section 6
gives an efficient reduction of the generalized spectrum of to problem R.I.S.A." this
achieves the proof of Theorem 1.1. Section 7 presents some concluding remarks.

In the present paper all the stated results are proved, excepting Lemmas 4.1 and
5.1, which are proved in our previous paper [Gr3] (however, 3 below gives an intuitive
idea of their proofs). Therefore we suggest that the reader first reads [Gr3], which is
self-contained.

2. Preliminaries. We use the usual notation and definitions in computational
complexity (see [HoU1]). Our models of computation are multitape Turing machines
(TM) where every tape is one-dimensional; more precisely, a TM has one read-only
tape for input, several read-write tapes (the worktapes) and in case it computes a
function, one write-only tape for output. A deterministic (respectively, nondeterminis-
tic) TM is abbreviated as a DTM (respectively, an NTM). Let DTIME (T(n)) (respec-
tively, NTIME (T(n))) denote the class of languages accepted in time T(n) by a DTM
(respectively, NTM).

We also use the nondeterministic random access machines (NRAM) defined in
[Mo] and [Gr2]. An NRAM consists of a finite program that operates on a sequence
of registers Ro, RI, R2, . Each register can store any natural number. The program
is a finite sequence of instructions, labeled inst 0, inst 1,..., inst l, of the following
types:

(1) Read (R,)
(2) Ri:=0
(3) R:= Ri+l
(4) Ri := Ri -1
(5) Guess (Ri)
(6) R, := R

(7) R, := (R)
(8) (R):= R
(9) Go to inst io or i

(10) If Ri R9 then go to inst io else go to instil
(11) Accept
(12) Reject

(R) denotes the register pointed to by register R (i.e., the address of (Ri) is the content
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of R,). The effect of instructions (2)-(4), (6)-(8), and (10)-(12) is evident (the value
of x y is x-y if x-> y; if x < y, it is 0). The control of the program is transferred
from one instruction to the next one, except after instructions (9), (10). Instructions
(5) and (9) are nondeterministic; the meaning of Guess (Ri) is the following: guess
any integer to be stored in Ri.

At the beginning of the computation of an NRAM, the control of the program
points to inst0, the content of each register is 0, and a sequence of integers
Wo, wl, , w,,_l, 0 with wj > 0,j < m, serve as inputs. The instruction Read (Ri) causes
the NRAM to transfer the first integer wj (or 0), which has not been read in up to this
time into register R. We assume that the execution of any instruction only requires
one time unit.

For convenience, we confuse each function (respectively, constant, relation) sym-
bol and its interpretation.

The finite spectrum of a first-order sentence , denoted SPECTRUM (q), is the
set of cardinalities of (the universes of) its finite models [Chke]. We also define in 5
a variant of the generalized spectrum (see [Fa]).

If n, F/2 are integers such that n < n2, then [n, n2[ %r {n: n is an integer such
that n -<_ n < n2}. For convenience, we identify each integer n > 0 with the interval [0, n[.

Notation. For a real number r > 0, let log r denote the logarithm of r in base 2
and let [r] and [rJ denote the least integer no -> r and the greatest integer nl < r,
respectively.

A completely specified deterministic finite state automaton (in short, a complete
automaton or, simply, an automaton) is a tuple

A=(Q,,8, qo, F)

where Q is the set of states, is the input alphabet, 8 is a transition function from
Q x E into Q, qo Q is the initial state, and F

_
Q is the set of "accept" states.

As usual, 8 will also denote the standard extension of the transition function for
words of *, i.e., 8 is a function from Q x* into Q. The language accepted by A,
denoted L(A), is the set LE* such that wL if and only if 8(qo, w) F.

A state q is reachable if there is a word w E* such that 8(qo, w) q. Two states
q, q’ are equivalent if for each word w E* we have 8(q, w) F if and only if 8(q’, w) F.
It is well known that the language L(A) does not change if we remove the states that
are not reachable (and the transitions that involve them) and that L(A) does not change
(respectively, is modified) if we identify a pair of equivalent (respectively, reachable
nonequivalent) states.

Let K be a positive integer. An automaton A is K-reducible if there is an automaton
with K or fewer states that accepts L(A). This is equivalent to each of the two following
assertions"

(i) A has at most K distinct equivalence classes of reachable states.
(ii) the minimal automaton of A (see [HoU1]) has K or less states.
An incompletely specified deterministicfinite state automaton (in short, an incomplete

automaton) is a tuple A (Q, E, 8, qo, F) similar to a complete automaton except that
8 is now a "partial" transition function from a subset of Q x E into Q. If we extend
8 to a total transition function 8"0- Q, then the complete automaton A’=
(Q, E, 8’, qo, F) is called a completed automaton of A.

The following lemma gives a convenient formulation of our problem R.I.S.A.
LEMMA 2.1. Let K be a positive integer and A Q, E, 8, qo, F) be an incomplete

automaton whose all states are reachable. The following assertions are equivalent"
(i) A has a K-reducible completed automaton.
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(ii) there is an equivalence relation, denoted .--, on set Q with at most K classes
such that:

(ii. 1) if q q’ then q F if and only if q’ F;
(ii.2) if q.- q’ and if (q, tr) and (q’, tr) are both defined (for some cr ,)

then i( q, or) 3( q’, tr).
The proof is easy and then we omit it.

3. A simplified idea of the proof of the main result. The intuitive ideas of our proof
are explained by the following four claims. Let S be a set of positive integers that
belongs to NTIME (n log n), i.e., S is the set of input integers n accepted by an NTM
that works in time n log n.

CLAIM 3.1 (cf. 4). S [_J c>__1NRAM (cn), i.e., S is the set of input integers n
accepted by an NRAM that works in time cn (for a constant c >_-1).

Idea of the proof. Monien [Mo] has proved the following more general result. If
T is an "honest" function such that T(n)-> n log n, then

NTIME (T(n)) NRAM (cT(n)/log T(n)).
c>:l

The idea is essentially to use the ability of an NRAM to do operations on integers
in one step and to guess an integer in one step. More precisely, by first precomputing
the table of all possible e log T moves of the NTM (for a sufficiently small e, the
precomputation requires time O(T/log T)) the NRAM simulates e log T moves of
the NTM in O(1) steps by consulting the table only once.

CLAIM 3.2 (cf. 5). (i) If S [_J c_->1 NRAM (cn) then there is a fixed c-> 1 such
that the set of integers cS {cn: n S} is the spectrum of a first-order sentence of
the form for all yq(y) (with the only variable y) where q is quantifier-free.

(ii) Moreover, we can require that q be of the form

/ ff(Y)= (y)
i<p

where each i, di is a word of the form fk’’" fl with k >-0 and each f is a unary
function symbol (the interpretations of some functions f may be predefined).

Idea of the proof We encode the cn moves of an "accept" computation of our
NRAM into a "computation structure" (cn, <,. .) on the universe cn=
{0, 1, , cn 1} where except the natural linear order < of the universe we only have
0-ary or unary function symbols. Last we define the "computation structures" to be
exactly the finite models of sentence : the variable y intuitively represents each of
the cn instants of the computation of the NRAM. To prove (ii) we first suppress the
inequalities and < by using predefined arithmetical functions. Then we suppress
the disjunctions of by enlarging the universe (the constant c may increase) and by
adding new predefined functions on the enlarged universe. [3

CLAIM 3.3 (cf. 6). For each positive integer N there is an incomplete automaton
A(, N) such that

(i) N belongs to SPECTRUM () (i.e., has a model of cardinality N) if and
only if A(, N) can be extended to a complete (N + 1)-reducible automaton.

(ii) The reduction N--->A(dp, N) is computable in time O(N log N) on a DTM.
Idea of the proof.
We construct the incomplete automaton A(, N) so that its set of states Q

includes the interval on integers [-1, N[, its initial state is -1, which is also the only
"accept" state and no two states of [-1, N[ are equivalent. Consequently, A(, N)
(or any of its completed automata) is (N + 1)-reducible if and only if each state of Q,
except state -1, is equivalent to one of the N nonequivalent states 0, 1, or N- 1.
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raThe input alphabet E of A(P, N) includes the set of function symbols f that
occur in .

mEach state of Q (except -1) is a "word" (e) where ff is a sequence (maybe
empty) of function symbols such that (y) is a term or a subterm of and e [0, N[.

raThe partial transition function of A(, N) has transitions of the form
(e) f(e) for each state of the form f(e); for each equality i(y) i(y) that
occurs in , 8 has the transitions ff(e) i(e) where Id is a new input symbol (which
intuitively represents the "identity" function) and e is any state of [0, N[.

The reader should have the following idea. The "unrolled" form
AeN Ai<p ’-i(e)-- (i(e) of sentence is satisfiable on universe [0, N[ if and only if
the (incomplete) automaton A(, N) (in fact, one of its completed automata) is
(N + 1)-reducible: intuitively, "equivalence" of states means "equality" of the corre-
sponding terms.

Claim 3.3(ii) is explained as follows. The input alphabet E does not depend on
N; the number of states is O(N), each of length O(log N); then the length of the
encoding of A(b, N) is O(N log N).

CLAIM 3.4. Each problem S (on positive integers) that belongs to NTIME (n log n)
is reducible to problem R.I.S.A. in time O(n log n) on a DTM.

Proof We have S LI c-> NRAM (cn) by Claim 3.1 and then by Claim 3.2 there
is an integer c-> 1 and a sentence P such that

n 6 S iff cn SPECTRUM (P). Therefore n S

if and only if A(P, cn) can be extended to a (cn+ 1)-reducible automaton (by Claim
3.3(i)).

Moreover, by Claim 3.3(ii) the reduction n-->A(dp, cn) is computable in time
O(n log n) on a DTM.

Theorem 1.1 is similar to Claim 3.4 and its proof uses the same ideas (with technical
complications).

Remarks. Claims 3.1 and 3.2 do not refer to problem R.I.S.A. Similar results are
used in the proof that SAT< (N) is linearly NP-complete [Gr3].

We have refined the first-order sentence tb--/y(y) until it has the simple form
of Claim 3.2(ii). This prepares a smooth and natural proof of Claim 3.3. We feel that
working with the first-order sentence as long as possible is the right method of proof.

4. Technical results on reductions of complexity classes. In this section, it is con-
venient to use a one-to-one representation of positive integers" the dyadic notation;
an integer e > 0 such that

e ai2i
i=0

where a;{1, 2}, is represented by the word alat_’" "aao.
Let S {1, 2}* be a language accepted by an NTM in time cn for a constant c.

Let k be a (sufficiently large) fixed integer. We are going to exhibit a special NRAM
denoted NRAMk, which simulates the NTM in time O(n/log n).

An input w of the NRAMk is not read one bit at a time (it would require time
n length (w)) but is read by blocks. More precisely, each word w {1, 2} is divided
into subwords Wo, w,. ., w,_ so that

(i) w WoWs"" Wm- (concatenation),
(ii) For each < m- 1 length (wi) h(n) where h(n) [1/k log nJ,
(iii) 0<length (wm_l)<-h(n).
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Consequently, m n/h(n) (we assume n >_- 2k so that h (n) _-> 1).
For convenience we identify a word w with its corresponding m-tuple

(Wo, wl," ", win_l). Each word wi is also identified with the integer it represents in
dyadic notation. So, 0< Wi<2h(n)+<--2n /k. Each instruction Read (Rj) causes the
NRAMk to transfer the first integer w that has not been read in up to this time into
register R (convention: w,, =0).

We also identify each sufficiently long word w with the first-order structure (m, f)
where the domain is m {0, 1, , m 1} and f is the function: m - m -{0} such that
for all < m, f(i) wi (this is possible since w <2n 1/k <= m except for finitely many
n). So, for any fixed integer k, a set of words S_ {1,2}* is identified with a set of
structures (m, f) (except for finitely many words w of S; we can eliminate these words
without changing the complexity of $).

Notation. Let NRAMk (T(m)) denote the class of languages S
_

{1, 2}* accepted
by an NRAMk in time T(m). (Note. m is not the length of the input word w but the
number of subwords of its partition.)

The following result is Lemma 5.1 of [Gr3].
LEMMA 4.1. Ifa language S

_
{1, 2}* belongs to NTIME (n), then there is apositive

integer k such that S c NRAMk (cm).
Proof The precise proof is long and rather technical (see [Gr3, Lem. 5.1]).
Remark. Lemma 4.1 is a speed up result since m [n/h(n)] O(n/log n).
Notation. Let S be a set of structures (m, f) where m is a positive integer and f

is a function" m- m-{0}. We write Se NRAM (T(m)) to mean that S is accepted by
an NRAM in time T(m).

Remarks. m is the cardinality of the input structure (m is not the length of the
encoding of this structure!). We still use the above convention" a Read instruction
reads the first value f(0), f(1), ,f(m 1), 0 that has not been read in up to this time.

LEMMA 4.2. Let L be a problem such that each set S of structures (m, f} (where m
is a positive integer and f: m m-{0}) that belongs to = NRAM (em) is reducible
to L in time O(m log m) on a DTM. Then each problem S of NTIME n is reducible
to L in time O(n) on a DTM.

Proof Assume without loss of generality that S
_

{1,2}*. From Lemma 4.1 the
fact that S e NTIME (n) implies that there is k> 0 such that S U cel NRAMk (cm).

From the hypothesis of Lemma 4.2 there is a reduction p from S to L, i.e., a
function w-p(w) of domain {1,2}* such that for each n

Vw6{1,2}", wS iffp(w)L;

moreover, p is computable on a DTM in time O(m log m) that is O(n) since m
[n/h(n)] and h(n)= [1/klog nJ. [3

5. NRAMs and first-order generalized spectra. We define a variant of "generalized
spectrum" of a first-order sentence (see [Fa]).

DEFINITION. Let p be a first-order sentence of type {Fonc, $1, , Sk} U 3- where
Fonc is a unary function symbol and $1,"" ", Sg are function or constant or relation
symbols. We give to each symbol S a precise interpretation in each domain M
{0, 1, , M- 1) 0 (for instance, S is the natural linear order < of M).

The generalized spectrum of q (for the specified interpretations of Sl,’’’ Sk)
denoted GenSPECTRUM (q), is the set of structures, of.the form (M, Fonc) (for an
integer M > 0) that have an expansion (M, Fonc, St, , Sk, G) such that

(i) S,..., Sk have the specified interpretations in M,
(ii) . satisfies q.
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Symbols Fonc, $1, , Sk are called the specified symbols of o. The other symbols
of q, i.e., symbols of -, are called its unspecified symbols.

Notation. Let c be an integer > 1 and let f be a function from m to m- {0} where
m is a positive integer. Let cf denote the function cm cm such that

(i) Of(e) d__.ef f(e) for e < m,
(ii) Cf(e) %f 0 for m <- e < cm.
The following lemma expresses that each linear time recognizable set is efficiently

reducible to the generalized spectrum of a very simple sentence.
LEMMA 5.1 [Gr3]. Let S be a set of structures (m, f) (f: m m-{0}) such that

S (.J ->1 NRAM (cm). Then there are a constant integer c >- 1, a type -, and a sentence

o =- Ixd/(x) (with the only variable x) of type {Fonc, <} t_J - such that
(i) d/ is quantifier-free.
(ii) The set ofunspecified symbols - is a set ofunaryfunction symbols and constant

symbols.
(iii) For each structure (m,f) (f:mo m-{0}) we have (m,f) S if and only if

(cm, cf) GenSPECTRUM (q) (where the specified symbols Fonc and < are, respec-
tively, interpreted by f and the natural linear order of the domain cm).

Proof See Lemma 5.2 of [Gr3] for the proof. [3

Let r, M be integers > 1. For purposes of simplifying the form of our first-order
sentence we now introduce a set

-r {Zero, Diva4, ModM, Rep ia4 (for each [0, r[), 7to, 7rl r2, Inf}

of specified unary function symbols with the following specified interpretations in each
domain of the form rM {0, 1, rM- 1}. Let e denote any element of rM:

Zero (e) %f 0.
Diva4 (e) %f e div M and Modt (e) %f e mod M, i.e., Diva4 (e) and Moda4 (e),

respectively, denote the quotient and the remainder of the euclidean division of e by
M.

Rep a4 (e) is the representative of the equivalence class of e(modulo M) in the
interval [iM, (i + 1) M[, i.e., Rep ia4 (e)def= iM + (e mod M).

Let b [x/-J and let e e2b2+ eb+ eo be the representation of e < M in base
b (0<_- ei < b).

7to, 7r, r2, denote the projections, i.e., Try(e) %f e for i=0, 1,2.
For each e<b let us specify Inf(e)%f 1 if Try(e)< 7ro(e) and otherwise

Inf (e)%f 0. (Note. We specify neither Inf(e) for e_-> b2 nor Try(e) for e-> M and i=
0,1,2.)

--Note that the set of function symbols -r depends on r (which will be fixed)
but does not depend on M’, we mention M in Dive, Mode, and Rep to suggest
their intuitive meaning.

LEMMA 5.2. Let S be a set of structures (m, f) (f:m m-{0}) such that S6
U __> NRAM (cm). Then there are integers c, r >- 1, a type -’ and a sentence=ly(y)
(where y is the only variable) of type -’ {Fonc} t_J - such that

(i) is a conjunction of equalities of the form
fk" f2fl (Y) gt" g2gl (Y)

where k >- 1 and >- O.
(ii) All unspecified symbols of , i.e., elements of -’ are unary function symbols.
(iii) For each structure (m, f) (f:m m-{0}) we have (m,f) S if and only if

(rcm, rf) GenSPECTRUM () (where Fonc is interpreted by Cfand the other specified
symbols of -r are given their specified interpretation on rM where M cm ).
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Proof It looks like the proof of Lemma 6.2 of [Gr3] (which means that if
S e U c>__1NRAM (cm) then S is reducible to problem SAT< () in time O(rn log m)
on a DTM). The essential difference is the following. Instead of first unrolling the
first-order sentence of Lemma 5.1 (whose spectrum is studied) in its domain M cm,
we are now going to transform q into a simpler first-order sentence .

From Lemma 5.1, there is a sentence q oftype {Fonc, <} - ofthe following form:

i<r j<s

such that
(i) ff is a set of unary function symbols and constant symbols.
(ii) * is written for "=" or "<".
(iii) trj and ’j are terms (with the only variable x).
(iv) (m, f)e S if and only if (cm, cf) GenSPECTRUM (q).

Sentence q is the disjunctive normal form of the sentence q of Lemma 5.1 where
negation has been eliminated.

We will transform sentence q in two steps.
(1) Suppress the linear order and the constants. We will use the specified functions

ro, rl, 7r2, Inf on the domain M (where we will take M cm for an integer m > 0).
Recall b [x/--J and that for each e < M we have

e=zr2(e)b+zr(e)b+zro(e) where each r,(e)<b.
Let us project the linear order < by using its restriction to b, denoted <b. Clearly for
all u, v < M we have that u < v if and only if Less (u, v) holds where Less (u, v) denotes
the formula

(rz(u) < :(v)) v (:(u)= r:(v) ^ r,(u) < r,(v))
v (z(u)= z(v) ^ ,(u)= ,(v) ^ o(U) <. o(V)).

Therefore the meaning of sentence q does not change if each subformula of the
form o-(x)< -(x) is replaced by Less (o-(x), ’(x)). In the sentence q so transformed
each atomic subformula which is not an equality has the form r(x) <b ’(X). Such an
inequality is equivalent to the following formula, denoted o’-Lessb-’(x)"

::lz[zrz(z) =0 ^ 7r,(z)= o-(x)^ zro(z)= ’(x)^ Inf (z)= 1].
(Note. 7rz(z) 0 means z < b:.)

So, we replace each inequality or(x) <b ’(x) of by the formula o--Lessb-’(x).
(Note. Now the only atomic subformulas are equalities.) We eliminate the (EIz)
introduced by a standard skolemization. Let g-" be the type g- increased by the required
Skolem function symbols. (Note that all these function symbols are unary.)

We have succeeded in eliminating the linear order < of q (inside the original
universe M). We do not eliminate the constant symbols C g-" but regard them as
unary function symbols by replacing each occurrence of C by C(0). Then we replace
each occurrence of zero by the term Zero (x).

(2) Suppress the disjunctions. Note that the sentence q obtained in part (1) above
is of the form Vx(x) where q is a Boolean combination of equalities without negation.
Put q into disjunctive normal form"

Vx V A o-j(x) -,-j(x).
i<rj<s

Now let us use the same ideas as in the proof of Lemma 6.2 of [Gr3]. In particular,
we are going to extend the universe to rM {0, 1, , rM- 1} in order to suppress
the disjunction V
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The sentence will be the conjunction of four sentences ql, (42, (4)3, (4, which
must be interpreted in universe rM. (For greater readability some of them will be first
given in a less formal but simpler manner.)

denote the conjunctionLet ql

(Vx < M) A G(x) < M,

where G is any function symbol of -". q is equivalent to the following sentence
defined in universe rM:

ql Vy A DivM (G(ModM (y))) Zero (y).

(Note that Div (u)=0 if and only if u < M and that each x< M is of the form
Moda4 (y) for some y < rM.)

For the purpose of eliminating the disjunction V i<r we now represent each
integer x < M by its class modulo M in the interval [0, rM[: %f {x, x + M, , x +
(r-1)M}. We need for that two new unary function symbols Po, P. The following
sentence q2 means that Po, P1 permute each class : and are inverses of each other:

q2--= Vy [ A Moda4 (P(y))= Moda4 (y) ^ PoPI(y)= y].
Lj=o,1

For all < r and j < s let us introduce unary function symbols F and Gj (which
intuitively represent terms trj and -, respectively). Let -’ be the union set -"U
{Po, P} t,J {Fj, Gj: < r,j < s}

(Vx < ^i<rj<s

q (Vx < M) / / Fj(Po(x + iM)) Gj(Po(x + iM)).
i<rj<s

Because of the property q of permutation Po, it is clear that q; ^ q implies that
holds in M, that is,

(Vx < V A
i<r j<s

(o ^ q; implies that for each x < M the conjunction A< o-j(x) r(x) is satisfied for
the index i< r (depending on x) such that Po(x + iM)= x.)

Conversely. Assume q holds and construct a permutation Po of rM and functions
Fj, Gj" rM- M as follows. For each x < M choose an index such that Aj< o-j(x)=
r(x) holds and take Po(x+ iM)de__f X; then complete the definition of Po so that it
permutes each class ) (x < M) modulo M.

For all x < M, < r and j < s, take

FI(x def trj.(x) and G}(x) %f rj(x)
and for 1 _-< i’ < r, take

Fj(x + i’M) %f 0 and Gj(x + i’M) ae= O.

By definition, q; is trivially satisfied and so, conjuncts of q; corresponding to
couples (x, i) such that Po(x + iM)= x are also satisfied. The other conjuncts of
hold because

Fj(x + i’M)= Gj(x + i’M) for each i’ [1, r[.
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For the purpose of eliminating the restricted quantifiers (for all x < M) we now
transform q; and q in two sentences q3 and (4 interpreted in rM"

q93 Y A A [Fj(ModM (y))-- cr.i(ModM (y))
i<r j<s

^ G(Modu (y))= zj(Modu (y))],

(94 y / / Fj(Po(Rep’a4 (Y)))= Gj(Po(Rept (y))).
i<rj<s

(Note. Function Rep M has its specified interpretation in rM.)
From the previous discussion it must be clear that (i) each model of q of domain

M can be expanded to a model of = ql ^ q2^ q3^ q4 of domain rM (in which
Fonc (y) 0 for each y => M and symbols or -r are given their specified interpretations)
and that conversely: (ii) each restriction of a model of (of domain rM where symbols
of -r are given their standard interpretations) to the subdomain M and to the subtype
-U {Fonc} (expanded by the natural order < of M) is a model of q.

In particular, for each structure (M, Fonc) where Fonc: M-M we have
(M, Fonc) GenSPECTRUM (q) if and only if (rM, rFonc) GenSPECTRUM ()
where the generalized spectra of q and are defined with the specified interpretations
of their respective specified symbols. This proves assertion (iii) of Lemma 5.2 (using
Lemma 5.1(iii)). Of course assertions (i)-(ii) also hold by construction of

Remark 5.3. If o-= - and o-’= -’ are two distinct conjuncts of conjunction q then
the terms o-, or’ are always distinct.

LEMMA 5.4. Lemma 5.2 and Remark 5.3 still hold if assertion (i) is replaced by the
following:

(i’) q is a conjunction of equalities of the form

fk" f2f(Y)=gl g2gl(y) where k>=l, l>=O

and f, g are unspecified function symbols.
Proof Modify as follows the formula F of Lemma 5.2. Let us introduce a new

nonspecified function symbol I (to be included in type -’) that intuitively represents
the "identity" function. Our new formula will be the conjunction of the equality
I(y) =y (universally quantified) that defines I and of the original formula in which
each occurrence of y is replaced by I(y). Clearly, the meaning of q does not change
and condition (i’) is now satisfied.

6. Generalized spectra and problem R.I.S.A. The following easy lemma will be
useful in our reduction of a generalized spectrum to problem R.I.S.A.

LEMMA 6.1. Let A Q, Z, 6, qo, F) be a complete automaton where
mQ includes N+ 1 special states denoted -1, O, 1,..., N-1.
mthe input alphabet includes two special symbols denoted Suc and Pred.

has the transitions (, Suc) e+ 1 for each e[-1, N-l[ and 6(, Pred)
e- 1 for each e [0, N[.

qo=-I and F={-1}.
Then
(i) The equivalence class of state -1 only contains -1.
(ii) IfA is (N + 1)-reducible, then the N + 1 equivalence classes are exactly {-1},

class of O, class of 1,..., class of N-1.
Proof Part (i) is implied by the fact that -1 is the only "accept" state.
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(ii) It is sufficient to note that each state (0<_- < N) is reachable (from qo -1)
and that if i<j < N then states and j are not equivalent:

--We have 6(----i-, Suci+1) , so -is reachable.
--We have 6( i- Pred i+1) -1 and 6(j Pred+) =j- i- 1 -1 therefore i, j are

not equivalent states. V1

DEFINITION 6.2. TO each pair (, Fonc) where =-ty(y) is the sentence of
type -’ (.J {Fonc} (3 -r of Lemma 5.4 (r is a fixed integer) and Font is any function" rM
rM (where M is a positive integer), associate the incomplete automaton,

A(, Fonc) de__f (Q, , tS, qo, F)
such that

--Q%f {-1} (.J {(e): is a sequence (maybe empty) of function symbols such
that (y) is a term or a subterm of and e is an integer of [0, rM[}.

--Z ={Suc, Pred} (_J r (-J {Fonc, Id} (_J -’ where

-r {Zero, DiVM, ModM, RepM (for each [0, r[), ro, rl r2, Inf}.

--qo %f 1 and F %f {- 1 }.
The partial transition function is given by definitions (1)-(5) below.
(1 o) (, Suc) d__f e + 1 for each e [- 1, rM 1[ and 3(, Pred) o e 1 for each

e[0, rM[.
(2) For each specified function symbol f of, i.e., eachf -r kJ {Fonc} and each

integer e of the specified domain of f: (, f)%ff(e) where f(e) denotes the integer
the specified function f associates with e.

(3) For each term or subterm of of the form f(y) where f is any (specified
or unspecified) function symbol and o is any sequence (may be empty) of function
symbols:

6((e), f) d__f f(e) for each e [0, rM[.

(4) 6(, Id) %f for each e [0, rM[.
(5) For each conjunct o(y)- (y) of (where , denote two sequences of

function symbols)"

((e), Id) %f (e) for each e [0, rM[.
This long definition requires some comments.

Comments.
--Definitions of q0, F, and of transitions (1) are exactly what we need to apply

Lemma 6.1.
A consequence of transitions (3) is that if fk’’" fl(Y) is a term or a subterm of

then we have (, f fk) --fk" "f(e) for each e [0, rM[.
Note that there is no "conflict" between transitions (2) and (3) because in each

subterm of of the form fl(Y), fl is an unspecified symbol (by Lemma 5.4).
From Lemma 5.4 there is no conflict between transitions of involving symbol

Id. More precisely, (4) and (5) do not define twice the same transition (by Remark 5.3).
LEMMA 6.3. Let = rye(y) be the sentence (of type -’(3 {Fonc} (.J -r) ofLemma

5.4 and let Fonc denote any function rM rM.
(1) Let A A(, Font) Q, ,, 6, qo, F) be the incomplete automaton associated

with the pair (, Fonc) by Definition 6.2. Then we have the equivalence:
(i) A has a completed automaton that is (rM + 1)-reducible if and only if
(ii) (rM, Fonc) GenSPECTRUM ().

This implies that for a fixed sentence the function
rM, Fonc) (a, K
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where A= A(, Fonc) and K rM+ 1 is a reduction from GenSPECTRUM () to
problem R.I.S.A.

(2) This reduction is computable in time O(M log M) on a DTM.
Proof (i)--> (ii). Let A’= (Q, E, 3’, qo, F) be a completed automaton of A that is

(rM + 1)-reducible. Then applying Lemma 6.1 to A’ and N rM, we conclude that
for each term or subterm (y) of and each e c [0, rM[ the state if(e) is equivalent
to exactly one state e’ where e’c [0, rM[. Let us define a first-order structure 5/ of
type -’U {Fonc} U -r (the type of ). Define the universe 15/[ of 5/ to be the set of
equivalence classes of Q (in A’) except the class of-1

15/I de__f {class (,)" 0_<- e < rM}.

For each e c [0, rM[, let us identify class (,) with the integer e.
For each specified or unspecified function symbol fc E (symbols Suc, Pred, Id

can be dropped) define: f(class (g)) de--f g’(class (), f) where g’ is the transition function
induced by the transition function 3’ on the quotient set of Q (in other words, g’ is
the transition function of the minimal automaton of A’).

Now let us draw the consequences of parts (2)-(5) of the definition of the partial
function 6 (included in the transition function 8’ of A’). Part (2) means that all the
specified functionsfrespect their specifications (recall that Fonc is a specified function).
Part (3) means that for each e c [0, rM[ and each term fk"" fl(Y) of

g’(class (’),fl... fk) class (fk""" fl(e)).

Parts (4)-(5) together imply that for each conjunct fk" "fl(Y) gl" g(Y) of

class (fk’" .fl(e)) class (gl’’" g(e))

for each e [0, rM[. Therefore we have in 5/

fk’"" f(class (’)) gl’’" gl(class (g’))

and then

tilt Vy(f. f(y)= gt. g(y)),

so 5/ and then (rM, Fonc)c GenSPECTRUM ().
(ii)--> (i). Assume (rM, Fonc) GenSPECTRUM (), i.e., the structure (rM, Fonc)

has an expansion 5/that satisfies . Assertion (i) to be proved is equivalent to condition
(ii) of Lemma 2.1 for A A(, Fonc) and K rM + 1.

So we only have to exhibit an equivalence relation on Q that satisfies conditions
(ii.1) and (ii.2) of Lemma 2.1. For each q Q we will define its equivalence class for
---, denoted class (q) as follows:

class (-1) d___r F {_-Z-},
so condition (ii.1) is trivially satisfied. Let us define exactly rM other classes, each of
which includes exactly one state for e [0, rM["

class (,)--{(e’)" -(y) is a (sub)term of @ and e’ [0, rM[ and 5/ (e’)= e}.

Let Q be the quotient set of Q for ---. Let us define a partial transition function
A- Q E - Q as follows"

(1) A(class(C,),Suc)%rclass(e+l) for each e[-1, rM-l[,
A(class (), Pred) a__r class (e 1) for each e c [0, rM[,

(2) Iff E-{Suc, Pred, Id}, i.e.,f is a function symbol of, and ifs/ f(e) e’
for e, e’ [0, rM[, then A(class (), f) %r class (),

(3) For each e [0, rM[, A(class ()), Id) a___r class (,).
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It is clear that by Definition 6.2 (parts (1)-(5)) we have for all q, q Q and fee that
tS(q, f) ql implies A(class (q), f)=class (ql).

This proves condition (ii.2) of Lemma 2.1. So assertion (1) of Lemma 6.3 is proved.
Proof of assertion (2) is easy and is left as an exercise to the reader. [3

COROLLARY 6.4. Each set S of structures (m, f) (where m is a positive integer and
f: m - m -{0}) such that S (_J c>- NRAM (cm) is reducible to problem R.I.S.A. in time
O(mlogm) ona DTM.

Proof. Lemmas 5.2 and 5.4 state that there are integers c, r_-> 1 and a particular
sentence such that S is reducible to GenSPECTRUM (), i.e., more precisely,

(m, f)S iff (rcm, rcf)GenSPECTRUM ().
Lemma 6.3 implies the following reduction to problem R.I.S.A.:

(rcm, rcf) GenSPECTRUM () iff (A, K) R.I.S.A.

where A A(, rf) and K rcm + 1. Moreover, the reduction from S to GenSPEC-
TRUM () is obviously computable in time O(m log m) on a DTM and the second
reduction is computable on a DTM in time O(M log M) where M cm (by Lemma
6.3(2)).

Theorem 1.1 immediately follows from Corollary 6.4 and Lemma 4.2.

7. Conclusions. In our reduction of GenSPECTRUM () to instances (A, K) of
problem R.I.S.A. each (incomplete) automaton A A(, Fonc) that we obtain has an
input alphabet E that only depends on . We conjecture that Theorem 1.1 still holds
with E {0, 1}.1

We conjecture that many other natural problems are also linearly NP-complete:
--Satisfiability problems in logic (comparable to SAT< (t) [Gr3]).
mProblems of graph contractability and graph homomorphism.
--Sub-graph isomorphism.
We also conjecture that all the proofs of linear NP-completeness essentially use

the generalized spectrum of a one variable first-order sentence. We feel that this notion
is a generic tool for proofs of linear NP-completeness exactly as Cook’s problem, SAT,
the satisfiability of Boolean formulas is the generic NP-complete problem. It is not
surprising because the idea of Cook’s proof, we think, is essentially a description of
a nondeterministic computation by a first-order sentence in a finite universe (see [Col l,
[JoSe], [Fa], [RoSc]): the reduction to SAT is obtained by unrolling this sentence on
the universe. Our strategy in this paper (as in [Gr3]) has been to normalize the first-order
sentence as much as possible (cf. 5) before unrolling it (cf. 6). We think that our
method contributes to a better understanding of the theory of NP-completeness of
natural problems.

Note added in proof. Let us slightly modify our definition of generalized spectrum.
Let @ be a first-order sentence of type 3- {f, , fp, g, , gq} where the f, gj are
unary function symbols; the generalized spectrum of, denoted GenSPECTRUM (@),
is the set of structures (M, f,..., fp) (where M is a positive integer) that have an
expansion

(M, fl, fv, g,, gq)
that satisfies . Our technical result, which is the "cornerstone" of the theory of linear
NP-completeness, can be roughly reformulated as follows.

PROPOSITION 7.1. For each problem S that belongs to NTIME(n) there is a

first-order formula of unary type 3- (as above), such that

Our student S. Ranaivoson has recently proved this conjecture.
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(i) @ is of theform /y(y) where (y) is a conjunction of equalities and has only
one variable.

(ii) S is reducible in linear time (on a DTM) to GenSPECTRUM (@).
(Hint. Reformulate Lemma 5.2 with this notion of generalized spectrum: interpretate
fl,"" ", fp by the "specified functions" from M to M, i.e., respectively, Fonc (which
is rcf wheref" m m -{0} is the original input function and M rcm) and the functions
of -r: Zero, Dive4, .)
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1. Introduction. The number of multiplications/divisions required for computing
the product of two degree-n polynomials over an infinite field is known to be 2n + 1.
The method is to evaluate both polynomials at each of 2n + 1 distinct points (allowing
oe), multiplying and interpolating the result. This method fails for the fields with the
number of elements less than 2n. The bilinear and quadratic complexity of polynomial
multiplication over finite fields has been widely studied in the literature (cf. [1], [2],
[6], [8]-[ 11 ]). The best known lower bounds on the bilinear complexity of multiplying
two degree-n polynomials over finite fields are as follows. For the binary field the
bound is 3.52n (cf. [2]). The same bound holds for the quadratic complexity (cf. [10]
and [8]), where the proofs can be applied to quadratic algorithms as well. For the
fields with more than two elements the bound is 3n-o(n) (cf. [9]). Lemma 1 in this
paper together with the results from [9] show that the same bounds also hold for the
quadratic complexity.

The proofs of the above bounds are based on a special structure of quadratic
algorithms, namely, on the fact that the multiplications in quadratic algorithms are
independent of each other. It is known from [13] that if a set of quadratic forms over
an infinite field can be computed in multiplications/divisions, then it can be computed
in multiplications by a quadratic algorithm whose total number of operations differs
from that of the original one by a factor of a small constant. But it is unknown whether
a similar result holds for finite fields. Also, no example of a set of bilinear forms with
a nontrivial lower bound on the number of multiplications/divisions required for its
computation is known from the literature. In this paper we prove the 2.5 n o(n) lower
bound on the number of multiplications/divisions required for computing the product
of two degree-n polynomials over a finite field by means of straight-line algorithms.

Let Fq denote the q-element field and let q(r/) denote the number of multiplica-
tions/divisions required to compute the coefficients of the product of a polynomial of
degree n 1 and a polynomial of degree n over Fq by means of straight-line algorithms.
A straightforward substitution argument shows that the number of multiplica-
tions/divisions required for computing the product of two polynomials of degree n
exceeds tXq(n) by at least 1. The product of polynomials of degrees n-1 and n is
considered for a technical reason explained in the next section.

THEOREM. For any q we have tZq(n) > 5n/2- n/4 lgq n O(n/lgq n).
The rest of the paper is organized as follows. In the next section we introduce

some notation and definitions, and prove the major auxiliary technical lemmas. The
proof of the lower bound is presented in 3.

* Received by the editors May 23, 1988; accepted for publication (in revised form) August 20, 1989.
? Department of Computer Science, Technion-Israel Institute of Technology, Haifa 32000, Israel.
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2. Notation and auxiliary lemmas. In this section we introduce some notation and
prove the major auxiliary lemmas we shall need for the proof of the theorem.

Let k be a positive integer and let ao," , ak-1 be given elements of a field F. A
sequence r So, sl," , Sl of elements of F satisfying the relation

Sm+k ak_lSm+k- + ak-2Sm+k-2 +" + aoS,,, m 0, 1, , k

is called a (finite kth-order homogeneous) linear recurring sequence in F. The terms
So, Sl,’’’, Sk-1 are referred to as initial values. The polynomial

f(a a k
ak-, ol

k-1
ak-a

k- ao F[a

is called a characteristic polynomial of tr. Let q(a) be a characteristic polynomial of
tr of the minimal degree. If deg q(a) +degf(c)_-< l+ 1, then q(a) divides f(a) (cf. [9,
Prop. 1]). Thus if deg q(ce)_-< (l/ 1)/2, then q(a) is a unique characteristic polynomial
of minimal degree. It is called the minimal polynomial of tr and denoted by f(a).

For a sequence tr= {So,’’’, s2n-1} we define the (n+ 1)x n Hankel matrix H(tr)
by

SO S1 Sn-1

S1 $2 S

Sn Sn+l S2n_

Let H denote the (i+l)st row of H, i=0, 1,..., n. Let k be the minimal
nonnegative integer such that there exist ao," , ak-1 F satisfying

k-1

aiHi: Hk.
i=0

The existence of k is provided by the fact that H has n columns and n + 1 rows.
We define 6 {go, gl,""", g2n-1} by the recurrence

S’/+k ak-lS’/+k-1 + ak-gi+k-2 +’’" + aogi,

with initial values gi si, 0, , k- 1.
Let t o--& We shall denote H(t) and H(#)= H-H(’) by and/, respec-

k-1
tively. Let fH(a)= ak--i=O aia, i.e., fH(a) is a characteristic polynomials of & (In
fact, fH(a)=f(a), since, by definition, fH(a) is a characteristic polynomial of the
minimal degree.)

It can be easily verified that Lemmas 1-3 of [9] stated for (n + 1) (n + 1) Hankel
matrices hold for (n + 1)x n Hankel matrices as well. The reason for dealing with
(n + 1) x n Hankel matrices is that for an (n + 1) x (n + 1) Hankel matrix H of rank
n + 1 the polynomial fH(a) is not defined. Thus that case must be treated separately,
whereas dealing with (n + 1)x n Hankel matrices enables a uniform treatment.

Let S be a finite set of (n + 1) x n Hankel matrices. Define fs(a lcm {fH a } HS,
where lcm is an abbreviation for "the least common multiple", ds degfs(a) and
rs max {rank H} nS.

Below x (Xo, Xl, , xn) r and y (Yo, Yl, , Yn-1) r denote column vectors of
indeterminates. We remind the reader that a quadratic (respectively, bilinear) algorithm
for computing a set of bilinear forms of x and y is a straight-line algorithm whose
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nonscalar multiplications are of the shape L L’, where L and L’ are linear forms in
x and y (respectively, L is a linear form in x and L’ is a linear form in y) and each
bilinear form is obtained by computing a linear combination of these products.

LEMMA 1. Let S {H1, H2, , Hs} be a set of (n + 1) n Hankel matrices. Then
computing the set ofbilinearforms {xTHiy} i= 1,...,s by means ofquadratic algorithm requires
at least rain {ds + rs, n + 1 } multiplications.

Proof Assume that quadratic and bilinear complexities of the set of bilinear forms
{xTHiy}=l,...,s are equal to o and tB, respectively, and let H(z)= Yj=I zj/-/ be the
characteristic matrix ofthe above set. Let r be the row rank of H(z). Then o >-_ (tB + r)/2
(cf. [7, Thm. 3.5]). Since ts_-> r=min {ds+ rs, n+ 1} (cf. [9, Lem. 2 and 3]), we have

o _-> min {ds + rs, n + 1 }.
Let V be a vector space over F and let Wc V. We shall denote the linear subspace

of V spanned by all the vectors from W by W].
LEMMA 2. Let S and S’ be finite sets of (n + 1)x n Hankel matrices such that

[S] =[S’]. Ifds+rs<-_n, thenfs(a)=f,(a) and rs=rs
Proof Let S= {H(o’)}i 1, ,k and let H(r)eS’, where O’--" k

=1 ho’i. It suffices to
prove that fH(a) divides fs(a) and rank H<=rs. By Theorem 8.55 of [12, p. 425],

ds-fs(a) ad--Yi=o aia is a characteristic polynomial ofY k Aci(= t) Since ds+ rs <i=l

n, the sequences tr and ki=1 Ai’i have the same first 2n-rs elements. Therefore
ds-Hd =o aH, which implies that fn(a) divides fs(a). This, in turn, implies the

equality
k
i= AiO’. Thus the first 2n- rs elements of # are zero and the inequality

rank H -< rs follows.
LEMMA 3. Let S {H1, H2, H,,} be a set of linearly independent n + 1) x n

Hankel matrices such that ds + rs <= n. Let be the number of distinct irreducible factors
offs( a ). Then computing the set ofbilinearforms {xrHiy} i= ,...,m by means ofstraight-line
algorithms requires at least m + ds + rs- 1-1 multiplications/divisions.

Proof Let F[u] be the ring of univariate polynomials over the field F and let
F(u) be the field of fractions of F[u]. That is, F(u) is the extension of F with a
transcendental element u. Then any straight-linear algorithm over F is also a straight-
line algorithm over F(u) and polynomials irreducible over F remain irreducible over
F(u). In particular, the number of irreducible factors offs(a) over F (u) is equal to
1. Thus, extending F with a transcendental element, if necessary, we may assume that
the field of constants F is infinite. Therefore we may restrict ourselves to quadratic
algorithms (cf. [13]). Assume that all the bilinear forms defined by the matrices from
S can be computed in multiplications. Then there exist 2t linear forms
L(x,y),’’’,L,(x,y) and L(x,y),...,L’(x,y) in x and y such that each xrHiy
is a linear combination of the products {Li(x,y)Ll(x,y)}=,...,t. Let
p= (Ll(X,y)L(x,y),..., Lt(x,y)L’(x,y)) and let q= (XrHly, xrH,y) r. By the
definition of quadratic algorithms there exists an m matrix U whose entries are
constants from F such that q Up. Since the matrices { are linearly indepen-
dent, rank U m.

Permuting the components of p, if necessary, we may assume that the first m
columns of U are linearly independent. Hence there exist a nonsingular m x m matrix
W and an m x (t- m) matrix V such that Wq (I,,, V)p, where I,, denotes the m x m
identity matrix.

Let Wq (xrHly,’’ xrH’,,y) and let S’ {H, H’}. Since W is a nonsin-
gular matrix, we have [S] [S’]. Therefore, by Lemma 2, fs(a)=fs,(a) and rs rs,.
Let fs=IJ fiat(a) be the decomposition of fs(a) into its irreducible factors Theni=1

there exists a sequence Hjo, Hi,,..., Hi, of matrices from S’ such that rank Ho rs
and f/a,(a) divides fn;,(a), 1, 2,. ., I. Note that the matrices in the above sequence
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are not necessarily distinct. Permuting the components of p, if necessary, we may
assume that ji=>m-l, i=0,1,...,l. Then lcm{fH ,(a)}i=o,1,...,l=fs(a) and
max {rank H,,_}=o,1,..., rs. By Lemma 1, computing the bilinear forms defined by
the last l+ 1 components of Wq requires at least ds+ rs multiplications. Since the
first m 1 components in each of the last + rows of (Ira, V) are zero and the prod-
ucts {L(x,y)Ll(x,y)}=,...,, are computed independently of each other, we have

(m 1) >- ds + rs. Hence >= m + ds + rs 1, which completes the proof. [3

3. Proof of the lower bound. We shall need the following definition. Let M (mi,j)
be a u x v matrix. We shall say that M is in echelon form if there exists a k -< u and a
sequence j <ja <" <jk such that the folowing conditions are satisfied:

(i) All the entries in the last u- k rows of M are zero.
(ii) For each 1,..., k the entry mi,j, is not equal to zero.
(iii) For each i= 1,..., k and j<ji the entry mi, is zero.
It is well known that each matrix can be transformed into echelon form by a

sequence of elementary operations on its rows.

Proof of the Theorem. We must compute Zk=Zk(X,y)--i+j=kXiYj, k=
0,... ,2n-1. Let z= (Zo, z,..., za,_l) r. Assume that/xq(n) t, i.e., all the bilinear
forms defined by the components of z can be computed in multiplications/divisions.
It is known from !-3] that t>=2n. Let ml, me,’’’, mt be the outputs of the multiplica-
tions/divisions of an algorithm that computes {Zk}k=O,...,a,- such that m is computed
prior to m if i<j. Let p= (m,, m,_l,..., m) r. Then there exist a 2n x matrix U
whose entries are constants from Fq and a 2n-dimensional column vector q whose
components are affine forms in x and y such that z Up + q. There exists a nonsingular
2n x 2n matrix W such that the matrix WU is in echelon form. Multiplying z by W
we obtain Wz WUp+ Wq.

Let Wz (xTH2ny, xTHz._y, ", xrHy)r and let S, {H1, He," ", H,}, m
1, 2, 2n. Since the matrices H, Ha, , Ha, are linearly independent, ds,, + rs,,
2n (cf. [9, Lem. 1]). Let io(n) denote the maximal possible number of distinct factors
of a polynomial of degree n over Fq. Obviously, io(n) -< n. Therefore there is an integer
m such that ds ,+rs ,<-(n+iq(n/2))/2 and ds,,,+rs>(n+iq(n/2))/2. We shall
consider the cases of ds,,, > n and ds,. -< n separately.

If ds,,, + rs,,, > n, then, by Lemma 1, computing the set of bilinear form defined by
the last m components of Wz requires at least n / 1 multiplications/divisions. By the
definition of echelon form, at least the first 2n-m components in the last m rows of
WU are zero. Thus we have t-(2n-m) >- n+ 1. Since the matrices H1, Ha,’’’, H,_
are linearly independent, m-l<=(n+iq(n/2))/2, (cf. [9, Lem. 1]). Therefore t_->

(Sn -iq(n/2))/2.
If ds,,, + rs,,, --< n, then, by Lemma 3, computing the set of bilinear form defined by

the last m components of Wz requires at least m + ds,,, / rs,, iq (deg fs,,, (a)) 1 multi-
plications/divisions. Since at least 2n-m first components in the last m rows of WU
are zero, we have

t-(2n m) >= m + as,,, + rs,,,- iq (deg fs,, (ce)) 1.

Since ds,,, + rs,,, > (n +iq(n/2))/2 and the function n -iq(n) is nondecreasing, it follows
that >- 5 n + iq n /2) /2 iq n/2 + iq n/2) 1. Obviously, iq n + n2) --< iq n + iq (n2).
Thus in either of the cases treated above we have >-(5n-iq(n/2))/2-iq(iq(n/2)).

It can be easily shown that iq(n)< n/lgq n+ O(n/lg n). In particular, the proof
for q>-3 can be found in Appendix A of [9]. Thus /zq(n)=t->
5n/2- n/4 lgqn O(n/lg n). [3
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A CLASS OF PROJECTIVE TRANSFORMATIONS FOR
LINEAR PROGRAMMING*
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Abstract. A class of projective transformations under which potential functions are invariant for linear
programming is described. As a result, a new projective algorithm converging in O(Lx/-ff) iterations is
developed. The algorithm does not require centering conditions, and its convergence speed is improved by
a factor x/-ff over Karmarkar’s projective algorithm and by a constant over the recent affine potential reduction
algorithm.

Key words, linear programming, projective transformations, projective algorithms, potential functions,
potential reduction algorithms
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1. Introduction. Since Karmarkar [8] proposed the projective algorithm for linear
programming (LP), many new developments have been published in the growing
literature on interior algorithms. Among those, Anstreicher [1], Gay [5], Ghellinck
and Vial [6], Gonzaga [7], Todd and Burrell [12], and Ye and Kojima [15] have
proposed a primal projective algorithm using dual variables. These projective
algorithms (including Karmarkar’s original algorithm) use a projective transformation,
under which a potential function is invariant, and converge in O(Ln) iterations, where
L is the data length and n is the number of variables in the LP. The projective
transformation used in the algorithms has a nice geometric illustration.

Recently, several efforts have been made to improve interior algorithms. Todd
and Ye [13] have described a class of potential functions and proposed a primal-dual
projective algorithm using a new potential function for both the primal and dual. The
approach is motivated by seeking reductions in the potential function as in the ordinary
projective algorithms. The algorithm converges in O(L/-ff) iterations, and it must start
at and follow the "central path" described by Bayer and Lagarias [2], Megiddo [9],
Renegar 10], and Sonnevend 11 ].

More recently, Ye 14] has used the class of primal-dual potential functions and
has developed an affine potential algorithm that directly minimizes the potential
function. The algorithm seeks reductions in a suitable potential function without using
the projective transformation; it converges in O(L/-ff) iterations without starting at or
tracing the "central path."

In this paper, we describe a class of projective transformations, under which the
class of potential functions is invariant. As a result, we develop a new projective
algorithm converging in O(L/-ff) iterations. Again, the algorithm does not require the
centering condition, and its convergence speed is slightly better than that of the affine
potential algorithm. We also elaborate on the difference between these two algorithms.

2. Potential functions and projective transformations. Linear programming is
usually identified in the following standard forms"

(LP) minimize cTx,
subject to x l {x: Ax b, x >= 0},

* Received by the editors October 26, 1988" accepted for publication (in revised form) August 30, 1989.
f Department of Management Sciences, University of Iowa, Iowa City, Iowa 52242.
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where c, A R"’, and b e R are given, x R", and the superscript r denotes the
transpose operation. The dual to LP can be written as follows:

(LD) maximize b ry,
subject to s c Ary >__ O,

where the vector y 6 R and s R" is called dual slacks. For all x and y that are
feasible for LP and LD (Dantzig [3]), we have

bry<_z*<_crx,
where z* denotes the minimal (maximal) objective value of LP (LD).

We also assume the following:

(A1) The interior of both feasible regions of LP and LD are nonempty.

(A2) A has full rank.

The second assumption is merely added for simplicity.
Ye [14] used the class of potential functions

0(x, z) p In (crx- z)- In (x)
j=l

for the primal, and

b(x, s)=p In (xrs) In (xs)
j=l

for the primal-dual, where z -< z* and n _-< p < oe. The primal potential function is used
by Karmarkar [8] with p n for the homogeneous linear system (see also Anstreicher
[1], Ghellinck and Vial [6], Gonzaga [7], and Todd and Burrell [12]), and by Gay [5]
and Ye and Kojima 15] with p n + 1 for the standard linear system. The primal-dual
potential function is used by Todd and Ye [13] and Ye [14] for p n +x/. Freund
[4] further shows that p n +x/- may be the best choice to solve LP and LD via the
affine potential algorithm.

The primal potential function is related to the primal-dual potential function in
the following way:

(1) d(x,s)=(x,z)- ln(s) forz=bry.
j=l

Let r be a positive integer and x e f be the initial interior feasible solution. Then,
we describe the following class of projective transformations T’fl
defined as

(n+r)(X)-x
’l:n r+er(X)-x

(n+r)
j=r_t_eT(XO)_lx forj=n+l,...,n+r,

where upper-case (X) designates the diagonal matrix of the vector (x) in lower-case,
9., denotes the first n components of ) R "+r, and e stands for a vector of all ones
whose dimension may vary. The inverse transformation is given by

X..
X T-I()) zn+r j/rj=n+l
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Note that

n+r

E = n+.
j=l

Thus, 12 is contained in the n + r simplex.. {2 E en+r: 2_->0 and2 2j n+r}.

In particular,

x e R n+r,
i.e., the center of "

Under this projective transformation, LP is related to the following:

(LP(z)) minimize g(z)T2,

subject to 2 e fi {x Rn+r" x 0, e rx n + r, x _-> 0},

where

e( z) cX, -zl , -z/’r)
and

ft. (AX, -b/r,...,-b/’r).
Let us call 12 with the following additional restrictions

2n+l 2n+2 2n+r,

the restricted 12. Then, the primal potential function with p n + r is invariant in the
restricted 12. In other words,

(2) O(x, z) (x, z) (2, z) ( e, z),

where

n+r

(2, z)=(n+r) ln (g(z)r2) Y, ln2j
j=l

or

f(2, z)=(n+r) ln (e(z)T2) ln2j-rln2,+,.
j=l

3. The potential reduction theorem. Let us restate the following lemma that is
similar to Karmarkar [8] and its proof can be found in Ye [14].

LEMMA 1. Let 2 6 R and 112 e11 <1. Then

In 2Y => (eT2 n)
2(1 IIx- ell)’j--1

where ll" (without subscript) denotes the 12 norm.
Replacing n with n + r in Lemma 1, and noting the simplex constraint in 12 and

I1" I1 =< I1" II, we have

(3) O(2, z)-O(e,z)<=(n+r)ln g(z)e +
2(1- IIx- eli)"



460 YINYU YE

Let z= bTy for some s=c--ATy>O. Then, we solve the following ball
constrained problem (BP(z))

(BP(z)) minimize t-(z) T,
subject to A 0,

eT= n+ r,

]Ix- e[[==</3
for some constant 0</3 < 1, and denote by (z) the minimal solutionfor BP(z). Thus,
we have

p(z)
(4) X(z)= e-flIIp(z)ll’

where

p(z)= Pe(z)

and/5 is the projection matrix onto the null space of .x 0 and e TX 0. Thus,

e(z) T((Z) e) --/3 lip(z) II.
Hence, due to (3) the reduction of the potential function is

IIp(z)ll
/(5) O((z)’z)-O(e’z)<=-(n+r)fl e(z)e 2(1-/3)"

From (5), if IIp(z)ll>=ae(z)e/(n+r) for some constant a, then we can select an
appropriate/3 to reduce 0 by a constant.

Now, we focus on the expression of p(z), which can be rewritten as

p(z) (z) (z) e(z)e
e

n+r

where

(6) 37(z) (..T)-’g?(Z).

In terms of the coefficients and variables of LP and LD, p(z) can be expressed by

[X(c--aT.(z))\
(7) p(z) [ (bTf(z!--z’/r l cTxO--z

e,
|! n+r
\ (bT.(zi--z)/r ]

since C’(z)Te cTxO--z. Regarding IIp(z)ll, we have the following lemma (note that the
dimension of e varies from n to n + r).

LZMA 2. If

II(z)ll forsomeO<<l,

then

def

(8) (z) c--AT(z)>O and bT)7(z)> z,
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---e <--_--oz
2,n n n+n2/r-a

and

(10)

where

n+rA
n A /n + n2/ r

=g(z)Tx=cT"x-br(z) and A=cT"x-z.
Proof Formulas (8) hold, since if there exists j such that .(z)=<0 or bT(z)<= z,

then from (7)

cx- z crx- z zX
p(z)II-->-x(z) >-

n+r n+r n+r
or

cT"x-z bT".9(z)-z c’x-z A
lip (z)[I ->- >=n+r r n+r n+r

which is a contradiction. Moreover, since e _1_ (Xg(z)-([/n)e),

IIo( )11 -e +r"-’z’"2 Xg’z"
n + r r n + r

(11) --[IXg(z) 2

(+n
n n+rA ) 2+r(A-zr

]lxg(z)---e" I]2(n+ n+n-)(n n+rA ) 2"
If (9) does not hold, i.e.,

---e >--y

where

n + n2/ r
(12) y=c 2,n+n2/r-a
then from (11)

A)n+r

(
(13) >_(n+n2/r)Y2(n A )2--n2/r+n+y2 +r

+
where the second inequality is true since the quadratic function of A/n yields minimum
at _

(n+n2/r)
n+
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Formula (13) is also a contradiction; therefore (9) must hold. Again, from (11), we have

n n+r

which implies (10). [3

Based on the above lemmas, we have the following potential reduction theorem.
THEOREM 1. Let n-->2, r=[v/-ff]+ 1, a =0.55, /3 =0.3, and let x and yO be any

interiorfeasible solutionsfor LP and LD. Denote so c Ary, z b ryO, x T- g(zO)
of (4), y= )7(z) of (6), and s= g(z) of (8). Then, either

4(x s) <= 4(x, s)
or

where 6 > 0.1.
Proof If

4(x, s __< (x, s) 6

A (z)re
lip(z) -> , ,

n+r n+r

then from (1), (2), and (5) and noting

.+,(z) z.+(z) .+r(Z),

6(X’, S) 6(X, S) q, (X’, Z) q,(X, Z)
q(g(z), z) q(e, z)

(14)

Otherwise, from (8), we have

s=c-ary(z)=c-ary>O and bry>z.
Applying Lemma to vector nXs/7 and noting (9), we have

n In (x)rs In o 1/ 0(xsj) n ln(n(x)rs ) In( /)nx.j sj
j=l j=l

nlnn In( onxs/A)
j=l

(15) _-< n In n +
2(1 -IlnXs’l e Iloo)

2

=<n Inn+
2(1-3,)

2

<nln(x)rs In( o o 3’
Xj Sj) --j= 2(1- y)’

where 3’ is given by (12), and the last relation holds due to the arithmetic and geometric
mean inequality. Furthermore, from (10)

S<(1 r n a )n+ r n+ r /n+ n r

we have
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Thus,

(x)s ?
(16) rln= r In--<

(x)s

Adding (15) and (16), we have

S1
F2 ((17) 49(x, )-4)(x,s)<= 1+

n-k-r o)x/r+ r/ n

2
2(1-3’)

Since r [v-if] + 1 and n _-> 2,

re 4 r n 2

->- r+-->=3 and n+m>_-4.
n+r-5’ n r

Therefore, by choosing a 0.55 and/3 0.3, we have the desired result from (14) and
(17).

4. The new primal projective algorithm. Theorem 1 establishes an important fact:
the primal-dual potential function can be reduced by a constant via solving BP(z) on
the interior of LP and LD, no matter where x and y0 are. This implies that BP(z) can
be solved repeatedly. In addition, we can perform the line search to minimize the
potential function. This results in the following new primal projective algorithm.

NEW PRIMAL PROJECTIVE ALGORITHM"
Given Ax= b, x> 0 and so= c-Ary> 0;
let z b ryO, r [/-ff] + 1, and a 0.55;
set k 0;
while c TXk b ry k >= 2-L do

begin
Replace X with Xk in BP(zk) and compute

.9(z k) of (6) and p(zk) of (7);
if IIP(zk)II >-- a (C Txk zk)/( n + r) then
(zk) e-p(zk) where/ argmin_o d?(e-- flp(zk), sk);
x+= T-(Z(z));
k+l k, k+l k k+l k.y =y s =s andz =z

else
sk+l= s() where = argminzez 49(x k, s(z));
xk+ Xk, yk+l 97() and zk+l b ryk+;

end;
k=k+l;

end.

Although Theorem 1 is proved by taking the primal and dual steps alternatively,
it should also work by moving them simultaneously. In other words, we can make a
dual movement before the primal is "struck" or "centered." Since its progress is
uniquely measured by the potential function, the algorithm does not rely on tracing
the central path, which implies that no stepsize restriction is enforced or required
during the iterative process. The greater the reduction of the potential function, the
faster the convergence of the algorithm.

Overall, the performance of the new primal projective algorithm results from the
following theorem.
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THEOREM 2. Let (x, sO) <- O(Lx/). Then, the new primal projective algorithm
terminates in O(Lvr-) iterations and each iteration uses O( n3) arithmetic operations.

Proof. In O(Lx/) iterations

sk(xk, --< -L([x/] + 1).

Then,

tin (x)rs<--_-L([x/] + 1)-(n In (X)rsk-- In (xs))]=1

_-< -L([v] + 1) n In n.

Therefore,

([x/d] + 1 In (xk) rsk < L([v/-] + 1 );

crx_bry=(x)rs <2-/.

The above projective algorithm is based on primal scaling. Similarly, we can
develop a projective algorithm based on dual scaling. See Gay [5] for Karmarkar’s
dual projective algorithm and Ye [14] for the dual affine potential algorithm.

5. Further remarks. The condition on the initial potential value is not critical. In
fact, any point close to the central path (with the primal-dual gap less than 2L) satisfies
this condition; i.e., any m x n LP problem can be transformed to an (m / 1)x (n / 1)
LP problem with known x and so that satisfy the initial condition. In practice, any
interior point x and a strict lower bound z< z* suffices to start the algorithm; that
is, it is not necessary to know yO.

The major computational work of the algorithm is (7). A looks like an m x (n + r)
matrix; however, due to the duplication of the last r columns, (7) can be written as

We can use a rank-one technique to solve the above equation using factors ofA(X)Ar.
In addition, we do not need to formulate p(z) as an n+ r vector, since the last r
components are identical. Also note that if x+= x in the algorithm, the factors of
A(X)Ar are unchanged and should be reused for the next iteration.

The potential reduction at each iteration of this new projective algorithm is at
least 0.1, compared to 0.05 of the affine potential algorithm [14]. In other words, the
theoretical convergence speed of the new projective algorithm is twice as fast as the
affine potential algorithm. Again, we can verify that Karmarkar’s lower-rank updating
technique can be applied to this projective algorithm reducing the average arithmetic
operations of each iteration to O(n’S). The overall complexity of this projective
algorithm is O(Ln3) operations.

The difference between the projective and affine potential algorithms can be further
elaborated as follows. In the affine potential algorithm (see Ye [14]), the moving
direction for the dual is

(A(Xk)ZAr)-IAXk Xksk e
P

where Ak =(xk)rs k, and xksk--(Ak/p)e is the partial gradient vector, scaled by X,
of the primal-dual potential function. But in the projective algorithm, the moving
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direction from (18) is

(fi(z)--y k A(xk)2AT + bbT A(xk)2c+ b _yk

=(A(xk)2AT)-,AXk(Xksk_ eTPAxkxksk )r + e Tpaxke
e

where the projection matrix

Pax xkAT(A(xk)2AT)-IAxk"

Note that the quantity Ak/p Ak/(n + r) is not necessarily equal to

eTpAxXksk

+ eTpAxe

Therefore, the weight between the descending and centering directions seems more
sophisticatedly adjusted in the projective algorithm than in the affine potential
algorithm. Nevertheless, both algorithms achieve a constant reduction for the same
potential function along these different directions. This observation indicates that the
weight used in generating the moving direction and the weight used in the potential
function can be different for potential reductions. We may add another dimensional
search for p to generate better directions and to speed up these potential-type
algorithms.
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MAXIMAL RANK OF m x n x(mn- k) TENSORS*

NADER H. BSHOUTY?

Abstract. It is shown that the maximal rank of mxnx(mn-k) tensors with k<-
min {(m- 1)2/2, (n- 1)2/2} is greater than mn-4x/+ O(1).

Key words, computation complexity, bilinear forms, tensor rank
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1. Introduction. A classical problem in algebraic computational complexity is to
determine the minimal number of nonscalar multiplications required to evaluate some
set Yi,j aid,kXiy, k 1, , p, of bilinear forms in noncommuting variables Xl, ,
and yl, ",yn over a field F. This number is equal to the rank of the defining 3-tensor
(a,,j,k) Fm@F"(Fp (cf. [S]).

An interesting problem, which does not depend on the coefficients a,,k, is the
determination of

RF(m, n, p) max rank of T,
r Frn(Fn(F

the maximal rank of tensors in Fm(R)F"(R) F p. This problem has been studied quite
extensively in [AL1], [AS], [Gat], [J]. Atkinson and Stephens [AS] give the following
general reduction of RF(m, n, mn-k) with k-<min (m, n} to Rz(k, k, k2-k):

RF( m, n, mn k) mn k2 d- RF( k, k, k2 k).

They conjecture the bound

which implies

The rank of such type of tensors is discussed in [ALl], [AL2], [AS], and [Gat].
In this paper we shall give a constructive proofofAtkinson and Stephens conjecture

and prove the following stronger bound. If k=min {(m- 1)2/2,(n 1)2/2}, then

RF(m, n, mn- k) >= mn 4x// O(1).

For tensors of the size (n, n, an2), 1 > a > (1 +x/)/4 0.809, our bound is better
than those known from the literature. (See (2) in the next section.)

Atkinson and Stephens (cf. [AS]) have proved that

Rv(m, n, mn-k)= mn- [k/,
for min {m, n}>=k, 0<- k-<_4. We shall prove the identity for max {m, n}>-k, 0-< k=<4.

In the complex field the existence of sequences of tensors with small rank converg-
ing to a tensor of high rank has led to the concept of border rank. The border rank
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of T is the least integer such that for any e > 0 there exists a tensor T such that

 -Tll and rank of -r This definition yields

BR(m, n, p) max border rank of T.
Te FmFn(R)F

The border rank has been investigated in papers by Strassen [$2], Lickteig [Li],
and Bini [Bi]. For tensors of the above type Bini [Bi] proved that for k < min {n, n}

BR(m, n, k)= mn- k.

2. Notation aad auxiliary lemma. In this section we shall prove the major auxiliary
lemma needed for the proof of our theorem. The technique we shall use in the proof
is used in [B], [BD], [KB], and [W] to obtain lower bounds for the rank of tensors
of certain shapes.

DEFINITION 1. For mn >-- k let

AF(m, n, k)= tnn- RF(m, n, mn- k).

It is known (cf. [AS]) that if k_-<min {m, n, r, s} then

(1) AF(m, n, k) AF(r, s, k).

The best lower bound known from the literature is (cf. [Ho])

mnp
(2) gF(m,n,p)>=

m+n+p-2

And the best lower bound for tensors in F"(R) F"(R) F""-k is (cf. [Ga])

(3) RF(m, n, mn- k) >-_ mn- k+x/+ O(1).

LEMMA. Let r <--_ tn, s <--_ n, and k <- rs. Then

AF(m,n,k)<=AF(r,s,k).

Proof. Let x- (xl, , xr) and y- (Yl, ",Ys) be vectors of indeterminates. Let- {A1,’’ ", A,} be a t-element set of r x s (t rs) matrices such that, the rank of
the bilinear forms defined.by , i.e., of {ITAly, ,xTA,y}, is RF(r S, t). Define

={B1,’’’, B,,/1,..., B,_rs} by

and

A 0._) i=l,.., t,Bi= Or,,-r O,.-r,.-

j- 1, , m, n-rs,

where Ok, is the k x zero matrix and {Bj}j= 1..-..m,- are linearly independent matrices.
For a set of matrices c, let 6(c) denote the multiplicative complexity of the

bilinear forms defined by the matrices of c. We have

(4) RF(m, n, mn--rs+ t) >- a().

By [BD, Thm. 9] we have

6(3)>=mn-rs+min BI-}- Ai,li,’’’,Bt + ’ hi,tB
Ai.JF i--1 i=1
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BeCause

it follows that

B + Ai,kBi--
i=1

t( >--_ mn rs+ tS() mn rs+ Rv(r, s, t).

Now by (4), we obtain

RF( m, n, mn rs + t) > ran-rs+ RF( r, S, t).

Let k rs-t. Here k <= st is assumed. Then the lemma follows from the definition
of A F.

The corollary below is a generalization of (1).
COROLLARY. If k <-min {m, n}, then for every integer r and s we have

Av(m,n,k)AF(r,s,k).

Proof. Let M _-> max {k, r, s}. By (1) and the lemma we have

AF(m, n, k) AF(M, M, k) <- AF(r, s, k). U

3. Max’.tnal rank of tensors. In this section we prove our main results.
THEOREM 1 (Atkinson and Stephens conjecture). Let k_<-max {m, n}, m, n >_-2.

Then

RF(m, n, mn k) >- mn []
Proof. Assume k =< n. By the lemma,

AF(m, n, k) _-< AF(2, k, k) 2k RF(2, k, k).

Since

(cf. [J, Thm. 3.5]), we have

RF(m, n, mn-k)>-mn-[I.
Remark. According to the proof of the lemma, we can construct a tensor in

(R) F (R) F""-k of rank mn [k/2] as follows: Let {A1, , Ak} be a set of k,
matrices satisfying 6() k+ [k/2J (cf. [J, Thm. 3.5]). Let

3 ={B,,’’’ ,Bt,}U{Ei,j},:3,...,rnU{Ei,j}i:,,2
j=l,...,n j=k+l,...,n

where

Ai Ok n-k )Bi--
Om_2,k Om"___2,n_k

and Ei, is the matrix with 1 in entry (i,j) and zero in all other entries. Then, as in the
proof of the lemma, we have
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THEOREM 2. Ifk<=min {(m- 1)2/2, (n- 1)2/2}, then

RF(m, n, mn-- k) >-_ mn 4x/+ O(1).

Proof Let q Ix/k/2]. Since k_-<min {(n 1)2/2, (m- 1)2/2}, we have

2q 2 [ /]-<_2[(man {m, n}-1)] <min {n, m}
2

Therefore, by the lemma, we have

AF(m, n, k) _-< AF(m, n, 2q2) _--< AF(2q, 2q, 2q2).

Formula (2) implies

AF(2q, 2q, 2q2) 4q2- RF(2q, 2q, 2q:z) --< 4q:z- 8q4

2q2+4q-2

48q 20
--< 4x/+ O(1).-8q-20+q+2q_ 1-

For tensors in F (R) F" (R) F"2, a < 1, bound (2) implies

RF(n, n, an2) > n2 2
n+ O(1),

whereas Theorem 2 gives the lower bound

nF( n, n, cen2) >-- n2--4x/2(1-- ce )n + O(1).

A simple calculation shows that this bound improves the previous lower bound in the
case when a > (1 +x/)/2 =0.809.

THEOREM 3. Let 0_--< k _<- 4, max (m, n) >- k. Then

RF(m, n, mn-k)= mn-[].
Proof Let rn-> n. By the corollary we have

AF(m,n,k)>--AF(m,m,k),

and by [AS, Thm. 2], for 0 k-< 4,

Therefore

RF( m, n, mn k) <= mn []
Now, the result follows from Theorem 1.
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FLIPPING PERSUASIVELY IN CONSTANT TIME*

CYNTHIA DWORK?, DAVID SHMOYS$, AND LARRY STOCKMEYER?

Abstract. A persuasive coin is a sufficiently unbiased source of randomness visible to sufficiently many
processors in a distributed system. An algorithm is described for achieving a persuasive coin in the presence
of an extremely powerful adversary where the number of rounds of message exchange among the processors
is constant, independent of the number n of processors in the system as well as the number of faults,
provided the total number of faulty processors does not exceed a certain constant multiple of n/log n. As
a corollary an [l(n/log n)-resilient probabilistic protocol for Byzantine agreement running in constant
expected time is obtained. Combining this with a generalization of a technique of Bracha, a probabilistic
Byzantine agreement protocol tolerant of almost n/4 failures with O(loglog n) expected running time is
obtained.

Key words. Byzantine agreement, distributed coin, distributed computing, fault tolerance, cryptographic
protocol, probabilistic algorithm

AMS(MOS) subject classifications. 68M10, 68P25, 68Q

1. Introduction. The problem of distributively flipping a fair coin visible to all
processors in the system, in the presence of a malicious adversary, has recently received
considerable attention ([1J, [3], [4], [6], [7J, [9]; see also [8] for a survey). Ideally,
God flips an unbiased coin and the result is immediately visible to all processors in
the system. In the absence of God and of faulty processors, it suffices for one processor
to flip a fair coin and to broadcast the result to the other processors in the system.
However, if the flipping processor is faulty it could misbehave in several ways, by
flipping a biased coin, or failing to send the message properly, or even sending
contradictory messages to different processors. As in a recent paper of Chor, Merritt,
and Shmoys [10], we relax the requirement that all processors see the same value of
the coin. We say a flip of a coin is persuasive if a sufficiently large majority of the
processors see the same value, in our case, [n/2J + t+ 1 where n is the number of
processors and t, called the resiliency of the protocol, is an upper bound on the number
of faulty processors to be tolerated. We will exhibit and prove correct a protocol for
obtaining a persuasive flip of a coin with constant bias in O(1) time, where time is
taken to be the number of rounds of message exchange. The protocol tolerates
ll(n/log n) faulty processors. More specifically, our protocol tolerates an adversary
that at each round r of communication can examine the messages to be sent by all
processors and then select which processors to make faulty, based on all messages of
rounds 1 through r. Having chosen the faulty processors the adversary may then choose
the round r messages of the faulty processors, substituting these bad messages for the
ones originally chosen by these processors. This adversary, called the blocker because
it blocks and changes messages sent by the processors it chooses to make faulty, is
the most powerful considered in the literature for any model in which the processors’

* Received by the editors November 23, 1987; accepted for publication (in revised form) March 24,
1989. A preliminary and abridged version of this paper appeared in the Proceedings of the 27th Annual
IEEE Symposium on Foundations of Computer Science, Toronto, Ontario, Canada, 1986.
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8120790, by the Department of the Army under grant DAAG 29-85-K-0138, and by the Air Force Office of
Scientific Research under grant AFOSR-86-0078.
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internal states are not known to the other participants or the adversary. Since we will
be using cryptography in protocols which are resilient to the blocker, we assume that
the computations of the blocking adversary can be done by a probabilistic polynomial-
time Turing machine. We will say more about adversaries in 2.

The problem of achieving a global coin, visible to all correct processors, received
attention as a result of the work of Rabin on Byzantine agreement [24]. In the Byzantine
agreement problem [23], each processor Pi begins the protocol with an initial binary
value ui. Every correct processor must terminate with a decision value such that (i)
all correct processors decide on the same value, and (ii) if all initial values are the
same, say b, then all correct processors must decide b. Rabin showed that, given a
sufficiently unbiased global coin, Byzantine agreement can be achieved in O(f(n))
expected time, wheref(n) is the time required to flip the coin in a system of n processors.
The expected time to reach agreement increases with the bias of the coin. Rabin’s
result introduced the possibility of beating the lower bound of + 1 rounds to reach
agreement by a deterministic protocol [11], [13], [20], where is an upper bound on
the number of faulty processors, should it only be possible to quickly flip a relatively
fair coin. Rabin also showed how to use a global coin to obtain an asynchronous
agreement protocol.

At the same time Ben-Or [2] obtained an asynchronous randomized agreement
protocol, thus beating the impossibility result for agreement in a deterministic asyn-
chronous environment [21]. Although the idea of the global coin is not explicitly
spelled out in Ben-Or’s paper, in effect his solution uses a persuasive coin with a large
bias. When the algorithm is run in the synchronous round model, this large bias forces
the expected number of rounds of communication to be exponential in n whenever t,
the number of faults to be tolerated, is f(n). However, if is O(n 1/2) then the expected
number of rounds required is O(1), thus beating the time t+ 1 lower bound for
deterministic protocols.

The principal contribution of our paper is the coin flipping protocol. Specifically,
we show that, under certain cryptographic assumptions (as in Goldwasser and Micali
[22]), a persuasive coin with constant bias can be achieved in O(1) time in the presence
of l(n/log n) faulty processors chosen and controlled by a blocking adversary. This
is proved in two parts. In 3 we describe the protocol for a weaker adversary. In 4
we strengthen the protocol and its proof to handle the blocker. The weaker adversary
corresponds to the case where each pair of processors is connected by a private
communication channel so that faulty processors cannot eavesdrop on the conversations
between correct processors. Our results for this adversary are interesting in their own
right, as they require neither cryptography nor assumptions limiting the computational
power of the adversary. At the same time the protocol is fairly simple, requiring
relatively short messages and a small amount of computation by the correct processors.

In light of the results of Rabin and Ben-Or, this persuasive coin protocol immedi-
ately implies that Byzantine agreement can be achieved in O(1) expected time in the
presence off( n/log n) faulty processors chosen and controlled by a blocking adversary.
The best previously known resiliency for Byzantine agreement in constant expected
time, due to Bracha [5], was nC for arbitrary constant c < 1. Our solution not only has
higher resiliency, but it is also simpler and constructive because it does not use "Bracha
assignments" (described in 5).

Prior to the work reported here, two constant expected time agreement protocols
had already appeared in the literature, both with resiliency linear in n (as opposed to
our resiliency linear in n/log n). We now compare these results to ours. The protocol
ofChor, Merritt, and Shmoys [ I0] cannot tolerate even one malicious processor failure.
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Viewed in terms of the blocking adversary, their adversary can only block, it cannot
change the messages of the processors it chooses to make faulty. This corresponds to
the case of failure of omission: every message sent by a faulty processor is generated
according to the protocol, but it may fail to reach its destination. By contrast, our
adversary can exhibit arbitrarily malicious behavior. The second constant expected
time agreement algorithm is due to Feldman and Micali 17]. Although their algorithm
runs in constant expected time per agreement, their protocol uses 12(n) preprocessing
time, during which the processors agree on various things such as a pseudorandom
number generator for producing global random bits. Since our protocols use fewer
than rounds, we do not have time to run deterministic Byzantine agreements.

To achieve fault tolerance higher than n/log n, we generalize a technique of
Bracha [5] to show that, for any fixed 6 > 0, Byzantine agreement can be achieved
in O(loglog n) expected time in the presence of up to n/(4+6) faulty processors.
The adversary used in this result cannot eavesdrop on the conversations of correct
processors (private channels) but has unlimited computational power.

After our work appeared 14], Feldman and Micali 15], 18] devised a probabilis-
tic Byzantine agreement algorithm that runs in constant expected time and has the
optimum resiliency [(n 1)/3] in a model with private channels (with no preprocessing
required). In addition, Feldman [16] has a technique that, under a cryptographic
assumption, converts a distributed algorithm designed for private channels to one that
runs in a model without private channels. It is likely that this technique can be applied
to give a constant expected time Byzantine agreement algorithm with optimum resiliency
against the blocker in a model without private channels.

2. Models and definitions. Our model of distributed computation is similar to the
synchronous model used in many previous papers, for example, Bracha [5] or Dolev
and Strong 13], where the computation proceeds by rounds of message exchange. We
recall the basic features of the model informally. We assume a completely connected
network of n processors P {Pl, P2,"" ", Pn}, where each processor is modeled as a
probabilistic polynomial-time machine with a source of perfectly random bits. The
computation of the system proceeds in synchronous numbered rounds, beginning with
round 1. In general, during each round r each processor Pi performs a computation
to produce, for each other processor pj, a message to be sent from pi to pj during round
r. All messages are sent simultaneously and all are reliably delivered. The processors
then go on to round r + 1. As discussed below, faulty processors can deviate from this
perfectly synchronous behavior.

In proving correctness of deterministic distributed algorithms that tolerate Byzan-
tine faults, it is convenient to place no restrictions on the behavior of faulty processors.
For probabilistic algorithms, the allowed behaviors must be defined more precisely
since, for example, the behavior of faulty processors at round r cannot depend on the
random choices made by correct processors at rounds greater than r. In this paper we
consider three types of faulty behavior. We define each by defining the capabilities of
an adversary that chooses which processors to make faulty and chooses the messages
sent by faulty processors. In general, these choices can be made according to some
probability distribution; they need not be deterministic. For the first two types of
adversaries, we place no restriction on the computational power of the adversary (it
can even be nonrecursive), although for the blocking adversary, we must restrict the
adversary to be a probabilistic polynomial-time Turing machine. In defining each type
of adversary, we let Fr be the set of processors that are faulty during round r. We take
Fo O and we assume that Fr Fr+ for all r. If an algorithm is t-resilient to a particular
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type of adversary, then the algorithm must operate correctly for all adversaries of that
type that satisfy IFr[-<-t throughout the execution of the algorithm. (Actually, this
requirement can be relaxed somewhat: Executions of our agreement algorithms with
constant expected running time can be divided into epochs, with a small constant
number of rounds per epoch, such that the algorithm operates correctly if at most
processors are faulty in each given epoch, but different sets of processors may be
faulty in different epochs.) In the three definitions given next, we assume that the
adversary for round r is given r and all messages received by processors in Fr_ during
rounds less than r. After a new set Fr of faulty processors is chosen by the adversary
for round r, the adversary is also given all messages received by processors in Fr during
all rounds less than r.

(1) In the lock-step model with erasing, the adversary is divided into three parts.
The first part produces a new set F of faulty processors. The second part produces
the (potentially malicious) messages to be sent by processors in Ft. The first and second
parts are independent of the round r messages of the correct processors. The third
part, called the eraser, is then given the round r messages of processors in P-Fr, and
it produces a subset of Fr’s messages to be erased. The messages actually sent by
processors in F during round r are the messages produced by the second part that
are not erased by the third part. Without the eraser, this model would be the simple
lock-step model where all round r messages, from both correct and faulty processors,
must be sent simultaneously. We introduce the eraser because proving that the
persuasive coin algorithm is correct with the eraser facilitates correctness proofs for
the two stronger adversaries. Immunity to erasing is an important property of the basic
coin protocol.

(2) The next type of adversary is motivated by the fact that it could be difficult
in practice to enforce simultaneous sending of all messages at a given round. At round
r, the faulty processors could wait and receive the round r messages sent to them by
correct processors before choosing and sending their own round r messages. In previous
papers, this behavior has been called rushing. However, if each pair of processors has
a dedicated communication line, messages sent from one correct processor to another
cannot be overheard by any faulty processor. Formally, in the rushing without eavesdrop-
ping model, the adversary is divided into two parts. The first part, as above, produces
a set F. The second part receives the messages sent from processors in P-Fr to
processors in F during round r, and it produces the round r messages sent by the
processors in Fr.

(3) Our strongest type of adversary, the blocking adversary, permits eavesdropping
and allows the identity of faulty processors at round r to depend even on the contents
of messages sent at round r by processors that were correct at the end of round r- 1.
In other words, if a processor is made faulty for the first time at round r, its round r
messages can be changed by the adversary. Formally, the inputs to the adversary at
round r are the set Fr-1, all messages sent by all processors during rounds less than
r, and all messages that are supposed to be sent by processors in P-Fr_l at round r.
The outputs are a set Fr and the round r messages actually sent by processors in F
(so the round r messages of processors in Fr-F,.-1 can be changed by the adversary).
(This adversary is somewhat stronger than one where the adversary must first specify
the processors to be faulty in round r; the adversary then gets to see all of the messages
sent between the correct processors as well as from the correct processors to the faulty
processors, before sending the messages for the faulty processors. It is significant to
note that neither of these models allows the complete corruption of a faulty processor,
in that the internal state of a faulty processor is not revealed to the adversary.)



476 C. DWORK, D. SHMOYS, AND L. STOCKMEYER

DEFINITION. A distributed algorithm is a t-resilient persuasive coin with probability
p (for a particular type of adversarial behavior) if, at termination of the algorithm,
each correct processor Pi has chosen a bit bi and, for all b {0, 1}, the probability that
at least min { [n/2J + / 1, n} correct processors choose b is at least p.

The connection between persuasive coins and Byzantine agreement is provided
by the following lemma implict in the work of Ben-Or [2]. The connection was made
explicit by Chor, Merritt, and Shmoys [10].

LEMMA 2.1. Fix any of the adversary types described above. Suppose that there is
a t-resilient persuasive coin with probability p that always terminates within k rounds and
assume that n > 3 t. Then there is a t-resilient probabilistic Byzantine agreement algorithm
with expected running time of O(k/p) rounds.

In the following, log denotes the base 2 logarithm and In denotes the natural
logarithm.

3. Noncryptographic algorithms with constant expected running time.
3.1. The lock-step model with erasing. First we describe the new (n/log n)-

resilient persuasive coin protocol in the lock-step model with erasing and prove its
correctness. In later sections the basic algorithm is modified for the two stronger
adversaries in such a way that the new correctness proofs reduce to the correctness
argument for the lock-step model with erasing.

ALGORITHM COIN
Algorithm for processor p:
1. Randomly choose an integer value v uniformly between 1 and n4 (inclusive),

and choose a random bit b.
2. Broadcast (v, bi) to all processors.
3. Compute the outcome of the coin:

3.1. Let W be the multiset of values received from all processors (including
p); include only values in the proper range from 1 to n 4.

3.2. Let w,. , wm be the members of W sorted in nondecreasing order, and
let Win+ W / n4. (By including the value dC’m+ W / n4, we have essen-
tially bent the interval [0, n4] into a circle, identifying the points 0 and n.)

3.3. Find the j with 1 <-j<= rn such that w+-w is maximized; if there are
several such j’s then pick the smallest.

3.4. Let Pk be the processor that sent value w; if there is more than one such
processor, let Pk be the one with smallest index k. We say that Pk is the
leader chosen by p. The value of p’s coin is the bit bk sent by Pk to p,
or zero if no bit was received from p.

THEOREM 3.1. Fix any constant c < 1/6. In the lock-step model with erasing, there
is a constant p > 0 such that, for all n, Algorithm COIN is a cn/ln n)-resilientpersuasive
coin with probability p.

Proof Let t-[cn/In nJ be the upper bound on the number of faults. In the
following, we assume n >- 17, since otherwise < 1 and the protocol is certainly correct
if there are no faults. Since the algorithm has only one round, there is no harm in
assuming that the adversary makes as many processors faulty as possible. Therefore,
the adversary chooses a set F of faulty processors and, for each p in F and each p
not in F, the adversary chooses a value ai to be sent from p to p. We show that, with
probability bounded above 0, at least [n/2J + t+ 1 processors in P-F choose the
same leader Pk and that Pk is not in F. This is sufficient to prove the theorem, since

Pk not in F means that Pk chooses its bit bk randomly.
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Let V {vl,. ", vn-t} be the multiset of values chosen randomly by the correct
processors, sorted in nondecreasing order, and let vn-t/l Vl + n4. The size of the
maximum gap of V is the maximum of v+-vj over l<=j<-_n-t. Any pair (vj,
with v/l-v equal to the size of the maximum gap is said to be a maximum gap of V
at position v.

We first show that two events (El) and (E2) occur with sufficiently high probability.

(El) The maximum gap of V is unique, i.e., it occurs at exactly one position.

To prove this, we bound the probability that, when k values w, , Wk are chosen
randomly from [1, n4], the multiset of gap sizes {Wj+1- w]l-<j<_-k} contains no
repeated sizes, where the values have been sorted and Wk/l W + n4 as before (we say
that the set has unique gaps). Let Uk be the probability that a random set of k values
does not have unique gaps. It is obvious that u-0. To bound Uk for k> 1, first
randomly choose a set R of k-1 values. With probability at most Uk-1, R does not
have unique gaps. In the case that R has unique gaps, in order to produce nonunique
gaps the kth value must either split a gap of R exactly in half (there are at most k- 1
ways to do this) or split a gap to create a new gap with the same size as one of the
gaps of R (there are at most 2(1 +2+...+(k-2)) ways to do this). Therefore,

Uk < Uk_l t. k2n -4

so t/n -/’//12/’/-4-- r/-.

(E2) g 2n In n + 2 is an upper bound on the size of the maximum gap of V.

Let s In In n ], let rn be the largest multiple of s such that rn -<_ n4, and partition
the set {1, 2,..., m} into cells, where each cell consists of s consecutive integers. If
m < n4, create another cell containing m + 1, m + 2, , tl 4, 1, 2, s -b rn n4. We
say that a cell X is empty if X contains no value in V. Fix an arbitrary cell X. The
probability that a randomly chosen value falls in X is s n4>= (lnn)/ n. Therefore,

Pr[X is empty]-< (1 ---ln)
n-t

e-((lnn)/n)(n-t)

e-Inn e(tlnn)/n

<__ n -1 el/6.

Since the number of cells is [n4/s <= n/In n + 1,

el/6(l_ q_ ) 1/6(1 ) 1
Pr [some cell is empty] <_- 1 e + _-<-.

n Inn 2

The last inequality holds since we have assumed n => 17. Since the desired upper bound
g on the size of the maximum gap is at least twice the size s of each cell, if the size
of the maximum gap exceeds g then some cell must be empty. Therefore, g is an upper
bound on the size of the maximum gap with probability at least 1/2.

For the remainder of the proof, we assume that (El) and (E2) occur and all
probabilities are conditioned on these events occurring. Call the unique maximum gap
of V the correct gap.

Recall that the position of the correct gap is the value that is the left endpoint of
the correct gap. Say that a choice w for the position of the correct gap is bad for the
correct processor p; if one of the values ag;, 1 -<_ i_-< t, satisfies w <-_ ao < w + g or
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ao < w+ g-r/4 (in the case that w+ g > r/4); otherwise, w is good for pj. Say that a
position w is persuasive if w is good for some set C of at least [n/2J + + 1 correct
processors. The key fact is that if w is persuasive, then all processors in C choose the
same leader (the smallest numbered processor that sent value w) and this leader is
correct. Moreover, this holds even after erasing any of the values ao, since erasing an
ao outside of the correct gap cannot create a new gap of size greater than or equal to
the size of the correct gap, and therefore such an erasure will not change the leader
chosen by the processors in C.

We now show by a simple counting argument that some positive fraction of the
possible positions for the correct gap are persuasive. For each correct p, at most gt
positions are bad for p.. Therefore, there are at most gt(n-t) pairs (w,j) such that
position w is bad for the correct processor p. Assume for contradiction that the fraction
6c of the n4 possible positions are not persuasive. Since each nonpersuasive position
must be bad for at least n/2-2t correct processors, there are at least 6n4(n/2-2t)
pairs (w, j) such that w is bad for pj. Comparing these upper and lower bounds on
the number N of such pairs,

6cn4(n/2-2t) <- N -<- gt(n t) <-_ (2cn4+ 2t)(n t).
Since n-> 17 implies < n/12, the leftmost expression is greater than 2on 5. Assuming
t_-> 1, a calculation shows that the rightmost expression is less than 2on 5. This gives a
contradiction. In other words, at least the positive fraction 1-6c of the positions are
persuasive.

Since we assume (El) that there is a unique position for the correct gap, it is easy
to see by symmetry that the position of the correct gap is uniformly distributed in
1, n4]. (Recall that we have bent the interval [0, n4] into a circle.) Therefore a persuasive

position for the correct gap will be chosen with probability at least 1-6c. D
Remarks. (1) The proof shows that any probability p < 1/2 is possible by making e

sufficiently small.
(2) Except for some improvement in the constant c, the resiliency of Algorithm

COIN cannot be improved if the probability p should be bounded above zero. A good
strategy for the adversary is to spread the values of the faulty processors evenly
across the interval [1, n4], creating t-1 cells each of length In4 t] (and one cell of
possibly smaller length). In order to prevent a faulty processor from being chosen as
the leader by all correct processors, a value from a correct processor must fall into
every one of these 1 cells. If >= cn/ln n for some constant c > 1, then the probability
of this event goes to zero as n increases (see, for example, [19, IV.2]).

3.2. Rushing without eavesdropping. We now modify the previous algorithm to
withstand any adversary in the rushing without eavesdropping model. Note that in
this stronger model the old algorithm is not even 1-resilient. The adversary makes
Pl faulty during the first round, collects the messages sent by correct processors
to pl, finds the leftmost maximum length gap, and instructs p to send a value equal
to the left endpoint of this maximum gap. This adversary controls the coin with
probability 1.

The key tool that we develop to overcome this difficulty is a broadcast primitive
that we call simultaneous broadcast with erasing. In this primitive we imagine that all
processors simultaneously choose a message; let mi be the message chosen by pi. Then
all messages m,..., mn are shown to the faulty processors. For each correct p and
each faulty p, the faulty p can choose either to send m to p or to send no message
to Pi; this choice can be different for each pair of correct p and faulty pj. Each correct
pi sends m to all processors.
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For this primitive, we use the secret-sharing technique of Shamir [25]. The aim
of this technique is to split a secret into n shares so that any shares do not give any
information about the secret, but any + 1 shares suffice to compute the secret efficiently.
Suppose that a secret, encoded as a positive integer v, is to be split into n shares. Let
q be a prime number larger than v and n, choose random r, r2, r, Zq (the field
of integers modulo q), and let Q(x) be the polynomial over Zq of degree t,

Q(x) r,x’ + .+ rlx + v.

Note that Q(0)= v. The shares are then O(1),..., O(n). Given t+l shares of the
form (i, Q(i)), the unique degree-t polynomial Q that can be interpolated through
these points can be found in polynomial time, and then the secret, Q(0), can be
computed. In addition, it is easy to see that given fewer shares there are an equal
number of degree-t polynomials that interpolate to yield constant term v for every
l)Zq.

The following procedure requires that n > 4t.

ALGORITHM BROADCAST
Algorithm for processor Pi:
1. During round 1, choose the message mi, split it into n shares, s(1),. ., si(n),

and send the share s(j) to processor p.
2. During round 2, broadcast the vector of shares w =(s(1), ., si(n)) and all

shares received during round 1.
3. For each j, compute the message m:

3.1. For every k, two views of s(k) should be received in round 2, one in the
vector w and one forwarded from Pk. Let S be the set of processors Pk
for which the two views are identical.

3.2. If ISi[ < n or if no degree-t polynomial can be interpolated through w,
then no message was received from p. Otherwise, if Q is the interpolating
polynomial, then m Q(0).

LEMMA 3.2. Let n and be such that n > 4t and assume the model ofrushing without
eavesdropping. Algorithm BROADCAST is a t-resilient simultaneous broadcast with
erasing primitive.

Proof. First we show that a correct processor pj sends mj to all (correct) processors.
For any processor p computing the message from pj, the set Sjg contains all the correct
processors. Since there are at least n- of them, and since wj is computed correctly,
processor p will receive message mJ.

Next we show that the messages received in round 1 and the choice of faulty
processors for round 2 determine, for each faulty processor pj, a unique message mj
such that any correct processor either receives mj from pj in Step 3.2 or receives no
message from pj. Consider two computations in Step 3 that yield nonnull messages
and let S and S’ denote the sets found in Step 3.1 using the vectors wj and w. We
give a counting argument which shows that there must be at least / 1 coordinates in
which wj and wj are equal. Since ]SI >--n- and IS;I->-n-t, there are at least n-2t
processors in S f’) S’. Furthermore, if a processor is in S fq S’, then either the correspond-
ing values in wj and w are equal, or the processor is faulty. Since there are at most
faulty processors, there are at least (n-2t)-t n-3t > coordinates in which wj and
wj are equal. However, + 1 coordinates define a unique degree-t polynomial, so that
the results of interpolating wj and w must be equal.

To complete the proof, it is only necessary to note that by the properties of
Shamir’s technique, the messages sent by correct processors in round 1 give the faulty
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processors no information about the message values sent by correct processors. There-
fore, values "locked in" during round 1 by the faulty processors are selected indepen-
dently of the correct processors’ messages.

We modify Algorithm COIN given above by replacing the ordinary broadcast in
Step 2 with a broadcast using the new primitive. The proof that this new protocol
works within the rushing without eavesdroppping model is identical to the proof of
Theorem 3.1.

THEOREM 3.3. Let c < and assume the model of rushing without eavesdropping.
(1) There is a 2-round (cn/ln n)-resilient persuasive coin with nonzero constant

probability.
(2) There is a (cn/ln n)-resilient probabilistic Byzantine agreement algorithm such

that the expected number of rounds to reach agreement is constant.
(The constants in (1) and (2) are independent of n.)

4. Cryptographic algorithms with constant expected running time. In this section
we strengthen the protocols of 3 to tolerate the blocking adversary. Recall that in
choosing at each round r which processors fail in round r the adversary can make this
choice, and the choice of round r messages to be sent by faulty processors, based on
the messages sent by all processors in all rounds up to and including r. Thus, the
blocking adversary can eavesdrop on the conversations between correct processors.
The basic coin protocol cannot handle eavesdropping because it requires that the
values chosen by faulty processors be independent of the values chosen by correct
processors. Therefore, cryptography seems to be needed. Because we will be using
cryptography, we will assume the adversary is restricted to functions computable by
a probabilistic polynomial time bounded Turing machine, where the polynomial is in
n, the total number of processors, and k, a security parameter.

The general idea of our solution is to modify the basic coin flipping protocol,
encrypting all messages using the probabilistic public key cryptosystems (PPKC’s) of
Goldwasser and Micali [22]. However, some additional care must be taken. In con-
structing a modification of the algorithm COIN to work in the presence of a blocking
adversary, we might expect that the following simple algorithm would sufficiently
protect the values to be b’roadcast: each pi picks a single encryption/decryption pair
(Ei, D), broadcasts E and E(v, bi) during the first round, and broadcasts D during
the second round. Surprisingly, this protocol is not even 2x/--resilient to a blocking
adversary.

In the first round, the adversary corrupts v/-ff processors and chooses values vi
that are distributed evenly, every r/7/2. In the second round, the adversary collects all
of the decryption keys and computes all of the (correct) message values. The corrupted
values define x/-ff slots, and there is some slot that has no more than values of
correct processors. By blocking the decryption keys used for the values in the leftmost
such slot, the adversary can be guaranteed to control the coin. As this example makes
clear, the adversary gains substantial power by choosing the faulty processors for the
current round after receiving all of the messages for that round.

Algorithm ENCRYPTED COIN uses the Crusader agreement of Dolev [12] as a
communication primitive. This two round protocol solves a weak version of the single
source Byzantine agreement problem. In Crusader agreement there is a single source
s that wishes to broadcast a value v _t_ to every processor in the system. Every
processor p has a variable Vp that is initially undefined. A protocol solves Crusader
agreement if on completion:

1. If s is correct then for all correct processors p, Vp v.
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2. For all pairs p, q of correct processors either vp l.)q or at least one of Vp, Vq
has value _t_.

The protocol presented below uses secret-sharing (see 3.2), strengthened by
additional certification that the shares were computed properly. We assume the
existence of a probabilistic public key cryptosystem H, as defined by Goldwasser and
Micali [22]. Everything in this protocol is done bit-by-bit. By this we mean that each
m-bit secret to be shared is shared as m 1-bit secrets, and each m-bit message to be
encrypted is encrypted as m 1-bit messages. Thus, our "message space" is just {0, 1}.
Keeping this in mind we obtain the following definition for a public key cryptosystem:

A probabilistic public key cryptosystem (PPKC) is a probabilistic polynomial time
Turing machine H that on input lk outputs the description of two algorithms E and
D such that

(1) for some constant c both E and D halt within k steps,
(2) for b {0, 1}, D(E(b)) b,
(3) E is probabilistic, and
(4) the E/D pair produced is drawn uniformly at random from the range of H

on input lk.
We call E the encryption algorithm and D the decryption algorithm. We let H(k)

denote the set of encryption/decryption pairs generated by H on input lk. Let A(k)
denote the number of random bits used by E II(k) to encrypt a single bit.

In the following, let q be a prime larger than n. When using Shamir’s secret-sharing
technique with resilience t, processors will choose polynomials of degree with
coefficients chosen from Zq, and all arithmetic is over Zq. We take q to be part of the
protocol. Let N be the least power of2 satisfying N -> n 4. In the cryptographic algorithm
the values vi are drawn uniformly at random from 0, 1,..., N-1. Thus each vi has
exactly log N bits, and each bit has value 1 with probability exactly 1/2.

ALGORITHM ENCRYPTED COIN (security parameter k)
Algorithm for processor
1. During round 1, for each processor pj, invoke II(k) to obtain a random

encryption/decryption pair (Ej, Di). Run Crusader agreement on
(EI, E2, , End). This requires two rounds of communication. Let Bli denote
the set of processors found faulty by p during the executions of Crusader
agreement initiated by all processors.

2. During this step, the random values are chosen and broken into shares:
2.1. Randomly choose a value v by tossing an unbiased coin log N times, and

choose a bi by tossing this coin once. Thus (vi, b) can be represented with
m 1 +log N bits. Let (v, bi)h denote the hth bit of (v, bi). For each h,
1 -< h =< m, break bit (v, hi) h into n shares Qh(1), ., Qh(n) using Shamir’s
secret-sharing technique with resilience t. Each share has [log q] bits. Let

’ (j) denote the xth bit of the jth share of the hth bit of (v, b).
2.2. Let w denote the vector of nm[log q] components, each of the form

Ei(Qhi’’(j)), where l<-j<-_n, l<-_h<=m, l_-<x-<l-logq] and pB. If
h,x

p./ B then the special symbol _L is used for these components. Let Rij
denote the random string used to generate the probabilistic encryption,

E0 (Q/h,x(j)) for pj

_
Bi. If p B then choose a random string R’’ even

Qi" (J). Recall that eachthough no encryption is performed on the share h,

R’ has length A(k).
2.3. Let w2 denote the vector consisting of each plaintext bit encrypted in w

together with the random string used in the encryption. That is, w2
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1,1 1,1 n,[logq] [logq] contains 2nm [log q] com-R,,, Q, (1),. ",R. O" (n)). WE,
ponents and m’ nm [log q (A (k) + 1) bits. Split each bit h of this vector
into n shares, Sh(1),. ., Sh(n), 1 <- h -<_ m’. Each share contains [log q
bits. Let sh’x(j) denote the xth bit of sh(j).

2.4. Let Wai denote the vector of nm’[log q] components Eij(sh’’(j)), where
1 -<j _-< n, 1

_
h -<_ m’, 1 _-< x <- [log q ], and pj B1 . Ifp BI then the special

symbol +/- is used for these components. Broadcast the vectors Wl and Wai.
3. During Step 3, broadcast the decryption keys Dli," ", D, and then compute

the value (vj, b) received from each processor pj as follows:
3.1. Decrypt those components Ey(S’X(y)) of w3 for which Dy was received

to obtain the xth bit of the yth share S(y) of the hth bit of w2j. For each
h, 1 <_- h _-< m’, interpolate the decrypted shares S(y) to find the bits of w2.
Verify that there are at most processors py such that either p replaced
Ey(S’X(f)) with +/- or pf Bli.

3.2. Decrypt those components Ey(Q’X(y)) of w for which Dy was received
to obtain the yth share Q(y) of (v, b)h- For each h, 1 _-< h _-< m, interpolate
the decrypted shares Q(y) to find the bits of (v, b). Verify that there are
at most processors py such that either p replaced Ey(Q’x(f)) with _1_ or
py BI.

3.3. From w2, verify that all non-+/- components Ey(Q’’(y)) of Wl for pro-
cessors py e BI were computed correctly by p, where 1 _-< h -< m. Verify that
for each h a degree-t polynomial can be interpolated through the shares
Q(s), s 1,. , n that are given in w2.

3.4. If any interpolation or verification fails, then no (nonempty) message was
received from p.

4. Compute the value of the coin using the nonempty messages as described in
the algorithm COIN.

Let cn/log n be an upper bound on the number of faulty processors in any
execution of Algorithm ENCRYPTED COIN.

Fix an execution of Algorithm ENCRYPTED COIN. Let B denote the set of
processors made faulty during Step 1 of the execution, and let G1 be the complement
of B1. Similarly, let B_ B1 denote the set of processors made faulty during Steps 1
and 2, and let G2 G1 denote the complement of BE.

Let us consider informally how the adversary might force a particular outcome
of the coin, say 0. If the bit associated with the left endpoint of the maximum gap
among the values chosen by G1 is 0, then the adversary need only stay out of the
maximum gap. On the other hand, if this bit is 1, then the adversary must gain control
of the coin. To do this, it could selectively kill members of G1, inducing a set G2 of
correct processors such that the bit associated with the left endpoint of the maximum
gap among the values chosen by G2 is 0. Alternatively, it could prevent the coin from
being persuasive or make a faulty processor leader, both of which require it to land
a value inside the correct gap. Our intuition is that if the values (v, b) of processors
in G1 are encrypted, then the adversary has no knowledge of these values. In this case
the adversary must choose BE (and hence G2), and choose values for processors in
B, without any information about the values of processors in G1. But this is precisely
the situation in Algorithm COIN.

Let predicates (El) and (E2) be as in the proof of Theorem 3.1. Recall that (El)
says the correct gap, defined by the values of processors in G2, is unique, and (E2)
says this gap is not too large.
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Let Po be true if and only if, in addition to (El) and (E2), the bit of the leader
defined by the correct gap is 0, and the position of the correct gap is good for at least
n/2 + 2cn/log n + 1 processors in G2 (i.e., no processor in B2 lands a value in this gap
in the view of these n/2 + 2cn/log n + 1 processors).

Let P1 be defined analogously for the case in which the bit of the leader defined
by the correct gap is 1. In the following, our claims about Po hold for P1 as well.

We will define a chain of simulations of the first two steps of the algorithm, such
that at one end of the chain the adversary has no information about the values of
processors in G1, and therefore the predicate Po holds with the same probability as it
holds in protocol COIN when run in the presence of 2cn/log n faults. At the other
end of the chain, the predicate Po is no less likely to hold than in an execution of
Algorithm ENCRYPTED COIN in the presence of 2cn/log n faults. Moreover, in the
Claim below, we argue that the probabilities that Po holds at the two ends of the chain
are extremely close (defined more precisely in the statement of the Claim).

By Theorem 3.1, in each execution of Algorithm COIN, both Po and P1 hold with
probability at least p, where p is a fixed constant. Combining this with the Claim we
will see that there exists a constant p’ such that both Po and P1 hold with probability
at least p’ after the first two steps of Algorithm ENCRYPTED COIN. Suppose Po
holds before the adversary has chosen which processors to make faulty in Step 3. Then
at least n/2+ 2cn/log n + 1 processors in G2 see an outcome of 0 for the coin. Thus,
if G3 is the set of processors remaining correct through Step 3, then at least
n/2+ cn/log n+ 1 correct processors see a 0 at the end of the execution of the coin
flipping protocol, and the flip is indeed persuasive.

Before we begin our proof of correctness of Algorithm ENCRYPTED COIN we
review some of the properties of probabilistic public key cryptosystems. These proper-
ties and definitions have been adapted from the more general setting of Goldwasser
and Micali [22]. We restrict ourselves to bit-by-bit encryption. Thus the only messages
ever encrypted are 0 and 1.

Let II be a PPKC. Let S- be a probabilistic Turing machine that, when given as
input (k, E, y), where E is a description of an encryption algorithm E H(k), and
3’ E (m) for some rn {0, 1 }, produces a single binary output. Such a machine is called
a line tapper. Let E II(k) be fixed. Given a plaintext message m, there is an a priori
probability, taken over all possible encryptions E(m) and all coin tosses of -, that
S-(k, E, E (m)) 1. Let p(E, m) denote this probability. Clearly, p(E, 0) and p(E, 1)
may differ. In particular, if Ip(E, O)-p(E, 1)1> liP(k), then we say that ff P-distin-
guishes 0 and 1 with respect to E.

H is polynomially secure if for all polynomials R and for every infinite set I of
positive integers, there does not exist a probabilistic Turing machine -, having running
time bounded by a polynomial in k, which, for all k /, R-distinguishes 0 and 1 with
respect to any polynomial fraction of the encryption keys E l’I(k). Goldwasser and
Micali [22] show that if the quadratic residuosity problem cannot be solved by a
probabilistic Turing machine in polynomial time, then a polynomially secure PPKC
exists.

Let n the number of players, and k -> n the security parameter, be fixed. We define
a sequence, or "chain" of simulators. Each simulator has two players, the System and
the Adversary, denoted S and A, respectively. Intuitively, the system player corresponds
to a system of n processors executing Algorithm ENCRYPTED COIN with security
parameter k. The adversary is the blocking adversary. In each simulation, the system
player simulates the internal state changes of all uncorrupted processors. The first
simulator actually simulates executions ofthe algorithm, with the system player sending



484 C. DWORK, D. SHMOYS, AND L. STOCKMEYER

to the adversary all the ciphertext messages of uncorrupted processors, the adversary
choosing processors to corrupt and choosing messages of those corrupted. In the final
simulator the system player sends encryptions of random noise to the adversary. The
adversary again chooses processors to corrupt and chooses messages for those corrup-
ted. Recall that all our encryptions are of single bits. The intuition behind the chain
is that each successive simulator i’eplaces one additional encryption of a real bit,
determined by the internal state of some simulated correct processor, by the encryption
of a bit chosen at random. We describe the simulators more precisely below.

Let us first compute the length of the chain and devise a method of naming each
simulator. As above, B1 will denote the set of processors corrupted by the adversary
in Step 1 of the algorithm. Recall that Step 1 is composed of two rounds of message
exchange. To determine the length of the chain we must compute the total number of
encryptions of single bits to which the adversary has access in an execution in which

B1 is empty. Consider a correct processor Pi. During Step 2, Pi broadcasts vectors wi
and w3i, containing n [log q]m and n [log q ]rn’ distinct encryptions, respectively. Thus,
if B is empty the adversary has access to nZ[log q](m + m’) separate encryptions of
bits in Step 2. The length of the chain is therefore 1 + n2[log q](m+ rn’). Recall that
the intuition behind the chain is that each successive simulator replaces one "real"
encryption by the encryption of a random bit. Thus, we can name a simulator by
naming the new encryption to be replaced. In the first simulator there is no such bit.
We name this machine Mo. In each of the remaining simulators the bit is identified
by a 5-tuple (i, j, h, x, B), where and j are a pair of processors, 1 =<x_-< [log q],
B { Q, S} and h -<_ n [log q rn if B Q, h _-< n [log q ]m’ if B S. The 5-tuple (i, j, h, x, B)

Bhnames the bit B)’’(j) (the xth bit of the jth share of Bh) Thus, if B Q, then ’ tJl
BhX,is the xth bit of the jth share of the hth bit of (v, b), while if B S, then ’ tJ is

the xth bit of the jth share of the hth bit of w2i. The simulators are ordered lexicographi-
cally, according to their 5-tuple names.

We now describe the simulators precisely. The simulators all handle Step 1 of the
simulation of Algorithm ENCRYPTED COIN identically. They differ only in their
treatment of Step 2, the step in which ciphertext messages are sent. On input 1 k, S
begins by simulating all n processors, first choosing all n 2 encryption/decryptions pairs
(Eji, Dj) by repeatedly invoking II(k). Once these choices are made S sends all the
E0 to A. A chooses a set Ba of faulty processors to corrupt and chooses the round 1
messages of these processors. These choices are reported to S. S then sends to A the
round 2 messages of the uncorrupted processors. These messages may depend on the
choices of round 1 messages sent to S by A for members in Ba. Given the round 2
messages for processors not in BI, A chooses a set Bb of additional processors to
be corrupted in round 2, subject to the condition that [B U Bb[ <= t. A also chooses
the round 2 messages of the processors in B BI U Bb. These choices are all reported
to S. This completes the description of Step 1 for all simulators in the chain.

We now describe the simulations of Step 2. In the first simulator, Mo, S simulates
the behavior of all processors Pi : B. Thus, for each such pg, S chooses a vi, bi pair
according to the protocol, breaks each bit (vi, bi)h, l<--h<-m, into shares
Q)(1),..., Qh(n), computes w, w2i, and w3, and finally sends wg and w3 to A. A
chooses a set B2-B1 of processors to corrupt in Step 2 (]B2[--< t) and chooses Step 2
messages for B2. These choices are sent to S.

In the simulator named by (i, j, h, x, B), 1 _-< i, j _-< n, B { Q, S}, 1 -< h _-< m if B Q,
1 _-< h _-< m’ if B S, and 1 _-< x_-< [log q ], S computes the vectors w, w2, and w3 for
all pi B, as above, but it modifies the messages it sends to A as follows. For each
5-tuple (u, v, g, y, C) in our naming scheme such that (u, v, g, y, C) either equals
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(i, j, h, x, B) or precedes (i, j, h, x, B) in the lexicographic ordering of these 5-tuples, if
neither u nor v is in B, then S replaces Euv(C’Y(v)) with Euv(r), where r is chosen
from {0, 1} uniformly at random. A different random bit is chosen for each replaced
encryption. As in the first simulation, A chooses processors to corrupt in Step 2 and
chooses messages for processors in B2, the set of all processors made faulty during
Steps 1 and 2. These choices are sent to S. Note that these choices may contain
conflicting messages if the adversary chooses to make a faulty processor send different
messages to different correct processors. This completes the descriptions of the simu-
lators when simulating Step 2 of the algorithm.

The simulators do not differ in their method of evaluating the predicate Po. For
each processor Pi B2, S knows the values (vi, b), because S chose these and A did
not change them. These values determine the correct gap. For each processor pj B,
and for each processor Pi G, let Wlj.i denote the value of the vector wj sent by the
adversary to processor p. (Although it was supposed to broadcast a vector wl, the
faulty p could instead have sent different vectors to different processors.) S decrypts
the shares of w. belonging to processors py G2 using the decryption keys Dy that
it chose in Step 1 while simulating py. If these shares are properly chosen and encrypted,
then S can interpolate the decrypted shares to obtain what we will call "the value of
(vj, b) sent to pi." If the correct gap is not unique (E1), is too large (--qE2), if the
leader specified by the correct gap did not flip a 0, or if the position of the correct gap
is not good for at least n/2+2on n + 1 processors in G, then Po does not hold.
In this case we say the adversary wins, and the simulator outputs 1. Otherwise, the
adversary loses, and the simulator outputs 0.

We remark that if a processor pg is corrupted in Step 3, then by our definition the
adversary only controls the messages sent by pi in that step, and we can assume the
processor receives all its messages and makes local state changes as if it were uncorrup-
ted. Correctness ofthe algorithm does not depend on this, but it simplifies the discussion.

We now make a few observations about the chain of simulators and the relation
of the chain to executions of Algorithm ENCRYPTED COIN.

(1) There is a natural correspondence between executions of Mo with adversary
A, and executio.ns of the algorithm when run against adversary A. Specifically, every
execution of the first two steps of the algorithm is simulated by Mo with exactly the
same probability with which the execution of these two steps occurs in actuality, and
conversely. The probability space is the set of random choices made by the correct
processors (simulated by S), the adversary A, and the PPKC 1-I. Once Mo has simulated
the first two steps of the algorithm, the rest of the simulation (evaluation of Po) is
fixed. Thus, in talking about an execution of the algorithm, we may refer to "the
corresponding execution" of Mo, meaning that execution of Mo agreeing with the first
two steps ofthe actual execution of the algorithm. However, even though the processors
behave deterministically in Step 3, the adversary can extend an actual execution of
the first two steps of the protocol in many ways. Thus, given an execution of the
simulator Mo there are many corresponding executions of algorithm.

(2) Fix an execution of Mo, and let p be a processor in G. Let (v, b.) be the
value chosen by S for pj in the simulation of Step 2.1. Then S uses v in computing
the correct gap when evaluating Po. Moreover, in any corresponding execution of the
algorithm, all Pi G2 receive (v, bj) in Step 3, as we now explain. If p G2, then it
correctly prepares and broadcasts its vectors wj and w3, and by definition of G these
messages are not corrupted by the adversary. Moreover, because p correctly prepares
these vectors, for each bit (v.i, bj)h the component Ejy(Q;(y)) is _1. only if y B. In
Step 3 the adversary can only prevent the dissemination of decryption keys of faulty
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processors. For each bit (vj, bj)h the total number of shares Q(y) unavailable to Pi,
either because p replaced the share with _1_ or because the adversary suppressed Dy,
is bounded by cn/log n, the total number of faults. An inspection of Step 3 indicates
that the absence of these shares cannot prevent pi from receiving (v, bj).

(3) Fix an execution of the algorithm, and let p be in B2. Let pi be in G2, and
let (Vji bji) denote the value of (vj, bj) computed by Pi in Step 3. If (vj, bji) is not
empty, then in the corresponding execution of Mo, (vji, bji) is the value of (vj, bj) sent
to Pi. In other words, if a value from pj gets through in an actual execution, it gets
through in the corresponding simulation. This is because if (vji, bj) is not empty in
the actual execution, then in Step 3.3 p was able to verify that all non-& components
Ejy(Qt’X(y)) of wlj for processors py Bi were computed correctly, and that not too
many shares of each bit were replaced by _t_. Thus, the shares of each bit of (v, bji)
can be interpolated by S in the corresponding execution of Mo, so (vii, bi) is the value
of (v, b) sent to p.

(4) If Po holds in an execution of Mo, then it holds in any corresponding execution
E of the actual algorithm. By Observation (2), all values of processors in G2 are the
same in corresponding executions, so those clauses of Po discussing only the values
of processors in G2 hold in the execution of the algorithm. By Observation (3), if p
receives a value from pj B2 in E, then it gets through in the corresponding simulation
as well. Thus, if the position of the correct gap is good for a processor in G2 in the
simulation, then it will be good for this processor in the execution of the algorithm.

(5) In executions of the last simulator ML, the set B-B1 and the messages for
processors in B are chosen without any information about the Step 2 messages of
processors in G1. This is because in ML the messages from processors in G1 to processors
in G are replaced by encryptions of random values. Messages from processors in G
to processors not in G are not altered in M. However, each such message is a share
of some bit. So even if the processors not in G combine all the messages they receive
from processors in G1, the messages can be grouped into at most shares of some bit
bl, at most shares of some bit b, etc. By the property of secret sharing, z <- shares
of some bit have the same distribution as z independent random numbers. So in this
case, messages in M from processors in G1 are random numbers. Thus, the situation
is as in the lock-step model, and Po and P1 hold in executions of Mt with the same
probabilities that they hold in protocol COIN. Specifically, each of these holds with
probability at least p.

In light of Observations (4) and (5), it remains only to prove that Po holds in Mo
with probability essentially as large as the probability with which it holds in M/. We
now make this more precise.

Let L =/,/2 [log q ](m + m’). For each l, 1 -< _-< L, let Mt denote the simulator named
by the/th 5-tuple in our naming system. As before, Mo denotes the first simulator in
the chain. We allow each simulator a single unary input. On input 1 k the simulator
runs its simulation with security parameter k. Each M! has built into its finite control
the finite controls of l-I, A, and of S, the system player described above. As described
above, each execution of MI results in a single bit of output. If Po does not hold, the
adversary wins, and the simulator outputs 1. Otherwise (i.e., if Po holds), the adversary
loses, and the simulator outputs 0. Each execution of Mt runs in time polynomial in
k, because S is simulating only n polynomial (in k) bounded players and A by
assumption is polynomial time bounded.

We will need the following notation. For each l, 1 _-< l_-< L, if the /th 5-tuple is
(u, w, h, y, B), then we let Xl and E1 denote Bhdy(w) and Euw, respectively. Note that
machines Mt and M1_1 differ only in their treatment of x: in an execution of Mr, with
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probability 1/2, S sends to A an encryption El(XI), while with probability 1/2, S sends
El(1 Xl). By contrast, in every execution of Mt_, S sends El(Xt). For each k, associated
with each MI is an a priori probability of producing a 1, where the probabilities are
taken over all the coin flips of H, A, and S. Let Pr IMp(k)= 1] denote this probability.

CLAIM. Assume H is a polynomially secure PPKC. For all polynomials P(k) and
for all probabilistic polynomial time bounded A (polynomial in k), there exists a ko
such that for all k->_ ko, if A is used as the adversary player in each M! then

Pr [Mo(k) 1]- Pr [Ma(k) 11<
1

P(k)

The proof is by contradiction. We assume the claim is false and show a violation
of the polynomial security of II. Thus, for the sake of contradiction, we let A be a
probabilistic polynomial time bounded Turing machine such that for some polynomial
P and for all k in some infinite set I,

Pr [Mo(k) 1]-Pr[Mt(k)= 1]_->

We will prove the following statements.
1. If k I then there exists l, 1-< I-< L, such that

Pr[Ml_l(k)= 1]-Pr[Ml(k)= 1]=>

2. Let l, 1 =< 1_-< L, k, and e satisfy

P(k)"

1

LP(k)"

Pr[Ml_,(k)= 1]- Pr [M(k) 1]=> e.

Then there exists b {0, 1} such that

Pr [M_,(k)= l Ix!-- b]- Pr [M(k)= l x b] > e.

3. Let l, 1 <- <_- L, b {0, 1}, k, and e satisfy

Pr [MI_I(k) 11Xl b] Pr [Mt(k) 11Xl b] >- e.

Let (k, l, b, e)
_

1-I(k) be the set of encryption keys E I-I(k) satisfying

Pr [Mt_l(k)= l lx, b ^ E E]-Pr [MI(k)= 1 Ix b ^ E E] >- el2.
Then ](k, l, b, )l/In(k)l > /2.

Later, we will need the following notation:

(k, )= U (k, t, b, e),
l,b

where 1 -< _-< L, and b {0, 1}.
4. Let MI, 1 <-l <- L, be {0, 1}, k, and E H(k) be fixed. Let

qo Pr [MI_I(k) 1]Xl b ^ El E],

ql Pr [Ml(k) 1]x, b ^ E! E].

Let

rb Pr [Mt(k) 1 ]x b ^ E E ^ S sends E(x,) to A],

rl_b Pr [Mr(k) llx= b ^ El E ^ S sends Et(1 x) to A].
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Then

qo ql 1/2( rb rl-b ).

After proving these statements we will describe our line tapper -. We will then
prove the following statement.

5. There exists some polynomial R such that for all E (k, 1/LP(k)), all k /,
and all y E(0)w E(1),

Pr [-(k, E, y)= lly E(1)]- Pr [-(k, E, y)= lly E(0)]>R(k)"

Let k be in L By Statements 1-3 the set of keys (k, 1/LP(k)) has cardinality at
least III(k)l/2LP(k). By Statement 5 there is a polynomial R such that -R-distinguishes
E(0) from E(1) for each encryption key E (k, 1/LP(k)). If in addition - runs in
time polynomial in k, then we have obtained the desired contradiction to the assumed
polynomial security of II. We now proceed according to this outline. The reader may
wish to skip the detailed proofs of Statements 1-4 in a first reading, and proceed
directly to the description of the line tapper, without any loss in understanding of the
structure of the proof of the theorem.

STATEMENT 1. If k I then there exists l, 1 <= <- L, such that

Pr [M_(k) 1]-Pr[Ml(k)= 1]=>

Proof. If k I then by definition of I

LP(k)"

1
Pr [Mo(k) 1]-Pr[Mt(k)= 1]>-

P(k)’

so there exists an l, 1 =< =< L, such that

Pr [Mi_,(k) 1]-Pr[Ml(k)= 1] -> 1/tP(k).

Statement 2 says that if there is a drop of size e between the probability that each
of MI-1 and MI outputs 1, then there is a value b {0, 1} for Xl that gives rise to a drop
of size e.

STATEMENT 2. Let l, 1 <-- <= L, k, and e satisfy

Pr [Mt_,(k) 1]-Pr [Mr(k) 1]=> e.

Then there exists b {0, 1} such that

Pr [Ml_l(k) 11Xl- b]- Pr [Ml(k) 11Xl b]>= e.

Proofi We write

Pr [Ml_l(k) 1]

Pr [Xl =0] Pr [Ml_l(k) l lXl =0]+ Pr [Xl- 1] Pr [Ml_,(k) l lxl 1].

Similarly,

Pr [Ml(k) 1]

Pr [x 0] Pr [Ml(k) lXl- 0]+ Pr [x 1] Pr [M(k) l lx 1].
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Substituting these expressions into the premise of Statement 2 yields

Pr [xt =0] Pr [Mt_(k)= 1 Ix, =0]+ Pr Ix, 1] Pr [Mt_l(k)= 1 Ix, 1]

-(Pr Ix, =0] Pr [Ml(k) 1 Ix, =0]+ Pr Ix, 1] Pr [Ml(k) 1 Ix, 1]) >= e.

Rearranging terms yields

Pr [x =O](Pr [M,_l(k) lx =OJ- Pr [Mt(k)

+Pr [x, 1](Pr[M,_l(k)= 1]x,= 1]- Pr [Mt(k) llxt
We claim one of these two differences is at least e. For brevity, let us write this as

Pr [x 0]a + (1 Pr [x 0])/3 _-> e.

Without loss of generality, let us assume a _->/3. Then we have

Pr [xl 0]a + (1 Pr [xt 0])a -> e,

whence a >_-e. Similarly, assuming/3 >_-ce yields/3 _-> e. Thus at least one of these two
differences equals or exceeds e. This completes the proof of Statement 2.

Statement 3 provides a lower bound on the size of the set of encryption keys for
the "critical"’ encryption function that yield a probability drop.

STATEMENT 3. Let 1, 1 <--_ <--_ L; b e {0, 1 }, k, and e satisfy

Pr [Ml_l(k) [x, b] Pr [M,(k) l lxl b] >- e.

Let k, l, b, e)
_

II(k) be the set of encryption keys E II(k) satisfying

Pr [Ml_l(k) llx,= b ^ El E]- Pr [MI(k) llx,= b ^ El E] > el2.

Then I(k, l, b, e)l/lII(k)l> e/2.
Proof. Let

ao Pr[Ml_l(k)= llXl b],

a, Pr [Ml(k)= 1 [Xl b].

By assumption ao-a >= e. Let El, E2,’’ ", ER, B Ir(k)l, be the possible choices of
encryption keys in II(k). For 1-< z =< B, let

aoz Pr [Ml_l(k) 1 Ix, b ^ El Ez],

alz Pr [M,(k) 1 Ix, b ^ E,= Ez].

Let qz denote the probability with which S chooses E for E,. Then for e {0, 1}

B

oi= S, qoi.
z=l

Let

Z={zlaoz-al>=e/2}.

Let K zz qz. Note that, because S chooses the encryption key by executing II on
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1 k, and by condition (4) each key is chosen with equal probability, K is the fraction
of keys yielding a probability drop of size at least e/2. We have

I?, <- Ol0 Ol OlOz O lz q -t- E Oz O ,z qz"
zeZ zZ

Each aoz- az is bounded above by 1, so the first term is bounded above by Yzz qz,
which is precisely K. Moreover, by definition of Z, if z C_Z then ao-a<e/2
(otherwise z would be in Z), so the second term is bounded above by e/2. We therefore
have

e<+e/2,

whence > e/2. This completes the proof of Statement 3.
S’rATEMENT 4. Let MI, 1 <= <-L, b e {0, 1}, k, and E II(k) be fixed. Let

qo Pr [M,_,(k) 1 Ix, b ^ E, El,

q, Pr [M,(k) 1 Ix, b ^ E, E].

Let

rb Pr Mt(k) 1 X b ^ E! E A S sends El(Xl) to A],

r,_b=Pr[Ml(k)= l[xt=b ^Et= E ^SsendsE,(1-x,) toA].

Then

qo ql 1/2( rb rl-b ).

Proof Half of all executions of M,(k) are actually legal executions of Ml_l(k),
because the probability that S sends an encryption of the actual value of Xl to A is
exactly 1/2 in an execution of Ml(k). Moreover, this observation holds even when
restricted to executions of the two machines in which Xl b and E! E. Thus rb qo.
Moreover, considering only those executions in which Xl--b and El E, we have that
the overall probability that Ml produces a 1 is the probability that S sends the right
encryption times the probability of a 1 in this first case, plus the probability that S
sends the wrong encryption times the probability of a 1 in this second case. Thus,

We therefore have

qo- ql r + - r r,-b ),

which completes the proof of Statement 4.
We now describe our line tapper. The line tapper will perform sizeable amounts

of random sampling. We first describe the two machines without specifying the sample
sizes, which are computed from the Chebyshev inequality. The actual computation of
these sizes is left to the very end of the proof.

On inputs (k,E, y), where yeE(b) for some be{0,1}, E el-l(k), and ke/, 3-
computes 4L probability estimates by random sampling, two each for Mo and ML,
and four for each of the L- 1 other machines.
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For each l, 0 < 1-< L, and for each b {0, 1}, let el,b denote -’s estimate of

Pr [M,(k)= I[E,= E ^ x,= b],

and let dt. denote -’s estimate of

Pr[M,_,(k)= 1]E,=E ^xt=b].

ff searches for a probability drop

1 2
dl,b e,,b 2LP(k) kLP(k)

where 0 < l_-< L. If several such l, b pairs exist, then - chooses the one giving rise to
the largest difference.- computes each estimate ei. by simulating many executions of M(k) in which

Xl has value b and in which E E (computation of d. is handled analogously,
simulating M_). However, because x could be a bit that, say, rarely takes on the
value 1 (e.g., x could be the high-order bit of a share and most elements of Zq might
have a 0 in this position), it may take too long for - to generate a large sample of
executions in which x just happens to take on value 1. Later we explain how to
generate random executions of the simulators in which a particular bit has a forced
value.

If - finds no l,b pair such that dt,b- el,b is sufficiently large, then it outputs 0 and
halts. Note that until this point we have not used 3’, so up to this point - is equally
likely to succeed in finding a good 1,b when / E(0) as when 3, E (1). If has found
a desired pair l,b then it constructs one more execution of Ml(k) in which El E, and
Xl b, but instead of flipping a coin to determine whether to have S send E(b) or
E (1 b) to A, S simply sends /to A. If A wins, then - outputs the value b (essentially
"guessing" that 3’ E (b)), while if A does not win in the simulated execution then -outputs 1 b.- simulates an execution of Ml(k) in which Xl has value b as follows. Let
(u, w, h, y, B) be the/th 5-tuple. Recall that if B Q, then Xl Bh2y(w) denotes the yth
bit of the wth share of the hth bit of (v, b), whereas if B S, then Bh2y(w) denotes
the yth bit of the wth share of the hth bit of w2. Thus, the forced bit is alway a
single bit of a share of some special bit. Let a be the special bit to be shared. Let
b {0, 1} be fixed. We show how to construct a polynomial 7r of degree such that
7r(0) ce and the yth bit of 7r(w) is b. Recall that in the secret sharing all arithmetic
is over the finite field Zq, and all shares are represented by [log q bits. Thus a given
bit of a share can indeed take on either binary value. Without loss of generality, let
us assume w> t-1. Let ao= a and let aw be any value in Zq whose yth bit is b.
Randomly choose a,. .., a_l Zq. We write

(x-0)(x- 1)... (x-i)’... (x- t+ 1)(x- w)
"rr(x) , ai

i=o,...,,-1,w (i-0)(i-1)...(i-i)’...(i-t+l)(i-w)

where )’ means this factor does not occur. 7r(x) is the desired polynomial. The
remaining shares of b can be computed according to this formula.

STATEMENT 5. There exists some polynomial R such thatfor all E (k, 1/LP(k)),
all k I, and all 3/ E (0) U E (1),

1
Pr [-(k, E, y)=IITE(1)]-Pr[-(k,E, y)=llyE(O)]>-R(k)



492 e. DWORK, D. SHMOYS, AND L. STOCKMEYER

Proof If k I and E (k, 1/LP(k)), then by Statements 1-3 and the definition
of (k, 1/LP(k)), there exist l,b such that

1
Pr [M_,(k)= l lx, b ^ E, E]-Pr [Mr(k)= 1Ix, b ^ E, E]>=2LP(k).

Let c denote the probability that at least one of the 4L estimates made by - differs
from the actual probability being estimated by more than 1/kLP(k). The number of
simulations - uses to make each estimate will be chosen sufficiently large that c is
small. We therefore consider the case in which - makes no such error. In this case,- finds a pair l, b such that

Pr [Ml_l(k) 1Ix,-- b ^ E, E]-Pr [Mr(k)= 1 Ix, b ^ E, E] >- e,

where e 1/2LP(k)-2/kLP(k). We examine the two cases b 1 and b =0 separately.
If b=l, then Pr[-(k, E, 3’)=113’E(1) is precisely the probability that the

adversary A wins in M when S sends to A an encryption of the correct value for xt.
Analogously, Pr [-(k, E, 3’)= 11, E(0)] is the probability that the adversary A wins
in M when S sends to A an encryption of the wrong value for xt. By Statement 4 the
difference between these two probabilities is at least 2e.

If b=0, then Pr [-(k, E, 3’)= 11 E(1)] is the probability that the adversary A
loses in Mt when S sends to A an encryption of 1 Xl, while Pr -(k, E, 3’) 113’ E(0)]
is the probability that A loses in M when S sends to A an encryption of xt. Of course,
Pr[A loses] is just 1-Pr [A wins]. Combining this with Statement 4 again yields a
difference of 2e.

Putting all this t.ogether we have that for E (k, 1/LP(k)) and for all 3’
E(0) U E(1),

Pr [3-(k, E, 3’)= 113’ E(1)]- Pr [if(k, E, 3’)= 113’ E(0)]

(1 4)=>(l-c)
LP(k) kLP(k)

Choosing

R(k)-2 LP(k) kLP(k)

proves Statement 5, provided c=<1/2. Note that R(k) is polynomial in k. It remains only
to choose the sample sizes such that c is sufficiently small.

For each estimate obtained by 9-, let p denote the actual probability that - is
trying to measure. The estimated probability is given by X,,/m, where rn is the number
of trials (simulations of a particular machine with the value of a specific bit and of a
particular encryption function forced) and X,, is the number of these trials in which
the adversary wins. We wish to choose m such that

Xm 111kLP(k) 8L"

In this case, the probability that even one of the 4L estimates is off by more than
1/(kLP(k)) is less than 1/2, as required in the proof of Statement 5. Plugging this into
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the Chebyshev inequality

-p <-
m r

yields rn =8L(kLP(k))2, which is clearly polynomial in k.
Thus - is a probabilistic polynomial time algorithm such that for a polynomial

fraction of the keys E 1-I(k) and for all y E (0) U E (1),
1 2

Pr [-(k, E, y)= llyE(1)]-Pr[(k, E, y)= lJyE(O)]=2LP(k). kLP(k)

violating the assumed polynomial security of H. The Claim is proved.
We note that if we redefine the simulators so that output 1 is produced if and

only if P is satisfied, and we redefine win so that the adversary wins if and only if P
is not satisfied, then the Claim is still true. Thus, under either definition, the adversary
is only subpolynomially (in k) more likely to win in Mo as in M, so P0 and P each
hold in Mo with probability strictly greater than p-1/P(k), for any polynomial P.
Combined with Observation (4) above, this says that Po and P1 both hold with
probability at least p/2 in any execution of Algorithm ENCRYPTED COIN run with
sufficiently large security parameter k. We therefore have the following theorem.

THEOREM 4.1. Assume that a polynomially secure PPKC exists. Given n, let c be
such that Algorithm COIN is 2cn/log n-resilient with probability p. en for every
polynomial-time blocking adversary A there is a ko such that, for all k ko, Algorithm
ENCRYPTED COIN (k) is a cn/log n-resilient persuasive coin with probability p/2,
resilient to A.

COROLLARY 4.2. Assume that a polynomially secure PPKC exists. ere exist
constants c, r > 0 such that, for every n, there exists afamily B( k) ofn-processor algorithms
such that, for every polynomial-time blocking adversary A, there is a ko such that for all
k ko, B(k) is a (on/log n)-resilient Byzantine agreement algorithm, resilient to A, where
the expected number of rounds to reach agreement is at most r.

Remark. In these results, the lower bound ko on the security parameter depends
on the paicular adversaryA. By modeling adversaries and line tappers as (nonuniform)
polynomial-size probabilistic circuits and by changing the definition of a polynomially
secure PPKC accordingly, the results can be strengthened so that ko depends only on
the polynomial that bounds the size of the adversary, i.e., the number of gates in the
circuit that computes the behavior of the adversary. After these changes, the key Claim
can be modified as follows: For all polynomials P(k) and Q(k, n), there is a ko such
that for all n, all k max (ko, n), and all A of size at most Q(k, n), if A is used as the
adversary in each Mr, then Pr [Mo(k) 1]- Pr IMp(k) 1]< 1/P(k). The proof of the
modified claim is essentially identical to the proof above, and the stronger results
follow immediately.

5. Agreement algorithms with high resiliency. Bracha [5] has devised a beautiful
"boot-strapping" method for increasing the resiliency of probabilistic agreement
algorithms while also increasing the expected running time. For any constant 6 > 0,
he shows that n processors can be organized into m n2 committees, each of size
s O(log n), such that if fewer than n/(3 + 6) processors are faulty, then at most
committees are faulty, where a committee is faulty if at least s/3 processors in the
committee are faulty. Given this structure, each committee simulates a single processor
in Ben-Or’s protocol. Since this protocol runs in constant expected time when the
number of faulty processors is O(), the running time is proportional to the maximum
time needed for each committee to simulate one step of Ben-Or’s original protocol.
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Processors within a committee decide which messages to send by running Byzantine
agreement internally on the messages they have received from other committees and
responding accordingly. In addition they must flip a coin visible to the entire committee.
Bracha uses any standard Byzantine agreement protocol for the first problem and the
coin flipping protocol of Yao [26] (see [8]) or Awerbuch et al. [1] for the second.
Thus, the expected running time of Bracha’s protocol is O(s)= O(log n). Using our
12(n/log n)-resilient agreement algorithms, we can allow up to 12(m/log m) committees
to be faulty, so we might hope that smaller committees would suffice. Although the
counting argument in [5] does not yield committees smaller than (R)(log n), smaller
committees can be formed by applying Bracha’s result iteratively. For example, to
obtain committees of size O(log log n) in a system of n processors, apply the result
to obtain n 2 "big committees" of size O(log n), and then apply the result to each big
committee to obtain m O(n2 log2 n) committees of size O(log log n). It is not hard
to see that if fewer than n/(3 + 6) processors are faulty then O(m/log m) committees
are faulty. We do not give the details, since the existence of such committee organiz-
ations is a special case of the following result, which is proved by a counting argument
similar to the one used by Bracha.

LEMMA 5.1. Let f(n) be a nondecreasing function satisfying f(nf(n)) O(f(n)),
and let and d be constants with 0 < 6 < 1 and d > 1. For all sufficiently large n and all
<- n/ (d + ), there is a way of organizing n processors into m <- nf(n) committees, each

of size s=O((logf(n))/log (n/t)), such that if at most processors are faulty then at
most m/f(m) committees are faulty, where a faulty committee is one that contains at
least s/ d faulty processors.

Proof A committee is a set of exactly s processors (s is chosen below). Let B (,)
be the total number of possible choices of committees. For the rest of the definitions
in this paragraph, fix a particular set of faulty processors. A particular committee is
faulty if it contains at least s!d faulty processors. Let F be the number of faulty
committees. F does not depend on the particular choice of the faulty processors. Let
m [nf(n)J. An organization is a set of exactly m committees. An organization is bad
if at least

h Lm/f(m)J + 1

committees in the organization are faulty.
To prove the lemma, we want to show that the total number of organizations, (roB),

exceeds the number of bad organizations. To obtain an upper bound on the number
of bad organizations, note that to form a bad organization we must first choose a set
of faulty processors, and then form the organization by choosing h committees from
the set of faulty committees and m h committees from the set of all committees (this
overcounts the number of bad organizations). Therefore, it is sufficient to show that
the following number : is greater than 1:

(1, sC=(mB)/(7)()(mB_h).
In the following calculations, we let c, Cl, c2, etc., denote positive constants whose

exact values are unimportant. We begin by noting that

(Bin) B )=(B-m+h)(B-m+h-1)’’’(B-m+l)m-h m(m-1)... (m-h+l)

m
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In the last inequality we use B >= 2m. Noting also that

-<2 and =<--.
and substituting these three bounds in (1), we obtain

(2) >- 2-"F-hh!.

Raising both sides of (2) to the 1/h power and noting that (ht)l/h>= h/e >-m/(ef(m)),
we have

(3) i/h >__ cB2-/hF-f(m)-"
We now bound the quantities B and F"

assuming s =< n. Recall that F is the number of faulty committees (with respect to a
particular set of faulty processors). We form a faulty committee by choosing k of
the faulty processors and s- k of the n- nonfaulty processors, for some k >= s!d.
Therefore,

/_

S s/d<-_l<-s

t.l
<=n 2-cslog(n/t).

s!

Only the final inequality requires further explanation. There are two cases. In the first
case, n! t-< 4a. The sum is the probability that, in s Bernoulli trials with probability of
success t/n<= 1/(d +5) at each trial, the total fraction of successes exceeds I/d, and
by the Chernoff bound this probability is bounded above by 2-bs for some constant
b > 0. Since log (n/ t) <- 2d, we can take c b/2d. In the second case, n/ > 4a implies
2d < /-/t, and we can use a rougher bound"

Substituting these bounds for B and F into (3) and taking logarithms, we obtain

(4) log ,a’h>--c2+log(1-)--+cslog()-logf(m).
Since we are going to choose s O(log n), the term log (1- s/n) is bounded below
by some (negative) constant. We also have, using the assumption that f(nf(n))=
O(f(n)),

n nf(m) nf(nf(n))
=o().

h m nf(n)-
Therefore, by making s a sufficiently large constant multiple of (logf(m))/log (n/t)=
O((logf(n))/log (n/t)), the right-hand side of (4) is positive. This completes the proof
that



496 C. DWORK, D. SHMOYS, AND L. STOCKMEYER

This result shares with Bracha’s the property that a random organization of
processors into committees is good with probability approaching 1 exponentially fast
as n increases. Unfortunately, for the choice off and in which we are most interested,
no explicit construction of these "Bracha assignments" is known.

Remark. Although the condition f(nf(n)) O(f(n)) holds for the function log n,
it does not hold for functions of the form n where a is a constant. Lemma 5.1 can
be made to apply to such functions with a <= 1/2 by changing the condition to f(n2)
O(f(n)z) and using m nf(n) committees. Only the final calculation, bounding n/h,
is affected.

To obtain the next result, we take d 4, f(n) 7 In n, and use a variant of Yao’s
coin flipping protocol within a committee where modifications are needed to ensure
that the coins of faulty committees are independent of the coins of nonfaulty commit-
tees. This proof of independence does not arise in [5] since the protocol there is based
on Ben-Or’s /--resilient protocol, which does not require independence.

Let m [7n In n] be the number of committees. We can assume that the size of
each committee is s 41+ 1 for some integer/. For each committee of size 41+ 1, we
form subcommittees consisting of all possible subsets of size 31+ 1. Since a set $ of
size 31+ could be a subset of several different committees and since S will play a
different role in each of these committees, to avoid confusion among these roles we
denote a particular subcommittee by the pair ($, C) where S is a subcommittee of the
committee C.

ALGORITHM COMMITTEE COIN
Algorithm for processor p"
1. For each subcommittee (S, C) with p S choose and send a value in the

following way:
1.1. If" p is the smallest indexed member in S, randomly choose an integer

value v uniformly between 1 and rn and choose a random bit b and
broadcast the pair (v, b)s,c to all members of S.

1.2. Run Byzantine agreement within S on the pair broadcast for (S, C). Let
(, b)s,c denote the resulting pair.

1.3. Using the simultaneous broadcast with erasing primitive (see 3.2), broad-
cast (v, b)s,c to the entire network.

2. Attempt to compute a pair (v, b)c for each committee C"
2.1. For each subcommittee S of" C, let Ms,c be the multiset of" messages

(v, b)s,c received from the members of (S, C) as a result of the broadcast
in Step 1..3.

2.2. It" there is a message that occurs at least 2/+ 1 times in Ms,c, then let
(v, b)s,c be this message; otherwise, (v, b)s,c is null.

2.3. It" all subcommittees (S, C) of" C have been assigned nonnull pairs in Step
2.2, then compute the sum, over all subcommittees of" C, of" the v values
(modulo rn) and compute the parity of the b values to obtain (v, b)c.
Otherwise, no pair (v, b)c was received from C.

3. Compute the value of" the coin as in the Algorithm COIN, viewing each
committee as a processor as described above in the outline of Bracha’s algorithm.

THEOREM 5.2. Let 0 be a constant and let t<= n/(4+ t). There is a probabilistic
Byzantine agreement algorithm with expected running time of O((log log n)/log (n/t))
rounds that is t-resilient to any rushing without eavesdropping adversary.

Proof. Given the outline of Bracha’s result and Lemma 5.1, all that must be shown
is that Algorithm COMMITTEE COIN can be used to simulate Steps 1 and 2 of
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Algorithm COIN for all committees. More precisely, it is necessary to show (1) that
a nonfaulty committee broadcasts the same randomly selected pair to all processors,
and (2) that the pairs sent by faulty committees are chosen independently of the pairs
of correct committees, although any such pair from a faulty committee can be erased
(but not changed) by the adversary after seeing the nonfaulty committees’ pairs. Here
and subsequently, a faulty processor is one that is made faulty by the adversary at
some round during the algorithm.

Before addressing (1) and (2), we note a fact that is useful in proving both. Fix
a committee C (either faulty or nonfaulty). By the property of the broadcast primitive,
we can imagine, for every subcommittee (S, C) and every processor p S, that p chooses
a message mp,s,c to be broadcast in Step 1.3. (After these choices are made, all the
adversary can do later is to erase some of the mp,s,c in the case that p is faulty.) We
claim that these choices determine at most one message mc such that any correct
processor either computes (v, b)c mc in Step 2.3 or concludes that (v, b)c is null.
To see this, let lls,c be the multiset of messages {mp,s,clp S} (only messages of the
correct form (v, b), for some value v and some bit b, are included). If some message
occurs 21 + 1 times in Ms,c (there is at most one such message since S contains 31+ 1
processors), then let ms,c be this message; otherwise, ms,c is null. If ms,c is nonnull
for all subcommittees (S, C), then let mc be the modular sum of these messages,
computed as in Step 2.3. Let q be an arbitrary correct processor. Since the broadcast
primitive only allows erasure, q computes Ms,c c_ Ms,c in Step 2.1. Therefore, q
computes either (v, b)s,c ms,c or (v, b)s,c =null in Step 2.2, and finally, q computes
either (v, b) c mc or (v, b) c null in Step 2.3.

Consider now a nonfaulty committee C. We first argue that every correct processor
computes the same nonnull pair (v, b)c in Step 2.3. Since C is nonfaulty, there are
no more than faulty processors in it, and so each subcommittee (S, C) contains 31 + 1
members, no more than of which are faulty. Thus, agreement will be reached in Step
1.2 for any subcommittee (S, C), and 21+ 1 correct processors in (S, C) will send the
same pair (v, b)s,c in Step 1.3. Therefore, every correct processor will recover this pair
(v, b)s,c in Step 2.2 for every subcommittee (S, C), so every correct processor will
compute the same (v, b)c in Step 2.3. To argue that this (v, b)c is truly random, note
that there is a subcommittee U, C) that is pure, in that U contains no faulty processors.
This subcommittee must send a randomly selected pair. The communication within
the pure subcommittee cannot be overheard by the adversary, so at the start of Step
1.3, the messages chosen by faulty processors are independent of the pure subcommit-
tee’s pair (v, b)t;,c. It follows that the value Vc (for example) computed in Step 2.3
has the form

I)C I)U,C q-" I)2-I- D3-{ q" l)k (mod m4),
where k is the number of subcommittees (S, C), where vt,c is distributed uniformly,
and where the distribution of (v2,. , Vk) is unknown (possibly chosen by the adver-
sary) but independent of the value of vt,c. Under these conditions, it is clear that Vc
is uniformly .distributed.

Now consider a faulty committee C (such a committee could consist entirely of
faulty processors). At the beginning of Step 1.3, the faulty processors have no informa-
tion about the randomly chosen pair of any pure subcommittee of any nonfaulty
committee. Thus, faulty processors choose messages to send (and possibly erase)
independent of these pure subcommittees’ pairs, and therefore, of the nonfaulty
committees’ pairs. As argued above, these choices "lock in" at most one pair mc such
that all the adversary can do after seeing the nonfaulty committees’ pairs is to selectively
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permit the correct processors to compute (v, b)c mc or (v, b)c =null (erasure) in
Step 2.3.

The following immediate corollary of Theorem 5.2 improves the resiliency of
Theorem 3.3 at the cost of a more complicated and nonconstructive algorithm.

COROLLARY 5.3. Let k>0 be a constant, and let t<-min{n/(logn) k, (n-I)/3}.
There is a probabilistic Byzantine agreement algorithm with expected running time of
0(1) rounds that is t-resilient to any rushing without eavesdropping adversary.

6. Conclusion. The main contribution of this paper is the simple cn/log n-resilient
coin flipping protocol COIN. In order to make the protocol work in the presence of
stronger adversaries and apply it to Byzantine agreement, we had to develop other
tools. These include (1) a simple 2-round noncryptographic protocol for simultaneous
broadcast with erasing; (2) a new combinatorial result that allows the size of Bracha
committees to be much smaller than O(log n); and (3) a combination of probabilistic
encryption and secret sharing that is used in ENCRYPTED COIN to foil the blocker.
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RESET SEQUENCES FOR MONOTONIC AUTOMATA*

DAVID EPPSTEIN"

Abstract. Natarajan reduced the problem of designing a certain type of mechanical parts orienter to
that of finding reset sequences for monotonic deterministic finite automata. He gave algorithms that in
polynomial time either find such sequences or prove that no such sequence exists. In this paper a new
algorithm based on breadth-first search is presented that runs in faster asymptotic time than Natarajan’s
algorithms, and in addition finds the shortest possible reset sequence if such a sequence exists. Tight bounds
on the length of the minimum reset sequence are given. The time and space bounds of another algorithm
given by Natarajan are further improved. That algorithm finds reset sequences for arbitrary deterministic
finite automata when all states are initially possible.

Key words, finite automata, reset sequences, breadth first search, automated design, parts orienters

AMS(MOS) subject classification. 68Q20

1. Introduction. Natarajan [5] has considered the design of automated parts
orienters; that is, devices that accept mechanical parts in any orientation or in a wide
class of orientations, and output them in some predetermined orientation. One such
orienter is a pan handler, in which the part slides around on a tray as that tray is tilted,
turning in a well-defined way when it hits the walls of the tray. These devices had
been previously been described in [2] and [4].

For a given tray and object, and for a given set of possible initial orientations for
the object, we desire to determine whether there exists a sequence of tilt angles that
will cause the object always to end up in the same orientation. Natarajan made the
assumptions that the set of angles is finite, that the set of orientations in which the
part can rest on a tray face is also finite, that tilting the tray with a given angle and
with the object in a given initial orientation always results in the same final orientation,
and that this relation between angles, initial orientations, and final orientations is
known. He also made the assumption that all faces of the tray are identical; that is,
that the shape of the tray is a regular polyhedron. We will show later how to remove
this last assumption. With these assumptions he reduced the problem to the following
combinatorial one.

Let S {sl, $2," ", Sn} be a set of states, corresponding to orientations of the part
to be oriented. Let E {rl, r2," ", rk} be an alphabet, corresponding to the possible
ways of tilting the orienter tray. Finally, let 3(r, s) be a function indicating the
orientation resulting when tilt r is applied to state s. Then (S, Y_., 3) forms a deterministic
finite automaton (DFA). We are further given a set of initial states, or orientations,
X c S. Because the tray is assumed to be symmetric, nothing in the states or transition
functions need identify the edge of the tray at which the object is resting.

In what follows, sequences of input symbols to the automaton will be denoted
using the letter r. As with the input symbols themselves, we let 3(-, s) denote the effect
of sequence " on the states of the automaton. Thus, if -= ’1’2, then 3(’, s)=
6(’, 6(’1, s)). If " is the empty input sequence, 6(-, s)= s. We denote the set of all

* Received by the editors September 19, 1988; accepted for publication September 19, 1989. This research
was performed while the author was a student at the Computer Science Department, Columbia University,
New York. It was supported in part by a National Science Foundation student fellowship, by National
Science Foundation grants DCR-85-11713 and CCR-86-05353, and by Defense Advanced Research Project
Agency (DARPA) contract N00039-84-C-0165.

t Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304.
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possible input sequences by X*. Furthermore, if X c S, we let 6(-, X) stand as a
shorthand for {6(z, x)lx X}. Finally, 6-1(-, X) will be taken to mean {s e S] 3(z, s)e
X}.

Suppose we are given a set of states, or orientations, X c S; it is assumed that
the initial orientation of the object is one of the states in X. For instance, without
assumption we can let X S, because S encodes all the possible orientations of the
object. Then the pan-handler orientation problem becomes simply that of finding a
sequence z E* such that [6(r, X)[ 1; that is, such that the application of r will leave
the automaton in one particular state no matter at which state in X it began. We call
r a reset sequence for (S, E, 6) and X.

Alternately, the problem can be phrased in terms of finite functions, instead of
automata. In this formulation, we are given a collection of functions from a finite set
S to itself, and the problem becomes finding a composition of those functions that
takes the subset X to some constant. If X S, the problem becomes that of composing
the functions to get a constant function.

Natarajan [5] has given an algorithm for solving this problem for any automaton
when X S. This algorithm takes O(kn4) time, and either produces a reset sequence
or proves no such sequence exists. The sequence produced is not guaranteed to be the
shortest possible, but Natarajan bounds its length by O(kn3).

It turns out that for general automata and general X, finding a reset sequence is
PSPACE-complete [5]. However Natarajan observes that the automata arising in the
pan-handler problem have a property that he calls monotonicity, and that with this
property the problem becomes solvable in polynomial time. He gives algorithms with
asymptotic time complexity O(kn4) (or O(kn log n) when X S), which find sequen-
ces of length at most O(kn3) (respectively, O(kn2 log n)). The sequences found are
again not guaranteed to be optimal.

1.1. New results. This paper presents a new algorithm for finding reset sequences
on monotonic automata, for any X S, which takes time O(kn2) and is guaranteed
to find the shortest possible sequence. Furthermore, this leads to tight worst-case
bounds of n2- 2n + 1 on the number of input symbols in the optimal reset sequence.
The algorithm works by defining a new automaton, the states of which correspond to
intervals in the cyclic order of the original automaton’s states. Reset sequences in the
original automaton correspond to paths in the new automaton leading to a singleton
interval. Therefore we can find our desired sequence using a simple breadth-first search
technique.

As another result of this paper, we extend our technique to certain classes of
nonmonotonic automata. In particular, we can use this result to solve the pan-handler
problem optimally for asymmetric as well as symmetric pans. The search takes time
O(k2n2), and the resulting sequence has length at most kn- 2kn + 1.

Finally, we improve Natarajan’s algorithm for any nonmonotonic automaton and
for X--S, to take time O(n3+ kn2), and working space bounded by O(rt2). We also
prove a tighter bound of O(n3) on the length of the resulting sequence, and show that
finding the minimum length reset sequence is NP-complete.

2. Definitions and lemmas. First, we define monotonic automata. Assume that the
states of a given deterministic finite automaton (S, E, 6) are arranged in some known
cyclic order sl, sz,..., sn. The transition function 6 is monotonic if it preserves the
cyclic order of the states. Formally, for any input symbol r, the sequence of states
6(r, sl), 8(r, s2),"" ", 6(r, sn), after removal of possible adjacent duplicate states,
must be a subsequence of a cyclic permutation of s, sz,..., sn. Clearly, if 6 is
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monotonic, all compositions 6(-, s) will also preserve the cyclic order of the states.
From now on in this section, when we refer to the automaton (S, E 6), we will assume
that it is monotonic.

Next let us define an interval [si, sj]. This consists of all those states between
and sj (inclusive) in the cyclic order of the states, e.g., [sl, s3] {sl, s2, s3}. Note that
there are n different ways of representing the full set of states S as an interval [si, si-l];
any other set of states that can be represented as an interval has exactly one such
representation. We say that an interval J =[Sh, Si] is contained in another interval
I [sg, s], and write J < I, when the endpoints of the intervals appear in the cyclic
order sg, Sh, S, S. Containment as an interval implies containment as a set of states,
but the reverse may be false in the case that the containing interval is all of S.

LEMMA 1. For all " E*, and for any interval I, 3-1(-, I) is an interval

Proof If not, there would be si,, si2, si3, and si4 in cyclic order such that 6(z, sl)
and 6(z, si3) are in I but 6(’, si2) and 6(z, si4) are not; but this violates monoton-
icity.

Unlike their inverses, the transition functions of the DFA do not necessarily take
intervals to intervals. However, we can define a new transition function, corresponding
to the original one, that does take intervals to intervals. Let S’ {[ si, sj ][ si, s S} U {0},
i.e., S’ consists of all the possible intervals together with the extra symbol
and I=[s, s] S’, and define dx 6(or, Sx). Then we define 6’ as follows. (1) If di d,
let 6’(r, I)=Ida, d]. (2) If d=d+=di+ d, let 6’(o-, I)=[d, di]. (3) Other-
wise, or if I oe, let 6’(o-, I)= o.

The new transition functions we have defined give us a new DFA (S’, 2;, 3’) whose
states are the intervals of the original automaton, and which takes the same input
alphabet as the original automaton. Note that this DFA, which is of size O(kn2), can
be constructed in time linear in its size. The only complication is how to determine
whether the result of a transition in which the two endpoints are mapped to a single
point should be that point or o. This can be done by first constructing for each o-

and s S the interval 6-1(cr, s), which must exist by Lemma 1. This construction takes
time O(n), and there are O(kn) intervals to construct, so all such intervals can be
constructed in time O(kn2). Then if the endpoints of interval I are mapped by r to
the same state s, 6’(tr, I) oe if and only if I 6-1(o-, s). The containment above should
be interpreted as being between sets rather than as the interval containment defined
earlier; it can be calculated using a constant number of comparisons between interval
endpoints to determine interval containment, together with a test for the special case
that 6-(cr, s) S, which is the only case in which set and interval containment can differ.

If - is an input sequence o’rjo’k,’’’, we define 6’(’, I) to be the corresponding
composition of interval transition functions. If any of the individual transitions in
6’(’, I) gives oe, the result as a whole is also oe. If - is the empty input sequence we
define 6’(-, I)=/. Then the following facts follow by an easy induction. Define
dx 6(-, sx). (1) If d d, then 6’(’, I) [d, d]. (2) If d d+ di+ d, then
either 6’(-, I)=[d, d] or 6’(r, I) =ee. (3) Otherwise, or if I=oe, then 6’(-, I)=.
That is, the definitions of 3’ from 6 for single input symbols also hold as theorems
for sequences of input symbols, except that occasionally the result will be oe in case (2).

LEMMA 2. For all " in Y*, and all intervals I, if 6’(-, I) # o, then 3(’, I) 6’(-, I).
Proof This follows from the characterization of 6’(-, 1) above, together with the

assumption of monotonicity.
LEMMA 3. For all - in Z*, and all intervals I, if 3’(’, I) oe, then for all intervals

J < I, 6’(’, J) cc and 3’(’, J) < 6’(’, I).
Proof Let J=[s, s]. If s= s, then 6’(-, [si, s]) is easily seen to satisfy the
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conditions of the lemma, so assume the two states are different. If 3(7, si) 3(7, sj),
then by monotonicity these two states appear in the correct order within 3’(7, I), and
again the lemma is satisfied. The remaining case to check is that 3(7, si) 3(7, sj), and
that there is some state s in [si, s] such that 3(7, s) 3(7, si). But this either violates
monotonicity or forces 6’(7, I) to equal c.

LEMMA 4. For all r E and all intervals J, if I is a representation of 6-(r, J) as
an interval (which by Lemma 1 must exist), and if I is not all of S, then 6’(r, I)
and 3’(o’, I) < J.

Proof Let I =[si, sj]. If 6’(r, I) were equal to o, then 6’(r, [s, s]) would be a
singleton interval by monotonicity. But then 3(0-, S) 3(0-, I U [s, si])
3(0-, I) [_J 6(r, [sj, s])c JU {6(r, sj)}= J, which contradicts the assumption that
6-(o", J) S. Therefore 6’(r, I) . By the definition of I, 3(0", s) and 6(r, s) are
both in J; by monotonicity, they must appear in the correct cyclic order within that
interval. It follows that 6’(tr, I) < J. El

We now prove the main lemma, which shows the equivalence between reset
sequences in the original automaton and paths to a single in the interval automaton.

LEMMA 5. Given 7E*, and X_S, then [6(7, X)[= 1 if and only if there is a

representation of6-1(7, 3(7, X)) as an interval I such that 3’(7, I) o and [6’(7, I) 1.

Proof If there is some such I then, by Lemma 2, 7 must be a reset sequence for
X. In the other direction, assume we are given 7 and X with 3(7, X)- {s}. We want
to find a representation of 6-1(7, s) as an interval meeting the terms of the lemma. We
prove the lemma by induction on the length of 7; as a base case, if 7 is the empty
input sequence, IXI 1 and the lemma clearly holds. Otherwise, assume 7 tr- for
some tr E and , E*. By the induction hypothesis there is a representation of 6-1(, s)
as an interval J with 6’(, J)= Is, s].

First assume i 6-1(cr, J) is not all of S. By Lemma 4 we see that 3’(7, I) [s, s],
as was to be shown.

The remaining case is that 6-1(o-, J)= S. Choose the interval [s, s] such that si
and s are both in 6(r, S) (and therefore also in J), and also such that 6(tr, S)
J. This can be done by taking s to be the first member in J that is also in tr(S), and
sj to be the last such member.

Now if s= sj, then 6(or, S)= {si}, and any representation of S as an interval I
will give us 3’(7, I) a singleton interval, satisfying the lemma. So assume sg s. This
implies that 6-1(r, sj) is not all of S, so by Lemma 1 this set has a unique representation
as an interval [Sh, Sk]. Using monotonicity and the fact that 6(tr, S)c [si, s], it can be
shown that 6(r, Sk+l)= Si. Therefore 6’(tr, [Sk+l, Sk]) is equal to [Si, Sj]. By Lemma 3
we see that 3’(7, [Sk+l, Sk])= 6’(, [S, Sj]) 6’(, J) is a singleton interval.

3. Reset sequences for monotonic automata.
THEOREM 1. A minimum length reset sequence for monotonic automaton (S, E, 6)

and initial states X {sq, s2,. } can be found in time bounded by O(kn2).
Proof First we construct the automaton (S’, E, 3’) as described above. By Lemma

5, a minimum reset sequence for the original automaton will also be a minimum length
path in the new automaton from some interval containing X to a singleton interval,
and vice versa. By Lemma 3, we need only consider starting from the minimal intervals
containing X, rather than all intervals containing X; these minimal intervals can be
found as [sij sij_, ]. Finally, the shortest path from one of these intervals to a singleton
can be found using the standard breadth-first search algorithm. El

TrtEOREM 2. If a minimum length reset sequence for monotonic automaton (S, E)
and initial states X exists, its length is n2- 2n + 1.
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Proof The path constructed by the breadth-first search in Theorem 1 will visit
each state of the constructed automaton at most once, and there are n2+ 1 states. But
the sequence need involve at most one interval representing all of S, and at most one
singleton; furthermore, it need never involve state c. Thus there are at least 2n- 1
states not included in the minimum length path. E!

THEOREM 3. For any n, there exists a monotonic automaton (S, E, 6) with ISI n,
and a set of initial states X, such that the minimum length reset sequence for (S, E, 6)
and X has length n2 2n + 1.

Proof Name the states sl, s2,..., sn, in that cyclic order. Let E consist of only
two input symbols, o-1 and 0"2. Let the transition function always take sn to sl, but let
0-1 take all states si other than s to si+l, and let 0-2 take all states si other than sn to
themselves. That is,

8(o"1, si) si+l for 1 =< < n,

0"2, Si) S for --< < n,

8(0"i, sn) Sl for 1 _-< _<- 2.

We take X S, so that a reset sequence for X must take all n states to a single state.
Assume we have a reset sequence , and define ’i to be the prefix of z consisting

of the first symbols of . Also define l(i) to be the length of the shortest interval
containing all the states in 8(’i, S). If by I1 we denote the number of input symbols
in z, then clearly/(]1)- 1. Finally, define t(j), for each j, to be the least such that
l(i)<-j.

We prove below that, for each j < n- 1, t(j)>= t(j + 1)+ n, that is, there must be
at least n input symbols processed between each point at which the shortest interval
containing the states becomes shorter. The theorem then follows, because the total
number of steps in the reset sequence must be at least n(n- 2) for the n-2 gaps of
n steps each, plus one initial step to reduce l(t) from n to n- 1.

First note that, if j 1, the ith input symbol is 0"1, and t(ri, S) c [sj, Ski then
(’i-1, S)c [sj-1, Sk-1]. Ifj # 1, the ith input symbol is 0"2, and 6(’i, S)c [sj, Ski, then
(’i-1, S [s, Sk]. Therefore, no matter what the input symbols of are, if 6(’i, S)c
[sj, Sk], we can see using induction that 6(i--1, S)c I for some interval I of length
k-j+l.

Next observe that if the ith input symbol is 0"1, then l(i-1)= l(i); therefore for
each j the input symbol at position t(j) must be 0"2, and furthermore it must be the
case that 6(’t(j)_l,S)c[s,sj]. Using the previous observation we see that
8(-,()_,, S) I for some interval I of length j + 1, and therefore t(j + 1) <= t(j) n as
was to be proved. The theorem then follows as described above.

4. Extensions of the monotonic reset sequence technique. Various generalizations
of the algorithms and bounds above may be taken. For instance, let us consider the
case that what is desired as the result of the reset sequence is a particular state rather
than just any single state. The same algorithm as in Theorem 1, but with the breadth-first
search terminating only when it reaches the singleton interval corresponding to the
desired state, will always find the minimum such reset sequence when it exists, again
taking time O(kn2). The upper bound of Theorem 2 must be relaxed to n2- n, because
it is now possible for the path in the interval automaton to go through all singleton
intervals before it gets to the desired one. And the example used in Theorem 3, with
the desired singleton state being sn, requires n2- n steps for a reset sequence, showing
that this new bound is tight.

Another generalization allows us to remove the assumption, used in reducing the
pan-handler problem to that of computing reset sequences, that the shape of the
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pan-handler is a regular polyhedron. Let us say that the pan-handler has k faces, not
necessarily all alike. We assume that the face on which the object is originally resting
is known. Then we can form an automaton with kn states, which encode both the
position of the object and also the face on which it rests. Again there will be k transition
functions; function will correspond to tilting the pan-handler so that the object moves
to face i. For any given tilt of the tray from face to face j, the change in the orientations
of the object will be monotonic; however, because the states also encode the face the
object is lying on, the automaton as a whole will not typically be monotonic. Neverthe-
less, we can use the methods above, building a new automaton the states of which are
intervals of object positions together with a single face on which the object rests, and
the transition functions of which are the result of applying the original transition
functions to these ranges of positions. As above, a breadth-first search through the
new automaton results in a reset sequence for the original automaton. The search takes
time O(k2n2), and the resulting sequence has length at most kn2-2kn+ 1.

5. Reset sequences for general automata. In this section we will relax the require-
ment that the automaton (S, E, 6) be monotonic, and instead restrict our attention to
reset sequences for all of S; that is, we will assume that the automaton may initially
be in any of its states, rather than in a state drawn from some subset X of its states.
The case we study is easier than the general case because we can never get stuck: if
there exists a reset sequence -, then no matter what sequence we have chosen already,- will still be a reset sequence for the whole set. We can proceed by reducing the size
of the set 6(?, S) a step at a time, without ever having to worry about backtracking.

The following algorithm, due to Natarajan, works in the above manner to find a
reset sequence for any automaton (S, E, 6), with the initial set of states being all of S.
The reset sequence it finds is not necessarily the shortest possible such sequence. We
will put off describing the implementation details of some of the steps until later.

ALGORITHM 1.
begin

XS;

" - the empty sequence;
while XI > 1 do begin

pick si, sj X with si sj
find a sequence ? taking s and s to the same state;
X ,(bar’, X);

end;
end

THEOREM 4 [5]. Assuming the steps in the loop of Algorithm 1 can be computed,
the algorithm terminates after O(n) repetitions of the loop, andfinds a reset sequencefor
S, ,, t ifsuch a sequence exists. If the algorithm ever chooses a pair ofstates s, s such
that no sequence takes the two states to a single state, then no reset sequence exists.

Proof. Each time through the loop, the size ofX decreases by at least one, therefore
the loop can be executed at most n times. When the size of X has decreased to one,

" will then be a reset sequence. If any reset sequence - exists, it will afortiori satisfy
the conditions for ?. rq

Natarajan described an implementation of the above algorithm that takes time
O(kn4). The two steps of the algorithm that take the most time are finding ? and
applying it to X. We now describe some preprocessing that allows these steps to be
done quickly, therefore improving Natarajan’s result. A naive implementation of these
preprocessing steps would take space 0(/’/3), which is worse than the previous O(n2)
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bound; we later show how our preprocessing may be performed within a space bound
of O(n).

THEOREM 5. Algorithm can be executed in time O(n3+ kn2).
Proof As in the monotonic case, we first form a new automaton of size O(kn2)

and perform a breadth-first search in it. The states of the new automaton consist of
each (unordered) pair of states from the original automaton, together with one state
for each of the original automaton’s states. The result of applying any of the original
automaton’s input symbols o- to a pair of states (s, sj) will be (6(r, s), 6(tr, s)); if
6(or, sg) 6(tr, sj) then the result will be that singleton state.

Before we run Algorithm 1 itself, we perform a breadth-first search on the new
automaton, finding for each pair of original states (s, s) a shortest input sequence -,
taking that pair to a singleton state. This can be performed in time O(kn2), and the
result can be represented as a shortest-path forest in space O(n:); paths in this forest
lead from each pair to a singleton, along the sequence of pairs found by applying each
transition function in z, successively to the pair (si, s).

In the following description we will call the above breadth-first search stage 1. If
we only desire to know whether there is a reset sequence, without needing to know
what that reset sequence is, then we may stop now, having taken time O(kn2). a reset
sequence exists if and only if for every pair (s, s) such a sequence z,j leading to a
singleton can be found.

Next, as stage 2 of our preprocessing, for each pair of states (s, sj) and each state
Sk of the original automaton, we compute 6(z,g, Sk). This is done by performing a
pre-order traversal of the shortest path forest computed in stage 1. Whenever we visit
a pair (s, sj), we compute in constant time 6(,, Sk), for all states Sk, as follows. Let
"1"i.j O"l’g,h where tr is the first transition function in ri,j, 6(tr, si) Sg, and 6(r, sj)
If Sg Sh let ’g,h be the empty sequence of transition functions, which corresponds to
the identity function. Then 6(ri,j, Sk) 6(’g,h, 6(tr, Sk)) can be computed as one function
evaluation of 6(o-, Sk) followed by a table lookup of the value of 6(’g,h, 6(tr, Sk));
because we are performing a pre-order traversal the latter value will have already been
computed. Since there are O(n3) computations to be performed, each taking constant
time, the total time for this stage is O(n3).

Now we show how to perform the steps of the main algorithm described above.
To find ? for si and s, we simply look up ’i.j in the forest we calculated in the first
stage; there are O(n:) pairs, so the shortest sequence ’i,j resulting in a singleton is at
most O(n) symbols long, and therefore this step takes time bounded by O(n). To
find 3(?, X) we simply look up, for each member s of X, 6(, s) as calculated in the
second stage; IXI-_< n so this step takes time O(n). The inner loop is executed O(n)
times, so the execution of Algorithm 1 as a whole takes time O(n3+ kn2), which is
also the time taken by the preprocessing stages.

Recall that we claimed that we could reduce the working space used to O(n2)
while keeping the time bounds described above. We do not count the length of the
output sequence, for which the best bound we have is O(n3), as part ofthis space bound.

The pair automaton we constructed would seem to take O(kn2) space, but in fact
we need only to use constant storage space for each pair of the automaton, and
construct the outgoing arcs from each pair as needed from the original automaton. A
more serious obstacle to reducing the space is that the space required to store 6(’., Sk)
is (n3). However, it turns out to be possible to reduce the space required, by keeping
6(7"i,j, Sk) only for certain pairs (si, s) rather than all such pairs. First let us describe
an algorithm to compute the pairs for which we will calculate the values of ’i,. This
algorithm is given as input a forest of size x, and another integer parameter y. It
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calculates a partition of the forest into O(x/y) subtrees, each of depth at most y.

ALGORITHM 2.
for each vertex v of the forest, in a post-order traversal, do begin

size (v) <- 1;
for each vertex w such that (w, v) is an edge in the forest do

if mark w 0 then size (v) <- size v + size(w);
if size(v) < y then mark(v) <- 0;
else mark(v)<- 1;

end

LEMMA 6. Algorithm 2 takes time linear in x, the number of vertices in the forest it
processes. After it has been executed, there will be at most x/y vertices v of the forest
with mark(v)= 1. Furthermore, if we break the outgoing link ofeach such marked vertex,
no tree in the new forest so created will have depth greater than y.

Proof The post-order traversal guarantees that size(w) and mark(w) in the inner
loop of the algorithm will have been calculated before we process vertex v. For each
vertex v, size(v) computes the number of vertices in the subtree of unmarked vertices
rooted at v. Each marked vertex has at least y- 1 unmarked vertices in its subtree, so
there can be at most x/y marked vertices. If any tree of unmarked vertices rooted at
a marked vertex had depth greater than y, the number of unmarked vertices on any
path of length greater than y to the root would be enough to have caused one of the
vertices along that path to have been marked; therefore the depth of each such tree is
at most y. [3

THEOREM 6. Algorithm 1 can be executed in time O(n3+ kr/2) as in Theorem 5,
using working space bounded by O(n2).

Proof We compute stage 1 as before. But before performing stage 2, we run
Algorithm 2 on the shortest path forest computed in stage 1, with x being the number
n(n- 1)/2 of pairs and singletons in the forest, and y equal to n, the number of states
in the original automaton.

In stage 2 we now only compute 3(-i,s, Sk) for those pairs (si, ss) that were marked
by Algorithm 2. Again we will process each such pair in order by a pre-order traversal
of the forest. We first compute the shortest prefix of ’i, that takes (si, s) to another
marked pair (Sg, Sh); call this shortest prefix q. By Lemma 6, the number of input
symbols in ? is at most n. Then 6(’i,s, Sk) 6(’Tg,h, t(, Sk)), which can be computed
with at most n function evaluations followed by a table lookup. Using Lemma 6 again
we see that there are at most O(n) marked pairs, and for each such pair we have to
perform n computations each taking time O(n), so the total time for the new version
of stage 2 is again bounded by O(n3). We store ("l"i,j, Sk) for only O(n) pairs (Si, Sj),
so the total space used is bounded by O(n2).

In Algorithm 1 itself, the only changed step is in computing 3(’i,, X). Here (si, s)
might not be marked, but as in stage 2 we can find a shortest prefix of ’i,s taking
(si, s) to a marked pair (sg, Sh). Again ? has length at most n, so for each member s
of X we can find ("l’i,j, S) ((7"g,h 6(’, S)) by O(n) function evaluations followed by
a table lookup. The entire computation of (’i,, X) takes time bounded by O(n2),
which does not reduce the running time of the algorithm from that of Theorem 5 by
more than a constant factor. [3

6. Bounds on the length of reset sequences. In his paper, Natarajan claimed a
bound of O(kn3) on the length of the reset sequences produced by Algorithm 1. This
can be tightened as follows.
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THEOREM 7. The reset sequencefound by Algorithm 1, as implemented in Theorems
5 and 6, has length at most O(n3).

Proof There are O(n2) pairs and singletons in the derived automaton, so each
’i,j has length bounded by O(n2). The reset sequence as a whole is the concatenation
of at most n such sequences, so its length is bounded by O(n3).

In fact, the algorithm can be modified so that (si, sj) is always chosen to have the
shortest sequence ’i,j among all pairs remaining in X, within the same asymptotic time
and space bounds as before. Using this fact, we can bound the constant factor in the
reset sequence length formula above.

If there are x stages left in set X, then those states form x2/2+ O(x) possible
pairs; this, combined with the arrangement of all n2/2+ O(n) possible pairs into a
breadth-first search tree, shows that the length of ri,; can be at most (n 2 X2)/2 + O(n).
Therefore, the length of the entire reset sequence will be at most n3/3 + O(n2).

This bound can be further tightened. We omit detailed proofs of the following
facts because it seems unlikely that the bound they give is tight. The key observation
is that, as the sequence ’, transforms X, each pair on the path from (s, s;) to a
singleton appears first as the image of (si, s;), and not as the image of any other pair:
otherwise ’i,j would not be minimal. As a consequence, the length of ’i,; can be bounded
by min ((n-x), n(n-x)/2)+O(n). This leads to a bound on the length of the entire
reset sequence of 11n3/48 + O(n2).

7. Difficulty of computing optimal sequences. The algorithm we described for
monotonic automata will always find the shortest possible reset sequence; in contrast,
the algorithm for nonmonotonic automata will always find a reset sequence if one
exists, but will not necessarily find the shortest such sequence. This raises the question
whether it is possible to efficiently find optimum length reset sequences in nonmonotonic
automata. We now show that this is unlikely.

THEOREM 8. Finding the shortest possible reset sequence for an automaton is NP-
complete.

Proof. More precisely the problem is, given an automaton and an integer parameter
m, to test whether the automaton has a reset sequence of length less than or equal to
m. By Theorem 7, such a sequence need have at most polynomial length, so the problem
is in NP. We prove completeness by reducing 3-SAT [1] to the problem.

Assume we are given a satisfiability problem as a Boolean formula in conjunctive
normal form, with m variables xl, x2,’’’, x,, and with n clauses. The automaton we
construct will need only two transition functions o’1 and o-2. There will always be a
reset sequence of length m + 1 (in fact any input sequence of that length will reset the
automaton), but any reset sequence of length m or less will correspond to a satisfying
assignment. The assignment is constructed by letting x be true if the jth input symbol
of the reset sequence is rl, or false if the jth input symbol is tr2. Conversely, the
opposite transformation will produce a reset sequence of length m from any satisfying
assignment.

The automaton itself is constructed as follows. It will have one special state r,
and mn + m other states si, for 1 _-< _-< n and 1 _-<j _-< m + 1. For all states Si,m/l, and for
state r, both transition functions will lead to state r. If the ith clause of the formula
contains x., trl will take state si,.j to r; if that clause contains j, o-2 will take si, to r.
We call these transitions to r from states other than si,,/ shortcuts. All remaining
transitions take

It can be seen that, as we stated above, any input sequence will take all states to
r in at most m + 1 steps. Furthermore, all states except si,1 will always be taken to r in
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m steps, so we need only concern ourselves with the former states. If a reset sequence
of length rn or less exists, then each of these initial states si, must be taken by that
sequence across a shortcut transition, because otherwise an initial state si, would
progress through all the states si, before reaching r, and that would take m + 1 steps.

The variable assignment computed from the reset sequence must have a true
variable in each clause, corresponding to the shortcut taken by the initial state corre-
sponding to that clause. Thus we see that a satisfying assignment to the formula can
be derived from a short reset sequence. Conversely, if an assignment satisfies the
formula, the derived input sequence would cause each initial state s, to take a shortcut
corresponding to the first true variable in the corresponding clause, and we would
have a reset sequence of length m. Thus we see that the formula will be satisfiable if
and only if the derived automaton has a short reset sequence.

8. Conclusions and open problems. We have shown that, given a monotonic DFA
and a set of initial states it may be in, we can construct a minimum length sequence
(if one exists) that takes all the initial states to one particular state. This construction
can be performed in time bounded by O(kn2). Furthermore, we have shown that the
length of the resulting sequence is at most n2-2n + 1; there are DFAs for which the
minimum reset sequence exists and is this long, so this bound is tight.

We have also shown that, in the general case in which the automaton is not
monotonic, we can still find a reset sequence for all of S in time bounded by O(n + kn)
and working space bounded by O(n2). The length of the resulting sequence is not
necessarily optimal, but is bounded by O(n3).

Some questions remain open. For instance, the algorithm for monotonic automata
may be performed in polylogarithmic parallel time using Kuera’s breadth-first search
algorithm [3], and similarly we may perform the preprocessing in stages 1 and 2 of
our algorithm for general automata in NC. But the main part of the latter algorithm
seems to be inherently sequential" a natural question is whether it too can be performed
in parallel, or whether some other algorithm exists that can find reset sequences in
parallel. A partial result in this direction is that a reset sequence can be found in
random NC; this can be done by choosing a long random sequence of pairs of states
(si, s.) and concatenating the sequences ’, that take each random pair to a singleton.
If there are at least n pairs in the random sequence, then with very high probability
the corresponding input sequence will be a reset sequence, and this can be tested in
parallel.

Another open problem is the gap between the O(n3) upper bound on the length
of reset sequences for general automata, and the 12(n) lower bound given for the
special case of monotonic automata.
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FAST SIMULATIONS OF TIME-BOUNDED ONE-TAPE TURING MACHINES
BY SPACE-BOUNDED ONES*

MACIEJ LIKIEWICZ AND KRZYSZTOF LORYt

Abstract. Every single-tape Turing machine (TM) of time complexity T(n)>= i’12 can be simulated by
a single-tape TM in space T/2(n). It is shown that the time of the simulation can be bounded by T3/2(n)
in the case of deterministic TMs and by T(n) in the case of nondeterministic ones. Similar results are shown
for off-line machines and for machines with multidimensional tape.

Key words, single-tape TM, off-line TM, time-bounded, space-bounded, time-space tradeoff
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1. Introduction. One of the most interesting problems in complexity theory is
uncovering relationships between time and space complexities of Turing machines
(TMs). A problem of this kind is to find for a given function T(n) the minimal function
S(n) such that TMs of space complexity S(n) recognize all languages that are recog-
nized by TMs running in time T(n). This problem is still open for most TM models.
However some partial results have been obtained, especially for one-tape models:
single-tape TMs and off-line TMs. A single-tape TM has a single two-way read-write
tape that initially contains the input word. We assume that the tape is infinite to the
right only. In an off-line TM the input word is placed on an additional read-only input
tape.

In Table 1 we list the smallest known functions S(n) such that TMs of specified
type working in space S(n) can simulate any TM of the same type running in time
T(n). DTM (NTM) stands for deterministic (nondeterministic, respectively) TM.

TABLE

Model S(n) References

multitape DTM T(n)/log T(n) [4], [1]
single-tape DTM and NTM T/2(n) [5], [12]
off-line DTM and NTM (T(n). log n) /2 [5], [12]

For one-tape machines even stronger results are known; namely, Paterson [12]
has shown that deterministic machines can simulate nondeterministic ones within space
T1/Z(n). A multidimensional version of Paterson’s result, due to Loui [9], says that
off-line NTMs with d-dimensional work tape that run in time T(n) can be simulated
by off-line DTMs in space (T(n) log T(?I)) d/(d+l).

Of course the space-bounded simulating machines may work much longer than
the simulated ones. For example, it is not known if multitape DTMs working in space
T(n)/log T(n) can simulate T(n)-time-bounded ones in a time shorter than exponen-
tial in T(n)/log T(n). The situation is quite different in the case of one-tape machines.
The best known results are as follows [6], [7]"
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1989. This research was supported by the Polish government under program no. CPBP 01.01.
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(1) Any language accepted by a single-tape DTM in time T(n) n can be
accepted by a single-tape DTM in space T1/2(n) and time T2(n).

(2) Any language accepted by an off-line DTM in time T(n) n can be accepted
by an off-line DTM in space (T(n) log n)1/2 and time T3/2(n) (T1/2(n) +
n/(logn)l/2).

(3) Any language accepted by a single-tape NTM in time T(n)>-n can be
accepted by a single-tape NTM in space T1/2(n) and time T3/Z(n).

(4) Any language accepted by an off-line NTM in time T(n)-> n can be accepted
by an off-line NTM in space (T(n) log n)1/2 and time T(n) ((T(n) log n)1/2 +
n)/log n.

We sharpen the time bounds in all these results. Namely,
(1) For single-tape DTM to T3/2(n),
(2) For off-line DTM to O(T(n). ((T(n). log n)l/-+n)),
(3) For single-tape NTM to T(n),
(4) For off-line NTM to O(T(n)+ n. (T(n)/log n)1/2).
In the last section we obtain similar results for one-tape multidimensional TMs.
Unless specified differently, the time (space) complexity is used in the following

strong sense" a TM has time (space) complexity F(n) if it halts on every input of
length n .after at most F(n) steps (after visiting at most F(n) tape cells, respectively).

2. Deterministic TMs. Ibarra and Moran [6] constructed an algorithm for simula-
tion of single-tape DTMs of time complexity T(n) by single-tape DTMs running in
space T1/Z(n) and time T2(n). We modify this algorithm to reduce the time of simulation
to T3/Z(n). Then we adapt the algorithm to off-line DTMs.

DEFINITION 1. A sequence B (Bo, B1, B2, is a partition of a semi-infinite
tape F if for each i, Bi consists of a finite number of consecutive cells of F, Bi+l is
directly to the right of Bi, and each cell of F belongs to a unique Bi. The B’s are
called tape segments. If Bo consists of p cells, and for each i_> 1, B consists of s cells,
then B is called (p, s) partition.

DEFINITION 2. Let M be a single-tape TM, let w be a word in the input alphabet
of M, and let B (Bo, B, B2,""" be a partition of M’s tape. Crossings of M are
pairs (d, q) where d {-1, 1} and q is’a state of M. For each i, the crossing sequence
of M on input w between B_ and B after steps, denoted by CS (M, w, i, t), is a
finite sequence of crossings defined as follows:

(a) CS (M, w, i, 0) is the empty sequence.
(b) CS (M, w, i, t)=CS (M, w, i, t-l) if M’s head does not cross the boundary

between B_ and B during its tth move on input w,
(c) CS(M, w, i, t)=CS (M, w, i, t-1)(d, q) if M in the state q moves its head

across the boundary between B_ and B in the tth move;
d is -1 if M’s head moved left and is 1 if M’s head moved right.

DEFINITION 3. Let M, w, B be as in Definition 2. The history of M on input w
with respect to B after steps, denoted by HIST (M, w, B, t), is a finite sequence of
crossings and the symbol : defined as follows:

HIST (M, w, B, t)=CS (M, w, 1, t) CS (M, w, 2, t) ... CS (M, w, jt, t)
where j, is the number of the last nonempty crossing sequence. By IHIST (M, w, B, t)l
we denote the number of crossings in HIST (M, w, B, t).

LEMMA 1. Let M be a single-tape TM of time complexity T(n), let w E* be a
word of length n, and let s be a natural number. Then there is p <-_ s such that for the
(p, s) partition B we have IHIST (M, w, B, T(n))l_-< T(n)/s.

Proof The conclusion follows from a straightforward application of the Pigeon-
hole Principle (see [6]). [3
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DEFINITION 4. S(n) is fully space constructible in time T(n) by a single-tape DTM
if there is a single-tape DTM, which on any input of length n halts within time T(n)
and uses exactly S(n) cells.

THEOREM 1. Let A be accepted by a single-tape DTM M in time T(n), where
T(n) >- n 2. Assume that S(n) T1/2(11) is fully space constructible in time T3/2(11) by a
single-tape DTM. Then A can be accepted by a single-tape DTM M1 i11 space S(11) and
time T3/2(n).

Proof. We construct a modification of the algorithm given in [6].
Let Bp be the (p, S(n)) partition of M’s tape, for p 1, 2,..., S(n). Let w be a

word from E*. By Lemma 1, for at least one Po, IHIST (M, w, Bpo T(n))[ _-< S(11). We
use the fact that knowing HIST (M, w, Bpo, t), M1 can reconstruct the contents of any
segment after steps of M. During the entire simulation M records contents of a
single block of the tape, consisting of three segments, and simulates M on this block.
Every time M crosses a .boundary between segments, M updates the history stored
on a separate track of the tape. When M attempts to move its head out of the block,
M1 reconstructs the contents of the new block and resumes simulation on this block.

But M1 does not know the value of Po. Therefore it simulates M for a fixed p,
starting from p- 1, in hope that this p is a good one. However, when it turns out that
HIST (M, w, Bp, t) already contains S(11)+ 1 elements after simulation of steps, then
M seeks the least Pl > P such that IHIST (M, w, Bpl t)[ < S(n) and resumes simulation
from the step t. This is the main difference between our algorithm and that of [6],
since the algorithm of [6] simulates M from the very beginning for each new p.

In the algorithm denotes the number of M’s steps simulated up to a given
moment and HIST (p, w) stands for HIST (M, w, Bp, t).

ALGORITHM.
Step 1. Construct S(n) T/2(n).
Step 2. p := 1; HIST (p, w) := the empty sequence.
Step 3. (, reconstruction of a block ,)

Using HIST (p, w) recompute the contents ofthe M’s tape block consisting
of three segments of Bp: the segment in which the M’s head was after
steps and the segments adjacent to it. (In the case when the head is in
Bo, the block consists of two segments only: Bo and B.)

Step 4. (, simulation ,)
Simulate M on this block from the step until M reaches a final state or
crosses a boundary of segments. If M has reached an accepting (rejecting)
state then accept (reject, respectively), otherwise go to Step 5.

Step 5. If IHIST (p, w)l S(n), then go to Step 6. Otherwise insert a new element
to HIST (p, w). If M has crossed one of the boundaries of the middle
segment of the block then go to Step 4, otherwise (i.e., when M has crossed
a block’s boundary) go to Step 3.

Step 6. Po := P.
Step 7. p:=p+l.
Step 8. (, creation of a new history ,)

Using HIST (po, w) simulate M in succession on all segments, which were
visited by M before step and create HIST (p, w). If HIST (p, w) contains
more than S(n) elements then go to Step 7, otherwise go to Step 3.

It is easy to see that M uses 0(S(11)) cells and recognizes the same language as
M, so we focus on the time analysis of the algorithm.
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Let us note that a single insertion of an element into HIST (p, w) may be done
in time O(T1/:(n)). This time is also sufficient for finding a single crossing across a
boundary of a given segment (in Steps 3 and 8).

We show that the total time of performing each separate step does not exceed
o((n

For Steps 1, 2, 6, and 7 this is obvious. Namely, Steps 1 and 2 are executed only
once and they need no more time than T3/:(n). Steps 6 and 7 take time O(log T(n))
and by Lemma 1 they are executed at most T1/:(n) times.

Step 3 seeks O(T1/2(rt)) elements in HIST (p, w) which costs O(T(n)), and needs
O(T(n)) operations of simulation of M. This step is performed once after Step 2,
O(TI/:(n)) times after Step 8, and after Step 5 whenever M’s head crosses a block
boundary. Note that whenever M begins the simulation of M on a new block, M’s
head is at least T1/:(n) cells from the boundaries of the. block. So after Step 5, Step
3 may be performed only O(T1/2(n)) times. Thus the total cost of Step 3 is O(Ta/2(n)).

In Step 4, M1 simulates M step by step, so the total cost of this step is O(T(n)).
The total cost of Step 5 is O(Ta/2(n)). This follows from the fact that

,=p=T1/2(,) IHIST (p, w)l <- T(n).
The cost of Step 8 consists of three components bounded by O(T(n)), namely:

the cost of simulation, the cost of seeking elements in HIST (Po, w), and the cost of
insertions into HIST (p, w). Since this step can be performed O(T/2(n)) times only,
its total cost is O(T3/Z(n)).

Using the linear speed-up technique of Hartmanis and Stearns [3] we can reduce
the complexity of the algorithm to the stated one.

The algorithm constructed in the proof of Theorem 1 can also be used to simulate
off-line DTMs. In this case crossings must contain, apart from a state and a move
direction, information about the position of the input head, which causes the algorithm
to need more than T1/Z(n) space to store a history. On the other hand, S(n)=
(T(n). log n)/ space is sufficient, since by Lemma 1 for each input w of length n
there is a (p, S(n)) partition B such that [HIST (M, w, B, T(n))l _-< (T(n)/log n) /2. Let
us note also that a single insertion of one element into history, organized as previously,
can cost as much as S(n). log n steps, which together with the fact that even T(n)
insertions may be needed implies that the algorithm would run for at least
(T(n). log n)3/2 steps. Howeverwe can reduce this costto T(n). [(T(n). log n)1/2+ n].

THEOREM 2. Let A be accepted by an off-line DTM M in time T( n ), where T( n >= n.
Let S(n)=(T(n).log n) /2 be fully space constructible by an off-line DTM in time

T1 (n) T(n) (T(n) log n)1/2 + n ]. Then A can be accepted by an off-line DTM M1
in space S n and time 0 T n )).

Proof The machine M performs the algorithm given in the proof of Theorem 1.
However now HIST (p, w) has the following form after the simulation of steps of M:

CS (M, w, 1, to),’’’, CS (M, w,j, to), k, (dl, ql, l), (dr, qr, /r),

where
nto is the number of M’s steps simulated before the last execution of Step 8

by M1,
mk is the number of the work tape segment, visited by M’s head in step to,
m(di, qi, li) are consecutive crossings between the segments, recorded between the

toth and tth step (d is the direction of move, q is the state of M, and l is the input
head position),
and the numbers k and li are written in binary.
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Such an organization of HIST (p, w) enables M1 to insert one crossing into it in
O(S(n) + n) steps, so the total cost of all insertions is O( T1 (n)).

In order to evaluate the cost of Step 3, we describe it in more detail. Let HIST (p, w)
be stored in the form (.). M does the following:

(i) Evaluates rn k+i= di (i.e., m is the number of the segment currently
visited by M’s head),

(ii) Marks in HIST (p, w) all crossings through the left boundary of the (rn- 1)st
segment and the right boundary of the (rn + 1)st one,

(iii) Simulates M; whenever M attempts to cross the block boundaries, M1 finds
a succeeding crossing marked at (ii), places the input head at the position stored in
this crossing, and resumes the simulation.

While executing (i) and (ii), the machine M1 runs over the tape dragging a binary
counter along with its head. Since the counter’s length does not exceed log T(n) both
(i) and (ii) can be performed in time O(S(n). log T(n)). More costly is (iii). The
simulation costs O(T(n)) and each of the crossing seekings costs O(S(n) + n), which
gives O(T(n)+ n. (T(n)/log n) /2) as a cost of (iii). Since Step 3 is executed at most
O((T(n) log n)/2) times, its total cost is O( T(n)).

In order to achieve the stated time complexity, we must use a fast method of
seeking elements in HIST (Po, w) in Step 8. In particular, a method of marking the
crossings (at the beginning of each segment simulation) faster than S(n). log T(n)
should be used.

At the beginning of Step 8, M evaluates m as in Step 3, but while doing so divides
the part of the tape occupied by (d, q, 11),"" ", (dr, qr, lr) into sectors tl, t,..., ts
of length not greater than 2[log T(n)]. Within each sector t (j 1,. , s) M1 writes
down in binary the number m k + i= di, where uj is the number of the last crossing
stored in t (see Fig. 1).

It is easy to see that this can be done in time O(S(n). log T(n)).
Let us note that only crossings across the boundaries of the segments of the

numbers from (mj_l--Vj, mj-1 d-vj) may be stored in t, where vj is the number of
crossings in t. M1 uses this fact during the marking of crossings in HIST (P0, w). M
simulates M segment by segment and decrements the numbers mo, ml,’", ms_ at
the end of the simulation of each segment so that each m describes the distance of
the currently simulated segment from the segment reached by M after the last crossing
written in tj. In order to mark the crossings across the succeeding boundary, M looks
through its tape searching for the sectors t such that m_ is from the interval (-vj, vj).
This may be easily done since we can assume that the values v (j 1,..., s) are
stored on the third track below mj_l. The values v may be evaluated in time
O(S(n). log log T(n)). If m_ is from (-v, v), then M marks in t all crossings
(dx, qx, lx), for which zx=m_+i=j/,_,di=O. Since v-<2[log T(n)] and at the
beginning of each segment simulation all m are decremented, for each b values zx are
evaluated at most 4. [log T(n)] times. If M1 evaluates zx’s dragging the current sum

CS (M, w, j, to) sector t sector

k (d,, q,, l,) (d.... q,,,l,)
m0= k m

(d,,,+, qUl+l, 1.,+) (du2 %2, lu2)

m2

FIG.
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along with its head, it is clear that the total cost of computing the zx’s is
O(S(n).log T(n). log log T(n))= O(T(n)). To the cost of the crossings marking we
must add the cost of looking for "good" mj’s, which is O(T(n)). Thus O(T(n)) is the
total cost of crossing marking.

It is easy to check that the cost of simulation of M on consecutive segments is
O(T(n)+ n. (T(n)/log n) 1/2) and it is as well the cost of the whole Step 8, because
the cost of all insertions into HIST (p, w) has been already evaluated separately. Since
Step 8 may be performed at most O(S(n)) times, its total cost is

O(S(n) [T(n)+ n. (T(n)/log n)1/2]) O(Tl(n)). []

The same algorithm can be used if T(n) is not fully space constructible. However
in this case the time of simulation is a little longer.

COROLLARY 1. (a) Let A be accepted by a single-tape DTM M in time T(n), where
T(n) >- n 2. Then A can be accepted by a single-tape DTM MI in space S(n)= T/2(n)
and time T3/( n log T(n).

(b) Let A be accepted by an off-line DTM M in time T(n), where T(n)>-n. Then
A can be accepted by an off-line DTM M1 in space S(n)= (T(n). log n) /2 and time

O(T(n). [(T(n). log n)l/2+ n]. log T(n).
Proof M does the simulation for S(n)= 1, 2, 4, 8,. ., 2 i, Note that the

simulation succeeds for the smallest such that 2i_

3. Nontleterlninistic TMs. If we want to simulate a single-tape NTM M working
in time T(n) by a single-tape NTM M1 working in space T/2(n), then using the power
of nondeterminism we can construct M so that it also works in time T(n). Machine
M1 guesses a proper (p, T1/2(n)) partition B and HIST (M, w, B, T(n)) no longer than
T1/2(n) and then simulates M on separate segments. It is easy to see that M accepts
in T(n) steps all words accepted by M. On the other hand, we can easily check that
if M accepts a word w then the guessed history corresponds to some accepting
computation of M on w. However M can perform infinite computations even if M
is strongly time-bounded. These computations may be easily halted if T1/2(n) is fully
space constructible because then M1 can count simulated steps. Moreover if the counter
is always placed near the head, then M works in time O(T(n) log T(n)). In order
to achieve time of simulation T(n), we use a very clever counter constructed by Fiirer
[2] to refine the time hierarchy for k-tape DTMs (k->2). Although Fiirer’s counter
was constructed for DTMs with at least two tapes, we show that in many cases it can
be handled by a one-tape nondeterministic TM. Let us outline the construction from [2].

The counter has the form of a full binary tree in which each node contains a
B-ary digit (for some fixed B). Let for each node v, h(v) denote the height of v (i.e.,
the distance from v to the leaves), and let d(v) denote the digit stored in v. The value
of the counter is

d(v)’B().
Tree

If we want to decrement the counter, we may subtract one from any of the leaves.
If we choose a leaf v already containing zero, then we must find the nearest ancestor
u of v with nonzero contents, subtract one from u and put B-1 into all nodes lying
on the path from v to u. We say that the counter is exhausted when we attempt to
subtract one from the root that already contains zero.

The machine M stores the counter’s nodes in inorder in consecutive cells of its
tape (see Fig. 2). On a separate track below each node (except the root) it writes down
L or R, depending on whether the node is the left or the right son of its father.
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L L R L L RR

FIG. 2

By length of the counter we mean the number of nodes in the tree. Thus only the
numbers of the form 2i- 1 for some may be the lengths of the counters.

LEMMA 2. Let B 4.
(a) The full counter (i.e., with all nodes containing three) of length n represents the

number (3/2). (n+ 1)- n O(n2).
(b) Let us suppose that we start with full counter of length n and after m decrements

the counter is exhausted. Then m >-_ n + 1)2 1.
(c) m successive decrements of the initially full counter of length n can be performed

by M1 in O(m) steps.
Proof Parts (a) and (b) are obvious.
For (c), let us note that nodes of height h are 2h-1 cells from their sons, and at

most m/Bh carries are necessary from nodes of height h- 1 to nodes of height h. It
is easy to see that a single carry can be done in O(h. 2h-l) steps, so the total time of
m decrements is at most

O([lg2(+l) ]-1

h=O

THEOREM 3. Let A be accepted by a single tape NTM M in time T(n), where
T(n) >- n 2. Let T/2(n) be fully space constructible in time T(n). Then A can be accepted
by a single-tape NTM M1 in space T1/2( n and time T( n ).

Proof. Let k satisfy the condition 2k > T1/2(n)+ 1 > 2k-. For B 4, M constructs
the full counter of length 2k- 1. Note that this construction can be done in time
k. (2k- 1). Namely, at the beginning M1 marks a zone consisting of 2k- 1 cells and
puts 3 (i.e., B- 1) into each cell of the zone. Then in k-1 stages it labels the cells by
L or R. During each stage M1 moves its head through the zone writing down L and
R by turns in every other cell. Thus at the ith pass M labels the cells corresponding
to the counter’s nodes of the height i-1.

Then M1 simulates M on segments of nondeterministically guessed (p, T1/2(n))
partition. When the counter is exhausted then M interrupts the simulation and rejects.
By Lemma 2(b), it can happen only when M has simulated at least 22k- 1 >_--T(n)
steps, so any accepting computation of M can be successfully simulated. Moreover,
by Lemma 2, M1 works in time O(T(n)).

We can decrease the time and space to the stated ones by applying the well-known
linear speed-up technique of Hartmanis and Stearns [3].

Similarly as in the case of DTMs, an off-line NTM M working in time T(n) can
be simulated in space (T(n) log n)1/2. However this space is inappropriate to use a
single counter. The next lemma shows that we can divide the tape of the simulating
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machine into blocks and count simulated steps in each block separately, starting with
full counters.

LEMMA 3. Let H be an off-line NTM. Then for each finite computation ofH there
is a partition of the work tape into blocks B, B2," of consecutive cells such that for
each block

(i) The length nj of block Bj is equal to 2- 1 for some ij
(ii) The number Tj of steps made by H during the computation within Bj satisfies

the condition

(1/4).(nj+ 1)-- 1 < Tj<=(nj+ 1)2- 1.

Sketch ofproof Let us assume that H makes T steps during a fixed computation.
Let tk be the number of moves over the kth cell. Let m be the last cell belonging to

B_. Then we put nj to be the minimal 2i- 1 such that

2i--1

t.,+p <= 2i- 1.
p----1

If necessary, we include some cells (no more than T/) not visited by H’s head in
the last block.

THEOREM 4. Let A be accepted by an off-line NTM M in time T(n), T(n)>= n.
Let S(n) (T(n) log n)/ be fully space eonstruetible in time Tl(n) T(n) + n.

(T(n)/log n) 1/. Then A can be accepted by an off-line NTM M in space S(n) and time

O(T,(n)).
Sketch ofproof M nondeterministically divides the tape of length (T(n) log n) /2

into blocks and puts a full counter for B 4 into each block. Then it checks if

j=l

where s is the number of the blocks and n (j 1,..., s) denotes the length of the
jth block. Then M simulates M decrementing a counter after each step of M and
rejecting when any of the counters is exhausted. Note that condition (1) is fulfilled if
/1 has guessed a partition as in Lemma 3, so M can be successfully simulated by
M. Moreover, this condition implies that the total contents of all counters is O(T(n)),
so M1 can make at most O(T1 (n)) steps.

As for DTMs we can abandon the assumption of the constructibility of T(n), but
then we must multiply T(n) by the factor log T(n) in Theorem 3 and 4.

4. Multidimensional TMs. The algorithm used in the proof of Theorem 1 can also
be adapted for simulation of off-line DTMs with multidimensibnal tape. We describe
the modifications required in the case of two-dimensional machines. We show that a
two-dimensional DTM M of time complexity T(n) can be simulated by a two-
dimensional DTM M working in space S(n)=(T(n).log T(n))/3 and time T(n)
O(TS/3(n) [log T(n)+ n/(T(n) log T(n))/3]/log/3 T(n)).

As in [6] by the (p, s) partition (1 -<_ p -< s) of the two-dimensional tape, we mean
the partition in which each segment is a square, which for some u and v contains all
cells (x, y) satisfying us p <- x < u + s p, and vs p <= y < v + 1 s p. The numbers
u, v are called segment coordinates. Lemma 1 has the following analogue (see [6]):

LEMMA 4. Let a two-dimensional off-line DTM M be of time complexity T( n ). Let
w be in ,*, Iwl n, and let s <- T(n). Then for some (p, s) partition B the machine M
crosses the boundaries between the segments of B at most T(n)/s times working on w.
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Let us note that the information indicating a position of heads, a state of M, and
a direction of move when M crossed a boundary between two segments is not sufficient
to reconstruct the contents of segments. This is due to the fact that M cannot set the
crossings of history created in Step 8 in chronological order. Such an order is not
necessary in the case of one-dimensional tape, since then the segments are bounded
by two boundaries and the head can return to a segment across this boundary only,
across which it left this segment last time. Now the situation is quite different, the
head can return across any of four boundaries.

In order to secure the correctness of the simulation, each crossing additionally
contains the number of the step in which this crossing was made. Thus the history is
now a sequence of quintuples (di, qi, li, hi, ti), ordered according to ti’s, where qi, li
are as in the definition of the history for one-dimensional off-line TM, di G
{(-1, 0), (1, 0), (0, -1), (0, 1)} indicates one of four directions, hi indicates the exact
position of the work head, and ti is the number of the step in which this crossing was
made. Since a single crossing can be stored in O(log T(n)) cells and (by Lemma 4)
for some (p, (T(n). log T(n)) /3) partition, the corresponding history has at most
TZ/3(n)/log/3 T(n)= S(n)/log T(n) crossings, the whole history can be stored in a
single segment.

In Step 3, M reconstructs the contents of the block consisting of the segment
currently visited by the head and the eight segments adjacent to it. At the beginning
of this step M marks each crossing in HIST (p, w), after which M’s head entered this
block. It is easy to see that this marking can be made in O(S(n).log T(n)) steps.
Then M simulates M in this block. Since the crossings are chronologically ordered
the history is, in fact, searched only once during the simulation. Namely, whenever a
succeeding crossing is needed M finds in time O(SI/2(FI)) the position of the crossing
that was found last time and starting from this position looks for the next marked
crossing. After that, M places its heads according to the information stored in the
crossing. Since M can move out of the block at most S(n)/log T(n) times, the total
time needed to resume the simulation is

O([S(n)/log T(n)]. (n+ S/2(n) log T(n)))

O(T(n). [log T(n)+ n/(T(n), log T(n))/3]).
This results in O(T(n)) as the total cost of Step 3, because this step can be performed
at most T2/3(n)/log/3 T(n) times.

In Step 4, M counts the simulated steps. Since M1 keeps the counter near the
head, the total cost of Step 4 is O(T(n) log T(n)).

More radical modifications are needed in Step 8. The main problems M1 must
solve are as follows:

(i) Before the simulation on each segment, M must mark the proper crossings
in a short time,

(ii) M1 must be able to designate all segments visited till then by M’s head,
(iii) After the simulation on all these segments, M must restore the chronological

order of the history.
Thus Step 8 now assumes the following shape:

8.1. HIST (p, w) := "the empty sequence."
8.2. Label all crossings in HIST (P0, w) as "unmarked."
8.3. For each crossing e in HIST (Po, w) compute the coordinates of the segment

that M’s head entered when making e. Store these coordinates on the second
track below e.
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8.4. Simulate M on the segment of the coordinates (0,0). Whenever M
crosses any boundary between segments in the new (p, $1/2(n)) partition,
insert a new element into HIST (p, w). Note that the parameter ti in the new
crossings can be easily computed. If HIST(p, w) contains more than
TZ/3(n)/log1/3T(n) elements (i.e., S(n) cells do not suffice to store
HIST (p, w)), then go to Step 7. Label all crossings with the coordinates (0, 0)
as "marked." If all crossings in HIST (Po, w) are already "marked" then go
to step 8.6.

8.5. (. Main loop: M1 visits in turn all segments visited by M and simulates M
whenever it visits a segment for the first time ,)
For each crossing (d, q, l, h, t) from HIST (Po, w) do the following"
(a) Move the coordinate system in the direction d; to this end subtract d

from the coordinates stored below each crossing.
(b) If crossings with the coordinates (0, 0) are "unmarked" then perform

step 8.4.
8.6. Sort HIST (p, w) chronologically.

HIST(p, w) can be treated as a table with (T(n). log T(n)) 1/3 rows and
T/3(n)/log2/3T(n) columns. Each element of this table occupies log T(n)
cells. Note that the cost of a transposition of two adjacent elements is less if
they are in the same column than if they are in the same row. This justifies
the choice of the following algorithm of table sorting:
(i) Select the smallest element in each column and place them in the first row.
(ii) Select the smallest element in the first row and remove it from the table.
(iii) If the table is nonempty then go to (i).

Now we evaluate the cost of Step 8. Of course steps 8.1 and 8.2 have no effect
on this cost. Step 8.3 can be in an obvious manner performed in O(S(n).log T(n))
steps. The most expensive parts of Step 8 are steps 8.4 and 8.5. We can divide the cost
of these steps into the following components:

(a) O(T(n) log T(n))mthe cost of simulation,
(b) O([S( n )/log T(n)]. (n+S/Z(n) log T(n)))mthe cost of handling the

histories,
(c) O([S( n )/log T(n)] S(n))mthe cost of adjusting the coordinates,

which totals

O(T4/3(n) log1/3 T(n)+ n. T/3(n)/log1/3 T(n)).

It is obvious that M1 can find a minimal element in a column as well as in a row in
time O(S/(n). log T(n)), so the sorting algorithm at Step 8.6 can be simply imple-
mented to run in time O(T(n) log T(n)). Thereby the cost of the whole Step 8 is

O(Tn/3(n) log/3 T(n)/ n. T2/3(n)/log1/3 T(n)).

Since this step can be performed at most (T(n). log T(n)) /3 times, its total cost is
O(TS/3(n) log/3 T(n)+ n. T(n)) O(T(n)).

Clearly, the above considerations generalize to off-line DTMs of any dimension.
THEOREM 5. Let A be accepted by an off-line DTM M with an r-dimensional storage

tape in time T(n) >-n. Let r’= 1/(r+l) and T(n)= T2-r’(n) (log T(n)+
n/(T(n) log T(n))r’)/logr’ T(n). Let S(n)=(T(n) log T(n)) r/(r+l) be fully space
constructible by a one-dimensional off-line DTM in time Tl( n ). Then A can be accepted
by an off-line DTM M1 with an r-dimensional storage tape in space S(n) and time

O(T,(n)).
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5. Conclusions. The problem of efficient simulations between different TM models
has been intensively studied by many researchers. Although many efficient simulations
have been obtained, it is not known in most cases if they are optimal. Recently,
significant progress has been made in the case of one-tape machines; in particular,
several lower time-bounds were obtained for simulations on these machines (see, e.g.,
[8J, [10], [11]).

We have presented some fast simulations between one-tape TMs. Although the
simulations for one-tape NTMs are optimal it remains open if the time complexity of
the simulations can be improved in the case of DTMs.

Acknowledgments. We are very indebted to Professor Leszek Pacholski for his
guidance and many valuable discussions. We would also like to thank the referees for
numerous corrections and suggestions for improvements.
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UNBOUNDED SEARCHING ALGORITHMS*

RICHARD BEIGEL?

Abstract. The unbounded search problem was posed by Bentley and Yao. It is the problem of finding
a key in a linearly ordered unbounded table, with the proviso that the number of comparisons is to be
minimized. It is shown that Bentley and Yao’s lower bound is essentially optimal, and some new upper
bounds for the unbounded search problem are proven. The solution of this problem in parallel is demon-
strated.

Key words, unbounded search, table lookup, prefix code, computability, algorithm

AMS(MOS) subject classifications. 68Q99, 68P10

1. Introduction. As posed in [BY76], unbounded search is the problem of search-
ing for a key in a sorted table of unbounded size. The following two-player game is
equivalent to the unbounded search problem" Player A chooses an arbitrary positive
integer n. Player B is allowed to ask whether an integer x is less than n. In general
the number of questions that B has to ask in order to determine n is a function of n.
In this paper, we present lower and upper bounds on the size of this function.

The following theorem from [BY76] is instrumental in providing lower bounds
on the number of questions needed to solve the unbounded search problem.

THEOREM 1 (Bentley and Yao). lff(n) questions suffice to solve the unbounded
search problem, then f n satisfies Kraft’ s inequality"

2--) -< 1.

Bentley and Yao proved this by noting that if o-(n) is the sequence of answers given
by A in the two-player game above, then the function tr determines a prefix code for
the positive integers.

We write Z+ to denote the set of positive integers.
Notation 2. If f is a function from Z/ to Z/, then

Kr (f)= Y 2 -r{").
nl

2. Upper bounds for unbounded search. In this section, we prove a partial converse
to Theorem 1.

We say that a real number x between 0 and is recursive if there is an algorithm
to compute the ith bit of the binary expansion of x. Equivalently, x is recursive if
there is a fixed algorithm that takes a rational number y as input and determines if
x < y. Alternatively, x is recursive if the sequence of bits in the mantissa of x is the
characteristic sequence of a recursive set.

* Received by the editors September 6, 1988; accepted for publication (in revised form) September 18,
1989.
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If the binary expansion of x is not unique, then x is rational, and there are algorithms to compute
both expansions of x, so we say that x is recursive.
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We use the word monotone to mean nondecreasing.
THEOREM 3. Let f be a monotone, recursive function such that Kr (f) is recursive.

There is an algorithm that solves the unbounded searchingproblem by askingf( n questions

if and only if Kr (f) <- 1.

Proof Suppose that there is an unbounded searching algorithm that asks f(n)
questions. Bentley and Yao’s result implies that Kr (f) 1. Conversely, let

s(j)= Z 2--Yi.
lij

Let

g(x) min {j: s(j) > x}.

We determine n by determining s(n). A single question tells us whether n < g(x), and
hence whether s(n)<-x (if g(x) is undefined, then we know without asking any
questions that s(n)<=x, so we ask an arbitrary (rhetorical) question). Thus we can
determine s(n) by performing a binary search on the half-open interval (0, 1]: First
we ask if n < g(1/2); based on the answer to that question, we either ask if n < g(1/4) or
if n < g(), etc.

After asking f(n) questions, the binary search determines that s(n) belongs to an
interval (a, bG] where b a 21" Thus

Because

0= 2Snb-2fn)b <=2Yn)b-2J"s(n) < 2J")(b- a) 1.

2s"s(n)
li<=n

and f is monotone, 2"s(n) is an integer. Because b is a division point from the
binary-search algorithm, 2")b is an integer. Since their difference belongs to [0, 1),
the integers 2Y")s(n) and 2Y"b must be equal. Therefore s(n)= b. Therefore s(n+ 1)
cannot belong to (a, b]. Thus n g(s(n))-1 g(b)-1, so n is determined by asking
exactly f(n) questions.

The existence of an unbounded searching algorithm that asks f(n) questions is
equivalent to the existence of an infinite recursive left-finite binary tree such that the
nth leaf in the tree is at depth f(n) for all n (see Definition 6 and Prop. 7). For finite
trees, the preceding theorem is equivalent to Gilbert’s theorem that the optimal
alphabetic tree with weights in sorted order is an optimal Huffman tree.

In [Knu81], Knuth proved a result about unbounded searching schemes that ask
no irredundant questions, i.e., no questions to which the answer could be deduced
from previous answers.

THEOREM 4 (Knuth). Letfbe a monotone, recursivefunction. There is an algorithm
that solves the unbounded searching problem by askingf(n) irredundant questions ifand
only if Kr (f)= 1.

Since the number 1.0 is recursive, the existence of an unbounded searching
algorithm follows from Theorem 3. However, Knuth’s proof is especially beautiful
because it produces a closed form for the sequence of questions asked by the unbounded
searching algorithm.

Knuth proved the existence of extremely good unbounded searching algorithms
by constructing series whose sum is exactly one (see [RS88] for some improvements
by Reingold and Shen). We, on the other hand, need only to construct series whose
sum is less than or equal to one, provided that we can show that the sum is recursive.
Lemma 5 below shows that if we have an effective bound (approaching zero) on the
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tail of a series, then the sum of that series is recursive. Because proofs of convergence
usually provide such an effective bound, Lemma 5 implies that the effective-comput-
ability requirement can usually be verified without extra effort.

We write Q+ to denote the set of positive rational numbers.
LEMMA 5. Let g and h be total recursive functions from Z+ to Q+ such that

lim h(n) 0,

and

Then Ei>__ g(i) is recursive.

Proof

, g(i)<h(n).
i>n

lim Z g(i)<--lim h(n)=O.

Therefore }-’i_>__l g(i) converges, so let

E g(i) w.
il

We will show how to determine for any rational number y whether w <y. If w is
rational, then we can simply compare the two rational numbers w and y. Otherwise,
assume that w is irrational. Therefore w # y. Since h(n) approaches 0, we can find the
least n such that , g(i)>-y or h(n)+ ., g(i)<y.

li=n lin

In the first case w > y. In the second case w < y. [-I

We end this section with a straightforward characterization of unbounded search-
ing algorithms. This characterization will be useful in 5.

DEFINITION 6. Let T be a recursive subset of {0, 1}*. T is a recursive binary tree

if, for all strings

((tr0 T) or (trl T))(r T).
T is a recursive, left-finite binary tree if, in addition, T has no infinite path except for
its rightmost path.

PROPOSITION 7. There is an unbounded searching algorithm that asks exactly f(n)
questions if and only if there is a recursive left-finite binary tree whose nth leaffrom the
left has depth f(n) for all n.

Proof Suppose that there is an unbounded searching algorithm that asks exactly
f(n) questions. As noted in [BY76], it is easy to see that there exists a prefix-free
encoding of the positive integers that uses f(n) bits to encode n. Furthermore, that
encoding is computable and lexicographic. We let the tree T consist of all strings that
encode a positive integer, and all prefixes of such strings. It is easy to see that T has
the desired properties.

Conversely, suppose that T is a recursive binary tree whose nth leaf from the left
has depth f(n) for all n. If the root of T has only one child, then the unbounded
searching algorithm asks a rhetorical question. If the root has two children, then the
left child has only finitely many descendants, so the algorithm asks if n is greater than
the left child’s rightmost descendant. The algorithm chooses the left subtree or the
right subtree accordingly and continues recursively.

2.1. Recursion theoretic aspects. One might ask whether all of the assumptions in
Theorem 3 are necessary. In order to answer this question, it is helpful to know which
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real numbers can be expressed in the form Kr (f) for some recursive function f We
identify each real number x in the interval [0, 1) with the set of positive integers whose
characteristic sequence is obtained by omitting the decimal point from the binary
representation of x. Thus we can talk about a real number being recursive, recursively
enumerable, etc.

In this section, we assume some familiarity with recursion theory. Let K denote
the halting set. We write A(z)= 1 if zA, and A(z)=0 if zA. We write x(z) to
denote the zth bit in the binary expansion of the real number x.

PROPOSITION 8. (i) If X is recursively enumerable, then there exists a monotone,
recursive function f such that x Kr (f).

(ii) If Kr (f) + Kr (g) is recursive, then Kr (f) is recursive and Kr (g) is recursive.

(iii) Ifx is nonrecursive and corecursively enumerable, then x is not equal to Kr (f)
for any recursive f

(iv) Iff is recursive, then Kr (f) is truth-table reducible to K.
(v) Ifx is truth-table reducible to K, then there is a monotone, recursive function f

such that x is 1-reducible to Kr (f).
Proof (i) Let A be the recursively enumerable set corresponding to x. If A is

finite, then f is easy to construct, so assume that A is infinite. Then there exists a total
recursive 1-1 function g whose range is A. We define f by an easy initial segment
argument. At stage s we will contribme 2 to Kr (f) where z is the sth element of
A. Thus Kr (f) will be the real number corresponding to the characteristic sequence
of A.

Stage 0. Let n 1. Let k- 1.
Stage s+l. Let z--g(s). Let k=max(k,z). Let t=2k-. For n<-i<n+t, define

f(i) k. Finally, let n n + t. (This contributes t2-k= 2 to Kr (f).)
Then, for z -> 1, Kr (f)(z) A(z).
(ii) Let

t= Y 2-*<",

Uk 2 -g(n).
l_n_k

Then Kr(f)(z)--limk_tk(Z), and Kr(g)(z)=limk_Uk(Z). We will compute
Kr (f)(z) and Kr (g)(z) by choosing k large enough so that the first z bits .of tk and

Uk have converged to their limiting value. Let Sk tk + Uk. Then {Sk}k= 1,2,... approaches
Kr (f)+ Kr (g) from below. Find k such that the first z bits of the larger binary
expansion of Sk agree with the first z bits of the smaller binary expansion of Kr (f)+
Kr (g). For any j _-> k, the first z bits of tj and uj must agree with the first z bits of tk
and Uk, respectively, for otherwise sj > Kr (f) + Kr (g). Thus Kr (f) (z) tk (Z) and
Kr(g)(z)=uk(z).

(iii) By part (i), there is a recursive function g such that 1-x Kr (g). If there
is a recursive function f such that x=Kr(f), then Kr(f)+Kr(g)= 1, which is
recursive, so Kr (f) is recursive by part (ii).

(iv) Let Sk =f’l<_n_k 2-("). Let g(z, k)= Sk(Z ). Then Kr (f)( z) limk_ g( z, k).
Since g(z, k+ 1) g(z, k) for at most 2- 1 values of k, Kr (f) is truth-table reducible
to K.

(v) Since x is truth-table reducible to K, there are recursive functions g and c

such that g(z, 0)=0, x(z)-lim_oog(z,s), and I{s:g(z,s)#g(z,s+l)}l<=c(z). We
define f by an easy initial segment argument.

Stage-1. Let b0 1. Let k 1. Let n 1.
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Stage (z, 0). Let t= [log2 c(z)+ 1]. Let bz+l bz+ t.
Stage (z,s+l). If g(z,s+l)=g(z,s), then go to the next stage. Otherwise, let

w=bz+l-l. Letk=max(k, w).Letn’=n+2k-W. Letf(m)=kforn<=m<n ’.
Let n=n’.

At stage (z, 0) we decide to store x(z) in Kr (f)(w), where w bz+l- 1. Whenever
g(z,s+l) g(z,s), we contribute 2k-w2-k=2-w to the value of Kr (f), so as to
complement Kr (f)(w). But at stage (z + 1, 0) we carefully set aside a long enough
block of unused bits so that there will be no overflow from the location storing
the x(z+l) into the location storing x(z). Thus x(z)=Kr(f)(bz+-l). [3

Although we know a lot about which real numbers are Kr (f) for some f, it would
be interesting to characterize that class of real numbers exactly.

COROILARV 9. There exists a monotone, recursive function f such that Kr (f) < 1,
but Kr (f) is not recursive.

Proof Let x be a nonrecursive recursively enumerable real number in part (i) of
the proposition above.

PROPOSITION 10. If there is an algorithm that solves the unbounded searching
problem by asking exactly f(n) questions, then

f is recursive.

(ii) Kr (f) is recursive.

Proof (i) To compute f(n), run the unbounded searching algorithm on n. f(n)
is the number of questions asked.

(ii) Kr(f) is approximated from below by the sequence {Sk}k__> where sk

We can also approximate Kr (f) from above. For k=> 1, let n be the number
obtained by the unbounded searching algorithm when the first k answers are "yes"
and all remaining answers are "no." Then Y,->nk2-S(n) < 2-k" Let t=
l_-<,<,k 2-Y(")+ 2-k" Then Kr (f) is approximated from above by {tk}k>=l. To compute
Kr (f)(z) find the least k such that the first k bits of the larger binary expansion of
Sk agree with the first k bits of the smaller binary expansion of tk. Then Kr (f)(z)=
s(z).

2.2. Are all conditions necessary? We show that the requirement thatfbe monotone
in Theorem 3 is not necessary, but not superfluous.

PRor,osITIOr 11. (i) There is a nonmonotone function f such that there is an
unbounded searching algorithm that asks exactly f(n) questions.

(ii) There is a nonmonotone, recursive function f such that Kr (f)= 1, but there is
no unbounded searching algorithm that asks at most f(n) questions.

Proof (i) Let

ifn 1 or

f(n)= if n=3,
2 otherwise.

It is readily verified that there is an unbounded searching algorithm that asks exactly
f(n) questions.

(ii) Let

if n= 1,
f(n)= ifn =2,

otherwise.



UNBOUNDED SEARCHING ALGORITHMS 527

It is readily verified that there is no unbounded searching algorithm that asks at most
f(n) questions, and that Kr (f)= 1. [3

A corollary to Proposition 10 is the following strengthened version of Theorem 3.
THEOREM 3’. Let f be a monotone function. There is an algorithm that solves the

unbounded searching problem by asking exactlyf(n) questions ifand only iff is recursive,
Kr (f) <= 1, and Kr (f) is recursive.

An important question is whether the assumptions are still necessary if we require
merely that the unbounded searching algorithm ask <-_f(n) questions, rather than
exactly f(n) questions. We show that in this case, the assumption that f is recursive
is not necessary, but not superfluous.

PROPOSITION 12. (i). There exists a nonrecursive, monotone function f with
Kr (f) < 1 such that there exists an unbounded searching algorithm that asks fewer than
f n questions.

(ii) There exists a nonrecursive, monotonefunctionf with Kr (f)= 1 such that there
exists no unbounded searching algorithm that asks at most f( n) questions.

Proof (i) Let A be any nonrecursive set. Let g be any recursive function such
that there is an unbounded searching algorithm that asks exactly g(n) questions. Let
f(n) g(n)+pa(n), where pA(n) is the nth smallest element of A. Then A -<-rf so f
is nonrecursive, g(n) <f(n) for all n, andfis monotone because g and PA are monotone.

(ii) Let A be any nonrecursive set. We will construct f such that A <=rf Define

f as follows: If nA, then f(12n-ll)=n+2, f(12n-lO)=n+3, and f(12n-9)=
f(12n-8)=n+4. If nC:A then f(12n-ll)=f(12n-lO)=f(12n-9)--f(12n-8)=
n+3. In either case, f(12n-7) f(12n)=n+4. Since Kr(f)=l, there is no
unbounded searching algorithm that asks fewer thanf(n) questions. Sincef is nonrecur-
sive, there is no unbounded searching algorithm that asks exactly f(n) questions. [3

Open Question 13. Let f be a recursive, monotone function such that Kr (f) is
nonrecursive and less than one. When is there an unbounded searching algorithm that
asks fewer than f(n) questions ?

This question could be restated as follows" When does there exist a recursive,
monotone function g such that f dominates g and Kr(g) is recursive? Functions
satisfying the stated assumptions exist by Proposition 8(v); however, the answer is not
known for any such function. If the answer is "yes" for all f, then we could simplify
Theorem 3 by omitting the requirement that Kr (f) be recursive, and instead allow
the unbounded searching algorithm to ask =<f(n) questions. If the answer is "no" for
all f, then Theorem 3 is tight even if we allow the unbounded searching algorithm to
ask _<-f(n) questions.

3. Some slowly converging series. In this section we show that the upper bounds
obtained by Bentley and Yao follow from Theorem 3. We also obtain improved upper
bounds. Good upper bounds depend on series that converge slowly; we can define
such series in terms of iterated logarithms.

DEFINITION 14.

XlOg(b/) (X)=
lOgb lOg(bi-1)(X)

if 0,
otherwise.

DEFINITION 15.

log* x=min {t" 1ogbt (x)=< 1}.
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DEFINITION 16.

DEFINITION 17.

logSUmb (X)= E lOg(b/) (X).
1--ilogbx

1ogprOdb (X)= I-I 1Og(b/) (x).
0_--<i<logx

Note that logsumb (x)= 1Ogb (logprodb (x)).
We will use the following lemma when approximating a sum by an integral.
LEMMA 18.

1 d

1-Io<____< log(b) (X)=X ((In b) +1 lOg(bn+l) (X)).

Proof. This follows from the chain rule for differentiation. [3

DEFINITION 19.

1 ifn =0,
tOWb (n)= btOWb(n_l) otherwise.,

The next lemma will allow us to show that Y’, 1/(logprod2 (k)clg*Ek) converges
when c > In 2.

LEMMA 20. For every function g,

1 (ln2) "+1

tow2(n)<k<=tow2(n+l) logprod2 (k)g(log* k)- g(n + 1)

tow2(n)<k<__tow2(n+l) logprod2 (k)g(log2* k)

tow2(n)<k<--tow(n+l) (H0_--<j<logk lg(j) (k))g(log2* k)

by the definition of logprod

E
tow2(n)<k<=tow2(n+l) (I-Io<_j<n+l log(2j) (k))g(n + 1)
because log* k n + 1

=<1 ftw2 (n+l)

(l_i ._1 ) dx
g(n + 1) ,tow2(n O=<j<n+l log() X

by the rectangle rule for sums

g(n+l)

Proof.

g(n+l)

(ln2) "+

(ln 2) "+1 log(2"+1) (x)l tw:("+’)towe (n)

g(n+l)"
LEMMA 21. (i) Let c > In 2.

(ln 2)"+-0

by Lemma 18

k>tow2(t) logprod2(k)cgk= 1 -(In 2/c)
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(ii)

(ii)

1 1

k__>l logprod: (k)- 1 -In 2"

Proof (i)

1

k>-tow2(t) logprod2 k)cg;-k ._->, to,,0<ow,+ logprod (k)c

(12) n+l

-< > byLemma20

1

k>= logprod2 (k)
1 1

logprod2 (1) k>l logprod2 (k)

=1+
1

k>tow(O) logprod2 (k)

In 2
-<1+ by part (i)

1-1n2

1

l-In2

THEOREM 22. (i) There is an unbounded searching algorithm that asks exactly
[logsum2 (n) + 2 questions.

(ii) Let e be the base of the natural logarithms, let 0 < e < e, and let

f( n [logsum. n (log2 log2 e e )) log2* n ].
There is an unbounded searching algorithm that asks f(n)+ 0(1) questions.
Proof (i) Because f(n) ->_ logsumz (n) + 2,

1
Kr(f) -< E

,__> 4 logprod2 (n)

1

<-4(1-1n 2)
by Lemma 21(ii)

< 1 by direct calculation.

Lemma 21(i) provides an effective bound on the tail of the sum. Thus Lemma 5 and
Theorem 3 imply the existence of an unbounded searching algorithm that asks f(n)
questions.

(ii) Because f(n) => logsum2 (n)-(log2 log2 (e-e)) log2* n,

(log:z (e e))g;"
->tow2 (t) .>tow2 (t) logprod2 (n)

\loge- 2 1 -(In 2/log_ 2) by Lemma 21(i)

(ln (e- e))+ ( 1 )I-In(e-e)
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This provides an effective bound on the tail of the series, so Kr (f) converges. Let its
sum be at most 2s, where s is a positive integer. Then

Y 2 -(s(-)+..) _<_ 1

and we have an effective bound on the tail of the sum. By Lemma 5 and Theorem 3,
there is an unbounded searching algorithm that asks at most f(n)+ s questions. E]

These searching algorithms are comparable to Bentley and Yao’s "ultimate"
algorithm U [BY76]. Bentley and Yao’s algorithm is more practical than ours because
theirs was produced constructively. However, it is interesting that we can derive ours
directly from Theorem 3 and lemmas about convergence. Our algorithms are also
interesting because there is a remark in [BY76], attributed to Chung and Graham,
stating that unbounded search could not be accomplished with as few as

logsum2 n + log2 log2 (log* n) + O(1)

questions; we, however, have shown that unbounded search can be accomplished with
asymptotically fewer than logsum2 n questions. (A related comment appears in [RS88].)

3.1. Other bases. We can prove similar results using bases different from 2.
LEMMA 23. For all b >-2,

1
Z <- b-" + (ln b)

tow(n)<k<__tow(n+l) logprodb (k)-

Proof.

y 1

towl(n)<k<=towl,(n+l) logprod (k)

1

Ltowt,(n)J<kLtow(n+l)J logprodb (k)

+
logprodb ([tOWb (n)J + 1)

1

[tow(n)]+l<kttowt,(n+l)J logprodb (k)

< +
logprod (tOWb (n))

1

=logprodb (tOWb (n))

1

logprOdb (tOWb (n))

1

logprOdb (tOWb (n))

1

logprOdb (tOWb (n))

1
--+(In b) "+
tOWb (n)

1

[tow(n)J+l<k<_[tow(n+l)] logprodb (k)

f[tw/(n+l)J ( 1 ) dx
attow(.)+ logprodb (x)

ftw(n+l)( 1 ) dx
*/tow/, (n) logprodb (x)

tow, (n+l)-((ln b) + logn+) (x)tow(.) by Lemma 18

(In b) "+

1
<_- --+ (ln b) "+1
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COROLLARY 24. If 2 <-- b < e, then

(i)

1 b -t

k>towb(t) logprodb (k)- 1 (l/b)
(In b) t+

1-1n b

(ii)

1 b 1

k=>l logprodb (k)- b- 1 1 -ln b

Proof.
(i)

1

k>towb(t) logprodb (k) .>=t towb(n)<k<--tOWb(n+l) logprOdb (k)

=< Z (b-"+(ln b) "+a) byLemma23

b-’ (In b) t+l

1-(1/b) 1-1n b

(ii)

1 1
2 +
kl logprodb (k) logprodb (1) k’l logprodb (k)

=1+
1

k>tow(0) logprodb (k)

1 In b
_-<1+--+ by part(i)

1-(l/b) 1-1nb

b 1
q by arithmetic.

b-1 l-In b

THEOREM 25. If 2 < b < e, then there is an unbounded searching algorithm that asks
f(n)= [(log2 b)1ogsumb (n)+log2 ((b/b-1)+(1/1-1n b))] questions.

Proof
1 1

Kr(f) -< Y.
,1 1ogprodb (n) (b/b-1)+(1/1-1n b)

<_-1 by Corollary 24(ii).

Corollary 24(ii) provides an effective bound on the tail of the sum. Thus Lemma 5
and Theorem 3 imply the existence of an unbounded searching algorithm that asks
f(n) questions. [3

4. Some slowly diverging series. In this section we produce some series that diverge
very slowly, in order to prove some strong lower bounds on unbounded search.

LEMMA 26. For all b >-2,

towb(n)<k<=towb(n+l) logprodb (k)- b’-
(In b) "+’.
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Proof.

tOWb(n)<k-------towb (n+l)1ogprOdb (k)

[towb(n)J<k<__[towb(n+l)J logprOdb (k)

-1

-1

-+((In b) "+ lOg(b"+1) (x)ltw’("-1)tow.(, byLemmal8

-+(In b) "+.

LEMMA 27. If b >- e, then

diverges.
Proof

1

k _--> logprOdb (k)

1 1

k logprOdb (k) ,-0 tow,.(,)<k--tow,,(.+) logprodb (k)

->,,o>_- (b"--1. 1
+(ln b) "+) by Lemma 26.

That sum diverges to positive infinity because its nth term approaches 1 (for b e) or
positive infinity (for b > e) in the limit.

THEOREM 28. If b >= e, then there is no unbounded searching algorithm that asks at
most

f(n) (log2 b) IogSUmb n + c

questions, for any constant c.
Proof Assume the contrary. Then Theorem 1 implies that Kr (f)_-< 1. However,

Lemma 27 implies that Kr (f) diverges. I-1
The preceding result shows that Theorem 25 is rather tight.
LEMMA 29. If

1

kl h(k)
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diverges, then

diverges.
Proof.

1

k=>l logprod2 (k)(ln (2))g;(k)h(log2* (k))

1

k->l logprod2 (k)(ln 2)s(k)h(1og2* (k))

o 1

tow2(n)<k<<_tow2(n+l) logprod2 (k)(ln 2)(k)h(log2* (k))

,--o tow2,0<k_<-tow2,,+l)logprod2 (k)(ln 2)"+lh(n + 1)

,=0 (In 2)"+lh(n + 1) tow2(n)<ktow2(.+l)logprod2 (k)

+(ln 2) n+l by Lemma 26.

1(-(1Oge)+’ )+1.eo h(n+l) 2"-1

For large n the nth term of the sum approaches 1/(h(n+ 1)). Therefore the sum
diverges.

Corollary 30.

1

k_-__l logprod2 (k)(ln (2)) *g;(k)

diverges.
Proof. Let h (n) 1 in Lemma 29.
The following theorem improves a lower bound from [BY76].
THEOREM 31. There is no unbounded searching algorithm that asks at most f(n)

questions, where

f(n) logsum2 n- (log2 log2 e)log2* n+ c,

for any constant c.

Proof. Assume the contrary. Then Theorem 1 implies that Kr (f)-< 1. However,
Lemma 26 implies that Kr (f) diverges.

The lower bound from the preceding theorem and the upper bound from Theorem
22(ii) differ by less than any positive constant times log2* n. In [Knu81], Knuth has
obtained bounds that differ by less than (log2*)(m)n for any m; therefore, at least one
of Knuth’s bounds is superior to ours. His bounds involve iterates of the function
[log2 n J; it would be interesting to know if both of Knuth’s bounds are superior to
ours. In the next section we will see how to produce algorithms that are as close as
practically possible to being optimal.

5. Nearly optimal algorithms. The algorithms presented by ourselves and by others
are very close to optimal, in this section, we will show that given any algorithm for
unbounded search, there is an asymptotically better algorithm, in contrast, a result of
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Raoult and Vuillemin [RV79] states that there exist algorithms that are as close as we
like to optimal.

There is an unbounded searching algorithm with f(n)= n. Because

that algorithm cannot be improved for any value of n without making it worse for
some other value of n. However, we have already seen algorithms that are asymptotically
much better. If we are willing to ask a larger number of questions to determine the
first few numbers, then we can improve that algorithm asymptotically by an additive
constant c. Furthermore, given any unbounded searching algorithm that asks exactly
f(n) questions, where f is monotone, we can easily improve that algorithm asymptoti-
cally by an additive constant c. Choose such that

2 -f(n) <

choose m such that t2 -"-< 1/2, and let

g(n)={mmax (f(n)- c, m)
ifl <= n_<- t,
if n> t.

The function g is monotone, because f is monotone. Furthermore,

Kr(g)= Y 2-g"3+ 2
l=n<=t n>t

1/2+ 2 -g(n)

n>t

2 --(c+l)-----+ 2

=1.

We note that Kr (g) is recursive because Kr (f) is recursive and f(n)- g(n) is constant
for large n. An effective bound on the tail of the sum is easily found. Therefore we
can perform unbounded search by asking exactly g(n) questions.

In fact, we can improve every unbounded searching algorithm asymptotically by
more than a constant.

THEOREM 32. Suppose that we can perform unbounded search by asking exactly
f( n questions. Then there exists a function g such that we can perform unbounded search
by asking g(n) questions and such that

lim f(n)-g(n)=.

If f were monotone, then we could prove this result in the same way as the
preceding result. However, we do not assume that f is monotone. We prove the result
via tree rotations.

Proof By Proposition 7, let T be a recursive left-finite binary tree whose nth leaf
has depth f(n). Let v be the first node on T’s infinite path that has exactly four
grandchildren. Let a be the left child of v, and let b and c be the right grandchildren
of v. We rotate the subtree rooted at v as follows: a and b become the left grandchildren
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of v, and c becomes the right child of v. This has the effect of lowering finitely many
leaves, but raising infinitely many leaves. We repeat the process recursively on c. Let
g(n) be the depth of the nth leaf in the recursive tree produced in this way. It is easy
to verify that g has the desired properties. [3

The next result shows that there exist unbounded searching algorithms that differ
from the elusive optimum by less than any given recursive function g, provided, that
g grows towards infinity. Although it was originally proved by Raoult and Vuillemin,
we include the proof for the sake of completeness.

THEOREM 33 [RV79]. Let g(n) be any monotone, recursive function such that

lim g(n) =.

Then there is a function f such that there is an unbounded searching algorithm that asks
exactly f( n questions, but there is no unbounded searching algorithm that asks at most

f(n g(n) + c questions, for any constant c.

Proof We construct h =f-g via an easy initial segment argument.
Stage 0. Let tl 1.
Stage s>=l. Choose ks > ks-1 so that g(ts + 2k) -> s + 1. Let ts+l ts + 2 kL. Let h(n)

ks + s g(n) for ts _-< n < ts+.
By construction, h(n)+ g(n) ks + s for ts =< n < ts/l, and ks/l > ks. Therefore h + g
is monotone. In addition, since ts+-ts 2 k,

2 -(h(")+g(n)) 2k2-(k+s) 2 -s.
tsn<ts+l

Summing over s, we find that Kr (h + g)= 1. Consequently, there is an unbounded
searching algorithm that asks exactly h(n)+ g(n) questions.

Also by construction, h (n) =< ks for ts -< n < ts/. Therefore,

2 -h(n) --> 1,
tsnts+l

so Kr (h)= . Consequently, there is no unbounded searching algorithm that asks at
most h(n)+ c questions for any constant c. [3

6. Parallel unbounded search. Bentley and Yao suggest a variant of unbounded
search where we are allowed to ask p simultaneous questions, i.e., in one round we

> > , "Is n >= tp ?". We call such questionsare allowed to ask "Isn=h: sn=t2-:
higher-lower questions. How many rounds of higher-lower questions are needed to
determine n? How many rounds of arbitrary questions are needed to determine n?
The following solutions were suggested by Gasarch and Kruskal.

Theorem 1 generalizes easily to provide a lower bound.
THEOREM 34. Iff(n) rounds ofp questions suffice to solve the unbounded search

problem, then

(p+ 1)-Y<")=< 1.

Proof As Bentley and Yao pointed out, there are only p + different possibilities
for the result of a round of p questions of the form "Is n-> t?". Thus the results of
all f(n) rounds of questions form a prefix code for n in base p (see Bentley and Yao’s
proof when p 2). The conclusion follows from Kraft’s theorem [Ga168].

Theorem 3 generalizes easily to prove a corresponding upper bound.
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THEOREM 35. Let f be a monotone, recursive function such that

Z (P+I) -fn>

n-----1

is recursive and is less than or equal to one. Then there is an algorithm that solves the
unbounded searching problem by asking f( n rounds ofp questions.

Proof. Same as the proof of Theorem 3, except that we use (p+ 1)-ary search
[Kru83] instead of binary search. D

The two theorems above allow us to generalize our earlier results by simply
replacing f(n) by f(n)/log2 (p+ 1).

[(1Ogp+l 2)(logsum2 (n)--(log2 log2 (e--e)) log2* n)] rounds of p simultaneous
higher-lower questions are sufficient for unbounded search.

(logp+l 2)(logsum2 n-(log2 log2 e) log* n)+ O(1) rounds of p simultaneous
higher-lower questions are not sufficient for unbounded search.

Given any computable function g that grows without bound, there exists an
unbounded searching algorithm (asking rounds of p simultaneous higher-lower ques-
tions) that is within g(n) rounds of being optimal.

If we are allowed to ask rounds of p simultaneous questions, with no restriction
on the form of the individual questions, then we may guess the number n after asking
significantly fewer questions. In fact, if there is a recursive binary prefix code of length
f(n) for the positive integers, then we can guess n after asking [f(n)/p] questions:
Our ith question is "What are bits (i- 1)p + 1 through ip of the binary prefix code for
n ?" This bound is tight because the sequence of answers to all rounds of questions
forms a recursive binary prefix code for n. This yields the following results:

[(1/p)(logsum2 (n)-(log2 log2 (e-e)) log2* n)] rounds ofp simultaneous ques-
tions are sufficient for unbounded search.

(1/p)(logsum2 n-(log2 log2 e)log2* n)+O(1) rounds of p simultaneous ques-
tions are not sufficient for unbounded search.

Given any computable function g that grows without bound, there exists an
unbounded searching algorithm (asking rounds of p simultaneous questions) that is
within g(n) rounds of being optimal.

7. Conclusions. If we are trying to guess a positive integer, then we can determine
that the number is n by asking

f(n) [logsum2 (n) (log2 log2 (e e )) log2* n

questions of the form "Is n at least ?". However we cannot determine that the number
is n by asking only

logsum2 n (log2 log2 e) log* n + O(1)

questions of that form. Similarly tight bounds can be obtained for parallel unbounded
search.
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THE EUCLIDEAN ALGORITHM
AND THE DEGREE OF THE GAUSS MAP*
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Abstract. This paper examines the computation of the topological degree of the Gauss map,
defined by polynomials in the plane, via the Euclidean algorithm.
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1. Introduction. Let p(x, y),q(x, y) be integer polynomials without common
factors, of degrees nl and n2, respectively. We consider the polynomial vector field
F" 2 R2, F(x,y) (p(x,y),q(x,y)). A zero z of F is a pair (xo,yo) of real
numbers for which F(xo, yo) (0, 0).

Let A be a rectangle in the plane defined by al _< x _< a2, a3 _< y _< a4, a < a2,

a3 < a4, ai E Q, 1, 2, 3, 4 so that no zero of F lies on its boundary OA, and p.q
does not vanish at its vertices. Then we can introduce the Gauss map G" OA S,
G F/IIFII, where S is the unit circle. Since IIFII 0 on OA, G is continuous.
Assume that both OA and S carry the counterclockwise orientation. Then the degree
d of G is an integer that, roughly speaking, tells how many times OA is wrapped
around S by G. More precisely, if H(OA), H(S) are the first homology groups of
OA and S, and G, HI(A) H(S) is the associated map, then d is the unique
integer that satisfies o G, o a-(u) d.u, for all u e , where a" H(OA) Z,
/" H1 (S) - are the natural isomorphisms of the homology groups and the group
of integers ;.

We will present a method for the computation of d using the Euclidean algorithm.
The idea is based on a paper by Wilf [8], in which he gives a procedure that finds
the complex roots of a polynomial in one complex variable. The basic tool of our
computation is the notion of the Cauchy index (2), which has been extensively used
in computational problems, such as the problein of Routh and Hurwitz [2], [4]. The
main result of this paper is Proposition 1 (2).

In 3 we present an application of our procedure concerning signs of algebraic
numbers as well as the topology of real algebraic curves.

We use only polynomials with integer coefficients and evaluate those polynomials
at rational points. This is because the integers (rationals) are exactly representable in
a computer, and therefore all calculations can be carried out exactly. The operating
time of the algorithm is dominated by n2(n + l + log n + ) (see 4).

2. Preliminaries and the algorithm. Let z be a zero of F. Since p and q
have no common factors, z is isolated. Consider a small circle S(z, ) centered at z, of
radius , e > 0 so that

(i) z is the only zero of F inside S(z, ),
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(ii) F = 0 on S(z, ).
Then we define the map G’: S(z, ) S1, G’ F/I]F]I. Assume that both S(z, )
and S carry the counterclockwise orientation. Then we can define the degree d of
GI, in exactly the same way as we did for G. It is well known that d is independent
of the particular S(z, ) chosen [3].

DEFINITION 1. With the above considerations we define the index off at z, i(z),
to be d.

Remark 1. d z i(z), where z is a zero of F lying in the interior of A [3].
Example 1. Let p(w) be a complex polynomial in the variable w. Write p(w)

R(w) / iI(w), and consider F (R, I), where R, I are the real and imaginary parts
of p(w). Then if z is a zero of F, we observe that i(z) multiplicity of z as a root of
p(w). Furthermore, d the number of roots z (along with their multiplicities) that
lie inside A.

Our preliminary goal is to compute d. We begin with some preliminaries.
DEFINITION 2. Let R(x) be a rational function, and [a,b] a closed interval,

a < b, so that R does not become infinite at the endpoints. By the Cauchy index, IR
of R over [a, b], we mean IR N, where N(N) denotes the number of
points in (a,b) at which R(x) jumps from- to( to-), respectively, as x is
moving from a to b. By convention IR -IR.

According to the definition, if R(x) i Ai/(x hi) + R(x), where Ai,ai,
1,... ,m are real numbers and R(x) is a rational function without real poles,

then

IR= signAi.

Now let R(x) be defined as R(x) r(x)/s(x), where r(x), s(x) are integer polynomials,
and let [a, b] be a closed interval as in the above definition. We will then give an
algorithmic procedure for computing IR.

First, assume that deg s(x) deg r(x). Then, using the Euclidean lgorithm for
computing the greatest common divisor of two polynomials, we can find a sequence
fl,f,"" ,fr of polynomials as follows: f s, f r, and f qf+- f+2;
degf+2 < degf+, 1,...,r-2, and f gcd(r,s).

The following theorem, due to Sturm, is the basis for the calculation of the Cauchy
index IR.

THEOREM 1 [2]. Let f,...,fr be the sequence above. Let V(x) denote the
number of sign changes in the sequence of numbers f(x),... fr(x), x e . Then

IR I 5 Y(a) Y(b)
8

Now suppose that degs(x) < degr(x). Then we can write r/s r/s + r2,
where degr < degs. We observe that Ir/s Ir/s. This is because r(x)
rl(x) + r(x), s(x), and at zero xo of s we have r(xo) r(xo); that is, r and r have
the same sign near a zero of s.

We summarize: if R(x) r(x)/s(x), [a,b] are as above, we can compute the
Cauchy index IR using the Euclidean algorithm and Theorem 1.

Now let [c, c’] be an interval so that r(c) r(c’) O, s(c) s(c’) 0 and r(t) 0
on (c, c’), c < c’, where r(x), s(x) are as above. Let a(t) (s(t), r(t)), a: [c, c’] 2.
We denote by A Ac<t<c, arg a(t) the change in the argument of a(t) as t goes from
c to d. The following lemma gives us a first connection between A and I3’ r/s.
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LEMMA 1. --r. I’ r/s.
Proof. Without loss of generality, assume that r(t) > 0 on (c, d). We are going

to prove the lemma by considering various cases. Suppose first that s(c) > 0 and
s(c’) > 0. In this case z 0. On the other hand, the number of points to, to E (c, c’)
where s(t) changes from positive to negative is equal to the number of points it changes
from negative to positive; i.e., N N_+ and, therefore, ICc r/s 0. Similarly, we
treat the case where s(c) < 0 and s(c’) < 0. Now if s(c) > 0, and s(c’) < 0, we have
A = r. But the number of points at which s(t) changes from positive to negative is one
more than the number of points it changes from negative to positive and, therefore,
N N_+ 1. Similarly, if s(c) < 0 and s(c’) > 0, we get N N_+ -1. E!

COROLLARY 1. Let r, s, a be as before and let [a, ] be a closed interval so that
r(a) r() O, s(a) s() O, a < . Then

A<t_<f arg a(t) -r Ia r_
8

Proof. Let tl,... ,tk be the distinct real roots of r(t) inside (a,), ti < ti+,
1,... k- 1. Set to a, tk+l . Then

i=oA<<+Aa<< arg a(t) arg a(t) -r Ia [3

Recall from the introduction that we are given the rectangle A, which is defined
by a _< x _< a2, a3 g y _< ha, and it is such that F does not vanish on its boundary,
and p.q is not zero at each vertex of A; such an A will be called proper for F. Let
a(t) [0, 1] OA be an orientation-preserving parametrization of OA. We observe
that

1
27r A0<t<l arg(F o a)(t) d.

We associate an integer IAF to A and F as follows: let

q(x, a3)
R2

q(a2, y) Ra
q(x, ha) q(a, y)

R3 p(x, a3) -(’22: y) p(x, a4) R1 p(al, y)

We then set
IAF Iaa R3 + IR2 + IRa + I2R

The following proposition is the main result of this paper.
PROPOSITION 1. IAF is an even integer and, furthermore, d =-1/2IAF.
Proof. We have d - ’d" r OA(N N+_ 1/2 IAF,

as Corollary 1 shows.

3. An application. I. Let F, A, G be as in the previous section. Let J
Op/Ox Oq/Oy-Oq/Ox Op/Oy be the Jacobian determinant of F, and zo
be a zero of F. We say that z0 is nondegenerate if J(zo) O. Suppose that all zeros of
F, which lie in the interior, Int A, of A are nondegenerate. Then Proposition 1 yields
the following:

LEMMA 2. Under the above considerations,

1Z sign J(zo) -- IAF.
F(zo)=(o,o)
zo Int A

We now proceed with a result concerning signs of algebraic numbers. Let h(x),
H(x) Q[x], [a, b], a < b a rational interval isolating a real root xo of h(x). We may
assume that xo is a simple root of h(x). Then by replacing H, if necessary, with H =t: h,
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we can suppose that H(a)H(b) : O. Our aim is to determine the sign of H(xo). First,
consider D gcd (h, H). Then for x E R we set

{1 if h(x)< 0 {1 if h(x)H(x)>O
V(x)

0 otherwise
Vo(x)

0 otherwise,

and let I be the following integer,

h
V()- Vo() + V0()- V().

As a result, we have the following proposition.
PROPOSITION 2 [5]. (i) H(xo) 0 if and only if D(a)D(b) < O.

(ii) If D(a)D(b) >_ O, then H(xo) > O, H(xo) < 0 if and only if I O, I O,
respectively.

Proof. (ii) Let F be the vector field defined by F (h(x), y- H(x)), and let
M be a positive integer so that maxa<x<b IH(x) < M. Also, consider the rectangle
A In, b] [0, M]. First, we observe that zo (xo, H(xo)) is the only zero of F within
the region a < x < b. Further, z0 is nondegenerate, since xo is a simple root of h(x).
A calculation now verifies that I -IAF, and therefore as Lemma 2 shows, z0 is
inside, outside A, if and only if I 0, I 0, respectively.

Now let us assume that all the roots of h(x) are simple, and let A be a proper
rectangle for F (h(x), y- H(x)). Also, let m denote the number of zeros of F in
the interior Int A, of A. The following Proposition provides a means of isolating the
zeros of F in the interior of A.

PROPOSITION 3. Let F, A and m be as above. Then,
1

m --IAF*
where F* (h(x), yh’(x) h’(x)H(x)).

Proof. We first note that zo is a zero ofF* if and only if z0 is a zero ofF.
Furthermore, if J* is the Jacobian determinant of F*, we observe that J*(zo)
(h’(xo)) 2 > 0, where zo (xo, H(xo)) is a zero of F*. Therefore, m --1/2IAF*, as
Lemma 2 shows.

Finally, let c E and a,b e [-c,+c],a < b, so that H(x) c, at each
h(xi) O, a < xi < b, and h(a)h(b) : O. Denote by nba, k/the number of roots xi of
h(x) in (a, b), and the number of those xi’s at which H(xi) > c, respectively.

PROPOSITION 4. Let h, H, nba and k be as above. Then,

h’(c- H)
2kCH nba Iba

h

Proof. Let M be as in Proposition 2, c < M, and consider the rectangle
A In, b] [c, M]. Then Proposition 3 shows that

h’(c- H)h’ (c H) h’ (M H) Iba _riba-2kI Iba
h + I h h

h’(M-,H) _iba h’since M- H > 0 and, I h - --nba.
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II. In this paragraph we state two results, taken from [6], that are concerned
with the topology of real curves. Let f E Q[x, y] be such that the coefficient of yn
is a nonzero constant, where n is the total degree of f. Let C {f(x, y) 0} and
suppose that C is real nonsingular. Denote by h the restriction of the projection map
(x, y) ---, x on the curve C. Let z0 (x0, y0) E R2 be a critical point of h; that is
f(zo) Of/Oy(zo) 0. Consider the vector field F (f, Of/Oy) and let A be a
proper rational rectangle isolating z0. Further, let G1, G2, G3 denote the graphs of
x-xo (y-yo)2kl, x-xo -(y-yo)2k2, x-xo q-(y-yo)2k3+, k,k2, k3 7]+.

The following proposition provides the basis for the local topology of the curve
near z0.

PROPOSITION 5 [6]. Let F, A,G,G2,G3 be as above. Then IAF -2,2,0 if
and only if near zo, C looks like G, G2, G3, respectively.

Now let T (x s) 2 + (y- t) 2, s, t Q, be such that TIc is a Morse function
[3]. Consider p(x, y) (y t)Of/Ox (x s)Of/Oy and denote by F (f,p). Let A
be a rational rectangle so that all real zeros of F are inside A. Then we have
Proposition 6.

PROPOSITION 6 [6]. The number of unbounded components of C is equal to

We close this section with an example which was carried out using the SCRATCH-
PAD II Computer Algebra System.

Example 2. Let C {f 2x4 4- y4 3x2y2 x2 4- x 4- y 1 0}. It can be shown
that C is real nonsingular. Further, if T x2 4-y2, then TIc is a Morse function and
all of its critical points lie inside the rectangle A [-2, 2] [-2, 2]. Now consider
p(x,y) yOf/Ox xOf/Oy 14x3y 10xy3 2xy + y x, and F (f,p). A
calculation shows that IAF --8, and therefore C has four unbounded components.

4. Computing time. In this section we shall study the computing time of the
algorithm. We begin with some well-known notions.

Let k 7/, a/ Q, (c,) 1. We define the size of k, a/ to be log lk
and log lal + log I1, respectively. Next, we define the size of a nonzero polynomial
B E ?]Ix, y] to be the maximum of the sizes of its nonzero coefficients.

Having done that we arrive at the parameters of our problem. These will be n
max{n,n2}, i maximum of the sizes of p(x,y) and q(x,y), and, maximum of the sizes of the ai’s, 1,... 4.

As we saw in the preceding section, our algorithm depends solely on the com-
putation of the Cauchy index of a rational function. We also saw that one way of
computing IbaR is by constructing a sequence of polynomials using the Euclidean algo-
rithm. We shall now see a similar way of computing the Cauchy index that will enable
us to establish a better time bound for the algorithm. We first need a definition.

If P and Q are nonzero elements of ?/Ix], a negative remainder of P and Q is a
polynomial D such that for some polynomial N and some c, d 7/, c > 0, and d < 0

cP QN + dD

and either D 0 or deg(D) < deg(Q).
A negative polynomial remainder sequence (n.p.r.s) is a sequence of polynomials

PI,"" ,Pk, Pk+ 0, in which Pi+2 is a negative remainder of Pi and P+, 1 _< _<
k- 1. If P and Q are nonzero polynonials, there always exists an n.p.r.s, with P P
and P2 Q.

We can now state a result, similar to Theorem 1, 2, due to Sturm, which relates
n.p.r.s, and Cauchy indices.
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THEOREM 2 [2]. Let P, Q E [x], deg(P) _> deg(Q) and let Pi be an n.p.r.s.
with P1 P, P2 Q, i= 1,...,k. Also let [a,b], a < b, be such that P(a)P(b) O.
For x , let V(x) denote the number of sign changes in the sequence of numbers
Pl (x), Pk(x). Then

V(a)-

Let P, Q, P1,"", Pk be as above. Let m deg(P) and 5 the maximum of the
sizes of P and Q. Then, evaluation of the n.p.r.s. P1,..., Pk, using fast arithmetic,
at a rational point of size 5’ takes time O(m2(5 + log m + 5’)) [1].

Now we are ready to give upper bounds for the computing time. We shall first find
the time needed to compute the Cauchy index IR3, of R3 q(x, a3)/p(x, a3) over
[el, a2]. We observe that the size of q(x, a3) or p(x, a3) is O(n, + l) and their degree
is O(n). Therefore, the time needed to compute IR3 is O(n2(n, + l + log n + ,)).

Finally, the calculation of IAF also takes O(n2(n, + l + logn + ,)) time.

5. Concluding remarks. It is apparent how this procedure can be made to
work not only for rectangles, but to include simple closed polygons, and in general
any simple closed polynomially parametrized curve. It can also serve as a sufficient
condition for a polynomial vector field to have real zeros .inside a finite polygonal
domain. However, in trying to find a similar procedure in dimensions greater than
two, one runs into some difficulties. One reason for that is that we don’t have a
higher-dimensional analog of Sturm’s theorem, and, therefore, we have to rely on other
methods, such as elimination procedures. A first attempt in this direction appears in
the author’s Ph.D. thesis [7]. In an upcoming paper we hope to discuss a procedure
in three dimensions.
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GROUP ACTION GRAPHS AND PARALLEL ARCHITECTURES*
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Abstract. The authors develop an algebraic framework that exposes the structural kinship
among the deBruijn, shujCfle-exchange, butterjy, and cube-connected cycles networks and illustrate
algorithmic benefits that ensue from the exposed relationships. The framework builds on two alge-
braically specified genres of graphs: A group action graph (GAG, for short) is given by a set V of
vertices and a set H of permutations of V: For each v E V and each r EII, there is an arc labeled r
from vertex v to vertex v. A Cayley graph is a GAG (V, H), where V is the group Gr(H) generated
by H and where each r 6 H acts on each g 6 Gr(H) by right multiplication. The graphs (Gr(H),
H) and (V, H) are called associated graphs. It is shown that every GAG is a quotient graph of its
associated Cayley graph. By applying such general results, the authors determine the following:

The butterfly network (a Cayley graph) and the deBruijn network (a GAG) are associated
graphs.
The cube-connected cycles network (a Cayley graph) and the shuffle-exchange network (a
GAG) are associated graphs.
The order-n instance of both the butterfly and the cube-connected cycles share the same
underlying group, but have slightly different generator sets II.

By analyzing these algebraic results, it is delimited, for any Cayley graph G and associated GAG 7-/,
a family of "leveled" algorithms which run as efficiently on T/ as they do on (the much larger) G.
Further analysis of the results yields new, surprisingly efficient simulations by the shuffle-oriented
networks (the shuffle-exchange and deBruijn networks) of like-sized butterfly-oriented networks (the
butterfly and cube-connected cycles networks):

An N-vertex butterfly-oriented network can be simulated by the smallest shuffle-oriented
network that is big enough to hold it with slowdown O(log log N).

This simulation is exponentially faster than the anticipated logarithmic slowdown. The mappings
that underlie the simulation can be computed in linear time; and they afford one an algorithmic tech-
nique for translating any program developed for a butterfly-oriented architecture into an equivalent
program for a shuffle-oriented architecture, the latter program incurring only the indicated slowdown
factor.

Key words, butterfly network, Cayley graph, cube-connected cycles network, deBruijn net-
work, graph embedding, group action graph, interconnection network, network simulation, parallel
architecture, shuffle-exchange network
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1. Motivation and synopsis. We develop an algebraic setting for studying
certain structural and algorithmic properties of the interconnection networks that
underlie parallel architectures. We apply the structure-oriented results derived within
this setting to obtain a simulation of butterfly-oriented interconnection networks on
like-sized shuffle-oriented interconnection networks, which is exponentially faster than
previous simulations. Our study and approach find their motivations in three sources.

1.1. Uniform vs. semi-uniform networks. Our first motivation relates to
a paradigm advocated by Akers and Krishnamurthy [1]-[3]; Carlsson et al. [10],[9];
Faber [14]; and others, concerning how to design the interconnection network of a par-
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allel architecture. The cited sources argue that interconnection networks based on
Cayley graphs 2(CAGs), i.e., graphs whose adjacency structure is governed by a group,
endow an architecture with substantive advantages, in terms of algorithmic efficiency
and fault tolerance. They support their case in part by noting that many interconnec-
tion networks of algorithmic and commercial importance are Cayley graphs, including
the hypercube [26], [28]; butterfly (with wraparound) [5]; cube-connected cycles [9],[22];
multiple rings [30]; and star [2], [3] networks. Two factors detract from their argu-
ments: First, there are several "semi-uniform" interconnection networks, which are
promoted as vigorously by their proponents as are Cayley-graph networks by theirs;
included here are the shuffle-exchange (and its variants) [27],[29]; deBruijn [21]; and
X-tree [13] networks. Second, a well-known group-theoretic result [8] suggests that
one "natural" way of defining CAG-based interconnection networks indeed, the
way used in [2] to define the star and pancake networks is almost certain to yield
networks that are truly enormous.3 The first motivation for the current research was
to determine the extent to which one might enjoy the benefits of Cayley graphs using
smaller, "semi-uniform" networks. We have achieved this goal, to some extent, us-
ing as our formal notion of "semi-uniform" network the class of group action graphs
(GAGs), which we define in 2 and develop in 3; indeed, two of our exemplary "semi-
uniform" networks, the deBruijn and shuffle-exchange, are GAGs. We shall show that
every Cayley graph G has an "associated" GAG, which can emulate G’s communica-
tion capabilities with no time loss, on a large class of computations. Work still in
progress [4] extends the research reported here by showing that, if the group under-
lying G has a variety of subgroups, then there exist work-preserving processor-time
trade-offs for any parallel architecture based on G.

1.2. The structure of hypercube-derivative networks. Our second motiva-
tion arose from the following scenario. The major shortcoming of the (Boolean) hyper-
cube as an interconnection network is its high vertex-degrees.4 This fact has led to the
introduction of several bounded-degree butterfly-oriented "approximations" of the hy-
percube, most notably the butterfly and CCC (cube-connected cycles) networks. Ad
hoc transformations of these large5 networks have led to the smaller shuffle-oriented
hypercube-derivative networks, most notably the shuffle-exchange and deBruijn net-
works, which share the size of the hypercube and which afford one computational
efficiency (roughly) equal to that of the butterfly and CCC on certain important com-
putational tasks. Indeed, many in the parallel architecture community will attest
to the computational equivalence of the four networks just mentioned, supporting
their assertion by exhibiting a class of parallel algorithms that can be computed with
roughly equal efficiency on all hypercube-derivative networks that share certain struc-
tural characteristics (as do the four networks under discussion). Roughly speaking,
the processors of these networks have addresses containing length-n bit-strings. The
algorithms in the class have the property that, for each time step i, all communication
is between processors whose addresses differ only in the ith place in their bit-string
(but possibly differ in other components of the address as well). Many well-known,

Typically, one views an interconnection network as a graph whose vertices are the processors of
the architecture and whose arcs are the interprocessor communication links.

2 Technical definitions appear in2.
3 The groups underlying these Cayley graphs have large symmetric or alternating groups as sub-

groups. Hence they have factorially many vertices.
4 Each vertex of the N-vertex hypercube has degree log N.
Each uses N. log N vertices to simulate the N-vertex hypercube.
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efficient algorithms reside in this class, for such tasks as sorting, computing convolu-
tions, and matrix operations; see [22], [31] for details. The second goal of the current
research was to find a mathematical framework that would expose structural and al-
gorithmic relationships among these four interconnection networks. We expected such
a framework to (1) allow us to explain rigorously the asserted "equivalence" of these
networks on this class of algorithms, and (2) to serve as a benchmark for the goals
outlined in the previous subsection (i.e., our first motivation). Our general framework
is developed in 3; its specialization to these four networks appears in 4. The frame-
work allows us to explain the kinship among the networks by showing that they all
derive their structure (in a sense made precise in 3) from the same underlying group.

Aside: To whet the reader’s appetite for the conclusions of 4: Figs.
1 and 2 depict the order-3 deBruijn and butterfly networks, respec-
tively. It is not clear at first blush how to map the butterfly network
onto the deBruijn network in a structure-preserving manner. Figure
3 depicts schematically how our framework accomplishes this.

1.3. The computational power of hypercube-derivatives. Our third mo-
tivation grows out of our second. We wish to extend the structural comparison de-
scribed in the preceding subsection to a comparison of the communication powers of
the four networks on general computations. To this end, we switch from our algebraic
(structure-oriented) framework to the graph-theoretic (computation-oriented) frame-
work presented in 2.3. In that section, we develop a rather demanding formal notion
of one interconnection network simulating another. Other studies have used the same
framework to compare other pairs of networks: In [6], hypercubes simulate like-sized
complete binary tree networks with only constant slowdown; in [16], hypercubes sim-
ulate like-sized butterfly-oriented networks with at most constant slowdown; in [16],
hypercubes efficiently simulate meshes; and in [5], butterfly networks simulate com-
plete binary tree networks with constant slowdown, X-trees with doubly logarithmic
slowdown, and meshes with logarithmic slowdown, all simulations being optimal.

In 5, we exploit the insights generated by the algebraic development in 3 and
4, within the graph-theoretic framework of 2.3, to develop a technique for simulating
a butterfly-oriented network on a like-sized shuffle-oriented network, with slowdown
which is only doubly logarithmic in the size of the simulated network; this is exponen-
tially faster than previous simulations.

A goal similar to ours motivates [28] (which concentrates on evaluating competi-
tors of the hypercube) and [15] (which concentrates on comparing the shuffle-exchange
network with the hypercube). The comparison in [28] is purely qualitative, hence only
peripherally related to our study. The comparison in [15] focuses on a notion of the
"cost-effectiveness" of a network, which is measured by combining topological prop-
erties like diameter, bisection width, and degree of connectivity. In contrast, we are
aiming for a more computation-oriented comparison.

The results we report on here represent progress toward all three of our motivating
goals. We find this progress particularly satisfying, since each step in our development
is dictated by the inherent structure of the networks studied, as exposed by their
algebraic specifications.

We view the development here as a step towards exploring the coupling of graph-
theoretic techniques with group- and monoid-theoretic techniques, in the design and
analysis of parallel architectures. It is hard to argue that the insights gleaned from
our algebraic formulation cannot be derived from a more standard graph-theoretic
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treatment. However, it is clear that the mapping that yields our simulation in 5
derives in a natural way from the coset structure exposed in the algebraic study of
Part I of the paper. For us, at least, the algebraic framework has yielded a new,
exploitable insight.

2. The formal setting.

2.1. Graph-theoretic notions. We deal with three levels of graph structure.
An undirected graph is given by a set V of vertices and a set E of doubleton
subsets of V called edges. The vertices in an edge are said to be adjacent in. A path in G from vertex u to vertex v is a sequence r of vertices

such that, for each 0 _< < /, (vi, vi+l) E E; we say that the path r has
length l. By abuse of notation, we write "(vi,vi+l) E r". G is connected if
each pair of vertices in V appear on some path in G.
A directed graph (digraph, for short) G is given by a set V of vertices and a
multi-subset of V V called arcs.6 The underlying undirected graph of G
is obtained by replacing each arc of G by the corresponding unordered set
and disposing of the set when it is not a doubleton. is connected when its
underlying undirected graph is. G is strongly connected if, for every ordered
pair (v, w) of vertices of G, there is a directed path from v to w, i.e., a sequence
of vertices, v v, V2,’’’, V W, with each pair (vi, vi+) an arc of G.
A transformation graph (TRAG, for short) is given by a set V of vertices and a
set of transformations of V. For each v V and each (I), there is an arc
labeled from vertex v to vertex re.7 The digraph underlying the TRAG G is
obtained by erasing the labels from the arcs of G and removing any resulting
parallel arcs. A TRAG is connected (respectively, strongly connected) just
when its underlying digraph is.

TRAGs are known in semigroup theory as operands [11]; the third author studied
strongly connected TRAGs extensively, under the name data graphs ([23], [24] are the
sources most relevant to the present study).

We now define the specific genres of graphs that occupy our attention.
A group action graph (GAG, for short) is a TRAG (V, O) for which each trans-

formation in the set is a permutation of the set V: For mnemonic emphasis, we
henceforth denote the transformation-set H.

Clearly, every GAG has underlying it a digraph all of whose indegrees and
outdegreess are equal. The proof in [17] that every such "two-way regular" digraph
can be 2-factorized (cf. [7]) shows that this property is sufficient also, in that it can
be used to prove the following.

PROPOSITION 2.1. A digraph admits an arc-labeling that makes a GAG if,
and only if, there is a constant c such that every vertex of has both indegree c and
outdegree c.

A little background on groups is necessary before we begin to discuss the highly
uniform graphs on which our study focuses.

6 By using multi-subsets of V V, we allow "parallel" arcs, i.e., several arcs connecting a given
pair of vertices.

7 v denotes the image of v under the transformation .
s The indegree (respectively, outdegree) of a vertex v of G is the number of arcs of having v as

their second (respectively, their first) component.
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2.2. Group-theoretic notions. In order to simplify exposition, we present cer-
tain notions here in a nonstandard way.

A group is given by a set S, together with an associative binary multiplication on
S (denoted by a centered dot) that has an identity an e E S for which s.e e. s s,
for all s E S- and inverses-- for each s S, an element t S for which s.t t.s e.

A Cayley graph (or, group graph) is a GAG (V, H), where V is the group Gr(H)
generated by H, and where each r H acts on Gr(H) by right multiplication, so that
r H "leads" vertex g E Gr(II) to vertex g. r. We call H the set of generators of
the group Gr(II). We denote by Cay(II) the Cayley graph (Gr(II), H) induced by
the set H of permutations.

There is clearly a "natural" way to construct a Cayley graph from any GAG
(V, H), namely, using the group Gr(H), thereby obtaining Cay(II). Less obviously,
there is a "natural" way to construct GAGs (usually more than one) from any Cayley
graph.

Given any subgroup H of a group G (i.e., a subset of G which is a group under
the multiplication in G), the quotient of G by H, denoted G/H, is the collection of
all right cosets ofH in G: For each g G, the right coset ofH containing g, denoted
Hg, is the set of all left multiples h.g of g by elements h H. It is a standard result
that the cosets of H partition G into blocks of equal size.

These notions yield the "natural" construction of GAGs from Cayley graphs.
Let H be a subgroup of the group G Gr(II). The coset graph of G with respect

to H and H, denoted Cos(G;H;II), is the GAG (G/H, H) whose vertex-set is the
set of right cosets of H in G, and whose arcs are given by the action of the elements
of H viewed as permutations of G/H. This action is defined by right multiplication:
For g e G and r H, (Hg)r g(g. r).

Our study builds on the fact that a group can be viewed both as an abstract
algebraic structure and as a collection of permutations- multiplication in the latter
view being functional composition. This important fact is formalized in Cayley’s
theorem, which follows.

PROPOSITION 2.2 [20]. Every group is isomorphic to a group of" permutations.
Let G be a group of permutations of the set S.

G acts transitively on S (is transitive, for short) if, for all s, t E S, there is a
g G such that sg t.
For each s S, the stabilizer of s in G, denoted St(G; s), is the set of all
permutations in G that fix s, i.e., for which sr s. It is a standard result
that St(G; s) is a subgroup of G.

A cyclic group is a group whose underlying set is (isomorphic to) Zd -’def {0, 1," ’’,

d- 1 } and whose multiplication is (isomorphic to) addition modulo d. We denote the
d-element cyclic group by Zd, allowing context to distinguish between the group and
its underlying set.

The wreath product of cyclic group Zd by cyclic group Zn, denoted Zd (R)wr Zn, is
a group of permutations of the set

Z =def {0, 1,..., d- 1}n.
Each element of Zd (R)wr Zn is an (n + 1)-tuple

where a Zn and each/ Zd. The action of the permutation r on the element
(0, 1,’", n-1) E Z consists of a modulo-d vector addition of (/30,/,...,/n-),
followed by a sequence of a left-cyclic shifts:
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(. + .,.", 5n- + .-, 0 + 0,’" ", .- + .-).
Multiplication in a wreath product is composition of permutations.

2.3. Processor arrays, graph embeddings, and simulations. We represent
parallel architectures really, arrays of identical processing elements (PEs) and their
underlying interconnection networks- as undirected graphs in the following way. The
vertices of the graph represent the PEs of the array, and the edges of the graph
represent the inter-PE communication links. In order to make do with a simple
notion of simulation, we assume a pulsed model of computation, wherein computation
steps alternate with (point-to-point) communication steps between adjacent PEs; this
assumption is most appropriate when the processor array operates under a SIMD
(single instruction stream, multiple data stream) regimen, i.e., a regimen wherein, at
each time step, all PEs execute the same operation.

We build on the above representation to use graph embeddings to represent the
simulation of one processor array ,4 by another array B. We assume that the PEs of
the simulating array B are sufficiently numerous and sufficiently powerful to simulate
the PEs of the simulated array 4 step for step so no delay is incurred because
of computational steps. We restrict attention to simulations that honor the pulsed
computation regimen of array jr: Array B alternates (single) steps that simulate
one computation step of array ,4, with (possibly multiple) steps that simulate one
communication step of array 4. The slowdown incurred by a simulation arises from
having to simulate on the interconnection network underlying array B, communication
steps that are tailored to the (possibly very different) structure of the interconnection
network underlying array A. This delay results both from mismatched adjacency
structures and from congested communication channels. Our formal notion of simu-
lation resides in the following notion of graph embedding. An embedding of the graph
G in the graph 7/is specified by

a one-to-one assignment a of the vertices of G to the vertices of. y- y.

a routing p of each edge (u, v) of G along a distinct path in 7/ connecting
vertices c(u) and c(v):

p" E Paths(T/).

Fundamental to our representing simulations by graph embeddings is our assessing
the delay incurred by a simulation. We use three measures for this purpose. Say that
we have an embedding (c, p) of G in

The dilation of the embedding is the maximum amount that the routing p
stretches any edge of !:

dilation(c, p) max Length(p(u, v)).
(u,v)eE

The (edge)congestion of the embedding is the maximum number of edges of
G that p routes over a single edge of :

congestion(,p) max I(e’ e Eg e e p(e’)} I.
e6En
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The dynamic (edge) congestion of the embedding is the maximum number
of atomic messages that must be transmitted over any edge of T/simultane-
ously, when simulates a single communication step of G within our pulsed
simulation regimen.

Both congestion and dynamic congestion measure contention for communication links,
which can be resolved either by increasing the bandwidth of the links, at the cost of
increased hardware and increased area, or via queuing of messages, at the cost of in-
creased delay. For the simulations presented here, dynamic congestion will be bounded
by O(1), while congestion will be bounded only by O(log log N) therefore, one might
opt here to handle dynamic congestion via increased bandwidth and congestion via
message queuing.

The reader can verify the following simplifying inequalities.
LEMMA 2.3. For any embedding (c, p) of a graph into a graph whose maxi-

mum vertex-degree is d,
congestion(a, p)
:i <- dynamic congestion(a, p) _< congestion(a, p) < ddilatin(a’p).

Our primary interest here is algorithmic we want to determine how efficiently
one architecture ?-/can simulate another architecture G on general computations
but, our formal setting is purely graph-theoretic. The small dynamic congestion of our
embeddings renders transparent the translation from our graph-theoretic parameters
to a computational measure of slowdown. In more general situations, one must invoke
a recent result from [18] to see that the purely graph-theoretic notion of simulation
outlined here captures the essence of the algorithmic problem, in the following precise
sense.

PROPOSITION 2.4. [18]. Say that one can embed the graph
with dilation D and congestion C. Then the architecture Tl can simulate T steps of
the architecture on a general computation in O(C + D)T steps.

Part I: Algebraic development.
3. Algebraic results: Abstract version.

3.1. GAGs and coset graphs. There is often a close relationship between the
structure of the group underlying a GAG and certain types of uniformity in the
(unlabeled) graph underlying

LEMMA 3.1. Every connected GAG is strongly connected. It follows that, if (V, l-I)
is a connected GAG, then Gr(H) is a transitive group.

Proof. By Proposition 2.1, the digraph underlying a connected GAG is a con-
nected digraph with equal indegree and outdegree at each vertex. It is well known
(cf.[7]) that every such digraph contains an Eulerian tour (i.e., a closed directed path
traversing each arc exactly once). This tour yields a directed path between any pair
of vertices, hence the claim of strong connectivity. To see that Gr(H) is transitive,
observe that for any pair of vertices (v, w), the sequence of labels on a directed path
from v to w defines (via composition of permutations) a permutation in Gr(H) that
maps v to w.

We are now in a position to prove that every connected GAG G (V, H) is a
coset graph. This structure theorem is one in a large collection of similar results in
a variety of areas of mathematics, including differential geometry and the theory of
topological groups.

Since the group G Gr(H) is a transitive permutation group (by Lemma 3.1),
we can simplify our structure theorem slightly. We are concerned with stabilizers of
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elements of V in G. In a transitive permutation group, all stabilizers are conjugate9;
hence all are isomorphic. Thus, we can refer to the stabilizer subgroup of G, written
St(G), without focusing on which v E V we are fixing.

THEOREM 3.2. Every connected GAG (V, l-I) is isomorphic (as a TRAG) to the
coset graph

Cos(Gr(II); St(Gr(II)); H).

Proof. Let the GAG G (V, H) and the group G Gr(II) be as in the statement
of the theorem. Pick an arbitrary v E V,1 and let H St(G; v). Establish the
following mapping # from cosets in G/H to V: for g G,

(Hg)# w if and only if (vh)g v(h. g) w for each h e H

# thus associates vertex w of G with that coset of G/H which comprises the permu-
tations in G that map v to w. Since G is a group of permutations, and since H is the
stabilizer of v in G, the mapping # is well defined and one-to-one; moreover, since G
is transitive (by Lemma 3.1), the mapping # is also onto. Therefore, once we show
that # preserves (labeled) arcs, we shall be done.

Say first that, in the GAG, there is an arc labeled r from vertex u to vertex w.
By definition, r is a permutation in H for which ur w. Now, for every permutation
g G that maps v to u (i.e., vg u), the permutation g. r maps v to ur w, via
the equations

u (v) (. ).

It follows that there is an arc labeled r from vertex u# to vertex w# in the coset
graph.

Finally, say that, in the coset graph, there is an arc labeled r from vertex Hf to
vertex Hg (f, g G). By definition, we have the equation

Hg H(f

on the right cosets of H. It follows that for each permutation h E H, we have

v(h g) (vh)g vg v(f r) (vf)r

since H is the stabilizer of v in G. But the latter equations imply that there is an arc
labeled r from vertex vf to vertex vg in the GAG.

Although the choice of the stabilizer H in Theorem 3.1 does not affect the struc-
ture of the GAG, it does change the correspondence between the right cosets of H in
G and vertices of G.

3.2. Structural consequences of Theorem 3.1. We turn now to three corol-
laries of Theorem 3.1 that exhibit useful relationships between a GAG G (V, H) and
its induced Cayley graph Cay(II).

A. Replication of substructures. Our first corollary indicates that certain
simple structures in replicate in Cay(II) with the multiplicity suggested by Theo-
rem 3.1’s characterization of GAGs as coset graphs. The proof of this result greatly
simplifies a purely combinatorial proof in [5]; cf. Corollary 4.5.

9 Subgroups H1 and H2 of G are conjugate if every right coset of H1 by any g E G is a left coset
of H2 by the same element; symbolically, Hlg gH2 for all g E G.

10 The specific v chosen is immaterial, since G is transitive.
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COROLLARY 3.3. Each directed tree11 T that is a subgraph of the GAG (V, H)
appears as a subgraph of Cay(H) with multiplicity St (Gr(II)) I.

Proof. Let the directed tree 7" be a subgraph of the GAG (V, H). The
mapping # in the proof of Theorem 3.1 associates each vertex v of T with a unique
right coset Hg for some g E Gr(II), where H St(Gr(Ii); w) for some fixed but
arbitrary w E V. As we noted earlier, all of the candidate cosets have common size

Consider now an arbitrary arc labeled 7r II from vertex u to vertex w in G. In
Cay(II), the permutation 7r induces a bijection (via right multiplication) between the
cosets #-l(u) and #-(w). Thus, each arc in 7" spawns St (Gr(H)) distinct arcs in
Cay(H). Since no two arcs in the tree 7- enter the same vertex, this replication of
arcs suffices to establish the result.

Note that one cannot extend Corollary 3.3 very far, since a cycle in the GAG
G may not result in a cycle in the induced Cayley graph: the "initial" and "final"
arcs in the Cayley graph will start and end (respectively) in the same coset, but not
necessarily at the same vertex in the coset.

The next two corollaries of Theorem 3.1 build on the following general technique
for decomposing the elements of a group. Let G Gr(II) be a group, and let H be
a subgroup of G. We can establish a bijection

T: G --’* H G/H

in the following way. In the coset graph Cos(G; H; H), fix a breadth-first spanning
tree T, rooted at vertex H. By Corollary 3.3, there is a spanning forest of Cay(Yl)
consisting of copies of 7" rooted at each element of H. Associate each element g
Gr(H) with that element ha H that is the root of the tree containing g. Extend
this association to the desired bijection via the rule gT (hg, Hg). This mapping T is
one-to-one because elements of the same coset Hg reside in distinct trees, hence have
different hg’s; the mapping is onto because the sets G and H G/H are equinumerous.
When the subgroup H is generated by a subset of H, one can show that this
bijection gives us an embedding of the Cayley graph Cay(H) in the product graph2

Cay() Cos(G; H; H).
B. Routing and diameters in Cayley graphs. Theorem 3.1 allows us to

derive a scheme for point-to-point routing in a Cayley graph from a similar scheme
in an associated GAG3. The derived routings are often optimal; and they afford us
a general upper bound on the diametera of a Cayley graph, in terms of the diameter
of an associated GAG.

Note first that, because of the symmetry of a Cayley graph Cay(iI), we lose
no generality by restricting attention to optimal routings from the "identity" vertex
e (the identity of Gr(II)) to the other vertices of G. To wit, the shortest path from
vertex u to vertex v in G follows the same sequence of arc-labels (i.e., group-generators)
as does the shortest path from vertex e to vertex u-lv.

11 A tree is a connected undirected graph that has a unique path between every pair of vertices; a

leaf in the tree is a vertex of unit degree. A directed tree is a digraph whose underlying graph is a
tree with a designated root vertex, all of whose arcs are oriented from root to leaf.

12 Given graphs (Vg,Eg) and 7-/= (VT-t,En), the product graph 7-l has vertex-set Vg VT-t.
For u, v E V and x, y E V7, the pair ((u, x), (v, y)) is an edge of 6 7-( just when either (u, v) Eg
andx=yor(x,y)ET andu=v.

13 We call the Cayley graph Cay(H) and the GAG (V, II) associated graphs.
14 The distance between vertices v and w of a digraph G is the length of the shortest directed path

from v to w; the diameter of , denoted Diam(G), is the maximum intervertex distance in .
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Next, note that we can find a path between vertex e and any other vertex g E
Gr(H), using our decomposition of Gr(H): We perform our decomposition of Gr(II),
using vertex/element e as the root of one of the breadth-first trees in our spanning
forest. Then

1. We find a path from root-vertex e to the root hg of the breadth-first tree T
that contains vertex/element g.

2. We find a path from root-vertex hg to g.
If we seek shortest paths in each of the two stages of this routing, then

1. The first leg of the routing will have distance no greater than the maximum
distance in between any two elements of H; we denote this quantity by
DiamH(G). If the subgroup H is generated by the subset of H, then
Diam(Cay()) is also an upper bound to this maximum distance.

2. The second leg of the routing will have distance no greater than Diam(Cos(G;
H; H)). This is guaranteed by the fact that T is a breadth-first spanning tree
of Cos(G; H; II).

We summarize the quantitative aspects of this discussion as follows.
COROLLARY 3.4. Let (V,H) be a connected GAG, with associated Cayley

graph G Cay(II). Letting H St(Gr(H)), we have

Diam(G) _< DiamH(G) + Diam(gV).

If H is generated by a subset of H, then also

Diam(G) _< Diam(Cay())+ Diam($’).

C. Cayley graph bisection bounds. An edge-bisector (respectively, vertex-
bisector) for a graph is a set of edges (respectively, of vertices) whose removal
partitions 7 into two subgraphs with equal numbers of vertices (within 1). Theorem
3.1 allows us to bound the size of the smallest edge- and vertex-bisectors of a Cayley
graph in terms of the corresponding quantity of an associated GAG.

COROLLARY 3.5. If the GAG G Cos(Gr(II);H;II) has an edge-bisector
(respectively, a vertex-bisector) of size n, then the Cayley graph " Cay(H) has
an edge-bisector (respectively, a vertex-bisector) of size n.

Proof. We argue only about edge-bisectors, the proof for vertex-bisectors being
analogous. Say we are given an edge-bisector B for G. Each edge in B corresponds
naturally to IHI edges in $’, one edge for each element of the coset from which the
edge "emanates." Let B’ be the set of IHI. IBI edges of $" that correspond to all of
the edges in B. We claim that B is an edge-bisector of $" (which will prove the result,
since it has the right cardinality). To see this, partition the vertices of $" according
to the edge-bisection of G effected by B: two vertices of 9v reside in the same block of
the partition if, and only if, the cosets of H to which they belong reside in the same
block of the partition of G. We claim that this partition of 9v is the edge-bisection
that is effected by removing the edges in B from $’. To wit, every edge (u, v) of
engenders an edge (Hu, Hv) in G (by definition of coset graph). Therefore, if the edge
(Hu, Hv) is a bisector edge, i.e., an element of B, then the edge (u, v) must be an
element of B. The result follows.

3.3. Algorithmic consequences of Theorem 3.1. The development in 3.1
has algorithmic consequences that often allow one to trade significant savings in the
number of processors in one’s array for a modest increase in computing time. For a
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special class of algorithms, which includes certain algorithms for sorting and comput-
ing the fast Fourier transform (FFT), one can obtain the savings in processor count
with no time loss. We now describe the algorithmic setting, which generalizes an
analogous discussion in [31].

Say that we are given an algorithm A that runs in synchronous mode on a parallel
architecture whose interprocessor communication structure is given by
Say further that Algorithm A runs on in the following format:

There is a partition of the set of vertices of G (which are the processors
of the array) into sets V, V2,..., V}, such that, at each moment of
time, the active set of processors involves at most one processor from
each set

We call each set V} a block of the graph , and we call Algorithm A an (i-)block-
structured algorithm. Consider now the following modification of the scenario just
described.

Label the vertices/processors of in any way that assigns a different label to
each processor in each block V/; clearly N --def maxi IV}I labels suffice.
Construct the l-vertex graph/processor array G’ that has a vertex vi for each
block V/in the partition of G, and that has an arc from vertex va to vertex Vb
just when, in , some vertex in block Va has an arc to some vertex in block
Vb. Give each vertex vi of ’ the capability to simulate each processor in the
block V of G. (This is easy with arrays of identical processors.)
Modify Algorithm A to obtain Algorithm A’, which operates as follows. Each
message generated by Algorithm A’ is a message generated by Algorithm A,
augmented with the label (address) of the processor of G that the message is
intended for.
Run Algorithm A’ on graph ’ as follows.

If an initial message M of Algorithm A would go to processor v in block
V/of , then Algorithm A’ tags message M with the label of v and sends
it to processor vi of G’.
When a processor of ’ completes a task of Algorithm A’, it tags each
message M that it has generated with the label of the processor v (in
block V/) of G that Algorithm A would send the message to on G. It
then sends the message to processor vi of

A processor vi of G’ uses the label attached to incoming messages to determine
which processor in block V} of to simulate during a given step of Algorithm
A’. The block-oriented character of Algorithm A guarantees that a processor
of G’ is never asked to simulate more than one processor of at a time.

It is transparent that Algorithm A’ is functionally equivalent to Algorithm A; more-
over, the only overhead for running the former algorithm to simulate the latter resides
in the process of appending, sending, and decoding the processor-labels, which can be
assumed to be bit-strings of length at most log N. This overhead allows us to simulate
a large processor array with an t-processor array.

When is a Cayley graph Cay(H), and G’ is a coset graph Cos(Gr(H); H; H) of
by the subgroup H, then the scenario just described is often simplified somewhat,

for each block V of has the same number of processors, IHI. Thus, the effect of
Algorithm A on array is obtained on a processor array of size iGl/IUl. In this case,
we say that Algorithm A is H-blocked.

In certain instances, we can do even better. Consider, for illustration, executing
the FFT algorithm on the butterfly network (a Cayley graph whose structure matches
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the data dependencies of the algorithm; cf. 4.1.B and [1, Chap. 7]. This algorithm
runs on the network level by level (using the natural leveling of the network): At
each time t, each processor at level t of the network takes in inputs x and x2 on its
two input ports, using the source input ports to distinguish xl from x2; it computes
two linear functions Ll,t(Xl,X2) and L2,t(Xl,X2) of the inputs; it sends Ll,t out on
its first output port and L2,t out on its second output port. Thus, at any specific
moment, only one level of processors in the network is active. One sees that this
computation is so carefully choreographed that no addressing mechanism is needed
to determine what a processor is to do: A processor can determine what role to play

i.e., for which t to compute Ll,t and L2,t merely by keeping track of the time.
Generalizing from this example, we call an H-blocked algorithm for the Cayley graph

orchestrated if one can label each processor in each block of G (i.e., coset of H)
with a set of time-stamps that indicate the times when that processor is active while
executing the algorithm, independently of the input data. As with our example, one
can execute an orchestrated blocked algorithm on the coset graph using only a clock
(either global or one per processor) to tell each processor of the coset graph when it
is to play which role.

In the very special case of our example of the FFT algorithm on the butterfly
network, we encounter the potential for even further simplification: In the FFT algo-
rithm, the differences among the various linear functions Li,t, as t varies, reside in a
parameter wt that enters into the computation of Li,t. Since each wt wt2_ 1, a further
algorithmic simplification is possible: If we have each processor square its current pa-
rameter before computing its linear functions, then we shall have just two fixed linear
functions Li(xl,x2;wcurrent), 1,2, that are computed by every processor in the
butterfly. In this case, there is no need for a processor of a coset graph to maintain
any information about its "identity": Every processor, in every block/coset, performs
the same computation at every step as does every other processor. In the case of such
oblivious algorithms, therefore, we do not need any global or local clocks, and we do
not need to devote any time to processing addresses or time-stamps: We save a large
factor in hardware at no extra cost in computation time. 15

We close this section with a formal summary of the preceding discussion.
THEOREM 3.6. Let Cay(H) be a Cayley graph, let H be a subgroup of Gr(H),

and let A be an H-blocked algorithm for Cay(II).
(a) Algorithm A can be run on the coset graph Cos(Gr(Ii); H; H), slowed

down by the factor O(log ]HI).
(b) If Algorithm A is orchestrated, then t steps of the Algorithm can be run on

the coset graph in O(t logt) steps.
(c) In either of the previous circumstances, if the processors of Cay(II) operate

on "large" quantities, then the slowdown on the coset graph is only O(1).
(d) If Algorithm A is oblivious, then it can be run on the coset graph with no

time loss.
As a final general remark, we note that the Cayley graph Cay(H) can be enormous

compared to its associated GAG (V, II). Even if II consists of two permutations, one
of which cyclically permutes V and one of which switches two elements of V while
holding all others fixed so that the undirected graph underlying the GAG (V, H)
has only [Y[ edges the group Gr(II) can contain IV[! elements. Although we do
not know of any Cayley graph-GAG-algorithm matchups that apply Theorem 3.6 to
such an extreme situation, it is conceivable that such do exist.

15 We do, however, lose the ability to pipeline computations (one per level on the butterfly).



556 ANNEXSTEIN BAUMSLAG, AND ROSENBERG

FIG. 1. The deBruijn graph D2(3) as an undirected graph.

4. Main results: Concrete version. In this section we demonstrate the use-
fulness of the development in the preceding section, by applying it to four families of
graphs which are benchmarks among interconnection networks for parallel architec-
tures:

the butterfly network
the cube-connected cycles network
the deBruijn network
the shuffle-exchange network

All four families are bounded-degree "approximations" to the hypercube network. We
prove that the first two are families of Cayley graphs, both having the same wreath
product of cyclic groups as underlying groups, but with slightly different generator
sets; we prove that the second two are families of coset graphs of the former two
families. Thus we characterize precisely and rigorously the structural similarities and
differences among these families. We then discuss the implications of Theorem 3.6 for
the correspondences we have exposed.

At virtually no extra cost, we establish our results for generalized versions of the
four studied networks.

4.1. deBruijn and butterfly networks.
A. deBruijn graphs. Let d, n be positive integers. The base-d order-n deBruijn

graph )d(n) is the digraph whose vertices comprise the set Z, and whose arcs connect
each vertex ax E Z, where a Zd and x Z-1, to each vertex of the form x e Z
for some e Zd; see Fig. 1 and [12], [19].

By Proposition 2.1, every deBruijn graph can be arc-labeled so as to be a GAG.
One way to do this yields the correspondences we seek. For each/ e Zd, define the
permutation r[; d] of Z (n being clear from context) by

(ax)[/; d] x(a +/(mod d)),

for each a E Zd and x Z-I.16 Label each arc of T)d(n) of the form (ax, x) with
the permutation r[- a(mod d); d]. We leave to the reader the easy verification that
the described arc-labeling renders T)d(n) a GAG.

Let IId "-gel {7[Z; d]lZ e Zd}.

16 For all d, the permutation r[0; d] is just a cyclic-shift of the argument string. The permutation
r[0; 2] is termed a (per]ect) shuffle, and the permutation r[1; 2] is termed a shuffle-exchange.
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LEMMA 4.1. For all d, Gr(YI) is isomorphic to the wreath product Zd (R)or Zn.
Proof. Note first that for each base d and integer E Zd, the permutation

r[; d] E YI is equivalent to a modulo-d vector addition of (3, 0,..., 0) to the ar-
gument string/vector, followed by a one-place-left cyclic shift of the digits of the
argument; r[; d] is, thus, equivalent to the permutation

in Zd (R)wr Zn. It follows, therefore, that Gr(H’) is a subgroup of Zd (R)wr Zn.
Next, consider the arbitrary permutation

in Zd(R)wr Zn. By definition, the action of r on an element ofZ consists of a modulo-d
vector addition of (fl0, 1,"’, n-1) to the argument, followed by a left-cyclic shifts.
The action of r is, thus, equivalent to the action of the product7

r[/0; d]r[31; d]... r[#n-; d](0v[0; d])

of permutations from H" the first n permutations effect the vector addition, while
the last c effect the cyclic shift. It follows, therefore, that Zd (R)or Zn is a subgroup

Lemma 4.1 follows.
LEMMA 4.2. For all d, n, the base-d, order-n deBruijn graph T)d(n) is isomorphic

to the Coset graph

Cos(G; g; II)
where G Zd (R)wr Zn and H (0} (R)wr Zn.

Proof. Since T)d(n) is a connected GAG, Lemma 4.2 will follow from Theorem 3.1,
once we determine the stabilizer of Z in Zd (R)or Zn. By Theorem 3.1, it will suffice
to determine the stabilizer of the element (0, 0,..., 0) Z, which is transparently
Gr(0r[0; d]) (i.e., all possible shifts, with no additions). Using reasoning analogous
to that in the proof of Lemma 4.1, one verifies that Gr(r[0; d]) is isomorphic to the
subgroup {0} (R)or Z, of Zd

B. Butterfly networks. Let d, n be a positive integer. The base-d order-n
butterfly graph 13d(n) has vertex-set

The subset V()
n;d (/} Z of Vn;d (0

_
I < n) is the/th level of 13d(n); the string

x Z is the position-within-level (PWL, for short) string of each vertex in Zn (x}.
The edges of 13d(n) form d-butterflies (i.e., copies of the complete bipartite graph
Kd,d) between consecutive levels of vertices, with wraparound in the sense that level
0 is identified with level n. Each butterfly connects each vertex

3o3 
on level l of Bd(n) (0 <_ < n; and each 3 in Zd) with all vertices

<l / l(mod n), 3031"’" #-lw#+l"’"
on level g + 1(rood n) of B(d(n)), for all w Zd; is see Fig. 2.

17 In the product, (r[0; d]) denotes a sequence of c instances of r[0; d].
is B2(n) can be viewed as the FFT network with the input and output vertices (i.e., the top and

bottom levels) identified.
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1,000 1,100
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1,010 1,110

0,001 0,101
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0,000 0,100 0,010 0,110 0,001 0,101 0,011 0,111

FIG. 2. The butterfly graph B2(3) as an undirected graph; level 0 is replicated to aid visualization.

There is a natural way to turn Bd(n) into a TRAG whose arcs are labeled with
permutations from H’. First, we form the directed version d(n) of Bd(n), by orienting
each edge of Bd(n) from level / to level i + 1 (before reducing + 1 modulo n). Next,
we form the TRAG version ld(n) of ld(n), as follows. For each E Zn and a, w e Zd,
we label the arc from vertex

to vertex

with the permutation r[w- c(mod d); d].
LEMMA 4.3. For all d, n, the base-d order-n butterfly network Bd(n) is isomorphic

(as a TRAG) to the Cayley graph Cay(H’).
Proof. We show that the natural correspondence between vertices of d(n) and

vertices of Cay(Hdz,) yields the desired isomorphism. By Lemma 4.1, the latter set of
vertices comprises just the elements of Zd (R)wr Zn. Let each vertex

(t E Zn; each i E Zd) of ld(n) correspond to the element

of Zd (R)r Zn. Since this mapping is well defined and onto, it is one-to-one also. To
complete the proof, we need only verify that our correspondence preserves (labeled)
arcs. To simplify exposition in this verification, let us agree that all addition in the
remainder of the proof is modulo d.
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Every arc labeled [’),; d]e n in Cay(H) leads from a vertex

to vertex . r[,; d]. To determine the image of this latter vertex in ld(n), we must
consider the action of . r[’),; d] on an arbitrary vector (5o, 51,’", 5n-1), each 5i E Zd.
By definition, this action consists of

addition of the vector (fl0, ill,""", fin-l), followed by a sequence of l left-cyclic
shifts,

which is the action of , followed by
addition of the vector (,, 0, 0,..., 0), followed by a single left-cyclic shift,

which is the action of r[,; d]. This is easily seen to be identical to the action of the
permutation

of Zd (R)wr Zn. There is, thus, an arc labeled r[’; d] in Bd(n), from the vertex corre-
sponding to to the vertex corresponding to . r[,; d].

Every arc labeled r[; d] in Bd(n) leads from a vertex

to vertex

By our correspondence, this latter vertex corresponds to the element

of Zd (R)wr Zn. If we let denote the element of Zd (R)vr Z, corresponding to vertex v,
then reasoning similar to that in the previous paragraph verifies that . r[0’; d].
This verifies that labeled arcs between vertices in Bd(n) betoken like-labeled arcs
between the corresponding vertices of Cay(H).

Lemmas 4.1, 4.2, and 4.3 establish our first concrete correspondence; see Fig. 3.
THEOREM 4.4. For all d, n, the base-d order-n deBruijn graph T)d(n is a coset

graph of the base-d order-n butterfly network Bd(n).
Our development to this point allows us to infer, using Corollary 3.3, that butterfly

networks contain a lot of disjoint large complete trees, thus yielding a simple algebraic
proof of a somewhat complicated combinatorial result from [6].

COROLLARY 4.5. The base-d order-n butterfly network Bd(n) contains n disjoint
copies of the height-(n- 1) complete d-ary tree.

Proof. It is trivial to verify that the deBruijn graph T)d(n) contains the height-
(n- 1) complete d-ary tree as a subgraph. The result, therefore, follows directly from
Theorem 4.4, Lemma 4.7, and Corollary 3.3.

C. Algorithmic consequences. The advertised algorithmic consequences of
Theorem 3.6 follow from Theorem 4.1 coupled with an analysis of the structure of the
cosets of the group19 H0 {0}(R)wr Zn in the group Zd(R)wr Zn. One can prove without
much difficulty (cf. the verification of the Claim in the proof of Lemma 5.1) that each
such coset contains (under the correspondence of Lemma 4.3) precisely one vertex

19 By Lemma 4.1, this is the subgroup that yields the structure of the deBruijn graph.
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FIG. 3. B2(3) with the shuffle-oriented labeling that exposes D2(3) as a coset graph; level 0 is
replicated to aid visualization.

from each level of d(n). It follows that the H0-block-structured algorithms include
all algorithms that proceed through d(n) level by level. This class of algorithms
includes the so-called normal algorithms of [31] and the ascend-descend algorithms of
[22]. Thus, any algorithm in this class can be executed on the order-n deBruijn graph
essentially as fast as it can on the (much larger) order-n butterfly graph. (With a bit
of effort, one can replace the word "essentially" in the previous sentence by the word
"exactly"; cf. [25].) The reader can readily supply details.

4.2. Shuffle-exchange and CCC networks.
A: Shuffle-exchange graphs. Let d, n be positive integers. The base-d order-n

shuffle-exchange graph ,Sd(n) is the GAG whose vertices comprise the set Z, and
whose (labeled) arcs are specified by the permutations 7r(/; d) of Z ( E Zd and n
being clear from context) defined as follows. For each a E Zd and x Z-1,

(ax)Tr(0; d) (ax)r[0; d] xa

and, for fl 0,

(xa)r(fl; d) x(a + fl(mod d));

see Fig. 4. 20 Let II "-def {71"(fl; d)I e Za}.
LEMMA 4.6. For all d, Gr(IIds) is isomorphic to the wreath product Zd(R)wr Zn.2
Proof. By Lemma 4.1, it will suffice to prove that for all d, Gr(H) Gr(H).

To this end, note that for all d: r[0; d] r(0; d), and for fl Zd {0},

r[/; d] r(/; d)r(0; d);

20 The permutation r(1; 2) is termed an exchange.
21 The set Hds is often called the standard set of generators for Zd (R)wr Zn.
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FIG. 4. The shuffle-exchange graph $2(3) as an undirected graph.

and

r(; d) zr[/3; d](zr[0; d])n-1. r

LEMMA 4.7. For all d,n, the base-d order-n shuffle-exchange graph ,.qd(n) is
isomorphic to the Coset graph

Cos(G; H; II)
where G Zd (R)vor Zn and H (0} (R)vor Zn.

Proof. The proof is virtually identical to that of Lemma 4.2, so is left to the
reader.

B. Cube-connected cycles networks. Let d, n be positive integers. The base-d
order-n cube-connected cycles graph (CCCgraph, for short) d(n) has vertex-set

Y; Z Z.
() n n) is the lth level of d(n). The edgesThe subset Vn;d (} Zd of Vn;d (0 g I <

of Cd(n) are of two varieties. First there are the interlevel edges that connect each
vertex

on level / of Cd(n) (0 _< I < n; c and each/3i E Zd) with the corresponding vertex

(t + l(mod n), ofll fin-l)

on level l + l(mod n) of Cd(n). The remaining, intralevel, edges form d-cliques (i.e.,
copies of the complete graph Kd), as follows: On each level 0 <_ < n, each vertex

(c and each i in Zd) is adjacent to all vertices

for all w Zd.
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FIG. 5. The CCC graph C2(3) as an undirected graph.

There is a natural way to turn Cd(n) into a TRAG whose arcs are labeled with
permutations from IId. First, we form the directed version d(n) of Cd(n), by orienting
each interlevel edge of Cd(n) from level l to level l + 1 (before reducing l + 1 modulo
n); then, we replace each intralevel edge of d(n) by mated opposing arcs. Next, we
form the TRAG version d(n) of d(n), as follows. First, we label each interlevel arc
with the permutation 7r(0; d); then, for each / E Zn and a,w Zd, we label the arc
from vertex

(, /3031"’" ?3-10/3+1"""

to vertex

with the permutation r(w- (mod d); d); see Fig. 5.
LEMMA 4.8. For all d, n, the base-d order-n CCC network Cd(n) is isomorphic

(as a TRAG) to the Cayley graph Cay(IId).
THEOREM 4.9. For all d, n, the base-d order-n shuffle-exchange graph ,d(n) is a

coset graph of the base-d order-n CCC network d(n).
Proof sketch. The proofs of Lemma 4.8 and Theorem 4.9 are almost identical to

those of Lemma 4.3 and Theorem 4.4, respectively, so are left to the reader; see Fig.
6.

Part II: Graph-theoretic development.
5. Simulating butterflies by shuffles. We now shift gears to a purely graph-

theoretic framework, in which we develop a new, efficient simulation of butterfly-
oriented graphs by like-sized shuffle-oriented graphs. The major insight that yields
this simulation (which resides in Lemma 5.2) derives from the development in Part
I. Informally, one can view the relevant insight as follows. It is well known that if
one "collapses" the order-n butterfly graph B2(n) by contracting all vertices having
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FIG. 6. C2(3) with the shuffle-oriented labeling that exposes $2(3) as a coset graph.

the same PWL string (cf. 4.1B) into a single vertex, then the resulting graph is
(isomorphic to) the n-dimensional hypercube. The proof of Theorem 4.4 affords us
the following new analogue of this fact. Let us label each vertex of B2(n) (which,
by Lemma 4.3, is an element of the group Z2 (R)wr Zn) with the name of the element
of (Z2 (R)r Zn)/({O} (R)r Zn) to which it belongs. (By Lemma 4.2, these cosets are
the vertices of the associated deBruijn graph :D2(n).) If one now "collapses" B2(n)
by contracting all vertices having the same coset-label into a single vertex, then the
resulting graph is (isomorphic to) the order-n deBruijn graph :D2(n).

We present here only a simulation of the butterfly graph B2(n) by the deBruijn
graph :D2(n + [log2 n ), since focusing on this pair of graphs simplifies exposition and
allows us to minimize constant factors. At the cost of some clerical complication, we
could focus on graphs of any base d; indeed, the bases of the simulated and simulating
graphs need not even be the same, although constant factors must be adjusted if the
bases are allowed to differ. At the cost of small constant factors, we could replace the
butterfly graph B2(n) by the CCC graph 2(n) and/or replace the deBruijn graph
:D2(n + Flog2 HI) by the shuffle-exchange graph q2(n + [log2 HI). We leave these fine
points to the reader.

Certain conventions will simplify our exposition.
We elide the subscript "2" from the names of our graphs, since we consider
only the base-2 version henceforth.
We let h(n)=def [log2 HI.
We term an edge of B(n) a straight-edge if it leaves the PWL string unchanged,
i.e., has the form ((g, x), (g + l(mod n), x)); we term the edge a cross-edge
if it changes the PWL string.

While proving our main simulation result, we set off a series of fundamental
lemmas that are likely to be useful in other contexts also.

THEOREM 5.1. For all n, one can embed the order-n butterfly graph B(n) in
the order-(n + A(n)) deBruijn graph T)(n + A(n)), with dilation O(A(n)), congestion
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O(A(n)), and dynamic congestion 0(1).
Proof. We develop our embedding in three steps.
1. We embed B(n) in the product graph T(n) :D(n),22 with dilation 2 (Lemma

2. We embed T(n) :D(n) in :D(A(n)) :D(n) with unit dilation, i.e., as a
subgraph (Lemma 5.3).

3. We embed :D(A(n)) :D(n) in :D(n + A(n)), with dilation 2A(n)+ 1, via an
embedding that has small dynamic congestion (Lemma 5.4).

In the course of the third embedding, we prove the amusing fact that n disjoint copies
of T(n) can be embedded simultaneously in T(n + A(n)), with dilation 2A(n) + 1.

LEMMA 5.2. For all n, one can embed the order-n butterfly graph B(n) in T(n)
:D(n) with dilation 2, congestion 2, and dynamic congestion 2.

Proof. We begin by labeling the vertices of B(n) with strings from Z, using the
shuffle-oriented labeling, which is implicit in the proof of Theorem 3.2; see Fig. 3.
The labeling rules are as follows:

1. Label vertex (0, ) of B(n) with the string .
2. If level-I vertex v ( Zn) is labeled with string L(v), then

label the straight-edge neighbor of vertex v on level / + 1 (rood n) with
the shuffle of L(v).
label the cross-edge neighbor of vertex v on level l + 1 (rood n) with the
shuffle-exchange of L(v).

CLAIM. Each level-i vertex of B(n) is assigned a unique label.
Verification. Let us "unwrap" B(n) by making two copies of every vertex at level 0;
one copy remains at level 0, in that it is connected to vertices at level 1, while one
copy participates in a new level n, in that it is connected to vertices at level n- 1.
Let us call the resulting graph B’(n). (As noted in footnote 18, B(n) is the 2n-input
FFT graph.) There is a unique "downward" path in B(n) from vertex (0, () to each
vertex on level n, i.e., a path that increases level-number at each step: to wit, every
level-0 vertex of B(n) is the root of a complete binary tree whose leaves are all of the
level-n vertices. Moreover, the unique path from vertex (0, ) to each level-n vertex
is recorded in the label of the vertex: the kth edge of the path is a straight-edge
(respectively, a cross-edge) just when the kth symbol of the label is a 0 (respectively,
a 1). It follows that the labels of all level-n vertices are distinct. But, the same must
now be true of every level of B (n) since, according to rule 2, the label of an arbitrary
vertex u at level I is just the (n- i)-fold shuffle of the label of the level-n vertex
reached by following n- l straight-edges from u. Since the vertex-labels in B(n) are
inherited from those in B(n), the claimed uniqueness follows.

Now, isolate any two consecutive levels of the labeled B(n), together with the
2n+l edges that connect the levels; cf. Fig. 7. Produce a 2n-vertex graph Gn from the
isolated levels by identifying like-labeled vertices and removing the self-loops from
the vertices labeled and i*. Our remarks about how labels of adjacent vertices
are either the shuffle or the shuffle-exchange of each other renders transparent the
following claim, which exposes the contraction-mapping discussed at the beginning of
the section.

CLAIM. For all choices of adjacent levels of B(n), the graph Gn is isomorphic to

The lemma is now direct: To embed B(n) in (n) T(n):

22 7(n) is the n-vertex cycle, i.e., the graph whose vertices comprise the set Zn and whose edges
connect vertices and + 1 mod n.
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FIG. 7. Two consecutive levels of B2(3) with the shuffle-oriented labeling; "columns" are per-
muted to help visualize the identification.

Label the vertices of B(n) as indicated. Assign the level-I vertex of B(n) that
gets label x to vertex x of copy / of Z)(n).
Consider a straight-edge (respectively, a cross-edge) e of B(n) that connects
the vertex labeled x on level / with the vertex labeled y on level + 1 (mod
n). Route edge e within 7Z(n) /)(n) via the length-2 path consisting of

the shuffle edge (respectively, the shuffle-exchange edge) that connects
vertex x and vertex y in copy l of T)(n),
the edge that connects the instances of vertex y in copies and + 1
(mod n) of :D(n).

The validity and efficiency of the embedding should be obvious.
We state and prove Lemmas 5.3 and 5.5 in a somewhat more general context than

is needed for Theorem 5.1.
LEMMA 5.3. For all m and n, one can embed T(m) x Z)(n) in :D(A(m)) x T(n)

with unit dilation, i.e., as a subgraph.

Proof. It is proved in [32] that the deBruijn graph Z)(n) is pancyclic, i.e., that it

contains every cycle 7Z(k), for 1 <_ k <_ 2n, as a subgraph. (In fact, Z)(n) is pancyclic
even as a directed graph [32]; and this property persists even for arbitrary base-d
deBruijn graphs 79d(n) [19].) This pancyclicity guarantees that :D(A(m)) contains

7Z(m) as a subgraph. Lemma 5.2 follows.

LEMMA 5.4. For all m and n, one can embed Y)(m) x 7)(n) in the order-(m + n)
deBruijn graph Z)(m + n), with dilation 2m + 1, congestion 8m + 2, and dynamic
congestion 4.

Proof. We build on the following amusing fact.

LEMMA 5.5. For all m and n, one can embed 2m vertex-disjoint copies of 1)(n)
in l:)(m + n) with dilation 2m + 1, and congestion at most 4m + 2.

Proof. Let us be given 2m copies of D(n). Label each with a distinct string
x 6 Zn, so we can talk about copy x of :D(n), which we denote

For each x, we embed 7)z in 7)(m + n) as follows. We assign vertex v of/) to
vertex xv of D(m + n). We route edge (v, vT) of :D (/, 7 6 Z2; 7 6 {/, 1 -/};
v 6 Z-1) via the following length-(2m + 1) path in/)(m + n) that connects vertices

xv and xvT: Let x 12"’" m.
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XW/.

shuffle/shuffle-exchange
shuffle/shuffle-exchange

shuffle/shuffle-exchange
shuffle

In the first m/ 1 of these edges, the choice between the shuffle and the shuffle-exchange
edges of T(m + n) is dictated by whether the symbol being rotated to the end of the
string needs to be complemented (calling for the shuffle-exchange edge) or not (so the
shuffle edge is needed).

The claimed dilation of the embedding is clear from our description of the routing
procedure. Note that some of the routing paths are longer than necessary. (For
instance, a length-1 path will suffice when x, , and v are all O’s, and /= 1.) This
extra length does not affect dilation, which is a worst-case measure; and, it will allow
us to decrease the dynamic congestion of the final embedding that builds on this one.

To see that the congestion of the embedding is at most 4m + 2, say that we are

told that an edge of (m + n) is being used as the kth edge in a routing path. Then,
if k > m / 1, that information completely specifies x, v, and -; if k <_ rn / 1, that

information completely specifies v,/3, and -),, and all but one bit of x. It follows that

each edge of T)(rn + n) can be used to route at most two edges in each of the 2rn + 1

steps of the routing. The bound follows.

We remark in passing that the dilation of the embedding increases to 3rn + 2 when
one substitutes the shuffle-exchange graph for the deBruijn graph.

Proof of Lemma 5.3. We now show how to extend the embedding of Lemma 5.5
to yield the desired embedding of 7:)(rn) /)(n) in T)(m / n).

The assignment portion of the embedding is straightforward: We assign vertex
(x,v) of:D(m):D(n)(x Zn, v Z)to vertex xv of/)(m+n). Thus, the subgraph
{x} T)(n) of T)(m) /)(n) plays the role of T). This assignment allows us to invoke
the embedding of Lemma 5.5 to route the edges of T)(rn) T)(n) that connect vertices
in different copies of 7:)(rn), i.e., that derive from edges of/)(n). To complete the
embedding, we need, therefore, specify only how to route the edges of T)(rn) T)(n)
that connect vertices in different copies of 7:)(n), i.e., that derive from edges of T)(rn).

We accomplish this second routing task by a technique that is almost identical
to the technique of Lemma 5.5. Every edge that we must route in this second task
connects a vertex u in some copy, T)x, of :D(n) to the corresponding vertex u in another
copy, T)y, where x and y are adjacent vertices of 7:)(rn). Thus, the path that realizes
the edge must connect two vertices of the form flzv and z’v ([3, 9/ Z2; 9’ {fl, 1-/};
z Zn-; v Z). We realize this path as follows. Let z 2... m-.
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shuffle/shuffle-exchange
shuffle/shuffle-exchange

shuffle/shuffle-exchange
shuffle/shuffle-exchange
shuffle
shuffle

shuffle
shuffle

As in the embedding of Lemma 5.5, the choice between the shuffle and shuffle-exchange
edges in the first m edges of the path is dictated by whether or not the symbol being
rotated to the end of the string needs to be complemented.

It is clear that the presented mappings constitute an embedding of T(m)
in T(m + n), in that the assignment and routing functions are both one-to-one. It
remains, therefore, only to assess the cost of the resulting embedding.

The dilation of the embedding is the maximum of the dilations of the two stages.
The routing of edges within copies of T(n) (cf. Lemma 5.5) incurs dilation 2m + 1;
the just-presented routing of edges between copies of :D(n) incurs dilation 2m.

The congestion of the embedding is the sum of the congestions of the two stages
of the embedding. The routing of edges within copies of T(n), in Lemma 5.5, incurs
congestion 4m + 2. We show now that routing edges between copies of :D(n) incurs
congestion 8m. To wit, say that we are told that an edge of :D(m + n) is being used
as the kth edge in a routing path. Using the notation in our routing algorithm above:
that information completely specifies the strings v and z, but it generally leaves both
/ and unspecified, it follows that each edge of :D(m + n) can be used to route at
most four edges in each of the 2m steps of the routing. The bound follows.

To determine the dynamic congestion of the embedding, assume that when
single step of a parallel algorithm traverses edges of :D(m) :D(n), the associated
routing paths within T(m + n) are traversed in lockstep. Under this assumption,
at each step of the simulation, we know that edge e of T(m + n) is being used as
the kth edge in a routing path, since the same is true of all edges of :D(m + n) that
are being used at that step. It follows that the "uncertainty" about which edge of
T(m) T(n) is being routed across a given edge of T(m + n) at a given step which
quantity bounds the dynamic congestion of the embedding from above is less than
the congestion of the embedding by the factor 2m.

Proof of Theorem 5.1. By composing the embeddings of Lemmas 5.2, 5.3, and
5.4, we obtain an embedding of B(n) in T(n + A(n)). By the analyses of the lemmas,
we see that the dilation of the composite embedding is 4A(n) / 2, its congestion is
_< 24A(n) + 4, and its dynamic congestion is _< 12 + o(1).
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EMBEDDING TREES IN A HYPERCUBE IS NP-COMPLETE*

A. WAGNERf AND D. G. CORNEIL$

Abstract. An important family of graphs is the n-dimensional hypercube, the graph with 2
nodes labelled 0, 1,..., 2 1, and an edge joining two nodes whenever their binary representation
differs in a single coordinate. The problem of deciding if a given source graph is a partial subgraph of
an n-dimensional cube has recently been shown to be NP-complete. In this paper the same problem
on a very restricted family of source graphs, trees, is considered. It is shown that the problem of
determining for a given tree T and integer k if T is a partial subgraph of a k-dimensional cube is
NP-complete.

Key words. NP-complete, trees, hypercube, multiprocessor, graph embedding
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1. Introduction. An important family of graphs attracting a great deal of at-
tention lately is the n-dimensional Boolean cube or simply n-cube. An n-cube graph,
Qn, consists of 2n vertices labelled {0, 1,..., 2n -1} and an edge joining two vertices
whenever the binary representation of their labels differ in only one coordinate. The
main source of interest in this family of graphs has been the recent appearance of
several multiprocessor architectures, generically called hypercubes, whose intercon-
nection is based on the n-cube. Typically, an order n hypercube has 2n micropro-
cessors, each with its own memory, that are interconnected by n2n- point-to-point
communication channels corresponding to the edges of an n-cube.

There are several properties of the hypercube that have contributed to its success.
From an engineering perspective, current technology has made it both technically
and economically feasible to build hypercubes with large numbers of vertices. As an
interconnection network, it is scalable to thousands of vertices and the hardware costs
grow logarithmically with the number of vertices. There is a simple routing algorithm
and the interconnection has logarithmic diameter and high bandwidth. There are d!
shortest paths between vertices a distance d apart and, as shown by Foldes [9], the
n-cube is the only bipartite graph with this property.

From a programming perspective, the hypercube’s recursive structure is well-
suited for divide-and-conquer-type algorithms. Many numerical applications take ad-
vantage of the fact that rings, two-dimensional meshes, higher-dimensional meshes,
hexagons, and almost complete binary trees are all embeddable in a hypercube [16][3]
[23][18][15]. However, these structures may not always capture the irregular computa-
tion and communication structure of many programs and the problem of embedding
these irregular structures remains. This problem is not unique to hypercubes, but
occurs in all multiprocessor architectures and is known as the mapping problem [4].

The problem of mapping a graph representing the computation and communica-
tion needs of the program onto the underlying physical interconnection of a multipro-
cessor so as to minimize the communication overhead and maximize the parallelism
is called the mapping problem. In its simplest form (i.e., unit costs) this problem
reduces to the subgraph isomorphism problem that is known to be NP-complete. In
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our case there is the added restriction of a fixed host. One well-studied problem for
fixed hosts is the bandwidth minimization problem- given a graph G and integer
k can G be embedded in a line so that any two vertices adjacent in G are at most
distance k apart on the line. This problem was shown to be NP-complete even when
G was a binary tree [11], but is solvable in polynomial time for fixed distance k [20].
In general, however, little is known about the NP-completeness status of the subgraph
isomorphism problem for restricted hosts and there are few if any results comparable
to that which is known about the bandwidth minimization problem [19]. In this paper
we consider the subgraph isomorphism problem on a restricted host, the n-cube.

The problem of deciding if a graph is a subgraph of an n-cube is not new, variations
of this problem first appeared over 20 years ago in the areas of switching circuits
and coding theory. Early work by Deza [22] and Firsov [8] established some basic
properties of isometric subgraphs (i.e., distance preserving) of the n-cube and in 1973,
Djokovi5 [7] completely characterized these subgraphs. Later work by Garey and
Graham [10] showed that there are infinite families of forbidden graphs and posed the
question as to whether or not there exist efficient algorithms for deciding if a graph is
a partial subgraph of an n-cube. The problem of characterizing the partial subgraphs
of the n-cube was one of the open problems that appeared in the 1976 book by Bondy
and Murty on graph theory [5].

It was not until 1984 that Afrati, Papadimitriou, and Papageorgiou [1] proved
that deciding if a graph was a partial subgraph of a hypercube was NP-complete. The
validity of their proof, however, has been challenged by Krumme and Venkataraman
[17] who independently, using a different reduction technique, obtained the same result
[6]. Although this solved the problem on general graphs there was no obvious way
to extend either of these reduction techniques to obtain similar results on restricted
families of source graphs, and trees in particular.

The problem of embedding trees into an n-cube has also been studied. Since all
trees are embeddable in a sufficiently large n-cube the problem now is to find the
smallest n-cube containing a given tree. Afrati, Papadimitriou, and Papageorgiou[1],
and much earlier Havel and Lieble[14], noticed that for an arbitrary tree with N ver-
tices the number of dimensions required can vary from log(N) to N- 1. Finding this
dimension was conjectured to be NP-hard. The result presented in this paper consid-
erably strengthens the previously mentioned NP-completeness results and confirms
the conjecture that tree embedding is NP-hard. We show that given a tree T and
integer k the problem of deciding if T is embeddable in a k-cube such that vertices
adjacent in T are also adjacent in the k-cube is NP-complete. A consequence of this
result is that it is unlikely there is an efficient algorithm for mapping applications
with an irregular communication pattern onto the hypercube. Coincidentally, our
reduction uses the same 3-partition problem that was used in [11] to show that the
bandwidth minimization problem was NP-complete for binary trees.

2. Terminology and definitions. In the remainder of this paper we adopt
the terminology of Garey and Graham [10] and define an n-cube graph to be the
undirected Hasse diagram of the lattice on the subsets of a set. Given a set S the
cube on S is the graph Qlsl (V, E) where V is the set of all finite subsets of S and
an edge (u, v) is in E if and only if the symmetric difference of u and v is a singleton
set. The Hamming distance between two vertices u, v in the cube on S, dH(u, v)
is equal to the cardinality of their symmetric difference. The usual n-dimensionM
{0, 1} vector notation of the n-cube can be derived from the previous definition by
replacing each subset in the vertex set with its corresponding characteristic vector.
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DEFINITION 1. Given Qlsl and a graph G (V, E), a function mapping the
vertices of G to subsets of S is an embedding of G in Qlsl if and only if the function
is one-one and for all edges (u, v) E E(G) the Hamming distance between these
vertices in Qlsl is one.

The function embedding G in Qlsl is called a proper labelling of G. A function
is said to be a partial embedding of G in an n-cube if the function is a proper
labelling on only a partial subgraph of G.

Given a labelling of G in the cube on S, new labellings are obtained by applying
rotations and reflections to the old labels of G. A reflection of G with respect to u,
one of the 21El subsets of S, is a relabelling of G where the new label of a vertex in
G is the symmetric difference of u with the vertex’s previous label. A rotation of G
with respect to one of the [S]! possible permutations of the set S, is a relabelling of
G where the new label of a vertex is the label obtained by applying the permutation
of 5’ to each of the elements of S in the vertex’s old label. The terms rotation and
renaming will be used synonymously.

DEFINITION 2. In QIsI the neighbourhood, NQ(V
V(Qlsl) is the set of all vertices in QIsl (including V) adjacent to a vertex in V.

Note that the neighbourhood of a vertex u in the cube on S, NQ(u), is the set of
all subsets of S obtained by deleting an element of S from u or adding an element of
S not in u to the set u. In a rooted tree, T (V, E), the neighbourhood of a set of
vertices V’ C. V(T), Nc(V’ is the set of all children of W. The degree of vertices in
T is taken to be its down-degree (i.e., Vv

The problem studied in this paper can be formally stated as:
Tree-Embedding: Given a tree T and integer k can T be embedded

in Qk?
We reduce a modified version of the 3-partition problem, which we call 3-partition,

to the tree-embedding problem. The NP-completeness of tree-embedding will follow
from the fact that the 3-partition problem, even when expressed in unary, is NP-
complete [12]. The definition of the 3-partition problem is

3-Partition: Given a set A {a10 < <_ 3m}, an integer bound B,
and a weight function s" A Z+ such that B/4 < s(ai) < B/2 and
-a6_.A 8(a) mB. Can A be partitioned into m disjoint 3-element
sets Ai {aio, ail, ai }, 1 <_ _< m such that s(aio) + s(ai) + s(ai2)
B?

while the modified version that we use is
3-Partition: Given a set A {ail0 < _< 3m}, an integer bound
B greater than or equal to 3m, and a weight function s A Z+
such that
(1) s(a3m-2) s(a3m-1) s(a3m) O,
(2) B/4 < s(ai) < B/2 for all ai where 3m 2, 3m 1, 3m, and
(3) -,aeA s(a) (m- 1)B.
Can A be partitioned into m-1 disjoint 3-element sets Ai (ai0, ai, ai ,
1 _< < m such that s(aio) + s(ai) + s(ai) B?

It is easy to show that these two problems are equivalent. First, note that in
3-partition the three weightless elements cannot be part of any 3-element subset of
A if the weight of the latter is to sum to B. Thus, this is simply an instance of 3-
partition on the set A\(a3m-2, a3m-l,a3m} with the added restriction that B > 3m.
The three weightless elements have been introduced for technical reasons that are
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explained later. The restriction that B _> 3m can be satisfied by a simple linear
scaling of the weight function. Again this does not change the NP-completeness
status of the original problem. This last restriction is introduced because of the way
in which both m and B are encoded in the tree we construct.

3. Overview of the reduction. Given an instance of the 31-partition problem
we set k B / m + 2 and construct a tree T that is embeddable in Qk if and only if
there is a solution to the corresponding 31-partition problem. The tree consists of two
parts: a particular part, which encodes an instance of the 3-partition problem; and a
generic part, which encodes the condition that A must be partitioned into m- 1 sets
whose weights sum to B. It is a conflict between these two parts of T that solves the
corresponding 3-partition problem.

This conflict is created by insisting that the generic and particular parts compete
for a common set of labels in any proper labelling of T. Vertices in the generic part
of T use most of these labels, but any embedding of T in the cube leaves free exactly
m- 1 groups of B labels. In the particular part of T there is, for each a E A, a fan
of size s(a) whose labels must come from one of the m 1 group of labels left free by
the generic part. Again, it is this conflict that must be resolved if there is to exist a
solution to the corresponding 3-partition problem.

The following terminology is introduced to describe the labels that are assigned to
the vertices ofT. Define (S+m+2 as the cube on S where ISI B+m+2. In addition,
let S be the disjoint union of three sets X, Y, and Z where X (xl,x2,... ,Xm},
Y {Yl,Y2,"’,YB}, and Z {z,z2}. In general the sets X, Y, and Z serve to
mark those parts of the cube in which we are interested. Informally, elements of X
identify the m sets that partition A, elements of Y express, in unary, the values of
the weight function s, and the elements of Z are used to bind the different parts of
the tree together.

Given that S X tO Y tO Z, labels in the cube on S are subsets of S containing
elements of X, Y, and Z. Often however, it is not individual labels that need to be
described but rather sets of labels. A set of labels, or equivalently a subset of the
power set of S, is called a form. In the cube on S, forms are denoted as strings where
uppercase letters X, Y, and Z denote arbitrary elements of their respective set and
lowercase subscripted letters denote specific elements. For example,

XYYYZ

x3XYYz

XlX3Y2Y4Zl

(All subsets of S containing 1 element of X, 3 elements of
and 1 element of Z.

All subsets of S containing 2 elements of X, where one of the}elements is x3, 2 elements of Y, and the element z from Z.

=_ {The subset of S containing exactly the elements xl, x3, Y2,

Zl.

Note that forms must correspond to legitimate subsets of S. Thus strings with too
many X, Y, or Z letters or strings with elements occurring more than once are not
valid forms. The empty set, q} is a legitimate form and denotes the subset of S having
no X, Y, or Z elements. The set X is defined to be the subset (x,x2,... ,Xm-} of
X; X can also appear in forms.

Furthermore, we define an ordering < on S so that

x < x2... < Xm < y < Y2"’" YB Zl Z2.
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This ordering is extended to a lexigraphical ordering of the subsets of S, where for
instance

0 < < <

Subscripted variables can appear in forms and denote a range of elements in X, Y,
and Z. For example

All subsets of S containing 2 elements of X where one element}x3xj[j > 5] [is x3 and the second is an element in the range 6 to m.

Square brackets appearing at the end of a form or set of forms enclose a restriction
on the labels of that form.

Note that with respect to a form F it is still easy to determine the form of the
labels in the neighbourhood of F. Recall from 2 that the neighbourhood of a label
a in the cube on S can be obtained by adding or deleting an element from the set
a. There is a similar operation that can be performed on strings representing forms.
Given a form F one obtains a new form by adding or deleting a single letter from the
string denoting F. The set of labels in this new form all have the property that they
are Hamming distance one (i.e., adjacent in QB+m+2 from some label in F. For
example, if X is added to the form XYY, then we obtain XXYY where each label
in XXYY is adjacent to one or more labels in XYY, that is XXYY C_ NQ(XYY).

There are three labelling functions used to describe different parts of the reduc-
tion. Initially, T is constructed with the help of a labelling function lc that gives
a partial embedding of T in the cube. This function is not only used to construct
T but also appears in later sections to specify vertices of T indirectly as I[l(a) for
some label a. In general, whenever is a labelling and F a form, l-(F) is used to
specify those vertices in T that, by l, are assigned labels from F. The remaining two
functions are: lp, a proper labelling of T that exists when there is a solution to the
3-partition problem, and lq, a proper labelling of T that gives rise to a solution to
the 3-partition problem.

Finally we give an outline of the NP-completeness proof for the tree-embedding
problem.

THEOREM 3.1. Tree-embedding is NP-complete.
Outline of Proof. The tree-embedding problem is in NP since, given a labelling,

one can check in polynomial time that the Hamming distance between adjacent ver-
tices in T is one and that the labels are distinct. Now, given an instance of the
3-partition problem we set k B + m + 2 and construct the tree T. The proof is
complete if the following two statements are true.

(1) Given a solution of 3-partition there exists a proper labelling, lp, embedding
T in QB+m+2, and

(2) Conversely, given an embedding of T in Qs+m+2, that is a proper labelling
lq, then it is possible to extract from the labelling of T a solution to the
3-partition problem.

The construction of T is given in the next section. The proof of the first statement is
given by Theorem 5.3 in 5 and the second statement is established by Theorem 6.4
in6.

4. Construction. We begin by constructing from an instance of 3-partition a
tree T encoding both the constituents of the instance and also the constraints that
must be satisfied. As previously mentioned, most of T will be defined with the help of
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the labelling function lc. This approach is taken since, up to a renaming of elements
within the sets X, Y, and Z, many of the vertices of T are assigned the same label
in any proper labelling of T. The overall shape of T is such that, except for those
vertices that create the conflict between the generic and particular parts of T, there
is only one fixed embedding.

A skeleton of the tree T is given in Fig. 1. Each box in this skeleton represents

01

z C2

C5 C7

C3 C4

08 Cll 012

Yz 14 5

XYYz
XYzz2
YY
YYYz
YYzz2

C16

XXX
XXXXz2
XXXYz2
XXXzz2
XXY
XXYYz2
,XxYzlz2 J

xmYYZ2

FIC. 1. Skeleton ofT where X = {xz,2,
{zz,z2}, and X’- {z,,"’,Xm-} of X.

C18

xmYYYz2
xmYYZlZ2
YYz2

Particular
Part

C21
X’YY

X’YYYz2
X’YYzz2

..,crn},Y- {y,y2,...,yB},Z =

one or more vertices of T on a particular level of the tree. Edges denote some, as yet
unspecified, connection between the vertices of T on one level and their children on
the next level.

The construction of T from its skeleton is completed in two stages. First, the
edges and vertices of T in C to Czs are defined. The vertices are defined by the
labelling function lc; there is a vertex in T for each label belonging to a form inside
C to C8. Second, the remaining portion of the tree (C19, C20, and C21) is defined
by explicitly describing its structure. It is in this part of the tree that we encode the
3-partition problem. The forms that appear inside C19, C20, and C2 of Fig. 1 are
the labels of these vertices, should a solution to the problem exist.

Note that vertices in C20 and vertices in C2 both receive labels of the form XYY.
It is this common set of labels that is the source of the conflict between the generic and
particular parts of T. The generic part of T has been carefully constructed so that,



576 A. WAGNER AND D. G. CORNEIL

in any embedding of T in Q,B-t-m+2, it surrounds the particular part of T leaving free,
for each m, B labels of the form xiYY. The leaves of each fan in the particular
part of T can only be assigned labels from one of the m- 1 groups of free labels.
Again, T can be properly labelled, if and only if, the 3(m- 1) fans in C19 and C20
can cover all of the m 1 labels left free by the generic part of T.

The following three sections describe the construction of T from its skeleton.
Section 4.1 defines those edges connecting vertices in C1 to Cs. Section 4.2 describes
the vertices and edges in the particular part of the tree, C9 and C20. Finally, 4.3
describes the vertices in C2 and the edges that connect them to their parents in C5.

4.1. Construction of C1 to Cs. Let the vertices in C to Cs be defined by
the labels given in Fig. 1 (i.e.,/c(C) q); lc(C2) Zl;’’" ;/c(66) YZl, ZlZ2; etc.).
Given a lexigraphical ordering of the subsets of S define the edge set between the
vertices in Ci and children in Cj by introducing a function f that maps a vertex u in
Cj to the vertex in C whose label is the least label Hamming distance one from the
label of u.

Formally, given C and Cj in the skeleton of T such that i,j < 18 and C is the
parent of Cj then let f be the function

where f(u) v such that
(1) dH(lc(u),/c(v)) 1, and
(2) Vv’ 6 C if dg(Ic(v’),/c(u)) 1 then/c(v) _</c(V’).

There is an edge (u, v) 6 E(T) if and only if f(u) v. For example, the connections
between C6 1[(Yz,zz2) and its children in C9 1[(YYzl, Yzz2), for B 4,
is given in Fig. 2. There is an edge shown in Fig. 2 whenever the Hamming distance
between two labels is one, the solid edges belong to T. Observe that the degree of

YlZl Y2Zl Y3Zl Y4Zl ZlZ2

YlY2Zl YlY3Zl YlY4Zl Y2Y3Zl Y2Y4Zl Y3Y4Zl YlZlZ2 Y2ZlZ2 Y3ZlZ2 Y4ZlZ2

FIG. 2. An example of the tree connections for B 4, where the solid lines are edges in T.

the vertices in C6 decrease. This type of structure appears throughout T and helps
fix the embedding of T in QB+m+2.

LEMMA 4.1. The part ofT whose vertices are defined by lc and whose edges are

defined by f is a tree.
Proof. Consider any two nodes Ci and Cj labelled by lc such that Ci is the parent

of Cj in the skeleton of T. Note that ev.ery form F in lc(Cj) can be obtained from
some form F’ in lc(Ci) by adding or deleting an X, Y, or Z element from the string
denoting F’. Thus F C NQ(F’), and for every lc(u) 6 F there exists a/c(v) 6 F’
Hamming distance one away. This and the fact that S is well-ordered implies that f
is a well-defined function on all of the labels in Ic(Cj).



EMBEDDING TREES IN A HYPERCUBE IS NP-COMPLETE 577

Since this holds for all C, Cj pairs labelled by/c, the graph T that was constructed
is connected and on each level there is only one edge joining a vertex in Cj to a vertex
in C on the level above. Thus the part of T constructed by lc and f is a tree. [:]

4.2. Construction of Cz9 to C20. Root from each of the vertices /l(yl)...
l[Z(yB) in C4 a fan of size m. Now for each a E A such that s(a) > 0 uniquely
choose one of the fans rooted at/-(yl), l[(y2), l[(Y3(m-)) and root at a leaf
in that fan a second fan of size s(ai) (see Fig. 3).

Yl

C4

C19

C2o
FIG. 3. Encoding of the instance of 3-partition

DEFINITION 3. Let r be the vertex in 619, corresponding to the element ai E A,
where a fan of size s(ai) > 0 was rooted. Let R denote the set of all such vertices in
C9.

Note that for the three weightless elements of A (a3m-2,a3m-z,a3m) we have
implicitly rooted, at Y3m-2, Y3m--1, and Y3m, a fan of size zero (i.e., no children). This
is consistent with the fact that all labels of the form x,YY are assigned to vertices in
Cs, and thus there are no free labels available for one of the m sets in the partition.
Also note that there is a direct correspondence between the set of vertices R and the
set A\{a3m-2, a3m-l,a3m}. When there is an embedding of T in QB+m+2 it will be
the X element in ri’s label that identifies the 3-element set in the partition to which
ri (and thus hi) belongs.

4.3. Construction of C2. The remaining vertices of T are all children of ver-
tices in C5. Given is a rather cryptic description of the children of C5, but one that
simplifies the definition of lp in the next part of the proof. At this stage it suffices to
verify that T can be constructed.

Given that lc(Cz5) X’YYz2, consider an arbitrary vertex of the form l-(
xiyjykz2 [i m]) and, without loss of generality, assume that j < k. Define, with
respect to index i, the interval I {3i- 2, 3i- 1, 3i}. The degrees of the vertices in
C5 will depend on the values of their indices i, j, and k, and whether or not they are
contained in I.
For an arbitrary vertex u l(xyjykz2[i m]):

(1) If j, k I then
(a) if k < 3i then deg(u) B- k + 2,
(b) otherwise deg(u) B- k + 5.

(2) If j or k I but not both then
(a) ifj=3i-2ork=3i-2thendeg(u)=2,
(b) otherwise deg(u) 3.

(3) If j, k I then
(a) ifj3i-2andk3i-2thendeg(u)=2,
(b) otherwise deg(u)= 1.
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Now add to T the number of children needed to satisfy the degree requirements
just given for the vertices in C15. The degree of all vertices in C15 is well-defined since
the label of each vertex in C15 has either 0, 1, or 2 indices from I.

This completes the construction of T. Since the forms that appear in the skeleton
of T have constant length, the size of T is polynomial in B and m. In the next section
we show that if there is a solution to the instance of 3-partition then T is embeddable
in QB+m+2.

4.4. Properties of T. Before proving, in 5 and 6, that tree embedding is
NP-complete we need the following lemmas. First we prove, as claimed, that the
labelling function lc is a partial embedding of T in QB+m+2.

LEMMA 4.2. The function Ic is a partial embedding of T in QB+m+2.
Proof. Function lc is a partial embedding if for the part of T on which lc is defined,

the Hamming distance between adjacent vertices is one and the labels are distinct.
The Hamming distance is one since, by function f in 4.1, this is precisely how the
edges in C1 to Cs were defined. Also, by checking the forms in Fig. 1 it is easily
verified that all of the labels are distinct.

The following two lemmas are used in 6.2 and establish some facts about the
structure of T at C5 and C0.

LEMMA 4.3. For all 1 <_ <_ m, deg(1j(xz)) m + B- + 2.

Proof. In the construction of T the labels of the form Xz were connected to
labels of the form {X, XXz,XYzI,Xzz2}. Recall from the construction of T the
function f that defined the edges between vertices in C and Cs. There was an edge
joining 1[(xz) to a vertex u Cs whenever xz was the least label in C Hamming
distance one from l(u). Therefore, vertex 1[l(xzl) has

m-i children of the form xxjz[i < j],
B children of the form xYz,
1 child of the form x,
1 child of the form xzz2.

Thus, deg(1j(xzl)) m + B- + 2.
We now determine the degree of the vertices at Co.
LEMMA 4.4. For all 1 <_ < j <_ m, deg(1j(xxjz2)) m + B -j + 2.

Proof. In the construction of T, the labels in /c(Co) XXz2 are joined to
labels in/c(C3) {XX, XXXz2, XXYz2, XXzlz2}. By function f, there is an edge
joining l[(xxz2) to a vertex in C3 whenever xxjz2 is the least label a Hamming
distance one from a label in/c(C3). Therefore, there is an edge connecting 1[(xxjz2)
to

m-j children of the form xxjxkz2[j < k],
B children of the form xixjYz2,
1 child of the form xxj,
1 child of the form xxjzz2.

Thus deg(l[(xxjz2)) m + B- j + 2.

5. Embedding a solution of 3-partition in (B+m+2. Suppose A can be
partitioned into m- 1 sets {a0, al, a2}, 1 _< < m, satisfying the conditions of the
3-partition problem. We shall show that T is embeddable in {S+m+2. That is, there
exists a function lp labelling T with subsets of the set S such that
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(1) The Hamming distance between the labels of vertices adjacent in T is one
(i.e., for all (u, v) e E(T), dH(lp(u),lp(v)) 1), and

(2) The labels are distinct.
The function lp is defined incrementally in three steps. First, from lc, a new

labelling function lp is defined and is shown to be a partial embedding of C1,..’, Cls
in QB/m/2. Then, we extend lp to lp, a partial embedding of T that includes the
vertices in C9. Finally, we define lp, a proper labelling of all of T, by extending l to
include the vertices in C20 and C2.

5.1. Embedding C to Cs in QB/m/2. First, let a or equivalently r,
j 0, 1,2 and 1 _< < m, denote the jth element in the ith set of the partition
of A. Recall from the construction of T that there is, for each ak in A (8(ak) > 0),
a fan of size s(ak) rooted at rk in R and that the parent of rk in C4 is l[(yk). We
relabel the vertices of C4 so that the parent of r is now assigned the label Y3i/j-2.
This renames the vertices of Ca so that the ith 3-element set in the partition of A now
corresponds to the three consecutive labels y3i-2, y3i-1, Y3i.

Formally, define a permutation r, such that if the parent of r is l[(yk), then

r(yk Y3i+j-2.

ItNow, with respect to r, define lp to be the following function on the vertices in
61,...,618

r(lc(v)) ifv e C4,p! V /c(v) otherwise.

LEMMA 5.1. The function l is a partial embedding of T in QB+m+2.
Proof. The Hamming distance between adjacent vertices in (C,..., Cs)\C4 is

one; since, by Lemma 4.2, lc is a partial embedding of T on those vertices. Also,
!!since lp(C) 0 and lp!(C4) Y, the Hamming distance between q} and the labels

of vertices in Ca is one. Finally, since r is a permutation of only the Y elements in
/c(C4) the labels assigned by l remain distinct. Thus, l is a partial embedding of T
in QB+m+2.

It5.2. Adding C19 tO the embedding. Now we extend Ip to label the vertices in
C9. Recall, from the construction of T, that in C9 there are B groups of m vertices,
and that all the vertices in each group have the same parent in Ca. Moreover, by the
reordering of the Y’s in the last step, each ri E R c_ C9 is the child of the vertex in
Ca whose label under lp is y3i+j-2. The vertices in C9 will be assigned labels of the
form XY.

First, we assign to each group of m vertices whose parent is labelled yk labels of
the form Xyk. Within a group these m labels can be assigned arbitrarily except that
r, if there is one, must be labelled xiYk.

In summary, we have for v C19

and for v E C19
It--lp(Nc(lp (Yk))) Xyk
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where Ip(rijt xiyk for k 3i + j 2. Note that, as promised, the index of the X
element of the rj’s in R identifies the 3-element set to which r belongs.

LEMMA 5.2. The function lp is a partial embedding of T into (B+m+2.
Proof. Again we can easily check that lp is a proper labelling of C1 to C19. It

suffices to check only the labels of vertices in C9 since by l the remaining vertices
are already properly labelled. The labels of the form XY are distinct from those in
the rest of T and the mB labels of this form equal the number of vertices in C9.
Second, since the m children of vertex l(yk) in C4 are assigned labels of the form
Xyk, the Hamming distance between adjacent vertices is one. Therefore l is a proper
labelling of C,..., C9 in Qs+m+2. B

5.3. Adding C20 and C21 to the embedding. As mentioned previously, labels
of the form XYY are assigned to vertices in both C20 and C21, and so we must ensure
that the labels assigned to these two sets of vertices do not conflict.

Define the following two sets

{Nc(rio) 0 Nc(ril) U Nc(ri2)}, and

Nc(l(xiYYz2)).

The set Pi corresponds to a 3-element set in the particular part of T and Gi corre-
sponds to a set of vertices in the generic part of T. Furthermore,

C2o-- U Pi and C21--. U i.
l_i<m l_i<m

Now, for each of the m- 1 pairs of sets Pi and Gi, vertices in Pi will be assigned
labels of the form xiYY and vertices in Gi will be assigned labels of the form {xiYY,
xiYYYz2, xiYYzz2}. These labels are assigned so that those xiYY’s used in Gi are
distinct from those used in Pi.

In general, define

c 0,

and consider, for all i, the two sets of vertices Pi and Gi. In the previous section
was defined so that lp(ri) xiy3i+j-2. Given that I {3i- 2, 3i- 1, 3i} let the set

and let

lp(Nc(rio))

lp(Nv(ri,))

lp(Nv(ri.))

xiy3i-2Yk where 1 <_l <_ s(aio)- 1,
xiY3i-2Y3i-1,

{ xiYai-lY3i,xiy3i-lYk" where s(aio) 1 < <_ s(aio) + s(a) 2,

xiy3iyk,, where s(aio) / s(ai)- 2 < <_ B- 3,
xiY3iY3i-2.

First, note that

Vu E Nc(rij ), dH(lp(u), xiy3i+j-2) 1.

Second, with respect to I and Nc(ri ), note that s(aij 1 of the vertices are assigned
labels with one Y element whose index is in I and that the last vertex is assigned a
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label with both Y elements having indices in I. Therefore, in total, B- 3 of the labels
have one index from I and the remaining three labels contain Y elements with both
indices in I. This interval is exactly the same one used in 4.3 to construct Gi and
it allows us to easily distinguish between the xiYY’s used by Pi and the remaining
ones that can be used by Gi.

Now since/c(v) "lp.(V) lp(v) lp(v) for v E C15, the vertices in G are the
children of the vertices l[l(xiYYz2) in C15. The degree of these vertices was given in
4.3 so it is only necessary to match labels with the corresponding degrees of labels

in C5.
Consider an arbitrary element l[(xiyjykz2) where = m.

(1) If j, k I (without loss of generality assume that j < k), then if k < 3i label
the

xiYjYkZl Z2,

children of xiyjykz2 with xiYjYk,

xiyjYkYlZ2

otherwise label the

xiYjYkZlZ2,

children of xiYjYkZ2 with xiyjyk,

xiyjYkYlZ2
xiyjYkY3i-2Z2,

where > k,

where > k,
xiyjyky3i-z2 xiyjyky3iz2.

By the construction of T, if k < 3i then each l[(xiyjykz2) has B k + 2
children and there are the same number of available labels; one label of the
form xiyjykZlZ2, one label of the form xiYjYk, and B- k labels of the form
xiyjykytz2. Also, if k 3i then l[(xiyjyz2) has B- k + 5 children. The
labels are distinct from those in Pi because both j, k I, and as required,
the labels of the vertices in C5 are all Hamming distance one from the labels
of their children. As an aside, note that all labels of the form xiyjykytz2 with
at most one index in I label vertices in this part of T.

(2) If j or k E I but not both (without loss of generality assume that k I), then
there are three cases to consider depending on the value of j, an element of

(a) If 1 <_ <_ s(aio) 1 where yj Yk, Y\{Y3i-2, Y3i-, Y3i}, then

Vertex No. of children Labels of children

xiyjY3iZ2 3 xiYjY3i, xiyjY3iY3i-lZ2, xiyjY3iZlZ2

xiYjY3i-lZ2 3 xiYjY3i_ 1, xiYjY3i-lY3i-2Z2, xiyjY3i-lZlZ2

xiYjY3i-2Z2 2 xiYjY3iY3i-2Z2, xiyjY3i-2ZlZ2

(b) Ifs(ai0)-I <l <_ s(aio)+S(ail)-2wherey yk Y\{y3i-2, y3i-,y3i},
then

Vertex No. of children

xiyjY3iZ2

Labels of children

xiYjY3i, xiyjY3iY3i-2Z2, xiyjy3iZlZ2

xiYjY3i-lY3i-2Z2, xiYjY3iY3i-lZ2, xiyjy3i-lZlZ2

xiYjY3i_2, xiyjy3i-2zz2
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(c) If s(ao)+S(al)-2 < <_ B-3, where yj Yk, E Y\{Y3-2,Y3-l,Y3},
then

Vertex No. of children

xiyjY3iZ2
xyjy3-iz2

xiyjy3i-2z2

Labels of children

xiYjY3iY3i-2z2, xiYjY3iY3i-lZ2, xiYjY3iZlZ2

xiYjY3i_ 1, xiYjY3i-lY3i-2Z2, xiYjY3i-lZlZ2

xiYjY3i_2, xyjY3-2zlz2

Note that they do not conflict with labels assigned in C20 since those xYY
labels used in C20 are not used in C2 and it is possible to juggle the xYYYz2
labels so that each child of xYYz2 is labelled. Also in each case the children
are Hamming distance one from the label of their parent. Note that all labels
of the form xiYjYkYlZ2 with exactly two indices in I label vertices in this part
ofT.

(3) Finally, if both j, k E I, then let

Vertex No. of children Labels of children

xiY3iY3i-lZ2
xiY3iY3i-2Z2

xiY3i-lY3i-2Z2

xiY3iY3i-lY3i-2Z2, xiY3iY3i-lZlZ2
xiY3iY3i-2ZlZ2
X Y3i- 1Y3i-2z z2

In each of the above cases the xYY element is missing and was used to label
the vertices in P. Also, the children are all Hamming distance one from the
label of their parent. Finally, note that the last remaining label of the form
xYYYz2 (xiyjYkYtZ2 with indices j, k, I) appears as a label in this part
ofT.

This completes the definition of the final labelling function lp. Note, as implied by
our remarks, every label of the form {xiYY, xYYYz2,xYYzz2} was assigned to a
vertex in C20 or C2, so that/p(C20 t2 C2) {X’YY, X’YYYz2,X’YYzlz2}. This
fact gives us a count of the number of vertices in C20 and is used in the second half of
the proof to show that there are no "free" labels. That is, any proper labelling of T
in (S+m+2 must use exactly, up to reflections and rotations, the same set of labels.

THEOREM 5.3. The function lp is an embedding of T into (B+m+2.
Proof. The proof of this theorem follows from the remarks made during the

definition of lp that showed that vertices in C2o and C21 were properly labelled. The
fact that lp is a proper labelling for the rest of T follows directly from Lemma 5.2. [:]

This proves the first statement in the outline of Theorem 3.1. That is, given a
solution to the instance we can construct a proper labelling lp of T in QB+m+2.

6. Extracting a 3-partition from an embedding. Conversely, we must show
that if T is embeddable in Qs+m+2 then there exists a solution to the corresponding
3-partition problem. Indeed, we show how to extract, from any embedding of T in
QB+m+2, a solution to the instance. A solution can be extracted because, up to a
rotation of the cube, the embedding of T in QB+m+2 is unique and as a result the
conflict described earlier in 4 and 5.3 must be resolved by the embedding. As before,
a resolution of this conflict must construct, indirectly, a partition of A satisfying the
conditions of 3-partition.

Suppose that T has been embedded in QB+m+2. First, this embedding is put
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into a regular form by performing the following transformations, we take lq to be the
resulting label function.

(1) Apply a reflection to T so that lq of the root is 0.
(2) Apply a rotation to T so that in the top levels of the tree lq(C2)

lq(C3) z2, and lq(C4) Y.
Once the labels of C7 have been determined we will also permute the elements of X so
that the parent in C7 of the vertices in C1 are labelled x,z2. This is not necessary,
however by doing so, the form of the tree under lq becomes identical to the form of T
depicted in Fig. 1.

The renainder of this section is divided into two parts. First, it is shown that
the form of the labels assigned to the skeleton of T under lq are the same as those in
Fig. 1. This now includes the labels in C19, 620, and C2 so that lq(C19) XY and
that taken together lq(C2o [.J 621) {X’YY, X’YYYz2,X’YYzz2}. In the second
part, the fact that XtYY c_ lq(C2otC2), is used to extract a solution to the instance
of 3t-partition.

6.1. Determining the form of T. We show that any embedding of T in
Qs+m/2 assigns labels of the form depicted in Fig. 1 to the vertices in T. More
specifically, for any embedding lq,

(1) lq(C) lc(C), lq(C:) lc(C.), ..., lq(Cs) lc(Cs),
(2) lq(C9) XY, and
(3) lq(C20 UC21)= {X’YY, X’YYYz2, X’YYzlz2}.

Statements such as lq(C1) Ic(C) specify that, up to a permutation of labels within
a node of the skeleton, the functions lq and lc are equivalent.

In order to extract a solution to 3-partition it would suffice to know lq(C20 LJ
C21). However the forms assigned to these vertices cannot be determined until the
forms in the remaining parts of the tree are known. It is not necessary to determine
precisely the label of each vertex in T since the sole purpose of most of T is simply to
consume labels in QB+m+2, thereby reducing the labels that could have been assigned
to vertices in C20 and C21.

The first step in determining the form of T is to describe the conditions under
which the form of a node in the skeleton is forced. The following argument, which we
call label forcing, is used repeatedly to determine the form of vertices in T.

Let P(S) denote the power set of S, the set of all labels in Qs+m+2. Also, if
F and G are forms, then let NF(G denote NQ(G) C3 F, the neighbourhood of (7
restricted to F. Now suppose, for a set of vertices V C_ V(T), that lq(V’) has already
been determined. We would like, for some set of vertices W C_ V, to determine the
labels of Nc(W) where it is assumed that the vertices in No(W) are disjoint from Vt.
The labels assigned to Nc(W) must satisfy the following two conditions. First, since
lq is a proper labelling of T, the Hamming distance between the label of a vertex in
W and its child in Nc(W) must be one. Hence, lq(Nc(W)) C_ NQ(lq(W)). Second,
since lq(Y’) has already been determined, lq(Nc(W)) C_ P(S)- lq(Y’). Clearly, if
F 7)(S)- lq(Y’), then from our previous remarks, lq(gc(W)) C_ NF(lq(W)). (In
the remaining sections, F or F denotes the set of free labels, those labels whose
vertices have yet to be determined.) Finally, if in addition to the last two conditions,
the number of available labels exactly equals the number of vertices to be labelled,
then lq(gc(W)) NF(lq(W)). In summary,
Label Forcing: If

(1) lq(W), are the labels of a set of vertices W in T,
(2) F is the set of free labels, and
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(3) INc(W)I- INf(lq(W))l
then lq(Nc(W)) NF(lq(W)).

The general strategy for determining the form of T is to start with the root and
its children, whose forms are already known, and to deduce, by label forcing, the form
of their children by examining the set of free labels. Once the form of these vertices
has been determined then, since these forms are no longer available, the form of their
children can be deduced. This process is repeated until the form of the entire tree has
been determined.

For the most part it is sufficient to look macroscopically at the neighbourhood
of a node in the skeleton of T and compare the cardinality of the node with the
cardinality of its neighbourhood. However at C2 and C7, where we must distinguish
between different children, it is necessary to examine, microscopically, the structure
of T inside the node. Again the tree T was constructed so that label forcing occurs
both macroscopically and microscopically. In the next section we show that with
some global information about the form of C2, C7 and their children it is possible to
distinguish between the labels assigned to different sets of children. In turn, these
results are used in the final section to determine macroscopically the form of the
skeleton of T.

6.2. Children of C2 to C7. The two results given in this section use Lem-
mas 4.3 and 4.4 from 4.4 to determine, first, C5’s labels and, second, C10’s labels.
Basically, the approach is simply a microscopic version of the strategy outlined in the
last section. For each possible label that could be assigned to a vertex in C5 (C10) we
compare the size of its neighbourhood in F, the available labels, with the degree of the
vertex. By a process of elimination, since this neighbourhood must always be larger
than or equal to the degree, the form of the vertices in C5 (C0) can be determined.

Let vi denote l[(xz) in C5. Note that the v’s are those vertices whose degrees
are given by Lemma 4.3.

LEMMA 6.1. /f lq(C5 (.J C6) {Xzl,YZl,ZlZ2} and lq(Cs t2 C9) {X, XXzl,
XYz, Xzlz., YYz, Yzz2}, then lq(Cs) Xz, lq(C6) {Yz, zlz2}, lq(Cs)
{X, XXz, XYz, Xzz2}, and lq(C9) {YYz, Yzlz2}.

Proof. The proof is by induction on the vertices in C5. Let F lq(Cst2C9) {X,
XXz, XYZl, Xzz2, YYz, Yzz2}; we claim that for all the following property
holds:

P(i)" lq(vi) e Xzl and lq(Nc(v, v2, vi)) NF(lq(v, v2, vi)).

The fact that P(1) holds follows from the same argument given for the general
case and is left to the reader. So suppose that P(j) holds for all j < i, and assume,
without loss of generality, that lq(vj) xjz.

First, let us determine the set of free labels that can be used to label the children
of vi. The set of free labels consists of those labels that remain after removing from
F the labels assigned to vertices in Nc(v, v2,." .,vi_). Let F denote these labels
where, by the inductive hypothesis,

F’ F- lq(Nc(v, v2, vi_)) F- NF(lq(Vl, V2, vi_l))
F-NF(xjz[j < i])= F-(xj, xjXz, xjYzl, XjZlZ:}[j < i]
(xi, xjxkz, xYz, xzz, YYz, Yzz}[j,k i].

By Lemma 4.3, vi has m + B + 2 children whose labels must come from F,
where by hypothesis the label of vi is of the form Xzl, Yz, or zz:. However, label
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zlz2 has only m + B -i + 1 neighbours in F, m- + 1 of the form xjzlz2[j >_ i] and
B of the form Yzz2. Labels of the form Yz also have only m / B- / 1 neighbours
in F; m- + 1 labels of the form xjYz[j >_ i], B- 1 labels of the form YYz, and 1
label of the form Yzlz2. Thus, lq(vi) is in Xz and equals for some j >_ i, xjz, which
has exactly m / B- / 2 neighbours in F; m- labels of the form xjxkz[j, k >_ i],
B labels of the form xjYz, 1 label of the form xj, and 1 label of the form xjzlz2.

Now, since the degree of vi exactly equals the number of available labels, it follows
that all of these labels are used to label the children of vi, that is, lq(Nc(vi))
Nf,(lq(vi)). Finally, if these labels are added to those labels already known to be
assigned to vertices in Nc(v, v2,..., vi-1), then we have that la(Nc(v, v2,..., vi))
NF(lq(v, v2, vi)). Hence P(i) holds.

Therefore, by the principle of induction, P(i) is true for all which implies that
lq(C5) Xz and

lq(Nc(Ch))= NF(lq(Ch))= NF(Xzl)
{X, XXz,XYz,Xzz}.

Finally, since the labels {Yz, zlz2} and {YYz, Yzz2} are the only ones that
remain after lq(Ch) and lq(Cs) have been removed, lq(C6) (Yz, zz2} and la(C9

(YYzl, Yzz2}.
The proof of the next lemma is similar to the last except now the vertices in C0

contain two elements of X rather than just one. Let vij, < j, denote l(xixjz2)
Sin C0 Again, note that the vii are those vertices whose degrees are given by

Lemma 4.4.
The structure of this part of T is shown in Fig. 4. Note in Fig. 4 that there are

C3

C7

C13

ClO rn

FIG. 4. The Structure of T at

m subtrees rooted at C3 and that the structure of each subtree is similar to the one
occurring at C5. The proof is similar to Lemma 6.1 except now the argument is used
both within each subtree and also between subtrees. Also note that, if C7 Xz2,

then we can assume without loss of generality that the parent of vii in C10 is labeled
xiz2. In addition once we have determined that lq(vij) E xiXz2 we can then assume
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that its label is xixjz2[j > i]. This is a consequence of the fact that eventually all of
the labels of the form xixjz2[j > i] appear as labels in this subtree.

LEMMA 6.2. Iflq(CT) Xz2, lq(CloUCll [-JC12) {XXz2,XYz2} and lq(C13(-J
C14 U C15) {XX, XXXz2, XXYz2, XXzlz2, XYYz2}, then lq(Clo) XXz2,
lq(Cl U C12) XYz2, lq(C14 U C5) XYYz2, and lq(C13) {XX, XXYz2,
XXzz., XXXz}.

Proof. The proof is by induction on the vertices in Co. First, lexigraphically
order the vertices in Co so that for any two vertices vkt and vj, kl - ij if k <
or k =iandl <j. Also, note that by definition, <j andk <l. Let F= {XX,
XXXz2, XXYz2, XXzIZ2, XYYz2} and let j {vkl 6 C10 kl - ij}. We claim
that for all i, j the following property holds:

P(ij) lq(vij) e XXz2 and lq(Nc(Vij))= NF(lq(Vij)).

Again P(12) follows from the same argument given for the general case and is left
to the reader. Suppose for all kl - ij that P(k/) holds. Now, since lq(CT) Xz2
assume, without loss of generality, that the parent of vkl is labeled XkZ2. This implies
that for all kl - ij, lq(Vkl) xkZz2. Therefore we can also assume, with no loss of
generality, that lq(vkt) xkxtz2.

As in Lemma 6.1 we begin by determining the set of labels that can be used to
label the children of vj. Let Vpred(j) {vkt Co kl - ij}, that is, the labels that,
by the induction hypothesis, are known to label the children of vertices in vkt, kl - ij.
We have, by the inductive hypothesis, that the set of free labels

E F -lq(Nc(Vpred(ij))) F- NF(lq(Vpred(ij)))
F- NF(XXlz2[kl -< ij]) F- {xkxt, xkxtXz2, xkxtYz2, xkxtzz2}[kl ij]
{xxl,xXtXpZg.,xkxtYz2,xkxtzz2,XYYz2}[kl

_
ij, p > 1].

Now, by Lemma 4.4, vii has m + B- j + 2 children whose label must come from
F’, where by hypothesis the label of vii is of the form XXz2 or XYz2. Without loss
of generality we can assume that the parent of vii is labelled xiz2, which implies that
lq(vij) is a member of xiXz2 or xiYz2. However, if lq(vij) xiYz2 then it has only
m + B j neighbours in F’, rn j + 1 of the form xixkYz2[k >_ j] and B i of the
form xYYz2. Thus, lq(vj) xxkz2[ik

_
ij], which has exactly rn + B- j + 2 labels;

m- j labels of the form xixkxtz2[1, k > j], B labels of the form xixkYz2, 1 label of
the form xixk, and 1 label of the form xixkzlz2.

Now, since the degree of vij exactly equals the number of available labels it fol-
lows that all of these labels are used to label the children of vii, that is, lq(Nc(vij))
NF, (lq(Vij)). Finally, if we add these labels to the set of labels already known to be as-
signed to vertices in lq(Nc(Vpred(ij))) then we have that lq(Nc(Vij)) NF(lq(Vij)).
Hence P(ij) holds.

Therefore, by the principle of induction, lq(Co) XXz2 and

tq(C13) lq(Nc(Co)) NF(lq(Co)) NF(XXz2)
{XX, XXXz2, XXYz2, XXzIZ2}.

Finally, it is also true that lq(Cll [-J C12) XYz2 and lq(C14 [3 C15) XYYz2 since
these are the only labels that remain after lq(Clo) and lq(C3) have been removed. [3
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6.2.1. The form ofthe skeleton of T in QB+m+2. The results from Lemma 6.1
and Lemma 6.2 are used in this section to show that the labels assigned to the skeleton
of T by lq are given by Fig. 1.

LEMMA 6.3. If lq is an embedding oft in QB+m+2, then
(1) lq(C1) =/c(C1), lq(C2) =/c(C2), "’, lq(C8) =/c(C8),
(2) lq(C9) XY, and
(3)  q(C o c 1) {x’YY, z’YYz z ., z’YYYz }.
Proof. Starting at the root, consider each node in the skeleton of T.
(1) By the reflection and rotations used to obtain lq lq(C) O, lq(C2) Zl,

lq(C3) z2, and lq(Ca)= Y.
(2) Consider the children of C2.

(a) By the previous step, lq(C2) zl,

(b) the set of available labels in QB+m+2, F 7(S) {, Y, zl, z2}, and
(c) INc(Ce)I IC5 U C61 {{Xz,Yz,zze}l INF(Zl)l-- IYF(lq(C2))l.

Therefore, by label forcing, lq(C5 UC6)= {Xzl,YZ,ZZ.}. Henceforth, we
leave it to the reader to check that the conditions necessary for label forcing
do hold. We simply abbreviate the previous argument to

lq(C1, 62, 63, 64) lq(C5 [.J C6) {Xz1, Yz1, ZlZ2},
which reads that if lq(C1, C2, C3, C) are assigned the labels of the form
outlined in the hypothesis then we can deduce, by label forcing, that lq(C5 U

{Xz , YZl, ZlZ }.
(3) lq(C1,’",C4, C5kJC6) lq(CsUC9)= {X, XXz,XYz,Xzz2,YYzl,

Yzz2} Therefore, by Lemma 6.1, lq(C5) Xzl, lq(C6) (Yz, zz2}, lq(Cs)
(X, XXzl, XYz, Xzz2}, and lq(C9) {YYz, Yzz2}.

(4) lq(C,..., C6, C8, C9) lq(C6) (XYYz,XYzz2, YY, YYYz, YYzz2, Yz.}.
xy.

(6) lq(C1, C6, C8, C9, C16, C19) lq(CT) Xz2.
(7) lq(C1,...,C9, C16, C19) lq(Cio [..J Clx [.JC12) {XXz2, XYz2}.
(8) lq(C1,..., C9, C10 [.J Cll [.J C12, C16, C19) lq(C13 U C14 [.J C15)

XXXz2, XXYz2, XXzz., XYYz2}.
Therefore, by Lemma 6.2, lq(Co) XXz2, lq(C tJ C2) XYz2, lq(C4 U
C15) XYYz2, and lq(C3) {XX, XXXz2, XXYz2, XXzz2}. Now, to
put the embedding in the form given by Fig. 1, permute the elements of X
so that lq(Cll) xmYz2. Therefore lq(C12) X’Yz2, lq(C14) xmYYz2,
and lq(C5) X’YYz2.

(9) lq(C,..., C16, C19) === lq(C17) {XXX, XXXXz2,XXXYz2,
XXXzlZ2, XXY, XXYYz2, XXYzlZ2}.

(10) lq(C, CIT, C19) =:* lq(Cs) {xmYY, xmYYYz2,xmYYzz2, YYz2}.
(11) lq(C,’",C19) =:* lq(C20 U C2) {XYY, X’YYYz2,XYYzz2}.

Consequently, the form of the labels matches the forms given in the statement of the
lemma. [:]

It was necessary to introduce the three weightless elements in the orginal definition
of 3-partition because of Steps (10) and (11) in the previous lemma. In Step (10)
we showed that all labels of the form YYz2 appear in Cls thus preventing them
from being used to label vertices in C21. This was possible only because there was a
weightless part in the partition that allowed us to fix the location of the YYz2 labels
in the tree.

In the next section the fact that the form of T in Q+m+2 can be determined is
used to extract a solution to the 3-partition problem from the embedding of T.
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6.3. Extracting a solution to the 3-partition problem A solution to
the 3-partition problem can be extracted from the embedding of T in QB+m+2 by
examining the labels of certain vertices in T. Recall that in 4.2 the set R was
defined, where corresponding to each ri E R there was an ai A\{a3m-2, a3m-1, a3m
such that deg(ri) s(ai). In addition, R C_ C19 and all together Nc(R) C20.
Clearly, a partition of R into m- 1, 3-element sets {rio, ril, ri2 } such that deg(rio) +
deg(ril) + deg(ri2) B also partitions A into m 1 sets {ai0, ai, ai2} such that

)+ B.
THEOREM 6.4. The set R can be partitioned into m-l, 3-element sets {rio, ri, ri }

such that deg(ri0) +deg(ri) +deg(ri2) B.
Proof. Let, for xi X,

e R e for e X}.
We claim that the family of sets {Rx }xeX is a partition of R satisfying the statement
of the theorem.

First, since lq(R) C XY, each element of R belongs to exactly one R. However
this may partition R into m rather than m- 1 sets. But, recall that in defining R we
excluded the three weightless elements (a3m-2, a3m-1, a3m). Thus, every vertex in R
has a nonzero number of children belonging to C20. This implies that the vertices in
R could not have received any labels of the form xmY. Otherwise, its children would
have received labels of the form xmYY, contradicting the fact that these labels are
assigned to vertices in Cs. Therefore, R, is empty and the family {R}eX
partition of R into m- 1, disjoint sets. All that remains to be shown is that the sum
of the degrees of vertices within each Rx is B.

Consider R for some xi X’, where Iq(Nc(R)) C_ xiYY. Given that lq(C7)
Xz2, consider the subtree rooted at vertex vi l(xiz2) in C7. The root of this
subtree has descendants in C2, C15, and finally C2. More specifically,

lq(Vi) XiZ2, (in C7),
lq(gc(vi)) xiYz2, (in C2),
lq(gc(gc(vi))) xiYYz2, (in C5), and
lq(gv(Nc(Ne(v)))) C_ {xYY, xYYYz2,xYYzlz2} (in C21).

Let Pi Nc(R) and Gi Nc(Nc(Nc(vi))). Note that Pi and Gi serve the same
role here as they did in 5.3, although in this case the conflict has already been
resolved. Since lq(C20 t C2) {X’YY, X’YYYz2,X’YYzz2} and since Gi are the
only vertices in C21 with labels of the form {xiYY, xiYYYz2,xiYYzz2}, it follows
that

lq(Pi) U lq(Gi) {xiYY, xiYYYz.,xiYYzz2}.

Now, the size of Gi can be established by either explicitly counting the vertices as
defined in 4.3, or by simply noting that these are the same vertices labelled in 5.3
when we had a solution to 3-partition. In 5.3 the vertices in Gi were assigned all
but B labels of the form {xiYY, xiYYYz2, xiYYzz2}. Therefore,

[Gi[ [{xiYY xYYYz2, xiYYzz2}[ B,

which implies that [Pil B. Therefore, as claimed, R partitions R into m- 1 sets
and within each set the sum of the degrees of the elements is B.

This proves the two statements given in the outline of Theorem 3.1 and completes
the proof that Tree-Embedding is NP-complete.
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7. Concluding remarks. We have shown that the problem of deciding for a
given tree T and integer k if T is embeddable in (k is NP-complete. Our result
confirms the conjecture in [1] and [15] and greatly improves the previously known
NP-completeness result for general graphs. As a result it is unlikely there are efficient
algorithms for mapping applications with an irregular communication pattern onto
the hypercube. In particular, this is true for trees and more generally planar graphs,
both structures that arise frequently in practice.

It remains an open problem whether or not the tree T can be further restricted to
trees with bounded degree. The fact that the degree of T was dependent on the size
of the 3-partition problem was essential to ensure that there is a unique embedding
of T in (B+m+2. It is possible to characterize, for a restricted class of binary trees,
those trees that are subgraphs of a k-cube [13]. However, it is not known whether
or not this can be extended to include all binary trees. There are several algorithms
for embedding binary trees (with fixed dilation and expansion) [2], [21], [24] into the
cube, but in general these approximations are not completely satisfactory and the
problem of characterizing these trees remains.

Acknowledgments. We wish to thank the anomonyous referees for their helpful
comments and suggestions.
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ERRATUM:
Weighted Leaf AVL-Trees*

VIJAY K. VAISHNAVIt

In Table 1 [ 1, p. 527], there should be an "." (indicating that the corresponding result
is the best known result) beside each B in the "insertion" column and beside G, N,
and both D’s in the "promotion" column. Reflecting this correction, the first sentence
of the third paragraph [1, p. 527 (within Concluding remarks, 6)] should read, "In
terms of the worst-case time-complexities, weighted leaf AVL-trees are similar to the
best solutions available [3]-[5], [8], [9]." Also, in the second to last sentence of the
first paragraph 1, p. 504 (within Introduction, 1)], the phrase "are the same or better
than any data structure available in the literature" should be replaced by "match the
best results available in the literature."
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THE NUMBER OF SHORTEST PATHS ON THE SURFACE
OF A POLYHEDRON*

DAVID M. MOUNT?

Abstract. It is proven that if the shortest paths on the surface of a convex polyhedron are grouped into
equivalence classes according to the sequences of edges that they cross, then the resulting number of
equivalence classes is O(n4), where n is the number of vertices of the polyhedron. In fact, the more general
result that any family of pseudosegments (a set of open simple curves on the plane such that two curves
intersect each other in at most one point) lying on a planar subdivision defined by n other pseudosegments
can give rise to at most O(n4) edge sequences is also proven. This bound is shown to be asymptotically
tight, by giving an example of a family of polyhedra with f(n4) shortest path equivalence classes.

Key words, shortest paths, convex polyhedra, computational geometry, pseudolines

AMS(MOS) subject classifications, primary 68U05; secondary 52A25

1. Shortest path sequences. Consider a convex polyhedron P with n vertices. For
a pair of points x and y on the surface of P let b(x, y) denote a path of minimum
Euclidean length from x to y along the surface of the polyhedron. Define the corre-
sponding shortest path edge sequence (or simply "edge sequence") p(x, y) to be the
sequence of polyhedron edges that the path b(x, y) traverses. The edge sequence can
be thought of as a discrete description of the geometric path. We say that two paths
on the surface of a polyhedron are equivalent if their edge sequences are equal. This
relation partitions the set of shortest paths into equivalent classes. For example, in
Fig. 1, paths bl and b2 are equivalent but b3 is not equivalent to either bl or b2.

For a convex polyhedron P, let S(P) denote the set of edge sequences of all
shortest paths on P. Let s(P) denote the cardinality of S(P) and let s(n) denote the
least upper bound on the value of s(P) for all convex polyhedra with n vertices. In
this paper we consider the combinatorial problem of bounding the value of s(n). The
quantity s(n) was first studied by Sharir in his paper on finding shortest paths amidst

FIG. 1. Shortest path equivalence classes.

* Received by the editors September 14, 1987" accepted for publication (in revised form) June 2, 1988.

" Department of Computer Science and Institute for Advanced Computer Studies, University of
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a set of convex polyhedra [5]. As is common in computational geometry, the analysis
of the time and space complexity of their algorithm reduces in part to solving such a
combinatorial problem. (We say "in part" because although this paper provides a
bound on s(n), it does not provide an algorithmic technique for generating these edge
sequences.)

The quantity s(n) is of interest in its own right because any attempt to preprocess
a polyhedron to provide fast responses to shortest path queries may very well have to
contend with this quantity in its space complexity, since this value indicates how many
ways there are of getting from one place to another along the polyhedron’s surface.
Sharir showed that s(n) is bounded above by 0(//7). In this paper we provide the
tight asymptotic bound of O(r/4) for s(n). Our results have recently been extended by
Schevon and O’Rourke [4] to the problem of determining the number of maximal edge
sequences; that is, edge sequences that cannot be extended to form longer shortest
path edge sequences. They provide a tight bound of O(n3) maximal edge sequences.

To prove the result, we map the problem to a topological domain (described in
terms of embedded planar graphs) and exploit certain topological properties of shortest
paths on convex polyhedra. Polyhedral shortest paths are continuous geodesic curves
which intersect a given face of the polyhedron in a line segment. It will simplify the
presentation if we assume that shortest paths are open curves. Some relevant topological
properties of shortest paths are listed below, These follow from observations made by
Sharir and Schorr [6].

(S1) Shortest paths do not pass through vertices of the polyhedron P and do not
cross an edge of P more than once (see Fig. 2(a)).

($2) No shortest path intersects itself.
($3) Except for the case of two shortest paths sharing a common subpath, shortest

paths intersect in at most one point, and this intersection is transverse, that is, the
paths cross each other (see Fig. 2(b)).

Regarding property ($3), it should be mentioned that if two shortest paths share
a common subpath, then either one path is a subpath of the other, or else an initial
subpath of one coincides with a final subpath of the other. From property (S1) it
follows that the number of shortest path edge sequences is finite. It will not affect the

(a) (b)

FIG. 2. Invalid shortest paths.
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number of edge sequences if we consider only a finite set of representative shortest
paths, one from each equivalence class. We may assume that no shortest path in the
set of representatives is a subsegment of an edge of the polyhedron. Such single-edge
path sequences can be generated by two points lying arbitrarily close to one another
on opposite sides of the edges. We may also assume that no two representative shortest
paths share a common subpath. This assumption can be met by an infinitesimal
perturbation of the endpoints of the shortest paths, which will not affect their edge
sequences.

It will actually simplify the proof to consider a more general setting. The vertices,
edges, and faces of the polyhedron P define a graph embedded on the surface of the
convex polyhedron (so that the graph’s edges do not cross over one another). Let us
think of P as a subdivision of a topological sphere, meaning simply that P is a connected
planar graph embedded on a sphere (so that its edges do not cross one another) such
that every face of this graph is homeomorphic to a disk (see Guibas and Stolfi [2]).
Define a family of pseudosegments to be a set of Jordan arcs (simple connected arcs)
on the topological sphere such that two curves share at most one point in common,
at which they cross each other transversally. This is a natural counterpart to the notion
of a pseudoline given by Griinbaum 1]. From properties (S1)-($3) it follows that by
homeomorphically mapping the surface of the convex polyhedron to the sphere, the
edges of the polyhedron along with any finite set of shortest paths are mapped to a
family of pseudosegments. Henceforth, we will forget that P is a polyhedron, and
think of it as a topological subdivision of the sphere, and replace the notion of shortest
path with that of a pseudosegment. The upper bound on the value of s(n) follows as
an easy corollary to the following theorem, which is our main result.

THEOREM 1.1. Let P be an n-edged finite subdivision of the topological sphere, and
let , be a finite set of open Jordan arcs on the sphere such that , and the edges of P
form a family ofpseudosegments, and the arcs of , do not pass through the vertices of
P. Then the number of distinct edge sequences of elements of , that start and terminate
at a given pair ofedges is O( n). Hence the total number ofdistinct edge sequences is O( n4).

Although stated in terms of a subdivision of the topological sphere, the result
clearly applies to planar subdivisions as well. Note that in the statement of the theorem
we have changed the role of n from the number of vertices in the convex polyhedron
to the number of edges of the subdivision. This distinction is unimportant when dealing
with convex polyhedra because the number of edges and vertices are linearly related
(by Euler’s formula). However, this bound does not apply in general to planar
subdivisions, which may have an arbitrary number of multiedges (multiple edges sharing
the same endpoints) and loops (edges whose endpoints are equal). The allowance of
multiedges and loops will be needed in our proof. In order to be a subdivision, P (as
a graph) must be connected, and hence the number of vertices and faces of P is O(n).

Let G denote the planar dual graph of P; that is, G is a graph embedded in the
plane whose vertices are the faces of P and whose edges are the pairs of faces that
share a common edge. Both P and G are planar graph embeddings. Let S denote the
set of edge sequences ofthe elements of with respect to P. Because we have considered
pseudosegments to be open arcs, which do not travel along edges of the subdivision,
each edge sequence of S can naturally be viewed as a path in the graph G (see Fig.
3). To avoid confusion, we will use the term "pseudosegment" when referring to paths
on the subdivision P, and "path" when referring to paths in the dual graph G. When
a pseudosegment crosses a subdivision edge between two faces of P, the corresponding
path in G traverses the corresponding dual edge between these two faces in G. Our
discussion will concentrate on the graph G, so unless otherwise stated, the term "edge"



596 DAVID M. MOUNT

FIG. 3. Edge sequences and the dual graph.

will refer to an edge of G, not the subdivision P. By property (S1) no path traverses
an edge of G more than once.

The paper is outlined as follows. In 2 and 3 we give the proof of the upper
bound. In 4 we show that there exist convex polyhedra with fl(n4) edge sequences
establishing the lower bound. In 5 we consider the number of path sequences on
nonconvex polyhedra.

2. Pseudosegments and paths. In the next two sections we give the proofofTheorem
1.1. The proof can be outlined as follows. In this section we introduce definitions and
basic facts about paths. The principal combinatorial lemma that we prove in this section
is that any set of distinct noncrossing paths emanating from a common origin in G
contains O(n) elements. (We define the term "noncrossing" later.) In 3 we introduce
a contraction operation that removes one edge from the graph G and in the process
may cause previously distinct edge sequences to become equal. We begin with a finite
set of paths in G traveling from an arbitrary source edge to an arbitrary destination
edge. We show that the set of paths that become equal when a contraction is performed
has essentially the same structure as a set of noncrossing paths emanating from a
common origin, and hence at most O(n) paths become equal with each contraction.
By repeating the contraction on all n edges, we reduce the set of distinct paths by
O(n) each time until a trivial set of O(n) paths remain. Since we have removed at
most O(n2) paths in the entire process, it follows that the original number of distinct
paths between the two edges was O(n2), as desired.

We begin with an introduction of the terms used throughout the proof. Consider
the undirected dual graph G embedded on the sphere. Although G is undirected, it
will be convenient to think of each edge as consisting of two oppositely directed edges.
Each directed edge has an origin and destination vertex. For a directed edge e, let
denote its directed complement. For each vertex v, the edges whose origin is v are
given in clockwise order. We use the terms clockwise and counterclockwise when referring
to the exact orientation of the order, and cyclic when no distinction between clockwise
and counterclockwise is made.
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A path in G consists of an origin vertex u, a destination vertex v, and a possibly
empty sequence of directed edges el, e2, , ek connecting u to v. Given this sequence
of edges, we can infer the sequence of vertices that the path visits. (The purpose of
giving the origin and destination vertices explicitly is to handle the case of an empty
edge sequence.) The paths that we will consider are edge simple, meaning that they
may visit an undirected edge of G at most once. However, we allow a path to visit a
vertex more than once. For this reason we distinguish between the various instances
of a vertex along a path. (Note that shortest paths do not visit a face of the polyhedron
more than once, so this allowance may seem unnecessary, but in the course of our
proof we will violate this property.) Let/ denote the reversal of a path p. A path q is
a subpath of a path p if either q has an empty edge sequence and p visit the origin
(and hence the destination) of q, or if q has a nonempty edge sequence that is a
subsequence of p. A path q is a subpath of the undirected path p if q is a subpath of
either p or/. The path q is an initial subpath of p if q is a subpath starting at the
origin of p. (By "origin" we mean the first instance of p’s origin vertex.)

As mentioned in the introduction, the structure of a set of distinct paths emanating
from a common origin will be important to the proof. The clockwise ordering of edges
about each vertex of G can be extended naturally to clockwise ordering of a set of
paths emanating from a common origin. Consider a path originating from a vertex v.
The path can be mapped to sequences of integers as follows. First distinguish an
arbitrary edge eo incident to v. The first integer of the sequence is the clockwise index
of the first edge of the path with respect to eo. As the path arrives at a vertex u entering
along an edge el and exiting along an edge e2, the next integer in the sequence is the
clockwise distance (number of edges) of e2 from el about u. Given a set of paths T
originating at v, such that no path is an initial subpath of any other, a clockwise
ordering of paths can be derived by ordering the integer sequences lexicographically
and making the smallest numbered path the successor of the largest numbered path.
This is called the clockwise ordering ofpaths about v (or cyclic ordering if no particular
orientation is distinguished). For a list of paths a, a2,’", ak emanating from a
common vertex v, we will let (a, a2,..., ak) denote the predicate that a clockwise
enumeration of these paths about v starting with al encounters the paths in the order
al, a,..., ak (equal paths may be encountered in any order).

It is almost immediate from these definitions that if a set of noncrossing pseudoseg-
ments originate from a common face of the subdivision of the topological sphere, then
the resulting cyclic ordering oftheir edge sequences corresponds naturally to a clockwise
ordering of the pseudosegments (see Fig. 4). We state this as our first lemma.

LEMMA 2.1. Let Tbe a set ofedge sequences corresponding to a set ofpseudosegments
that emanate from a common face without crossing one another. If none of the edge

sequences of T is a subsequence of any other, then the clockwise order of T is the same
as the clockwise order of d.

In order to exploit the topological property that no two shortest paths cross more
than once, we will need to develop a corresponding notion of crossing between edge
sequences (that is, paths in G). To begin, we say that two paths in G, p and q, intersect
each other if, as undirected paths, they share a common subpath (possibly a single
vertex). A subpath of intersection is any maximal common subpath ignoring path
directions. A path may intersect itself, for example, if it visits some vertex v more than
once.

To motivate the definition of path crossing, consider a pair of pseudosegments q5
and @ on the sphere. Suppose b and 4’ cross each other at some point x. The point
x splits each of q5 and q into two subsegments, b, (2 and O, q2, respectively. The
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6

1 Pl

P6 P2

FIG. 4. Cyclic order ofpaths about a vertex.

fact that the pseudosegments cross at x implies that cyclic order of the subsegments
locally about x alternates between subsegments of b and subsegments of @, for example
(thl, qq, th2, q2). Now, consider two paths in G, p and q (possibly equal), that intersect
each other along a subpath of intersection r. For any vertex instance on r, say v, split
each path about v into two subpaths giving p, p and q, q2, respectively. Direct these
four subpaths outwards from v, so that they share v as a common origin. Consider
the cyclic order of these four subpaths about v. (It is easy to show that this cyclic
order is independent of the. choice of the vertex instance on the intersection subpath.)
Three cases arise.

If no subpath is an initial segment of another subpath, and the cyclic order of
these subpaths about v alternates between the subpaths of p and the subpaths of q,
we say that the paths cross (see P2 and P3 in Fig. 5).

If no subpath is an initial segment of another subpath, and the cyclic order of
the paths about v does not alternate, we say that the paths intersect tangentially (see
Pl and P3 in Fig. 5).

If one of the subpaths is an initial segment of another, then we say that the
intersection is indeterminate (see Pl and P2 in Fig. 5).

P

P2
FIG. 5. Pseudosegment and path crossing.
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The intuition behind this definition is that if two pseudosegments give rise to two
crossing paths in G, then the pseudosegments must also cross, and similarly, if the
pseudosegments give rise to two paths in G that intersect tangentially, then the
corresponding pseudosegments must not intersect. If the path intersection is indeter-
minant, then the pseudosegments may or may not intersect. This happens, for example,
if the pseudosegments have the same edge sequences. To formally justify this, we
define the number of crossings between two paths of G to be the number of distinct
intersection subpaths that are crossing intersections. For example, if two paths Pl and
P2 visit a vertex kl and k= times, respectively, then Pl and P2 may cross each other at
the vertex v as many as klk= times. We show that, like the underlying pseudosegments,
two paths in G can cross at most once.

LEMMA 2.2. Consider two paths p and q in G arising from the edge sequences of
two pseudosegments dp and , respectively. The paths p and q can cross at most once.

Proof. We show that for each crossing intersection of p and q there is at least one
corresponding crossing point x at which b and cross, and that this correspondence
is 1-1. Because pseudosegments can cross at most once, it follows that p and q cannot
cross more than once.

Suppose that p and q intersect and cross along a maximal common subpath r.
Let Vo, Vl,’’ ’, /)k be the sequence of vertices of G visited by this common subpath.
These vertices in the dual graph G correspond to a sequence of faces fo,fl," ,fk of
the subdivision P. Redirect p and q if needed so that they have the same direction
along this subpath. By the maximality of the intersection subpath, and since p and q
cross, it follows that p and q enter the face fo on different edges ep and eq, respectively,
and depart the face fk on different edges dp and dq, respectively (see Fig. 6(a)).

ep eq
ep

c

eq

b

(a) (b)
FIG. 6. Mapping paths to curves.

The sequence of faces fo,""" ,fk of P can be mapped homeomorphically into a
region of the topological sphere having a simple closed boundary as follows. Since P
is a subdivision, each face of P is homeomorphic to a disk. The boundary of face f
is composed of the cyclically ordered edges incident on vertex vi of G. (Note that a
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loop about vi is treated as two separate edges on this boundary.) Paste together the
faces corresponding to the vertices v0," ", Vk of the subpath r along the edges of r,
and continuously deform the faces as necessary to keep them from overlapping. If the
same face appears more than once in the sequence, then each instance is treated as a
separate object. (For example, in Fig. 6(b) the middle face is visited twice when the
edge b is traversed.) This mapping preserves the cyclic order of edges about the faces.
The fact that p and q cross implies that the edges ep and dp alternate with the edges
eq and dq about the boundary of this region.

The pseudosegments b and $ are mapped homeomorphically to a pair of con-
nected curves that lie entirely within this region except at their intersection points
along ep, dp and eq, dq, respectively. This mapping preserves any intersections between
b and . Since pseudosegments do not pass through vertices of P, the paths intersect
the interiors of these edges, which are mutually disjoint. The alternating order of these
four edges implies that the intersection points of b and with the boundary of the
region alternate around the boundary of the region. Thus, the two pseudosegments
cross each other at some point x within the region. The crossing of b and at x is
identified with this particular crossing intersection of p and q.

To see that this correspondence is 1-1, consider a point x at which two pseudoseg-
ments b and $ cross. This point determines a unique maximal common subpath in G
between the two corresponding paths p and q. (Note that, although the edge sequence
of b can visit a face more than once, an occurrence of x on b is identified with a
unique occurrence of the face containing x in the edge sequence of b.) Each maximal
common subpath can give rise to at most one intersection between two paths, and
hence at most one crossing intersection betwen p and q can be identified with this
instance x.

The principal combinatorial observation of this section is that the number of
distinct noncrossing paths, originating from a common origin and terminating at a
common destination, is linearly bounded. It is interesting to note the similarity between
this and the geometric theorem that the number of distinct, maximal shortest path
edge sequences that originate from a single source on a convex polyhedron is bounded
by the number of vertices of the polyhedron (see Prop. 4.8 of Sharir and Schorr [6]).
Although in this result, shortest paths are not necessarily maximal, the common
destination edge serves to eliminate initial subpaths, which would otherwise i.ncrease
the bound to O(n2).

LEMMA 2.3. Consider a set of edge-simple paths in G, all sharing a common origin
v and terminating on a common edge e, such that no two paths of the set cross each other.
Then the number qfpaths in the set is O(n).

Proof. No path can be an initial subpath of another path because all paths terminate
with the same edge, and no path can traverse this edge twice. Thus, the paths can be
ordered cyclically about v. Draw the graph G on the sphere so that its edges do not
cross one another, and draw the paths of the set. Since the paths do not cross, the
cyclic ordering of paths partitions the sphere into a set of disjoint cyclically ordered
regions about v--each consecutive pair of regions being separated by consecutive
paths. Each region contains at least one face of G, for otherwise either the adjacent
pairs of paths would be equal or else they would traverse some edge twice. The number
of regions and hence the number of paths is bounded by the number of faces of G,
which is O(n).

3. Edge contraction. Given the definitions of the previous section, we can reformu-
late Theorem 1.1 in terms of the paths in G. It is an immediate consequence of Lemma
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2.2 and the earlier observations about the relationship between paths in G and
pseudosegments that it will suffice to prove the following lemma.

LEMMA 3.1. Consider the dual G ofa subdivision P ofthe sphere and a set ofdistinct
paths S in G with the following properties.

(P1) No path of S transverses an undirected edge of G more than once.
(P2) No path in S crosses itself.
(P3) No two paths in S cross one another more than once.

Then the number ofpaths in S that start and terminate at any given pair of edges of G
is O(n2). Hence the total number ofpaths in S is 0(//4).

Although most of our proof will be given in terms of this lemma, it will be
convenient to refer occasionally to the underlying set of pseudosegments E that gave
rise to S. Our analysis works by iterating a topological transformation that maps G
into successively smaller graphs. The intuition behind this transformation can be seen
by recalling that G is the dual of a subdivision P. One method to simplify P iteratively
is to remove each of its edges. To maintain the property that P is a subdivision, we
must take care when removing edges that the boundary of each face of P remains
homeomorphic to a disc, implying that its boundary must be simply connected [2].
Consider the deletion of an e of P and the subsequent removal of any isolated vertices,
resulting in a subdivision P’ of the sphere. If the edge lies between two distinct faces,
this operation has the effect of merging the faces of P lying to either side of e into a
single face in P’. (In Fig. 7(a) the subdivision is shown with light lines, and the dual
graph G is shown in heavy lines.) If the edge e is incident with the same face on both
sides (implying that e is a loop edge in the dual graph), then the edge can be removed,
provided that one of the vertices of e is incident only to e (Fig. 7(b)). Otherwise the
deletion of e would result in breaking the boundary of a face into two components
(Fig. 7(c)).

Ineligible.

(a) (b) (c)

FIG. 7. Edge contraction.
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Pseudosegments are not affected by this operation, but the edge e will be deleted
from every edge sequence in which it appears. As a consequence, pseudosegments
previously having different edge sequences in P may now have the same edge sequence
in P’. Hence the number of distinct edge sequences may decrease. The analysis centers
on determining how large a decrease may occur with each such transformation.

Let G’ denote the dual of P’. G’ can be defined directly in terms of G, without
considering the subdivisions P and P’. The corresponding action on the dual graph
G is called an edge contraction. Intuitively, this involves shrinking an edge of G down
to a single point and merging the endpoints of this edge into a single vertex (see Fig.
7(a)). The case that the edge in G is a loop (implying that the corresponding edge in
P has the same face on either side) requires special consideration. We say that a loop
edge e on a vertex v is empty if e and are consecutive in cyclic order about v (Fig.
7(b)). We declare nonempty loop edges to be ineligible for contraction. Let e be a
nonloop edge or empty loop edge in G. The contraction of e in G is an embedded
graph G’ defined by the following rules.

(1) If e is a nonloop edge between endpoints u and v, form G’ by deleting both
e and and by replacing u and v with a new vertex w. The edges of w are a cyclic
concatenation of the remaining edges about u and v joined together at the positions
that e and occupied respectively. See Fig. 7(a).

(2) If e is an empty loop edge, then form G’ by deleting e from G. See Fig. 7(b).
The facts that G’ is the dual of P’ and that P’ is a subdivision of the sphere are

easily verified. An edge contraction induces a transformation on a set of paths in G.
A path p in G is mapped to a path p’ in G’ by deleting the edge e or , if it occurs in
p. it is easy to see that property (P1) will be preserved in the new set of paths, It can
be proved (somewhat arduously) by purely graph theoretic means that the number of
path crossings does not increase after a contraction is performed. However, it will
suffice for our purposes to show that (P2) and (P3) are preserved by appealing to the
underlying pseudosegments. Since the pseudosegments are unchanged, they satisfy
properties (P2) and (P3). Since Lemma 2.2 assumes that P is any subdivision of a
topological sphere, we can apply this lemma to P’ and its dual G’. Properties (P2)
and (P3) follow immediately. Thus we have

LEMMA 3.2. Properties (P1)-(P3) are preserved under edge contraction.
Returning to the proof of Lemma 3.1, we wish to show that the number of paths

in S between any pair of edges, say, es and et is O(n2). Let S(es, et) denote the set of
paths of S that start with e and terminate with e,. Let E(e, et) denote the corresponding
finite subset of representative pseudosegments that gave rise to these paths. If e e,,
then S(e, e,) consists at most of the single edge sequence es, because pseudosegments
can cross an edge at most once. Thus we confine our attention to the more interesting
case in which e and et are distinct.

Recall that edge contraction can be performed only on nonloop and empty loop
edges of G. At some point no more contractions can be performed because all remaining
edges are nonempty loops. To simplify the analysis at this limiting stage, we augment
the graphs P and G by adding a special pseudosegment between e and e,. Assuming
that E(e, e,) is nonempty, let b(e, et) be an arbitrary pseudosegment from this set.
Because there are finitely many pseudosegments in E(es, e,), by a slight perturbation
of b(e, et), we may assume that b(e, e,) does not cross any edge of the subdivision
P at the same point that any other pseudosegment crosses this subdivision edge. Let
W= (w, w2," , Wk) denote the sequence of intersections of th(e, e,) with the edges
of P. Augment P by adding new vertices W to P (thus splitting each of these edges
of the subdivision into two edges) and adding undirected edges (w, W/+l), for =< < k.
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Each of the newly added subdivision edges of P is a subsegment of b(es, et) (see Fig.
8). Augment the dual graph G accordingly.

Note that the graph P is still a subdivision of the sphere. Further, since b(es, et)
can cross each edge of P at most once, the number of subdivision edges is at most
three times the original number of edges in P (one new edge for each (wi, Wi/l) and
one new edge for each edge of P split by a vertex wi). Remove b(e, et) from
and remove the edge sequence for b(e, e,) from S(e, e,). Augment the remaining
elements of S(e, e,) if they cross any of the edges (wi, w/l). It is easy to verify that
the conditions of Theorem 1.1 and the conditions of Lemma 3.1 are still satisfied.

Let D denote the set of edges consisting of es, e, (which have now been split into
four distinct edges) and the edges (w, W+l). Let us redefine n to be the number of
edges in P excluding the edges of D. The new n is no more than twice the original
value, so asymptotically the results are not altered. We construct a sequence of graphs
Gn(= G), Gn_I,..., Gk by successively contracting any eligible nonloop edges or
empty loops with the exception of the edges of D. Let Pi denote the corresponding
planar dual graph of G. The sequence is terminated when there are no more edges
eligible to be contracted. We begin by showing that, other than the expected edges,
every edge in G can be contracted.

LEMMA 3.3. If Gk contains no edge eligible for contraction, then Gk consists only of
the edges ofD (implying k 0).

Proof The edges of Gk and its dual Pk are in 1-1 correspondence, so we may
consider these same edges in Pk. The hypothesis of the lemma implies that the deletion
of any edge e D (and the removal of isolated vertices) in Pk would result in a graph
that has a face with a disconnected boundary. A planar graph has a face with a
disconnected boundary if and only if the graph is itself disconnected. Pk is planar,
and hence any graph formed by edge deletion is also planar. Since Pk is connected,
this implies that each edge e D is a bridge. Because the edges of D form a tree in
Pk, we see that Pk must be cycle free (and thus a tree), for otherwise it would contain
an edge outside of D whose removal would not disconnect Pk. In particular, if Pk
contains edges besides those of D, it must contain an edge eo D incident to a leaf of
Pk. However, the deletion of eo (together with the removal ofthe leaf) will not disconnect

Pk. Thus, eo D, but eo is eligible for contraction, a contradiction.
Recall that with each edge contraction we form an updated set of paths in the

contracted graph. Let S,( S(e, et)), S,-I,’’’, So denote the sets of paths running
between e and e in G,, G,-1, , Go, respectively. To prove that IS(e., e) is O(n2)
it will suffice to establish two bounds"

ISol is O(n), and

IS l- IS -,I is O(n) for 1 =< k _-< n.

FIG. 8. Augmenting the subdivision.
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The first bound is easy to see. Go and Po consist only of the edges of D by Lemma
3.3. The edges of Po consist of the edges es and et with a simple path p (the edge
sequence of a pseudosegment) running between them. Because the path p is derived
from a pseudosegment, any path in S(es, e,) can cross this segment at most once. An
edge sequence of So either crosses none of the edges of p, or it crosses exactly one
edge in one of two possible directions. Thus the number of distinct edge sequences in

So is O(IDI). The number of edges in D is no greater than the original number of
edges in P. Therefore, the number of distinct edge sequences in So is O(n).

The remainder of the section is devoted to proving the second bound. The
presentation is broken roughly into two parts. First, we provide a series of lemmas
characterizing the structure of paths. These culminate in Lemma 3.9, which relates

IS l- ISk-ll to the size of a set of paths that intersect nontangentially at a single vertex.
Next, we give a bound on the size of this set, which results from a monotonicity
property of its paths.

As an edge is contracted in Gk to form Gk-1, the paths in Sk that traverse the
contracted edge e are mapped into paths in Sk-1 by deleting the edge e. In the process,
two distinct paths p and p’ in Sk may be mapped onto the same path after the deletion
of e. We say that such paths in Sk are equivalent modulo e, or simply equivalent. The
set of equivalence classes modulo e has a very particular structure. We begin by
presenting some observations on the structure of paths forming these equivalence
classes. In the following lemmas, let S denote any of the sets of paths Sk for some k,
l_k<_n.

LEMMA 3.4. If tWO distinct paths in S share common starting and terminating edges
and are equivalent modulo an edge e, then e is a loop.

Proof. Let p and p’ be distinct paths that become equal after contracting e. Let u
and v be the endpoints of e. One of the paths, say, p’, traverses e from u to v. The
other path p traverses exactly the same sequence of vertices as p’ up to u and after v.
Thus p travels from u to v without the use of e (or any other edge), implying that
u= v. I"!

LEMMA 3.5. Let p be a path in S that passes through a vertex v by entering along
an edge a (so that has origin v), traversing an empty loop edge e, and then leaving
along an edge b. The direction in whichp traverses e is determined by the relative orientation
of , b, and e about v.

Proof. By property (P1) all edges are distinct. If the edges appear in the cyclic
order (, e, C,, b), then p traverses e in its natural direction, for otherwise, p would
cross itself at v, violating property (P2). If they appear in the cyclic order (a, (, e, b),
then p traverses ’ by a symmetric argument, l-]

LEMMA 3.6. Let p and q be two paths in S that intersect at (some instance of) a
vertex v, where v is incident to an empty loop e. Suppose that paths p’ and q’, formed by
inserting e into p and q, respectively, at this instance of v, are also in S. Then the paths
p and q cannot intersect tangentially at v.

Proof. Without loss of generality we assume that e is the clockwise successor of

’ at v since the actual direction in which p and q traverse e is determined by Lemma
3.5. Suppose that p’ and q’ intersect tangentially at v. This means that the paths p
and q can be split about v into subpaths Pl, P2 and ql, q2, respectively (directed
outwards from v), such that they appear as (Pl, P2, q, q:) in clockwise order about v.
There are four positions in which the (empty) loop e may appear in the clockwise
order.

The first case is that e falls between p and p: in cyclic order. Then path q’ crosses
the path p twice, once by considering the alternating cyclic order of pl and P2 (of p)
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with ql and e (of q’) and the other by considering the alternating order of Pl and P2
(of p) with , and q2 (of q’) (see Fig. 9(a)).

Second, if e falls between p2 and ql, then we claim that p’ crosses q’ twice. One
crossing is evidenced by the alternating cyclic order of Pl and e (of p’) with , and q
(of q’) (see Fig. 9(b)). To see the other crossing, first note that both paths visit v twice.
By Lemma 3.5 the paths p’= -ffiep and q’= --ieq2 traverse e in the same counterclockwise
direction. (Fig. 9(c) shows the two instances of v explicitly.) By hypothesis (Pl, e,
is a clockwise ordering of these three paths about v as is (P2, C,, q). These clockwise
orientations imply that the two paths ’Pl and p of p’ alternate about the second
instance of v with the paths ’ql and q2 of q’, giving us the second crossing.

If e falls between ql.and q2, the situation is entirely symmetric to the first case,
and if e falls between q2 and p, the situation is symmetric to the second case. In all
cases we have shown that the property (P3) is not satisfied, a contradiction.

LEMMA 3.7. Let p, p’ and q, q’ be paths satisfying the conditions of Lemma 3.6.
One ofpaths p or p’ crosses one of q or q’.

Proof. By Lemma 3.6 it follows that p and q do not intersect tangentially. If p
and q cross at v, then we are done. Therefore, we may assume that p and q neither
intersect tangentially nor do they cross. This implies that if we split these two paths
about v into subpaths Pl, P and ql, q, respectively, (directed outwards from v), then
at least one of these subpaths is an initial subpath of another. We may assume without
loss of generality that Pl and ql terminate at the edge es, and P2 and q_ terminate at

et. This implies that either Pl ql or P2 q_ (but not both, for otherwise p q). Let
us assume the former. The latter case follows by a symmetrical argument.

Without loss of generality we may assume that (Pl =ql,P, q2) is a clockwise
ordering of these paths about v, since the other ordering follows by switching the roles
of p and q. We may also assume that e is the clockwise successor of ’ about v, since

(a) (b)

q2

132

(c)
FIG. 9. Proof of Lemma 3.6.
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the actual direction in which p and q traverse e is determined by Lemma 3.5. The
loop e may fall in any of three places between these paths. If e falls between Pl and
P2, then the paths cross by considering the alternating cyclic order of Pl and p2 (of p)
with e and qa (of q’) (see Fig. 10(a)). Symmetrically, if e falls between q2 and Pl, then
the paths cross by considering the alternating cyclic order of ql and q2 (of q) with g,

and p: (of p’).

e

ql Pl

q2

P2

ql 131

q2

(a) (b)

Pl

(c)

FIG. 10. Proof of Lemma 3.7.

ql

P2

Finally, if e falls between P2 and q2 (Fig. 10(b)), then first note that both paths
visit v twice. By Lemma 3.5 the paths p’= -?P2 and =-eql traverse e in the same
counterclockwise direction. (Fig. 10(c) shows the two instances of v explicitly.) By
hypothesis (p, e, qa) is a clockwise ordering ofthese three paths about v as is (P2, ’, q).
The clockwise orientations imply that the two paths ,p and p2 of p’ alternate about
the second instance of v with the paths ’q2 and q of q’. This implies that p’ and q’
cross, completing the proof.

LEMMA 3.8. If tWO distinct paths in S are equivalent modulo e (where e is distinct

from es and et), then one path differs from the other only in that one traverses the
(undirected) edge e and the other does not.

Proof By Lemma 3.4 we may assume that e is a loop about some vertex v. By
property (P1), each path traverses e at most once. Suppose to the contrary that both
paths traverse e (in possibly different directions). These two different strings arise by
taking a common path r that visits the vertex v at least twice, inserting the loop e or, into one instance of v on r to form p, and inserting e or ’ into another instance
of v on r to form q. This implies that the two paths each can be decomposed into
three subpaths pl, p, and P3, where p and P3 are directed outwards from v, such
that one of the paths can be written p =-ffepzp3 and the other path can be written
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q --p’-p2ep3 (We are treating e as an undirected edge here. The actual direction in
which q and p traverse e is determined by Lemma 3.5.) Because the paths do not start
or end at e, the subpaths Pl and P3 are nonempty. The subpath P2 is nonempty, for
otherwise p and q would not be distinct.

The paths pl, p=, -, and P3 all share v as an origin and, by property (P1), none
is an initial subpath of any other, so we may consider the cyclic order of these paths
about v. There are essentially three ways that these four paths may be cyclically ordered
about v (allowing for clockwise-counterclockwise symmetry). We show that all three
orders lead to a contradiction.

If (Pl, -, P=, P3) is the cyclic order of the paths about v (see Fig. ll(a)), then the
alternating order of p, P2 and , P3 implies that, regardless of the position of e, the
path p contracted by the edge e crosses over itself. This violates condition (P2).

Pl P-- Pl Pl
P2

P3 P2 P3 P2

(a) (b) (c)

FIG. 11. Proof of Lemma 3.8.

If either (Pl, P2, ", P3) or (p, P2, P3, ff’) is the cyclic order of the paths about v
(see Fig. ll(b) and ll(c)), then the four subpaths -P2 (of q), -ff(epz (of p), P2P3 (of
p), and p2ep3 (of q) satisfy the conditions of Lemma 3.6 (as p, p’, q, and q’, respectively,
in the statement of the lemma). However, in both cases p and q intersect tangentially
at v, contradicting Lemma 3.6.

By combining these lemmas we have a characterization of the paths that are
equivalent modulo e in terms of a set of paths that intersect nontangentially at a single
vertex. This lemma is illustrated in Fig. 12.

LEMMA 3.9. For an arbitrary k, 1 <-k <-_ n, let e be the edge contracted in forming
Gk-1 from Gk.

(i) I1- s-l is at most the number ofequivalence classes moduto e, and this value
is nonzero only if e is a loop.

(ii) If e is a loop incident on a vertex v, then the set of equivalence classes modulo
e in Sk is in 1-1 correspondence with a set ofpaths T that satisfy the following properties.

(T1) Every path in T starts at the edge es and terminates at the edge et.
(T2) No two paths in T intersect each other tangentially at vertex v.
(T3) No two paths in T cross each other except possibly at v.

q3 ro

qo r3
FIG. 12. Paths equivalent modulo.
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Proof In order to prove (i), first note that by Lemma 3.8 each equivalence class
modulo e is of size one or two. This means that the difference in size between Sk and
Sk-1 is at most the number of equivalence classes modulo e, since each such class can
lose at most one path in forming Sk-1. Let m ]Skl--ISk-1]. It follows from Lemma
3.4 that m is nonzero only if e is a loop. To prove (ii), let {(Pi, Pl)I1 -< i--< m} be
the set of equivalence classes of size two. By Lemma 3.8 we may assume that
Pi and Pl differ only in that one, say p, traverses the loop e and the other, Pi,
does not. Let T be the set of paths {pill_-< i-< m}. Clearly the paths of T satisfy
property (T1).

Consider an arbitrary pair of equivalence classes (Pi, P) and (pj, p). Because all
paths start at edge es and terminate at edge et, neither of which equals e, we can apply
Lemmas 3.6 and 3.7 (where pi, P i, P, P take the place of p, p, q, q’, respectively, in
the statements of the lemmas). Lemma 3.6 implies that the paths of T satisfy property
(T2). Lemma 3.7 implies that for every pair of equivalence classes, one path from one
class crosses some other path of the other class, and all of these crossings occur at the
vertex v. Suppose, for example that Pi and p: cross each other at e. The two paths of
Pi and pj cannot cross one another elsewhere, for if they did, p’. must also cross
since p’. is identical to p everywhere other than at e. This would imply that Pi and p’.
cross each other twice, violating property (P3) of paths. Therefore Pi and p do not
cross each other except at v, establishing property (T3).

We have reduced the problem to bounding the size of the set T. Each path ti T
can be split about its instance of v (the instance at which the loop edge e is contracted)
into two subpaths, directed outwards from v, qi, and ri, such that ti q--7,ri. Consider
the set of paths Q {qill _-< -_< m} and R {rill _<- _-< m}. Every path in Q originates
at v and terminates at eL, and every path in R originates at v and terminates at et. By
property (T3), no two paths in Q cross each other, and no two paths in R cross each
other. Moreover, no path in q crosses a path in R.

LEMMA 3.10. The paths of Q kJ R can be ordered clockwise about v. Both Q and R
contain O( n paths.

Proof To prove the first claim, it suffices to show that no path of Q or R is an
initial subpath of any other path in Q kJ R. No path in Q can be an initial subpath of
any other path in Q because every path in Q terminates at es, and no path can traverse
an edge twice. No path in Q can be an initial subpath of a path in R, for if any path
of R traverses e, then the corresponding path in T traverses e twice. A symmetric
argument shows that no path in R is an initial subpath of either R or Q, completing
the proof. The second claim follows from Lemma 2.3 since the paths of Q and R do
not cross each other.

Consider the clockwise order of Q [2 R about v. We can convert the clockwise
order into a linear order by distinguishing a path qo Q U R and, for ql, q2 Q R,
defining q < q2 if q comes before q2 in a clockwise enumeration of Q R starting at
qo. Let us call this the linear order induced by qo. The elements of T may be viewed
as elements of the set Q R. Fix an element Po T and let qo and ro be the components
of Po in Q and R, respectively. We now show that the elements of T possess a
monotonicity property with respect to the linear orders on Q and R as induced by qo
and ro, respectively.

LEMMA 3.11. Let Pl qlrl and p2 q2r2 be two elements of T, where ql and q2 are
distinct from qo, and rl and r2 are distinct from ro. If ql < q2 in the order induced by qo,
then rl <--r in the order induced by ro (see Fig. 12).

Proof Because all of the elements of T intersect nontangentially at v, any cyclic
enumeration encounters the components of Po, Pl, and p2 in an alternating fashion
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(where some of the components may be equal). The possible cyclic orders of qo, q2,

ro, and r2 are (qo, q2, ro, r2) and (qo, r2, ro, q). In the first case, suppose that ql < q2

in the order induced by qo, that is, (qo, ql, q2). Then, by the alternating order of
components, the cyclic order of the components is (qo, ql, q, ro, rl, r2). This implies
that rl =< rz in the order induced by ro. We prove the lemma in the second case by
contradiction by supposing that rl > r in the order induced by ro, that is, (ro, r2,

By the alternating order of components this implies that (ro, r2, rl, qo, q2, ql), and
hence q2_-< ql in the order induced by qo.

LEMMA 3.12. T contains O(n) paths.
Proof Recall the fixed element Po qoro chosen earlier. We split T into three

subsets: T1 contains the elements of T of the form qor, for re R, T2 contains the
elements of T of the form qro, for q Q, and T3 contains the elements of T that contain
neither qo nor ro. Clearly, every element of T is in at least one of these sets. The size
of T1 is at most IRI. The size of T2 is at most ]QI. Thus, both sets are of size O(n) by
Lemma 3.10. The elements of T3 satisfy the monotonicity condition of Lemma 3.11.
Viewed as ordered pairs from Q x R, if these elements are arranged in lexicographic
order they are nondecreasing in their second component. Thus, each element differs
from its predecessor by an increase in either the first or second component. The elements
can increase at most IQI- 1 times in their first component and at most IRI- 1 times in
their second component. Therefore the number of elements in T3 is at most (I QI- 1)+
(IRI-1)+ 1, which by Lemma 3.10 is O(n).

Summarizing the previous discussion, we have shown that the set S(es, e,), consist-
ing of the set of edge sequences starting at an edge es and terminating at edge e,, is
decomposed by edge contractions into a sequence of path sets, S,(=S(es, e,)),
S,_1,""’, So. Clearly,

I&l- (IS l-I&-,I)+lSol,

We showed earlier that ISol is O(n); thus it suffices to show that I&l-I&-,I is O(n).
In Lemma 3.9 we showed that for each k, I&l-I&-,I is equal to the size of a set of
paths T, and in Lemma 3.12 we showed that T contains O(n) paths. Thus, S(e, e,)
contains O(n2) paths. Lemma 3.1 and Theorem 1.1 follow immediately.

4. A lower bound. We show that for each positive integer n, there is a convex
polyhedron with O(n) vertices and O(n4) distinct shortest path edge sequences. Given
n, consider a subdivision P consisting first of a rectangle R containing n vertical line
segments, Vl,"" ", vn, each of height equal to the height of R (the center of Fig. 13).
Extend the diagonals of R, and consider n rectangles concentric with R with vertices

FIG. 13. Subdivision with -(n4) edge sequences.
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along the extended diagonals (the outer part of Fig. 13). Let hi," ", hn denote the
horizontal edges ofthese rectangles above R and let -hi, , -hn denote the horizontal
edges below R.

For each pair (i, j), 1 <-_ i, j <= n, there is a line that enters the top edge of R and
crosses all of the vertical lines from vi to v and exits the bottom edge of R. Any such
line crosses all of the edges hk and --hk, 1 <--_ k<= n. For any such line and any pair
(k, l), consider the segment of the line that starts just above hk and ends just below
-hi. The edge sequence of this segment consists of hk, hk-1,""", hi, followed by the
vertical segments from vi to v, followed by the segments -hl,-h2,’’" -hi. Thus,
each quadruple (i, j, k, l) generates a line segment with a different edge sequence,
implying that there are l’l(rt 4) different edge sequences on P.

The conclusion follows by projecting the vertices of P onto a hemisphere of
sufficiently large radius centered above the middle of R, thus warping the subdivision
slightly. It is easy to see that the edges of the subdivision will be mapped to edges of
the convex hull of projected vertices. As the radius of the hemisphere increases,
geodesics on the convex hull approach line segments on the subdivision. Hence, for
all sufficiently large radii, the edge sequences given above are edge sequences of shortest
paths on the convex hull.

5. Edge sequences on nonconvex polyhedra. The essential difference between short-
est paths on the surface of a nonconvex polyhedron and shortest paths on the surface
of a convex polyhedron is that in the nonconvex case shortest paths may pass through
vertices. The analogue to edge sequences are sequences of edges and vertices. When
shortest paths pass through vertices, we can construct degenerate cases in which there
are exponentially many paths. To see this, let P(x, y) denote the pyramid whose base
is the unit square with opposing corners at (x, y, O) and (x + 1, y + 1, O) and whose apex
is above the center of the square at height 1, and let C(x, y) denote the unbounded
cylinder whose base is the same unit square as P(x, y) that extends downwards for
z<=0. Let P,(z) be the unbounded nonconvex polyhedron (_J

i=O P(i, i) C(i, i) (see
Fig. 14).

It is easy to see that any shortest path from (0, 0, 0) to (n, n, 0) does not pass
below the x, y-plane, and hence passes through the n- 1 intermediate points (i, i, 0),

FIG. 14. Degenerate edge sequences on nonconvex polyhedra.
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for 1 <= _-< n. The shortest path between successive points (i, i, 0) does not pass through
the apex of the pyramid because the path along the x, y-plane is shorter. Hence, by
symmetry, there are two distinct shortest paths from (i, i, 0) to (i+ 1, i+ 1, 0) for each
i. This implies that there are 2"-1 shortest paths from (0, 0, 0) to (n, n, 0). Each shortest
path has a different edge sequence.

The exponential number of paths is due to the fact that, at nonconvex vertices,
shortest paths may cross one another without restriction. Given the similarity of the
shortest path structure on nonconvex polyhedra with convex polyhedra [3], it is natural
to conjecture that if the set of shortest paths on nonconvex polyhedra are suitably
restricted (for example, allowing exactly one shortest path between any pair ofvertices),
then the proof given here can be generalized to nonconvex polyhedra. However, one
major complication is the fact that arbitrary nonconvex polyhedral surfaces may not
be planar.

6. Concluding remarks. We have shown that the number of shortest path sequences
on the surface of a convex polyhedron is at most O(n4) and that this bound is
asymptotically tight. We proved this result in the more general setting of pseudoseg-
ments on a planar subdivision, exploiting only topological properties of shortest paths.
The principal question raised by this research is how to compute the actual edge
sequences efficiently. Sharir showed how to compute the edge sequences in O(n8 log n)
time [5], and this has been improved to O(n log n2n) by Schevon and O’Rourke
[4]. Does there exist an algorithm closer to O(r/4), or better, an output sensitive
algorithm whose running time is a function of the number of edge sequences ? Another
question is whether there is a suitably restricted definition of edge sequence from which
we can show that the number of edge sequences on a nonconvex polyhedron is
polynomial (perhaps a function of the genus of the polyhedron).

Acknowledgments. The author would like to thank one of the anonymous referees
for many valuable comments, which greatly improved the clarity of the paper.
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IMPROVING THE TIME COMPLEXITY OF MESSAGE-OPTIMAL
DISTRIBUTED ALGORITHMS FOR MINIMUM-WEIGHT SPANNING

TREES*

F. CHIN? AND H. F. TING:

Abstract. A distributed algorithm is presented that constructs the minimum-weight spanning tree of an
undirected connected graph with distinct node identities. Initially, each node knows only the weight of each
of its adjacent edges. When the algorithm terminates, each node knows which of its adjacent edges are

edges of the tree. For a graph with n nodes and e edges, the total number of messages required by this

algorithm is at most 5n log n +2e, where each message contains at most one edge weight plus 3 + log n bits.

Although the algorithm presented here has the same message complexity as the previously known algorithm
due to Gallager, Humblet, and Spira [ACM Trans. Programming Language and Systems, 5 (1983), pp. 66-77],
the time complexity of the algorithm presented improves from Gallager’s O(n log n) to O(n log* n) time
units, where log* k is the number of times the log function must be applied to k to obtain a result less than
or equal to one. A worst case of ll(n log* n) is also possible. In addition, when the network is synchronous,
the algorithm presented is modified further to solve the same problem with the same message complexity
but in O(n) time.

Key words, distributed algorithms, synchronous and asynchronous networks, minimum spanning trees,
communication complexity

AMS(MOS) subject classifications. 68M 10, 68Q25

1. Introduction. Given an undirected connected graph G with n nodes and e
edges, where each node has a unique identity, a spanning tree of G is a connected
subgraph of G with exactly n nodes and n- 1 edges. The weight of a spanning tree is
the sum of weights of all edges in the spanning tree. Our problem is to design a
distributed algorithm that finds a spanning tree of G whose weight is minimum, i.e.,
the minimum-weight spanning tree (MST) of G.

We assume that a processor exists at each node of the graph, and the processor
initially knows the weights of the edges adjacent to the node. Each node performs the
same local algorithm and two adjacent nodes can communicate with each other by
exchanging messages on the edge between them. A node can send (broadcast) or
receive messages on several adjacent edges simultaneously. Messages can be transmitted
independently in both directions on an edge, without error and in sequence. In an
asynchronous network, each message sent by a node to any of its neighbors arrives
within some finite but unpredictable time. However, in the synchronous network, there
is a global clock accessible by all nodes, and messages are allowed to be sent only at
integer pulses of the clock. During each clock pulse at most one message can be sent
over a given edge and the delay of each message is at most one time unit (i.e., one
pulse duration) of the global clock.

The time complexity of a synchronous algorithm is defined as the maximum number
of clock pulses passed between the sending of the first and the receiving of the last
message of the algorithm. In an asynchronous network, we assume the existence of a
hypothetical global clock. The processing and queueing time of each message is
negligible, and the transmission of each message takes at most one time unit. The time

* Received bythe editors January 20, 1987" accepted for publication (in revised form) September 15, 1989.
t Department of Computer Science, University of Hong Kong, Pokfulam, Hong Kong.
: Department of Computer Science, Princeton University, Princeton, New Jersey 08544.
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complexity of an asynchronous algorithm is the maximum number of time units from
the start to the completion of the algorithm. This assumption is introduced only for
the purpose of performance evaluation and the algorithm can operate correctly with
arbitrary delays.

Since Minimum-Weight Spanning Tree (MST) is one of the most fundamental
structures of a graph, it is not surprising that the MST construction algorithm can
serve as building block for many other distributed algorithms, such as network syn-
chronization [2], breadth-first-search [3] and deadlock resolution [4]. Awerbuch has
proved in [5] that this problem is equivalent to a large class of problems (e.g., leader
selection, spanning tree construction, counting the number of nodes in a network and
computing a sensitive decomposable function).

To the best of our knowledge, all distributed algorithms that solve the MST
problem [5], [11], [12], [15], [18] employ the idea of Borfivka [7], [8], [14], the
so-called Sollin algorithm. A fragment is defined to be a subtree of a MST. Initially
each node is treated as a fragment, and fragments are merged together iteratively over
their minimum-weight outgoing edges. An edge e is an outgoing edge of a fragment if
one of its endpoints is in the fragment and the other is not. The algorithm terminates
when one fragment remains. Each fragment finds its minimum-weight outgoing edge
independently and has a designated edge called the core to coordinate action. The
algorithm proceeds in phases in which fragments are merged into larger ones. During
each phase, information must be broadcast from the core to every node in the fragment
and vice versa. Unfortunately, the message complexity of the obvious implementation
of this algorithm is 0(n2). Message complexity is worst when there is a large fragment
(say a fragment with n/2 nodes) that goes through n/2 phases by enlarging its size
one node at a time. Since during each phase at least n/2 messages are needed for the
communication between the core and all other nodes, O(n 2) messages are needed for
the algorithm.

Gallager, Humblet, and Spira [13] later proposed an improved algorithm that
solves this problem in 0(e+n log n) messages. When two fragments are merged,
Gallager’s algorithm ensures that the small fragment is merged into the large one and
work is only done by the small fragment. Since each fragment is always merged into
a fragment of at least its original size, each node can go through at most log n merges.
To implement this mechanism, a level field is associated with each fragment, with the
property that a fragment at level has at least 2 nodes; in particular, fragments with
a single node have 1--0. The level of a node is defined as the level of its containing
fragment. Thus, whenever two fragments at different levels join, the fragment at the
smaller level works harder, never waits, and assumes the name and level of the larger.
On the other hand, if a higher level fragment tries to merge with a lower level one,
the former fragment waits until the latter fragment reaches a level high enough for
combination. When two fragments at the same level join, both fragments go through
the name change and a new fragment with its level increased by one is formed.

As given in [13], (e) messages are necessary in constructing a spanning tree,
and as proved in [16], O(n log n) messages are needed to find a leader on a ring. It
follows that l(e + n log n) messages are necessary to construct a spanning tree in a
general network. Thus, Gallager’s algorithm is message-optimal. However its worst-case
time complexity is O(n log n). Let us consider a fragment of size n/2 but at a low
level, say 1. Because of its initially low level, this fragment can go through log n
merges before forming the final MST. Since each merge may take 0(n) time to update
the information of the fragment, Gallager’s algorithm might require O(n log n) time.
This happens because the size of a fragment is not reflected by its level. To be more
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specific, when one fragment joins another, high-level fragments must wait for low-level
ones to respond. But the size of those low-level fragments may be large and messages
may have to travel from one end of the fragment to the other end, in order to update
the level and identity of the fragment and to find its minimum-weight outgoing edge.
Thus, the waiting time can be unduly long.

In this paper, we modify Gallager’s algorithm by introducing the property that a
fragment at level has size bounded within 2 and 2/+1, otherwise its level will be
updated. Thus, if there exists a large fragment, its level will be increased accordingly
and its workload can therefore be reduced. The message complexity of this algorithm
remains 5n log n + 2e but the time complexity can be reduced to 15n log* n + 3n. The
detailed description of our algorithm is given in 2. In fact, similar observations and
results have also been obtained independently by Gafni [11 ]. In 2.4, an example that
uses 12(n log* n) time is presented.

In 3, we further modify the algorithm for a synchronous network so that a
high-level fragment can immediately terminate its waiting for another low-level frag-
ment’s response if the waiting time of the high-level fragment is unduly long. Should
this happen, the size of these low-level fragments must be large enough for merging
and thus the waiting of the high-level fragment can be terminated and be merged with
the low-level fragment correctly. Since the durations of all waitings that depend on
the levels of the corresponding fragments are bounded, the algorithm can be executed
in synchronized phases and terminates in 0(n) time. Recently, Awerbuch [5] has shown
that the asynchronous MST problem can also be solved in 0(n) time with O(e + n log n)
messages.

2. The asynchronous algorithm. Since our algorithm depends very much on the
one given by Gallager, Humblet, and Spira [13], we adopt similar notation in our
algorithm description. In particular, uppercase words stand for labels and states,
whereas italic words are for messages. Our algorithm starts with all n nodes awake.
This assumption can be relaxed by propagating an AWAKF_, message to all nodes
initially. This can be done with at most n- 1 extra time units and 2e extra messages.
Initially, each node is a fragment at level zero. Fragments are merged together iteratively
as described in Gallager’s algorithm. However, the method for determining a fragment
level and the mechanism for merging fragments are somewhat different.

As given in [13], we have the following definitions and properties:
(1) A node has two possible states: FIND and FOUND. Initially, all nodes are

in the FOUND state.
(2) An edge has three possible states. Initially, all edges are in the BASIC state.

An edge is in the SELECTED state if it is found to be a MST edge. It is in the
REJECTED state if it is known not to be a MST edge.

(3) Every fragment usually has a SELECTED edge as its core. The adjacent nodes
of the core act as the coordinators. For those fragments that do not have a core, a
node is designated as the coordinator.

(4) Every fragment has a fragment level and a fragment identity, which equals to
the weight of either its core or an edge incident to its coordinator (if there is no core
in the fragment).

2.1. How a fragment finds its minimum-weight outgoing edge. Whenever a new
fragment is formed, the coordinator(s) of the fragment broadcasts the message INITI-
ATE(F, 1, FIND) along the SELECTED edges of the fragment. As this set of SELEC-
TED edges forms a spanning tree of the fragment, all the nodes in the fragment are
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informed about their new fragment identity F and their new fragment level /. At the
same time, all the nodes change their states to FIND in order to participate in finding
the fragment’s minimum-weight outgoing edge.

When a node u enters the FIND state, it finds the minimum-weight outgoing edge
by sending a TEST(F, l), message over its minimum-weight BASIC edge to, say, node
u’ in fragment F’ at level l’, and waits for a response. If the response message is
REJECT, i.e., F and F’ have the same identity, then u marks the edge REJECTED
and sends a TEST message over its next minimum-weight BASIC edge. The TEST
message will be sent until either an ACCEPT message is received or there are no more
BASIC edges adjacent to u. If u receives an ACCEPT message on a BASIC edge,
there it will remember the edge as min_edge and its weight as rain_weight. On the other
hand, if there is no outgoing edge from u, min_weight is set to infinity.

When a node u’ in fragment F’ at level l’ receives a TEST(F, l) message on a
BASIC edge, node u’ responds with a REJECT message and marks the edge as
REJECTED if F and F’ are equal. If F and F’ are different and -< l’, then u’ responds
to u immediately with an ACCEPT message. On the other hand, if > l’, u’ will wait
until 1’=>/.

A node u in state FIND will eventually send a REPORT( W, SZ) message along
the SELECTED edges to its coordinator, where W stands for the weight of the
minimum-weight outgoing edge and SZ for the size of the subfragment root at u.
Assume W/ and SZi are the minimum-weight outgoing edge and the size of the
subfragment rooted at u’s ith son. If u is a leaf node, W u’s min_weight and SZ 1,
otherwise, W the minimum of min (W/) and u’s min_weight and SZ 1 + SZi. At
the same time, node u marks the minimum-weight outgoing edge of the subfragment
rooted at itself, i.e., its min_edge or the edge leading to its son that has the minimum
W/. Node u sends a REPORT( W, SZ) message to its father and changes its state to
FOUND only after it has found its min_weight and has received all REPORT( Wi, SZi)
messages from its sons (if any). When the coordinator(s) of a fragment receives all
REPORT messages from its sons, the fragment size and the weight of the minimum-
weight outgoing edge can be determined.

The algorithm terminates when the returned value W in the REPORT message
at the coordinator is infinity. This implies there are no outgoing edges and there is
only one fragment in the graph.

As shown in [13], when the coordinators receive all the REPORT messages, it
must be the case that SZ >= 21 where is the fragment level. But since the time the
fragment initiated the process of finding its minimum-weight outgoing edge, other
fragments may have merged into it and its fragment size and level may not be
commensurate, i.e., SZ >= 21+1. As we must make sure that the fragment level always
reflects its size, the coordinator(s) compares SZ with 21+1. If SZ>=21+1, the coor-
dinator(s) broadcasts another INITIATE(F, l’, FIND) message to all nodes in the
fragment to update their level as if a new fragment at level l’ has just formed, where
l’ is the largest integer such that SZ >-_ 2 r. Note that this level-updating process may
be repeated many times until the fragment size and level are commensurate (i.e.,
21 <- SZ < 2/+1). On the other hand, if SZ < 2+1, then the fragment is ready to combine
with another fragment to form a new fragment with a new core. The coordinator(s)
sends a message CHANGECORE following the path of the marked edges to the node
adjacent to the minimum-weight outgoing edge.

2.2. How fragments are merged together. When the CHANGECORE message in
a fragment at level reaches node u, to which the minimum-weight outgoing edge
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(u, u’) is incident, u attempts to merge its fragment with the fragment F’ at level I’
that contains u’ by sending a CONNECT(l) message over (u, u’). After receiving this
CONNECT(l) message, u’ compares with its fragment level l’. There are two possible
outcomes, l’ or < l’. The outcome > l’ is not possible because levels are nondecreas-
ing and a TEST message must have been sent and responded to before this CON-
NECT(l) message is sent.

Case 1. l’. If u’ has previously sent a CONNECT(I’) message over edge (u, u’)
to u, then the two fragments will have the same minimum-weight outgoing edge, and
will be merged immediately together to form a new fragment F" at level + 1 with
edge (u, u’) as its new core. Edge (u, u’) is marked SELECTED. INITIATE(F",
l+ 1, FIND) messages are then broadcast to all nodes in F". In all other cases, u’ will
wait until it sends a CONNECT(l’) message to u and proceeds as previously described,
or until it increases its level l’, in which case it does the following.

Case 2. < l’. Normally, fragment F is merged with fragment F’. Because of our
strategy of never making a low-level fragment wait, node u’ immediately marks edge
(u, u’) as SELECTED and sends an INITIATE (F’, l’, S’) message to u, where F’, l’,
and S’ stand for fragment identity, level, and state, respectively, of u’.

If S’- FIND, then u’ has not sent its REPORT message. Fragment F simply joins
fragment F’ and participates in finding the minimum-weight outgoing edge of the
enlarged fragment. Node u marks edge (u, u’) as SELECTED, changes its state
to FIND, fragment identity to F’, fragment level to l’, and also relays the
INITIATE(F’, l’, S’) message to all other nodes in F. Meanwhile, u’ waits for the
REPORT message from u before sending its REPORT message.

If S’= FOUND, then u’ has already sent its REPORT message. Thus the size of
fragment F cannot be reported to the coordinator of F’. However, we want to make
sure that its size is reflected at the next level update. Under such. circumstances,
fragment F will not be merged with F’ immediately but instead will be treated as a
new fragment with a new identity and a new level. Basically, node u will be the new
coordinator of the fragment. It changes its fragment identity to w, the weight of a
SELECTED edge incident to u, its state to FOUND, its level to /’, broadcasts an
INITIATE(F, l’, FOUND) message with F w to all ther nodes in the fragment, and
waits for their REPORT messages. As edge (u, u’) remains the minimum-weight
outgoing edge for this new fragment, state FOUND is assigned to all nodes in the
fragment. Note that u will not mark edge (u, u’) as SELECTED, whereas on the other
hand, u’ has already sent its REPORT message and has marked edge (u, u’) as
SELECTED. Thus, messages can still be transmitted from u’ to u as if they are in the
same fragment, so it is possible for u to receive another INITIATE message from u’
before u receives all its sons’ REPORT messages. In order to ensure that every
INITIATE message has been reported before another INITIATE message is issued,
node u may have to delay its action on the second INITIATE message until it has
received all the REPORT messages from its first INITIATE message. Hence, there is
at most one such pending INITIATE message from u’.

Having received all its sons’ REPORT messages, u compares its fragment size
SZ with 2 r+l. F and F’ are combined together only when SZ < 2 r+. In other words,
when the size of F is small enough and is reflected by its new level, the size of F does
not have to be reported to the coordinator of F’ and F can be merged into F’ without
problem. On the other hand, if the size of F is sufficiently large, F will not be combined
with F’. In order to prevent a large fragment from merging with a small one, we delay
the process in F and make F wait by increasing its level sufficiently. Thus there are
two cases:



DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 617

(a) SZ </’+1. Fragment F can be absorbed into fragment F’. Node u will mark
edge (u, u’) as SELECTED. If there is a waiting INITIATE message, u will process
the second INITIATE message as if it had just been received. Even though F and F’
have different identities in this merged fragment for an uncertain period before this
second INITIATE message is processed in F, this does not create any problems in
checking whether an edge is an outgoing edge from F’ to F. This is because if a TEST
message is sent over an edge, say (u’, u) from F’ to F, then the fragment level of u

will be less than that in the TEST message (i.e., the fragment level of u’). Node u
would delay making any response until it receives the second INITIATE message and
obtains the same fragment identity and level as node u’. Thus, that TEST message
will be rejected eventually.

(b) SZ >= 2 !’+1. Let l" be the largest integer such that SZ >- 2’. Node u will change
its level to l", its state to FIND, and will send a REPORT(w, 0) to u’, where w is the
weight of the edge (u, u’). Furthermore, node u will broadcast the INITI-
ATE(F, l", FIND) to all its sons as if a new fragment has just been formed. On
receiving a REPORT(w, x) message with x=0 over a SELECTED edge, node u’
remarks that edge as BASIC and handles the REPORT message as usual. From then
on, fragment F and F’ are treated as separate fragments.

2.3. Analysis of the algorithm. The correctness proof and message complexity
analysis are same as given in Gallager, Humblet, and Spira [13]. For the correctness
proof, we only need to prove that in our modified algorithm, deadlock will not be
created and an edge is a branch of the MST if and only if it is SELECTED. From the
description of our algorithm in the previous section, our only modifications are to
raise the level of a fragment when its size is too large and to delay the merging of the
fragments when its resultant size cannot be reflected by its level. However, these
modifications would not change the fact that only the minimum-weight outgoing edge
of a fragment will be marked SELECTED and that the smallest-level fragments never
wait. With the same argument as in [13], fragments remains to be subtrees of the MST
and there is no deadlock in the algorithm.

As far as the message complexity is concerned, it seems that more messages are
required to ensure the size of each fragment is reflected by its level. However, this
increase of messages is always associated with a level change of a fragment and each
node at any given level still transmits/receives at most five messages [13]. Since
fragments are always merged into larger fragments and their levels only increase, a
node can go through at most log n levels and this accounts for the O(n log n) messages.
With the fact that an edge can be rejected only once, and each rejection requires two
messages, there are at most 2e messages leading to rejections. Thus, the total message
complexity remains O(e + n log n).

In order to prove the upper bound on time complexity, we have the following
definitions. A fragment F is the largest minimum-spanning subtree whose vertices have
the fragment identity F. A subfragment of F is a fragment whose next fragment identity
is F. If F,/),. o., Fm are all the subfragments of F, it can be shown easily that all
Fi’s are disjoint, F U i-= F, and SZ i= SZi, where SZ and SZ stand for the sizes
of the fragment F and Fi, respectively.

For 0-<_-. i-__2-" log n, let r be the minimum time of the hypothetical global clock at
which all nodes in the graph have level at least and a =ri- -_. A critical node at

We now briefly descAbe a modification of the algorithm that is used to improve its complexity. If the
waiting INIT1ATE message is o|" level at least l", then it can be processed immediately without broadcasting
the INITIATE(F, g", FIND) message to all the nodes in F.
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ri is the node that changes from a level less than to a level at least at time "/’i A
critical fragment at zi is the fragment containing a critical node at ri at time r. Note
that there may be several critical nodes at z, and likewise, several critical fragments.
Since all the critical fragments are disjoint and the same argument can be applied to
them, without loss of generality, let us consider a particular critical node and the
corresponding critical fragment. An active node set, ANi, at ri is the set of nodes in
the critical fragment at r with level less than at time z_l. From the definition of
z_l, these nodes are at level i-1. If the active node set at z is nonempty, this set of
nodes may belong to several subfragments at level i-1 of the critical fragment at ri.

As all nodes are initially AWAKE, Zo 0. If is the fragment level when the algorithm
terminates, then z r for I-< <-log n. Define,

log n if k 1,
log(k) n=

log(log(k-)n) ifk>l.
logIt is obvious that ro. i--1 a. We now partition the indices into sets. Let

(k) be the index set (i: (log n-log) n)i-(logn-log’+1) n)). For example,
S(1) (1, 2, , log n log) n), , S(log* n 2) (log n 3, log n 2), S(log* n
1) {log n 1) and $(log* n) {log n). The a’s are partitioned into classes according
to these index sets, such that all the a’s whose indices belong to the same index set
are in the same class. We want to show that the sum of all a’s in any class is O(n).
Since there are log* n classes in all, we havero. O(n log* n).

Let us consider the kth class. The elements in (k) are partitioned into two
groups, S’(k) and $"(k), according to the value ofthe corresponding a’s. S’(k) contains
the indices of all the small ai’s and S"(k) contains the indices of the large ones; more
precisely, S’(k) {i S(k): a <-_ lOn/log(k) n} and S"(k) S(k) S’(k). Since S(k) con-
tains (log(k) n-log(k+l) n) elements and S’(k)_ S(k), the sum of all the small ai’s
whose indices are in S’(k) is no more than O(n). As for the large a’s corresponding
to S"(k), we will prove that the sizes oftheir corresponding AN’s, and their correspond-
ing critical fragments, cannot be small. Intuitively, this can be seen as follows. If the
AN corresponding to a large ai is small, then the time required to change the level
of these nodes in ANn’s is small, contradicting the fact that a is large. Since our
algorithm makes sure that sizes of fragments are reflected by their levels, the level of
each fragment containing a large AN will be increased accordingly. As AN, is large,
so is its level increase. Thus, the level of the nodes in these large ANn’s becomes so
high that these nodes cannot be in another ANj in the same class as ai. Thus, there
cannot be too many large a’s in the kth class corresponding to S"(k), and consequently
the sum of the large a’s whose indices are in S"(k) is also O(n). We now make these
observations precise.

LEMMA 1. a _--< 5[AN[, where ai is the time required to increase the level of all nodes
with level less than at ’i-1, which includes the active node set AN, to a level at least i.

Proof. The lemma holds true for ag =0. Assuming a > 0, we have r > z_ and
ANi . At time Zg_l, every node v in ANi has received the INITIATE message at
level i- 1 and is ready to send or has sent some TEST messages. Let us consider the
situation when v must send some TEST messages to find its min_weight. All nodes
in the fragment to which v belongs at time z_ must be at level i-1, and the size of
this fragment is at most [AN[. Hence, v will send at most [AN[ TEST messages and
will receive at most [AN[-1REJECT messages before an ACCEPT message is
received. As v’s level is the lowest in the graph, the TEST messages will be responded
to without any delay, and thus after at most 2[ANi[ time units, all the leaf nodes in

AN relative to the tree corresponding to the critical fragment can report. As there are
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IANil active nodes, there will be at most [ANiIREPORT messages,
]ANiICHANGECORE/CONNECT messages, and IANiIINITIATE messages from
within the critical fragment. Thus, it takes at most 31ANI extra time units before all
nodes in ANi rise to a level at least i. Thus, we have

COROLLARY 1. If ai > 5m, then IAN, > m, where rn is any positive integer.
LEMMA 2. Let be a node in fragment F at level at time t. On its next level update,

will change its level from to l’ such that 21’+1> IF[.
Proof The proof follows directly from the description of the algorithm. The size

of the fragment must be reported after every INITIATE message, which is the only
way to change the level of a fragment. The new level is assigned according to the
fragment size.

21g*Let R(k)=iS(k ai for 1 < k<log* n. Then Zlogn k=l R(k).
LEMMA 3. R(k)>=15nfor l_-<k_-<log* n.

Proof. S(k) is partitioned into S’(k) and S"(k). R(k)= R’(k)+ R"(k) where

R’(k)= 2 ai and R"(k)=
iS’(k)

Since ai <- 1On/log(k) n for all i S’(k), we have

iS"(k)

R’(k) 2
iS’(k)

[ lOn )ai < (log(k) n-log(k+l n) -< lOn.\log(k n

As ai> lOn/log(k n for all iS"(k), from Corollary 1 we have IANil>2n/log(k n.
The initial level of a new fragment may not reflect its size, but by Lemma 2, all nodes
in ANi will raise their level to greater than log n -log(k+l n at their next level update.
From then on, by the definition of S(k), these nodes will never belong to any any
other active node set corresponding to S(k), i.e., they can only belong to some active
node set AN in some S(k’), with k’> k. Thus, before this level update, all these nodes
in the graph may belong to at most one active node set corresponding to S"(k). Using
this fact and Lemma 1, we have R"(k) --2iS"(k) ai<=ieS"(k) 5[ANi[ <-5n. Hence R(k)=
R’(k)+R"(k)<__lSn.

log*Using Lemma 3 and the equality Zog=k=l R(k), we have the following
theroem.

THEOREM 1. ’/’logn 15n log* n.
After Zogn and before the algorithm terminates, at most 3n time units are required

for the TEST, REJECT, and REPORT messages as desdcribed in the proof of Lemma
1. Thus, our algorithm takes no more than 15n log* n / 3n time units.

2.4. Example with time complexity [l(n log* n). Let us consider two extreme
situations. Ifthere are many small fragments merging in pairs, each node may participate
in log n level changes before the algorithm terminates. However, under this situation,
our algorithm allows a large amount of parallelism in message exchanges and each
fragment doubles its size at each merging or level change. Since the time delay for
each level change is proportional to the fragment size, the total time delay of the
algorithm would still be O(n). If, on the other hand, there is a large fragment, our
algorithm guarantees that the fragment’s level will be raised appropriately. Even though
there might be a long delay for this level update, this time loss can be compensated
by the large level increase and the algorithm can still be finished in O(n) time. We
can show that the worst time complexity of our algorithm occurs when there is a
sequential waiting of the fragments with size n/log n, and after O(n) time, the number
of fragments can at most be reduced from n to log n. This process can be repeated for
log* n times until a single fragment remains. Here is a sketch of our example whose
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execution requires at least log*n stages with each stage takes fl(n) time. Thus, the
whole execution of our example requires fl(n log* n) time.

Let us first consider log k rows of nodes, each row has k nodes, connected in a
line as shown in Fig. 1, which is an example with k 8. The nodes in each row are
further subdivided into groups; the ith row is divided into k/2i-1 groups, each with
2i-1 nodes (the nodes in each oval form a group). The nodes in each group are linked
together with edges of lowest weight, and thus they will first merge together to form
supernodes of level i-1 (for nodes in the ith row). Furthermore, these groups are
connected in a line with edge weights strictly ascending from left to right. When the
minimum-weight spanning tree algorithm is executed, the nodes in the ovals form
supernodes in each row. Let us consider the supernodes of the ith row where > 1.
They are at level i-1 and their leftmost supernode sends a TEST message over an
edge of the highest weight (the 1,000 link in Fig. 1) to a supernode of the (i- 1)st row
at level i-2. This TEST message will be responded to when all the nodes in the
(i- 1)st row have merged into a single fragment with its level increased to log k. Then,
the leftmost two supernodes in the ith row will merge together to form the core of a
new fragment. The other supernodes in the same row will then merge one after another
without concurrency in a strictly left to right fashion. Finally, all the nodes in each
row will merge into a fragment of level log k, with the leftmost intersupernode edge
as the core.

1000

1000

1 1 1 1 1 1

100

100

FIG.

Although each row will eventually form a single fragment, this cannot happen
until all the nodes in the preceding row have merged together and have had their levels
updated to log k. Since there are log k rows and the level update of all the nodes in
each row takes O(k) time units, it takes O(k log k) time for all the rows to become
fragments. If we let k be about n/log n, then it takes O(n) time for all the rows to
form single fragments.
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Let Fi be the fragment formed by the ith row. Fi is at level log k and, except for
the last row, sends a TEST message over the edge of the second highest weight (the
100 links in Fig. 1) to a node at the last row which is at level (log k-1). Since that
TEST message goes to a fragment at a lower level than F, Fi must wait until the last
row has formed a single fragment before connecting to another fragment. Basically,
these second highest weight edges (the 100 links) are for the purpose of synchronizing
each stage.

The above construction is repeated for several stages by treating each Fi as a
supernode. At each stage, the number of supernodes is the logorithm of the number
of nodes (supernodes) in the preceding stage. So, this whole process will be done in
f(log* n) stages and it will take II(n log* n) time to complete the entire algorithm. In
order that the execution of each stage is not affected by what is done in the preceding
stages, without loss of generality, let us consider the second stage. Two new nodes a,
b are introduced for each fragment Fi, and they are connected with edges of weight
x, which is larger than those on any of the edges of but less than those edges between
the Fi’s, as in the Fig. 2.

a x /" "N x b
C O

FIG. 2

Let the two new nodes a, b be the left and right handles of F, respectively. By
making the edges connected to the handles are of weight larger than x, the handle will
join the subfragments of F at an early stage, and will have no effect on the preceding
stage. In addition, any edges attached to the handles will not affect the execution of
the preceding stage either. In other words, F is formed in the first stage even with the
handles. Fragments F’s are then connected into the same structure as in Fig. 1 by
treating each F, together with its handles, as a supernode.

With k, the number of nodes (fragments) in each row, equals to log n/log log n,
there will be enough fragments F. The supernodes are then connected in such a way
that edges coming into the left of the supernode are attached to its left handle, and
those connected to the right are connected to the right handle to make sure that the
second stage could not start until the first stage is complete. The weights of the new
edges will all be larger than x and in the mid-range (say 50, if Fig. 1 is used as an
indicator of weights in the preceding stage). That is, they will be larger than the weights
of the branches within each Fi, and they will be less than the previous stage’s edges
between the F/.

We start in the first stage the construction with k nodes in each row and log k
rows. With k n/log n, there are about (n/log n)(log n-log log n) nodes. Since each
fragment F requires a pair of handles, it requires at most 2 log n handles at the
first stage. Similarly, 2 log log n for the second stage. Thus, there are a total of no more
than 2(log n +log log n +... nodes added. So for large n, the number of nodes in
the final graph is less than n. Note that the graph can be padded out to just n nodes
in any reasonable fashion.

3. The synchronous algorithm. Let us consider the above algorithm in more detail
and understand why the nonlinear time bound still exists. The worst-case time com-
plexity occurs when there is sequential waiting ofmedium-size fragments. The nonlinear
characteristic of the time complexity is due to the fact that the level of a fragment
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cannot be increased gradually step by step. If many mergings to fragment F occur
almost at the same time, there may be a large level increase of fragment F, say from
to l’, after 2r time units. In the meantime before F changes its level to l’, another

fragment F" at a slightly higher level than F, say l", where </"<< l’, may have sent a
TEST message to fragment F and is waiting for the level change of fragment F to l’
in order to raise its own level from l" to l"+ 1. Since the waiting can be unnecessarily
long (up to 2r time units) for one unit of level increase from l" to l"+ 1, the time
complexity of the algorithm is nonlinear.

In this section, we propose a synchronous version of our previous algorithm for
solving this MSTproblem in 0(n) time with the same 0(e + n log n) message complexity.
This algorithm is a modification of the algorithm by Gallager, Humblet, and Spira
13] and tackles the above problem with an approach different from that of Awerbuch

[5]. Awerbuch’s approach is to reimburse fragment F" for its time loss by hooking
fragment F" onto fragment F and subsequently inheriting level l’. In this case, fragment
F" has got its reward through its long waiting. Instead of hooking fragment F" with
fragment F through the minimum-weight outgoing edge as in the traditional methods,
an arbitrary edge is chosen and a spanning tree is found instead of a minimum-weight
one.

In order to see how our synchronous MST algorithm can be finished in O(n)
time, without loss of generality, let us assume that all the nodes awake simultaneously
and execute the algorithm at the same time. Let T be the minimum time2 when all
the fragments in the graph have sizes at least 21 (clearly, To=0). Thus, if a TEST
message is sent after T/ from fragment F of level through an interfragment edge to
another fragment F’, the TEST message can be accepted immediately regardless of
the current level of F’. On the other hand, if the TEST message is sent through an
intrafragment edge and if fragment F is of size less than 21+1, all its node’s identities
and levels would have been updated by time tB + 2+1, where tB is the broadcast time
of the INITIATE message by the coordinators and the TEST message would be
rejected (assuming that the TEST message is sent after tn + 2/1). If, however, the size
of fragment F => 2/+1, i.e., its size is not reflected by its level, the core will broadcast
another INITIATE message and will command all the nodes to re-find the minimum-
weight outgoing edge again. Based on this observation, if we modify our algorithm so
that the INITIATE message is broadcast by the core only after T, i.e., tn > T/, and
all the nodes participate in finding the minimum-weight outgoing edge after time

tn +21+1, the TEST messages can be responded to immediately without considering
the levels of the fragments, and the minimum-weight outgoing edge can be found
correctly.

For every increase in fragment size, messages such as INITIATE, REPORT, and
CHANGECORE may have to traverse from one end of the fragment to another, but
this takes at most O(2I+) time units. Since all messages are responded to without
delay, the time T/+, which guarantees that all fragments are of size at least 21+1, can
be bounded by the inequality T// =< T/+ O(2//). Based on the recurrence formula for
T/+I we can show that Tlogn’-" 0(j’lgn

,,1=1 21)=O(n), i.e., the time complexity of the
algorithm is O(n). We shall prove later that this recurrence inequality for Tt/ can
also account for the fact that the nodes may not execute the algorithm simultaneously.

The algorithm can be described as follows. It starts by broadcasting AWAKE
messages to all nodes across the whole network and any newly formed fragment starts

Note that Tt is different from ’t. In all cases Tt N rt because a fragment is formed before all the nodes
in the fragment obtain their fragment level and identity.
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to find its minimum-weight outgoing edge by broadcasting an INITIATE (F, l, S, tn)
message from its core, where the arguments stand for the fragment identity, fragment
level, fragment state, and the broadcast time of the message. In order to guarantee
the minimum size of fragments, we must have the broadcast time tn >= tv + TI + 2/+1
where tF is the wake-up time of the fragment F, i.e., the minimum wake-up time of
its coordinator(s) and T will be defined later. Each node v in the fragment then starts
finding its own minimum-weight outgoing edge independently after time tn + 2//1. This
ensures that the process of finding the minimum-weight outgoing edge is synchronized
among all nodes in the fragment.

Node v sends a TEST(F) message through its minimum-weight adjacent BASIC
edge and waits for a response in exactly two time units. Note that there is no level
argument in the TEST message and the response is immediate without considering
their levels. The responded message is REJECT when F and F’ have the same identity,
and ACCEPT otherwise. Immediately after the minimum-weight outgoing edge of a
node is found, REPORT( W, SZ) messages are reported to the core. CHANGECORE
and CONNECT messages are sent as in Gallager’s algorithm.

Note that if the level of the fragment cannot reflect its reported size, another phase
of INITIATE messages may be needed. However, when fragment F’ at level l’ receives
a CONNECT message from fragment F at level l, this situation can be slightly different
because the case > l’ is possible. Should this happen, fragment F waits until fragment
F’ has reached a level high enough for combination in order to guarantee that the
message complexity be bounded by O(e + n log n), and then F’ sends an INITIATE
message to F as described in the previous algorithms.

As a digression, Awerbuch [6] defined an H-partition problem which is to partition
a given graph into disjoint fragments such that each of which has at least H nodes.
The construction of an H-partition for a graph is useful in a number of applications
[1], [17]. If our algorithm terminates at Tl for l_--__ log n, we can guarantee that all the
fragments are of size at least 21 Thus, we can also solve the H-partition problem in
O(H) time and with O(e+ n log H) messages as given in [6].

3.1. Correctness and complexity analysis. For proving the validity of our proposed
synchronous algorithm, we must show in Lemma 4 that if TI is defined as

+ 28 21, if 1--> 1,
T+I 0 otherwise,

then any fragment F with size SZ satisfying 21-1<= SZ < 21 will correctly find its
minimum-weight outgoing edge by time tv + T-2I. Thus, we can guarantee that F
would have merged into a larger fragment of size at least 21 by time tF + Tl.

LEMMA 4. Any fragment F with size SZ satisfying 21-1 =< SZ < 21 can correctly find
its minimum-weight outgoing edge for merging before time tv + T-21, where tF is the
wake up time offragment F.

Proof The proof is by induction on the level /. Initially, every node has size
SZ 1, thus the hypothesis is true for 1. For the induction step, assume that the
hypothesis is true for <= k. Let us consider any fragment F, with size 2k-< SZ <2k+l.
We want to show that the sizes of all the subfragments of F are less than 2k, and thus
we can apply the induction hypothesis to show that the subfragments can find their
minimum-weight outgoing edge and merge together to form F within a bounded period,

This state information FIND/FOUND can be omitted and this algorithm will also work with the
assumption that each node is always in the FIND state.
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i.e., tF + Tk + 2k+l. Since all the messages, such as INITIATE, TEST,
REJECT REPORT, can be transmitted without delay and SZ <2k+l, we
can show that the minimum-weight outgoing edge of F can be found within the time
bound (i.e., tF + Tk-1--2k+l as stated in the hypothesis).

First, we shall prove by contradiction that all the subfragments of F are of size
less than 2k. Assume that there exists a subfragment Fi of F with size 2k=< SZi < 2k/l.
Fi will either merge into and obtain the level of another higher level fragment F, or
merge with F over the same outgoing edge. For the former case, since SZ >-_ 2k, SZj --> 2k

and F_ F t_J F, we have SZ>-_ SZ/ SZ-->2k+l, which leads to a contradiction. For
the latter case, it is required that we show that tc < tF, + Tk + 2k+l, where tc is the time
when a CONNECT message is sent from F to F. From our algorithm, the coor-
dinator(s) of Fi will only broadcast the INITIATE(Fi, k, S, tB,) message at time
where tB > tF, + Tk + 2k+l; thus we have tn, > tc if the inequality relation for t is true.
This would imply that F has merged with F before F sends a TEST(F) message to

F; this would then lead to a contradiction that Fi and F are merged together over
the same outgoing edge. The remaining paragraph will prove the inequality relation
for t. Since SZ <- SZ SZ < 2k, fj will find its minimum-weight outgoing edge before
time tF + Tk- 2k, from the induction hypothesis, and will take less than 2k time units
to send a CONNECT message to Fi thus, t < tFj + Tk. AS the distance between the
coordinator of F and any nodes in F is less than 2k+l, we have tF < tF, +2k+l and
t < tF + Tk < tF, + Tk + 2k+l

Using the argument in the previous paragraph, since all subfragments F of F are
of sizes less than 2k, tc, the time when the CONNECT message is sent out from each
F, will be strictly less than tF / Tk. Since tFj < tF/2k+l, we have tc < tF/ Tk /2k+l

which in term is also less than F’s broadcast time of the INITIATE(F, k, S, tni
messages, tB. Thus, all nodes in F would have received their corresponding fragment
identity no later than tn + 2k+l. AS fI’om the algorithm, all the TEST messages are only
sent after time t +2k+l, no intrafragment edge will be accepted and the minimum-
weight outgoing edge can be correctly found.

Now, let us find an upper bound for the time when F finds its minimum-weight
outgoing edge. Let ko be the level of F when it is initially formed. Without loss of
generality, let us assume that before F determines its minimum-weight outgoing edge,
there is a series of level updates from ko to k, to k2," ", and finally to k. Because
there are at most 2k,+ INITIATE, TEST, REJECT REPORT messages for
the ith level update and all the messages are transmitted without delay, each level
update will not be broadcast after tF / Tk / 2k/l, the time when all subfragments would
have been merged together, the total time for F to find its minimum-weight outgoing
edge is less than

F / Tk / 2k+l / 4 (2 kl+ / 2 k2+l /" / 2k+l / 2k+l)
< tF / Tk / 2k+l + 4. (21 + 22 +. + 2k+l + 2k+) < tF / Tk / 26.2

g

--2k+l [-Itz + Tk+l
THEOREM 2. The time complexity of our algorithm is 55n.
Proof. From Lemma 4, the algorithm terminates by time F / Tlogn+ -2lgn+l.

Since tz < n and Tlogn+ < 56n, we have < 55n.
The message complexity of our algorithm is 4n log n + 4e rather than 5 n log n + 4e

(including the initial 2e AWAKE messages). This is because ACCEPT messages are
not needed in our algorithm; the reception of a TEST message can be assumed by
default if no message is reported within two time units after it is sent. From Theorem
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2, at most log n + 6 bits are needed to encode the broadcast time. The fragment level
can be encoded in log log n bits and fragment size in log n bits. As three bits are
enough to distinguish different types of messages, each message contains at most one
edge weight or one node identity plus (log n + log log n +9) bits.

4. Conclusion. We have improved the time complexity of the asynchronous and
synchronous distributed algorithms for the minimum-weight spanning tree problem.
Since our algorithms work for any arbitrary graph, it is obvious that O(n) time
complexity is needed for the problem. Our synchronous distributed algorithm for
finding the minimum-weight spanning tree is not only message-optimal but also
time-optimal. Even though Awerbuch has shown that O(n) time is also achievable in
the asynchronous network for this problem, it is not surprising to notice that a
synchronous algorithm for a problem can always outperform its asynchronous counter-
part [2], [9]-[11]. One of the open problems is to determine what extra information
a synchronous algorithm has over an asynchronous one.

We have improved the time complexity of the Gallager, Humblet, and Spira’s
asynchronous algorithm for finding the MST of a graph to O(n log* n). Although the
worst-case message complexity remains O(e+ n log n), our algorithms seem to have
a larger message complexity because REPORT messages must be sent whenever a new
fragment is formed. On the other hand, we can argue that our algorithms may use
fewer messages on the average because whenever a large fragment is formed, its level
will be increased sufficiently at the earliest possible instance and this may eliminate a
number of unnecessary messages. It would be interesting to conduct some simulations
to study the complexities of our algorithms when compared with Gallager’s.

Acknowledgments. The authors thank M. Y. Chan for her careful reading and for
pointing out a mistake in our synchronous algorithm. The authors are indebted to the
anonymous referees who have given various valuable comments in improving the
readability of the paper, in particular, the simplified example with time complexity
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ON THE ANALYSIS OF SYNCHRONOUS COMPUTING SYSTEMS*
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Abstract. This paper is concerned with the analysis of synchronous, special purpose, multiple-processor
systems (including, e.g., systolic arrays). The analysis problem is that of determining the algorithm executed
by the system. There has been some prior work in this area, especially by Melhem and Rheinboldt [SIAM
J. Comput., 13 (1984), pp. 541-565], who were the first to obtain a general solution. The approach used here
is different and apparently simpler. By combining ideas well known in system theory with certain graph-
theoretical concepts, a simple procedure for recovering, within a natural equivalence, the iterative algorithm
executed by a given special purpose synchronous computing array is obtained. The solution is based on

reversing (modulo equivalence) the process by which an iterative algorithm is translated into a logical circuit.

Key words, dedicated multiple-processor systems, analysis of algorithm/logical graphs

AMS(MOS) subject classifications, primary 94A20; secondary 68A10

1. Introduction. In this paper we are concerned with the analysis problem of
determining the algorithm executed by a given synchronous, special-purpose, multiple-
processor array. In the analysis problem we are given the topology of the network, the
function performed by each processor (including timing information), and the input
data streams, and wish to determine the algorithm performed by the array. The problem
arises because such arrays (or architectures) are often designed heuristically. Several
formulations have been suggested in the computer science literature to solve a simpler
related problem, often called verification, in which we want to check that a given
algorithm is indeed implemented by the architecture.

Previous work on verification is due to Kung and Leiserson [9]; Chen and Mead
[1], Lev-Ari [14], Kung.and Lin [10], Kuo, L6vy, and Musicus [12], and Tid6n [17].
The methods known so far tend to be somewhat involved and of limited generality.
More general results, encompassing both verification and analysis, appear in a paper
of Melhem and Rheinboldt [15], but their procedure is still quite involved. The main
contribution of this paper is a new approach that leads to an apparently much simpler
general solution.

The key to our approach is that we view the analysis problem as part of a cycle:
starting from an algorithm, we design (or synthesize) a physical circuit; then we can
complete the cycle (i.e., solve the analysis problem) by properly retracing our steps to
recover the original algorithm (or rather one that it is equivalent to it in an appropriate
sense). The first step in this cycle is to represent a given iterative algorithm, i.e., a set
of relations between sequences of data, by a so-called signalflow graph (SFG), which
shows the interconnections between blocks that perform ideal mathematical operations
(i.e., take zero time to compute). The next step in the cycle is to modify the chosen
SFG to obtain a logical circuit (i.e., a hardware implementation with physical modules
that compute the same functions as the blocks in the SFG, but in nonzero time and
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with some explicit delays). Our point is that we can solve the analysis problem by
reversing the above path: modify the logical circuit to obtain a SFG, and thereby an
associated algorithm, equivalent to the one we started with.

Therefore to solve the analysis problem it is helpful to understand the design
phase, which is our first object of attention in this paper. The whole cycle will be
explored in some detail using a simple example from linear system theory; in fact this
example was the one that helped us to understand the analysis problem in a context
more familiar to us, since for linear systems the design and analysis problems are well
understood and there are well-established techniques, such as z-transforms and block-
diagram-manipulations, to solve them (see, e.g., Kailath [7]).

2. Algorithms, SFGs, and algorithm graphs. Consider the iterative expression

y(k) bl u(k 1 ay(k 1) + b2u(k 2) a2y(k 2) + b3u (k 3) a3y(k 3),

which describes the relation between two sequences, u(o) and y(), that constitute a
so-called linear filter. This filter produces a sequence of output values {y(k)}, given,
at each k, certain past values of y(o) and of an input sequence u(). Representations
of this algorithm using simple building blocks--adders, multipliers, and separators (or
index-shifting blocks)--can be set up in many ways (see, e.g., Kailath [7, Chap. 2]).
One of these, the so-called observer form, is shown as a signal flow graph (SFG) in
Fig. 1, where we have used a convention (arising from the use of what are called
z-transforms) common in system theory of labeling the separator blocks by the
symbol z-.

FIG. 1. Observer canonical form (modified from [7, p. 43]). We define nodes {v0, v, v2, v3} as shown:
one at the input point, and the others at the outputs of the z- blocks.

Any signal-flow-graph is a network of connected blocks. The interconnecting wires
propagate sequences of data elements, which we shall call variables. The points at
which variables appear will be called nodes. Thus, for instance, the variable x(k)
denotes the sequence of data elements that appears (for k 0, 1,...) at the output
(i.e., at the node Vl) of the linear filter in Fig. 1. The processors (=blocks) of a SFG
transform one or several input variables into a single output variable. In general, this
transformation need not be linear. The set of all variables and all the transformations
determined by the processors constitutes the iterative algorithm performed by the SFG.
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Now, with the important convention that arithmetic operations are instantaneous,
i.e., that the input and output quantities have the same indices, while the separators
(or z-1 blocks) shift the indices by unity, we can write the following (so-called "state 1’’)
equations:

(1)

Xl(k) b,u(k- 1)- alX,(k- 1)+ x2(k- 1),

xz(k) b2u(k- 1)- ax,(k- 1)+ x3(k- 1),

x3(k) b3u(k- 1)-a3Xl(k- 1)

y(k)=x,(k).

Note that these state equations actually represent an aggregated SFG, corresponding
to the modules described by broken lines in Fig. 1. Conversely, it is easy to see how
to draw this aggregated SFG from (1) (Fig. 2).

FIG. 2. Algorithm graph for the aggregated observer canonical form.

This representation, which we call the algorithm graph, has one vertex for every
variable in (1) (with the exception of the rather trivial equation y(k)= x(k), which
we choose to ignore), and a directed arc from vertex vi to vertex vj whenever xj(o) is
a function of xi(). A multivariable function f(o) is associated with every vertex; its
arguments are the variables xi(o) whose vertices vi are connected by (directed) arcs
to v. For instance, the function associated with the vertex v2 is f2(u, xl, x2, x3)=
b2u-ax+x3. The index displacement information, which is not present in the
functionsf() is displayed by the weights ofthe arcs (incoming into vj) in the algorithm
graph. Thus, for instance, the weight of the arc from vl to v2 is one, indicating that
x(k) must be delayed by one time unit before it can be used to compute x2(k) viaf2(o).

To summarize the above discussion, we can say that generally the first step in
obtaining a physical implementation is to start with an input-output description and

The values {xl(k), x2(k), x3(k)} describe the "state" of the system at time k, in the sense that knowing
them and {u(/), l>=k} we can compute {y(l), l>= k} irrespective of the prior values of the xj(o), i.e., of
{x,(j), xz(j) x3(k),j < k}.
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then to convert it, perhaps via the intermediate step of constructing some (aggregated)
SFG representation, into an iterative algorithm, which is a set of equations of the form

x,(k) fl{X(k- s,,), x(k- s,,), x,(k-

(2)
xz(k) =fz{Xl(k-. sl,2), xz(k- s2,2), ", x,(k- s,,2)}

x,(k) =f{Xl(k- sl,,), xz(k- s2,,), ", x,(k- s,,,)}

where k is the index of iteration, and si, are known as the index displacements. We
emphasize that this conversion procedure is highly nonunique’ there are many
algorithms that can implement a given input-output map. However, there is a one-to-
one correspondence between (2) and the corresponding algorithm graph, which has a
function f(o) associated with every vertex vj, and an arc from vi to v with weight

(1), (/j)(in general, we allow multiple arcs from vi to v with weights s o ..., s o ). Thus,
an iterative algorithm is completely characterized bythe quadruplet (, , , SQ, where:

is the index space (i.e., the set of all values of k for which (2) holds). Most
often, it is the st of nonnegative integers, viz., - (k; 0 k ().

is the variable set, i.e., {x(o); 1 =< <= n}.
is the function set, i.e., = {f(o); 1 <=iN n}.

5 is the index displacement set, i.e., L’rs(r)’,,s, 1 < i, j =n,< 1 <= r <=
The nonnegative integer/x,j is called the multiplicity of the arc from vi to vs: if there
is no such arc then/x,s 0, and otherwise/x, equals the number of arcs from vi to
vs. The total number of arcs in the algorithm graph is, therefore, M := ,s=l

For the analysis problem, we need only to be concerned with the dependence
relations of iterative algorithms. That is, we will ignore in the sequel the explicit nature
of the functional relations , and we will focus only on the information conveyed by
the index displacement set 5. A convenient and concise way to summarize this
information is the algorithm matrix

whose dimensions are (n + 1)x (Xx,). The last row of this matrix, which we denote
by D, contains all the index displacements s},} (the order of the columns of G is
arbitrary). The first n rows of the algorithm matrix G form a connection matrix: the
n x 1 (column) vector in C above the element s},? of D has a +1 element in the ith
position, a -1 element in the jth position and zeros elsewhere (when i=j the entire
column of C consists of zeros). For instance the algorithm matrix corresponding to
the algorithm graph of Fig. 2 is

(4) G

1 1 1 0 0 0 0 0

1 0 0 0 1 1 -1 0

0 -1 0 0 -1 0 1 -1

0 0 -1 0 0 -1 0 1

1 1 1 1 1 1 1 1

where the ordering of the eight columns corresponds to the following ordering of the
arcs: (1) Vo- vl, (2) Vo-* v2, (3) Vo- v3, (4) vl- vl, (5) vl- v2, (6) vl- v3, (7) v2-* vl,

(8) v3- v2. Since the algorithm matrix G completely determines the algorithm graph,
and vice versa, we will use the symbol G to denote both the matrix and the graph.
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3. Logical circuits and logical graphs. SFGs are not truly "physical" implementa-
tions of mathematical algorithms such as (1) or (2), because in any physical hardware
implementation, the arithmetic operations will not be instantaneous. One way to
accommodate these physical constraints (and to interpret the SFG as a physical system)
is by taking the iteration interval (i.e., the physical time separation between sequence
elements) to be very large, so that the arithmetic operations in each computing module
will all be completed before the next iteration begins, i.e., before the next data sample
is entered into the system. A more efficient procedure, likely to result in smaller iteration
intervals, is to determine a "schedule" of the times at which each operation should
be performed, as explained next.

We will confine ourselves to synchronous digital implementations, in which we
have an underlying clock, whose period will be taken as the basic time unit. Then the
time required for additions and multiplications (or other arithmetic operations) will
be measured as integral multiples of clock cycles. We will not concern ourselves with
the details of what happens within any particular clock cycle.

The main goal of the scheduling procedure is to determine an appropriate iteration
interval, i.e., the physical time (measured in clock cycles) between two consecutive
data at any point in the system (this will be the same at all points in a synchronous
system), and any additional delays required, called shimming delays, that may have to
be added to the processing and transmission delays of the system to ensure that the
proper elements in the various sequences are interacting correctly.

Several algorithms for scheduling have been developed. Here we use the ideas of
Jagadish et al. [4] (see also Jagadish [5] and Rao [16]) to determine a scheduling for
the observer canonical form. Suppose that multiplication (and data transfer) takes
seven clock cycles, addition (and transfer) takes three clock cycles, and a pure transfer
of data along an interconnecting wire takes one clock cycle. Applying the scheduling
procedure of Jagadish et al. [4] will yield many (equivalent) possible physical
implementations, one of which is shown in Fig. 3: the blocks represent hardware
components with computational delays as assumed above, and there are additional

FIG. 3. Logical circuit for the observer canonical form: (a) timing for modules, (b) logical circuit. The
square multiplication blocks have delay seven clock cycles, adders have delay three clock cycles, and each data

transfer takes one clock cycle.
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(shimming) delays whose value (in multiples of clock cycles) is indicated next to them.
Note that the delays corresponding to multiplication, addition, and data transfer are
not explicitly noted. The iteration interval for this circuit turns out to be eleven clock
cycles. Digital designers usually call such a figure a logical (circuit) diagram.- It should
be emphasized that the scheduling procedure is highly nonunique and, therefore, that
several different logical circuit diagrams can be associated with a given SFG. However,
this multiplicity of choices does not really concern us; we can start with any one of
them and show how to recover (up to a certain equivalence) the original SFG.

3.1. Logical graphs. For many purposes, especially timing analysis, it is convenient
to redraw the logical circuit diagram in a stripped-down form called a logical graph
(see Fig. 4). As the algorithm graph, the logical graph has one vertex for each variable,
and its edges represent the dependencies between the variables. However, the weight
of its vi- vj edges represents the total computational and propagation delay di, for this
path, rather than the index displacement si,j. For example, from v2 to vl we have an
edge with weight d2,1 3 (corresponding to a single addition), a self-loop from v to
itself with weight d,l 1 + 7 + 3 11 (corresponding to a data transfer, a multiplication,
and an addition), a path from v to v2 with weight d,2 1 + 1 + 7 + 3 + 7 19, and so on.

Uo

FIG. 4. Logical graph for the aggregated observer canonical form.

Given the functional information about the function associated with each vertex,
we can recover from the logical graph the following set of equations:

Y(1) ba(l- 12)- aY,(l- 11)+ Y(/- 3),

(5)
Y_(l) b2a(1- 20) a2YlCl- 19) + Y3(/- 10),

Y3(/) b3a(l-Zl)-a3Y(l-20),

(/) Y(/).

The adjective "logical" arises from the fact that the hardware is based on so-called "logical" components
obeying the rules of Boolean logic (algebra).
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Note that we needed to introduce in (5) a new index and that these equations do
not resemble the original equations (1), since there seems to be no simple relationship
between the di, and the index displacements si,j. Finding these index dependencies
(i.e., the index displacements si, in (2)) will solve the analysis problem.

Actually, (5) already provides one possible solution to the analysis problem.
However, this solution is highly inefficient: computations do not take place at every
index point (clock cycle) but rather at time instants separated by several clock cycles.
Thus, for instance, inputs are introduced at the vertex Vo only at the time instants

11 k, i.e., t(l) is undefined for 11 k. In order to find a solution that resembles (1)
more closely, we should try to reverse the synthesis procedure (effectively, the schedul-
ing procedure) that generates the logical circuit implementation of a given iterative
algorithm.

3.2. Algorithm graphs versus logical graphs. We can get some more insight into
doing this reversal by noting that the scheduling method of Jagadish et al. 1-4] is a
somewhat simpler method for achieving a result that was previously obtained via
so-called multirate systolization procedures (see, e.g., Kung 11 or Ullman 18]). Such
procedures consist of two basic steps"

rescaling the index, viz., := 6k,
moving delays (separator blocks) in the network (via cutset transformations or
other methods), which amounts to individually shifting the index for each
variable xi(o), viz., /:= k-,.

The combined effect of both types of transformations is to replace x(k) by Y(1) where

(6) :(3k + its):= xi(k)

and Y(I) is undefined for IS 6k + Ai. Consequently, a dependence of the form xi(k-
si,) x(k) now becomes ;i[t(k-si,j)-F Ai] "-’> fcj(tk-F Aj) and, therefore, the new index
displacements (for the index l) are

(7)

This is the basic equation that must be satisfied by every logical graph G that implements
a given algorithm graph G.

Another more intuitive way to obtain the same relation is by analyzing the way
synchronous systems work. In synchronous systems the time between two consecutive
elements in any sequence is constant (and equal to the iteration interval, ). If in
addition we assume that such systems are time-invariant, as we do in logical graphs,
all the computations (at the vertices) involve data a,rriving at some multiple of the
iteration interval. Consider, for example, the graph G for the observer form (Fig. 4).
Apply the first element u(1) of an input sequence u(o) at time ,o=0; by definition,
the rest of the elements will be generated every 6 clock cycles. Let us denote by )t the
time instant at which the vertex v generates the output x(1). Recall that dl, (respec-
tively, sl,)) is the physical delay in the logical graph ( (respectively, the index
displacement in the algorithm graph G) along a directed path connecting the vertex
v to the vertex vj. Since vi generates x(1) at time ,, x(1) arrives at vertex v,j at the

/(.r! becausetime i + r/-r) for r 1 2, /xi, Clearly, we cannot equate A with +_
,,j1,J

A will depend on the number of separators in the paths from v to v, which in turn
will fix the actual iterations in which the input x(1) is operated on at vertex vj. In our
case, a path from v to vj has ,., separators and therefore, the vertex v will associate
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the input xi(1) with the (1 + s},)))th iteration rather than with the first iteration. Con-
sequently, vj will generate xj(1) at time Aj Ai + d(’r? S,) 6 where 6 denotes the iteration
interval. It follows that, for every path from v, to v, d.)=(,-1i)+s)6, which is
precisely the relation (7). The constants ,i determine a schedule for G in the sense
that x(k) is mapped into 9[(k 1) + Ai].

Returning now to the general discussion, we note that a transformation of the
index space, linear (such as (6)) or otherwise, does not affect the actual computations
that produce the variable x(k), nor does it affect the precedence (=dependence)
relations among those variables. Thus both (1) and (5) can be thought of as representa-
tions of the same algorithm, and the relation (7) as an equivalence transformation. This
interpretation is underscored by the observation that (7) can be rewritten in the form

(;) (,(8)
A

a:= [a,a ..]

where the elements of the row vector ,.j, are ordered in exactly the same manner
as those of D {s,7}. Since 6 0 the transformation matrix (() is nonsingular and
(8) qualifies as an equivalence relation.

There is, however, one important difference between the equivalent representations
(1) and (5). The former is executed at every index point (i.e., its iteration interval is
one), while the latter is executed only at a subset of all index points (i.e., its iteration
interval is greater than one). We will call a representation compact when its iteration
interval is unity and noncompact otherwise.

3.3. The analysis problem. In this language, we see that the synthesis (scheduling)
problem is to transform a compact representation given by an algorithm graph into a
(possibly noncompact) equivalent representation given by a logical graph with the
property that dl,.=> hi for all i,j, r, where hi is the time required to evaluate xi(k)-
f(...).

The analysis problem is, in essence, the converse to the synthesis problem" to
transform a noncompact representation (i.e., a logical graph) into a compact equivalent
(i.e., an algorithm graph). This problem does not possess a unique solution, as every
noncompact representation has many compact equivalents. It would seem, therefore,
that the only way to solve this problem is by an exhaustive search in the space of all
equivalent representations until a compact one has been found. It turns out, however,
that by extracting some additional information from the logical circuit itself we can
construct a compact equivalent without any search whatsoever. A systematic procedure
for carrying out such a construction is described in the next section.

The first step in solving the analysis problem is to determine the iteration interval
of a given logical circuit. The iteration interval is determined by the computational
delay around loops in the logical circuit, and equals, in fact, the greatest common
divisor (gcd) of the computational delay around all loops (see, e.g., Jagadish et al.
[4]). We remark here that the computational delay around a loop is obtained by adding
up the delay of all arcs that point in one direction (say clockwise), and subtracting
the delays of all arcs that point in the opposite direction. Since every loop in a graph
is a combination offundamental loops (i.e., loops determined by a spanning tree), the
iteration interval can be computed as the gcd of the computational delays around
fundamental loops alone. We will denote the gcd of all fundamental loops in an
algorithm/logical graph G by r/(G). It follows that if
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then r/(() 6r/(G). To prove this observe that G and ( have the same matrix C (i.e.,
they have the same topology), but a different set of arc weights. A loop in G (or in
G) corresponds to an integer-valued column vector q such that Cq 0, and its weight
in G is given by Dq. The weight of the same loop in G is given by

and since the same holds, in particular, for all fundamental loops, we conclude that
r/(t) 6r/(G), as stated. Moreover, every algorithm/logical graph with r/(G) > 1 (i.e.,
noncompact) can be transformed into an equivalent t with rt(0)= 1 (i.e., compact),
which corresponds to the shortest possible iteration interval. One way to accomplish
this transformation is by using the analysis procedure that we will present in the
following section.

Our last observation for this section is that the constraints hi in the fundamental
equation (7) need only to be specified modulo 6. This is so because adding mi6 to hi
has the same effect as replacing the original algorithm graph G by an equivalent graph
G, where

M:= [mlm2 m,].

4. Analysis procedure. We now present an analysis procedure that constructs a
set of hi and an algorithm~ graph G with nonnegative index displacements .r)i, for any
given logical graph G. First, we assume that the logical graph has at least one vertex
with no incoming edges, which we will call the input. If there are several input vertices
we also assume that the values of the constants hi are known for these vertices. This
amounts to the assumption that we know the relative skewing (i.e., alignment) of the
input sequences to the algorithm. Next we add a preferred input vertex, which we will
call the root, and connect it with arcs to all the original input vertices assigning a delay
hi to the arc that connects the root Vo to the input vertex vi. We also assume that the
resulting extended logical graph Gext is root-connected, i.e., it has at least one directed
path from the root to every vertex of the graph. Finally, we form a rooted tree consisting
of the shortest (=minimum-delay) paths from the input vertex Vo to every vertex of
(ext. By setting si, 0 for the edges contained in the rooted tree, we can determine

hi for all vertices (10 0 for the root vertex) and we can use (7) to compute the index
displacements si, for the edges that are not in the rooted tree. These edges, which we
will call the links, also serve to determine a set of fundamental loops.

Our procedure can be formally summarized as follows.
ANALYSIS PROCEDURE to determine a compact equivalent to a given root-

connected extended logical graph (ext"
1. Form a spanning tree with the minimum-delay path from Vo to every vertex in

Gxt. Set hi equal to the length of the minimum-delay path from Vo to vi. Set
i, :-0 for every edge in the tree.

2. For every link of the minimum-delay tree (i.e., every edge not in the tree),
including all self loops, compute tl, h hj - d,3. Set , := a!r)/6 for every link of the minimum-delay tree where 6 := gcd ,,jl,J

This procedure constructs an algorithm graph G with (integer) nonnegative index
displacement i,, which is a compact equivalent of the given extended logical graph
Gext. Removal of the root vertex Vo results in a compact equivalent of the original
(nonextended) logical graph t.
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There are several algorithms for implementing step 1 of the procedure (shortest-
path tree), such as those in Dantzig [2]. For a comprehensive presentation of these
algorithms see, e.g., Even [3].

As a simple example, consider the observer form of (5). Note that an extension
(step 1 of our procedure) is not required, because there is only one input vertex Vo,
for which we choose ho 0. The corresponding shortest-path tree and the resulting
index displacement are described in Fig. 5. From this graph we can easily write the
following state equations:

l(k) bl(k) all(k- 1)+ :2(k- 1),

(9) 2(k) b:(k) a:l(k 1 + 3(k 1),

:3(k) ba(k)- a3l(k- 1).

We now observe that the algorithm graphs in Figs. 2 and 5 are different. The difference
in the algorithms in (1) and (9) amounts only to shifts in the indices (we can change
the indices for the sequence (o) in (9) from k to k-1 and obtain (1)) and therefore
both algorithms are equivalent and compact. This is so because G and ( are related
by the equivalence transformation

G=
10...0

G

with the property 7() r/(G) 1.
Returning to the general case, to establish the validity of our analysis procedure

we need to prove the following statements" (i) I, _-> 0, (ii) ( is equivalent to G, and
(iii) r/(G)-1. First, observe that since we have formed a rooted shortest-path tree
from Vo to every vertex vi, then for every link (vi, vj) of the tree A + dr,]-> Aj and,
therefore, .-3!r?,,j Ai- Aj + d (r)i,j > 0, which implies that ,(r) => 0 as well. Also, i,(r) is an
integer, by construction. Next, note that the algorithm (3 recovered by our procedure
satisfies the equation + d,] .,o, where 6 := ((), while the original algorithm
(3, used to design the logical circuit , satisfies the equation Aj= Ai+d,r) --(r,-’i,j .

, 12)
\ /
\
\

FIG. 5. Shortest-path tree and the corresponding algorithm graph for the aggregated observer canonical form.
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Assuming all graphs in consideration have been extended, we can assume for the root
(1) ^(1)vertex Vo that ho 0=o. Thus, in particular, i-hi (Si,o-Si,o)6=c6, where ci.-

(1)_ c(1) and, consequently,S o O

(o<r). i,j + Ci Cj)6. This means that

C C

which establishes the equi_valence between G and (, with r/(G)= r/((). Finally, the
relation between G and G is

A’’’A 6
G,

which proves that r/(G)= rt(G)/6 1. This completes the proof of the statements
(i)-(iii) and establishes the validity of our analysis procedure.

5. Examples. In this section we illustrate our procedure by analyzing some arrays
previously verified or analyzed by other authors. Most of the authors limit their efforts
to the Kung-Leiserson matrix-multiplication array; the most comprehensive effort was
made by Melhem and Rheinboldt 15], who studied three additional examples: convol-
ution, sorting, and back substitution. We analyze these three examples below; additional
examples can be found in Jover [6]. Note that previous authors always assume that
all the operations take one unit of time to perform (in our language, that the computa-
tional delays are unity for all the edges of the logical graph). In contrast, we can
analyze multirate arrays, which involve different computational delays for different
computations, since this does not complicate our analysis procedure at all.

5.1. Forward convolution. This array was developed by Kung and Leiserson [9].
Figure 6 depicts the array, the processors’ functions, the logical graph t, and the
shortest-path tree. The input sequence is applied at the vertex vl, while a constant
zero is applied at the vertex vs. Since multiplication is assumed to require seven clock
cycles, the input at the vertex v8 has to be skewed by the same duration, so A8 7,
assuming we choose A l= 0. Addition is assumed to require three clock cycles.

Following the analysis procedure, we determine the shortest path between Vo and
the rest of the vertices. Figure 6(d) shows one choice for the shortest-path tree; links
are indicated by dashed lines. Note that there are other choices for the shortest-path
tree that have the same "path-length" Ai" for instance, we can replace the arc v v7
by the arc v8 v7. Next, we compute d76 2 d"65 and r/(() gcd {2, 2} 2. Thus, the
index displacements along the links are s"76 1 s65 and s87 0.

Finally, we can write the equations directly, viz.,

x2(k)--Xl(k),

x3(k)--x2(k),

x4(k)--x3(k),

x7(k) tO2Xl(k) q- x8(k),

X6(k) tOlX2(k) + x7(k 1),

xs(k) O)ox3(k) + x6( k 1).

Since these equations are relatively simple we can eliminate intermediate variables
to obtain the following input-output relation (where y(k)= x(k) and u(k)= x(k))

y( k) tOou( k) + Wl U( k 1)+ w2u(k 2),
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1

7Vwl

() ())

v, 1 v 1 va 1 v4

10 10 10

v8 3 vr 3 v 3 v
()

"0

()

FIG. 6. Forward convolution array: (a) system, (b) processor functions and timing, (c) logical graph
(d) shortest-path tree.

which is, clearly, a convolution. In general, elimination of internal variables may lead
to complicated expressions for the input-output relation.

5.2 Back substitution. This array was developed by Kung and Leiserson [9] and
verified by Melhem and Rheinboldt [15]. Figure 7 depicts the system, the processors’
functions, the logical graph G, and a shortest-path tree. The root vertex is v6; for the
sake of clarity we do not show the arcs that are supposed to connect the root vertex
to the remaining input vertices (Vl, v2, v3, v4, and vs), as would have been required
by the analysis procedure of 4. This time, we have associated a computational delay
of 10 for each of the edges in the logical graph ; this choice corresponds to the usual
one for single rate systolic arrays" all the outputs to a cell are produced at the same
time even if some of the outputs may take less time to compute.

The input sequences are as follows" a constant zero is applied at the vertex v6;

the elements of a column vector b are applied at the vertex v,, and the diagonals of
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v v

a y)/ao

()

v

v6

a

v v

v Vo v

v

v6

v v

FIG. 7. Back substitution array" (a) system, (b) processors’ functions, (c) logical graph , and (d) a

shortest-path tree.

a banded lower-triangular matrix A are applied at the vertices v2 through v5 (the main
diagonal at v)., the first subdiagonal at v3, and so on). Thus, the input sequences are
as follows"

The output is y(k)= Xl3(k). We are also given the times ,i at which the first input of

Xl={bl,b2,b3,’" "},

x3 {a21, a32, a43,"" "},

xs-- {an1 a52, a63, "}.

x2={a11,a22, a33, "},

x4 { a31, a42, a53,""" },
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each sequence is entered, as follows: A1 A2 30, A =40, A4-- 50, A5 60, A6=0. These
times correspond to the weights in the edges connecting the root (not shown) and the
input vertices.

Figure 7(d) shows the resulting index displacements in addition to the shortest-path
tree. We computed them using r/(G)= gcd {20, 40, 60}- 20. From this figure we can
write the following equations"

x7(k) x,2(k- 3) xs(k- 3) + x6(k),

xs(k) Xll(k-2) x4(k-2)+x7(k),

x9(k) xlo(k 1). xa(k 1) + xs(j),

X,o(k) (x,(k) x9(k))/x(k),

Xl,(k) X,o(k), Xl2(k)-- Xl,(k), Xl3(k)= x12(k).

Eliminating internal variables, we get

y(k)
x,(k)-x9(k) bk-x9(k)

x2(k) akk
X,o(k)= Xll(k)= x,2(k)

where

x9(k)=y(k-1), xa(k-1)+y(k-2), x4(k-2)+y(k-3), xs(k-3)+x6(k)

=y(k-1). ak.k-l+ y(k--2) ak,k-2+ y(k--3) ak,k-3.

These equations are the well-known method of solving a triangular system, called back
substitution.

5.3. Sortiag. This array was developed by Kung and first reported and verified
by Melhem and Rheinboldt [15]. The system sorts a sequence of n real numbers,
u(*)=Xl(*)={u(1),u(2),...,u(n)} by using the linear array of n-1 processors
depicted in Fig. 8, and produces the sorted output sequence, y(o)=x8(*)
{y(1), y(2),..., y(n)}. In this example, we assume all the computational delays to be
equal and of value 10 since all the operations are well balanced and should take the
same amount of time. We have only one source, so we take it directly as the root with

A1 =0. Figures 8(c) and 8(d) show the logical graph and the (unique) shortest-path
tree with the corresponding index displacements. From them we can readily write the
following equations:

x2(k) max {Xl(k), x7(k- 1)},

xa(k =max {x2(k), x6(k- 1)},

x4(k) max {xa(k), xs(k 1)},

x(k) x(k),

x6(k) =min {x3(k), xs(k- 1)},

x7(k) =min {x2(k), x6(k- 1)},

xs(k) min {x,(k), x7(k 1)},
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Vl
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V V
X

v rnin(x, y)

(b)

max(x, y)

Vl

V8

V V3 V

V7 V6 V

’8 10

(d)
FIG. 8. Sorting array: (a) system, (b) processors’ functions, (c) logical graph , and (d) the shortest-path tree.

which can be rearranged as follows, after substituting xs(k)= x4(k)"

x2(k) max {xl(k),xT(k-1)},

x8(k) min {x,(k), XT(k 1)},

x3(k) max {x_(k), x6(k 1)},

x7(k) min {x2(k), x6( k 1)},

x4(k) max {x3(k), x4(k 1)},

x6(k) =min {x3(k), x4(k- 1)}.

These equations correspond to the so-called bubble sort (see Knuth [8]). Other
types of sorting algorithms could be implemented (see, for instance, Rao 16] and Lang
et al. [13]).



642 JOVER, KAILATH, LEV-ARI, AND RAO

6. Concluding remarks. We have given a simple procedure for recovering (within
a natural equivalence) the iterative algorithm executed by a given special purpose
synchronous computing array. The solution is based on reversing (modulo equivalence)
the process by which we can translate an iterative algorithm into a logical circuit.

A general theory for such conversion has recently been developed by Rao [16]
and Jagadish [5] in their work on the analysis and synthesis of what they call Regular
Iterative Arrays (RIAs). The synchronous circuits studied in this paper can be identified
as a special class of RIAs (with a one-dimensional index space). Therefore, the algebraic
techniques developed, in particular by Rao [16], can be applied to generalize the
results of this paper to other classes of RIAs (with multidimensional index spaces).
In particular, regularity of spatial structure, as in systolic arrays, can be exploited to
reduce the study of such systems to that of a single module (see, e.g., Jover [6]).

Our analysis procedure is restricted to logical graphs in which every vertex is
reachable from at least one source (input) vertex. It can be shown that logical graphs
not possessing this property can be modified by adding edges from the root Vo to some
of the unreachable vertices, so that subsequently our analysis procedure can be applied
(see Jover [6]).
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Abstract. The main idea of this paper is to develop an inference system to assign partial types to terms
of the untyped lambda calculus. A term can either be necessarily or possibly of a certain type; these notions
of necessity and possibility are incorporated into the type inference system as modalities. A subclass of types
are the total types, for which necessity and possibility are equivalent. In the semantics the meaning of a

total type is a set of values in the domain, the meaning of a type being, in general, an interval (a set of sets
of values). This is a generalization of Cartwright’s semantics [Conference Record of the 12th Annual ACM
Symposium on Principles of Programming Languages, Association for Computing Machinery, New York,
1984, pp. 22-36]. The main results are the soundness and completeness of the type inference system with
respect to interval semantics.

Key words, type inference, partial types, modalities, type interpretation, intervals, soundness,
completeness
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Introduction. One of the most interesting approaches for studying polymorphic
type disciplines for functional programming is the predicate-type theory for A-calculus,
in which types are assigned to untyped terms by means of a system of inference rules.

A natural way of defining the semantics of a predicate-type theory is to interpret
the underlying untyped language in a domain D and types as subsets of D, in such a
way that the interpretation of a term is contained in the interpretation of every type
that can be assigned to that term. The interpretation of types as arbitrary subsets of
D presents problems when dealing with polymorphic types, since we can deduce types
(built by the universal quantifier) whose interpretation in each model is the empty set.
In this case the usual inference rules are no more sound (alternative inference rules
that allow empty interpretations of types are discussed in [11] and [12]).

The solution proposed by MacQueen, Plotkin, and Sethi in [8] is to assume that
D is a Scott domain and to interpret types as ideals, i.e., nonempty subsets of D closed
under approximations and limits of increasing chains. It turns out however that even
the theory of ideals is not entirely satisfactory, since the function type constructor is
not monotonic with respect to the inclusion of ideals. This entails that, if the type
system includes recursively defined types, there is no straightforward way ofinterpreting
them as fixed points of monotonic mappings over the space of ideals, exploiting standard
techniques available in such a context. Reference [8] establishes that unique solutions
exist for an important syntactic class of recursive type equations (formally called
contractive equations) by defining a metrics on ideals. This result is generalized in [4]
by means of a different approach, according to which the interpretation of a type is
obtained as a suitably defined limit of a denumerable sequence of approximate
interpretations, whose construction closely parallels the structure of the underlying
domain.
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To overcome the limitations of previous models, in [5] Cartwright proposes a new
interpretation of types, i.e., the interpretation of types as intervals, which subsumes
the interpretation of types as ideals. The set of intervals contains the set of ideals as
a proper subset while all type constructors turn out to be continuous functions. In
particular, we can use the familiar Tarski least fixed-point construction for solving
recursive type equations.

The main advantages of such a new approach versus the ideal model are discussed
in [5]; the motivation behind Cartwright’s results is essentially that all of the standard
type operations on ideals have natural extensions to the space of intervals, which are
computable.

However the key idea underlying the formalization of types as intervals seems
appealing and fruitful by itself, so that it is natural to investigate the value of an
interval predicate-type theory for functional programming languages. To this end, the
first step is the formulation of a type inference system in which all features of types
as intervals are incorporated in the most general way. This is the topic of the present
paper. Note that Cartwright’s semantics is not sound for standard type inference
systems.

In this paper, a generalized notion of interval and type interpretation will be
introduced; both Cartwright’s semantics and intervals built on the term model turn
out to be particular cases. Starting from any domain D of a A-model, the intervals
will be defined simply as subsets of 2 satisfying some minimal conditions. In fact,
there is a certain amount of freedom in choosing the collection of intervals on which
the type interpretation is built.

The notion of types as sets of sets of values (intervals), instead of sets of values,
leads to two different forms of membership; a value d belongs possibly or necessarily
to an interval I according to whether d belongs to some or to every element in L These
different memberships will be represented in the formal system as modalities; this
implies that types assigned to terms may be partial

Intervals can be ordered by the inverse of the set inclusion relation reflecting their
information content. Intuitively, an interval I is less informative than an interval J
whenever I contains all the elements of J, and possibly more.

An interesting subclass of intervals are those that are maximal elements in this
ordering (they contain just one set). The syntactic counterpart of a maximal interval
is a total type; totality is characterized by the fact that necessity and possibility are
equivalent. A partial type o- approximates many different total types, all types whose
interpretations belong to the interval which is the meaning of o-. The statement "a term
M possibly belongs to some partial type o- whose meaning is the interval I" means
that the interpretation of M belongs to some set in/, and possibly to everyone.

All these features lead to a finer characterization of term behaviours than in
standard-type systems. The total typing of a term coincides with that of standard
systems, whereas partial types allow us to type terms whose functional properties are
not completely known. Moreover, it can be desirable to pass from a total typing to an
approximation of it in order to represent how the term inherits properties of a less
informative type (this is briefly discussed in 5).

This paper proposes an inference system to assign partial types to terms of the
untyped A-calculus and proves its main structural properties. The formal system is
introduced in 1. In 2 the generalized interval semantics is presented and its relation-
ship with Cartwright’s semantics are discussed. The inference rules are proved sound
and complete for this generalized semantics in 3. As for completeness, an interpretation
of types as intervals on the term model of fl-equality is built. Section 4 discusses the
relationship between the system presented in this paper and standard inference systems.
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1. Type inference. The set A of terms is defined by

M := x[MN[Ax.M

where x ranges over the set of terms variables. We always consider terms modulo
a-conversion, fl-reduction -->>,, /3-equality =,, and q-reduction --n between terms
are defined as usual (cf. [1]).

The set " of types is defined by the grammar

o-:- ,1o---> p Iv,.o-I,.o
where 0 ranges over type variables. Qq3 is short for Qlql Q,q, where Q e {V,/}.
Types that differ only in the names of bound variables are identified.

We define an equivalence relation between types that takes into account the
interpretation of/ as fixed-point operator.

DEFINITION 1.1. is the reflexive, symmetric and transitive closure ofthe smallest
relation satisfying

O’1 0"2,/91 p2:::> O’1 -’> Pl O’2 -’>/92.

We want to introduce a proper subset of ’, the subset of total types, whose
meanings will be maximal intervals (i.e. intervals that contain only one set; see
Definition 2.1(iv)). Actually, the results of the present paper hold for many definitions
of total types. The only constraints are

(1) If z is closed and does not contain subtypes of the shape /xq.r, where cr

contains at least one free occurrence of q, then z is total.
(2) If o- is open or r contains subtypes of the shape/xqQ.q then r is not total.
(3) If - is total and z---" then ’ is total.
(4) If Vq.o- and z are total then o-[-/q] is total.
Condition (1) is justified by the observation that it is precisely the recursive types

that make it necessary to deal with intervals containing more than one set. Condition
(2) is required since we want total types corresponding to maximal intervals in
Cartwright’s semantics (the only closed types that are not total in [5] are those
containing/xqQq.q). The preservation of totality under and under substitution of
quantified variables by total types (conditions (3) and (4)) agrees with rules (---) and
(VE!) of the inference system (Definition 1.3).

Therefore, in the following we will assume an arbitrary fixed definition of total
types that satisfies the above conditions. The modalities are !, ?. Let sc range over { !, ?}.

DEFINITION 1.2. (i) A modal typing assertion is an expression M’:r where :
{ !, ?} is the modality, M A is the subject, and tr 6 " is the predicate.

(ii) A basis B is a set of modal typing assertions such that all subjects are distinct
term variables.

(iii) A modal typing statement is an expression BFM’r that can be derived by
the inference axioms and rules of Definition 1.3.
BM’o" may be read as "the term M has possibly (if := ?) or necessarily (if

!) type tr with respect to B." We define : if : ?, ? otherwise.
We now introduce the system of inference rules that are formulated in a natural

deduction style. A type variable q is bindable in M with respect to B if o does not
occur free in any assertion of B whose subject is a free variable of M.
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DEFINITION 1.3 (Type inference system). The axioms and rules to derive modal
typing statements are

(Ax) BFx’o- if x’ o- B,

BFM’!o
B-M" ?or’

BFM’?7"
(? !) if r is total,

BM’!7"

(I)

(-> E)

B U {x" o}- M" p
if x does not occur in B,

B - Ax.M" o- ---> p

B-M" o’---> p B N" o"
B -MN p

B-M" cr
if q is bindable in M with respect to B,

(rE?)
B- M" ?cr[p/ q]’

(VE!)
BM"
BM"

if " is total,

BFM’(p
if cr p,

(I)
B - M" a[I,Zq.o"/

B M slq. cr

(piE)
B M" o’[t.e.o’/q

Rules (/xI) and (E) are superfluous, since they can be directly derived from (---).
Instead, (/zI) and (/E) do not imply (---) also for types in which V does not occur,
since for example we cannot derive {x" sc-/q.cr}F x’sq- cr[/x@.cr/O] without rule
(---). Rule (!:=>?) formalizes the fact that each element belonging to all sets of an
interval belongs, of course, to some of them. Rule (?3 !) means that necessity and
possibility are equivalent for total types; it is sound since total types correspond to
maximal intervals in the semantics.

It is interesting to observe that rules (-*I) and (-E) correspond to the rules of
introduction and elimination of implication of one of the systems introduced by Girard
in [6] (more precisely, the three-valued semantics in the deterministic case). Note the
role played by modalities in our rules. For example, if the s occurring in (-i) and
(-E) were changed to a then we could derive FAx.x" !p p for all types p, which
is not sound for interval semantics (see Remark 2 in 3).

Rule (VE?) can yield only statements whose modality is "?," but this does not
happen in three-valued models (cf. [6]). Our choice has been motivated by the
soundness requirement with respect to the interpretation of types as intervals (see
Remark 2). However, if the quantified variable is substituted by a total type, the
modality in the conclusion is not weakened, according to rule (VE !).
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Rules (/xI) and (/zE) are standard and (--) takes into account the equivalence
relation between polymorphic recursive types

Note that if B -M o- then also B’-M r for all B’_ B. Moreover, B M: o-
implies B MM :r where B M {x: ’p[x: ’p B and x occurs free in M}. These
properties will be widely used in the following proofs.

We now prove the subject reduction theorem. Subject expansion instead does not
hold; for example,

{x:!q}-x:!q but {x:!q}V-(hy.y)x:!p.

To show how types and modalities are preserved by /3-reduction, we need some
technical devices. First we must introduce the notions of instance (<-_) and total instance
(-<-T) of a type. Informally, an instance is total if and only if all variables bound by
’q’ are replaced by total types. Then we prove, in Lemma 1.5, some structural properties
of deductions, taking into account the given notions of instance.

DEFINITION 1.4 (Instance). (i) -< is the reflexive and transitive closure of the
smallest relation satisfying

Vq.cr_-< o’[p/q] for all types p,
r--- or’, p p’ and o" -< p’:=>r < p.

(ii) <--7- is the reflexive and transitive closure of the smallest relation satisfying
/p.r <--Tr[z/q] for all total types z,
o---- o-’, p--- p’, and o-’ <=Tp’r <=p.

From the second clause of the definition of _-< (=<T) we have immediately that r---p
implies r <- p (or <= T P ).

Let B[p/q]= {x: r[p/p][x: r B} and B/x= {y: sCo-ly: sCr B and y x}.
LZMMA 1.5. (i) BM:(rB[p/q]M:r[p/q].
(ii) B-Ax.M" rr=- Q.p- , for suitable , p, and ,.
(iii) B-)tx.M:r and r<-p ,B/x(.J{x:!p}-M:?,.
(iv) Bhx.M:!oand r<-Tp ,B/xU{x:?p}-M:!u.
Proof Part (i) is easily proved by induction on derivations. For rule (---) note that

o---- , implies r[p/q].-- [p/q].
Part (ii) is straightforward by induction on derivations.
Part (iii) is proved by induction on derivations. If the last applied rule is (’I) we

have

B hx.M o"(I) where q is bindable in hx.M with respect to B.
BAx.M scVq.cr

It is easy to verify that if’qp.r’ =< p ,, where by (ii) tr’= Qq,.oh or2, then p p’[/q],
,= t,’[sr/q] and r’__<p’- u’ for suitable p’, ,’, sr. So by the induction hypothesis
B/xtA{x:!p’}-M:?t,’ and by (i) B/x{x:!p}-M:?t, since o is bindable in hx.M
with respect to B. For rules (’qE ?) and (’qE !) note that cr’[’/] <= p , implies that
q.r’__< p- ,. The other cases are trivial.

Part (iv). Again by induction on derivations. If the last applied rule is (?=> !) we
have r where z is a total type and

(9=:>I)
BAx.M ? z
B - hx.M’! z"

z<-_.p , implies z<-_p- , and therefore by (ii) B/xU{x:!p}M:?,. z<-rp-
and z total imply p, , total by conditions (3) and (4) on the definition of total types.
Therefore we obtain a derivation of B/x {x :? p}-M :! u by replacing, in a derivation
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of B/xU{x’!p}-M’?u, B/xU{x’!p}-x’!p by

(70!)
B/xU {x’?p}x’?p
B/xU{x’?p}-x’!p

and by applying rule (73 !) to the conclusion.
If the last applied rule is (VI) then the proof runs as in case (ii). If the last applied

rule is (rE!) note that tr’[r/q] <_-rp- u and r total imply Vq.tr’ _-<rp--> u. The other
cases are trivial.

THEOREM 1.6 (Subject reduction). IfB-M" cr and M- N, then B- N"
Proof. Clearly, it is sufficient to prove that B-(Ax.M)N’tr implies

BM[N/x]’cr. This proof can be done by induction on derivations. The only
interesting case is rule (--> E). If the last step is

(-> E)
BAx.M p -> o" B- N" p

B(Ax.M)N" r
then BAx.M’p->tr implies B/xU{x’p}-M’r by Lemma 1.5(iii) and (iv).
Therefore we can obtain a derivation of B-M[N/x]’r simply by replacing B/xU
{x" p}x’p by a derivation of B-N’p and x by N in a derivation of B/xLJ
{x" :p} - M" scar.

2. Semantics. We interpret terms and types independently of each other in the
domain of a A-model. The semantics of terms is standard, whereas the meanings of
types are sets of nonempty sets of values.

Let us recall (cf. [10] and [1]) that a A-model =(D,-, e) is a set D together
with a binary operation and elements K, S D such that

(K’d)’e=d,

((S-d)-e) f=(d f) (e f),

(e’d)’e=d’e,

Ve(dl" e= d2" e)e dl =e" d2

Given a A-model /= (D,-, e) and a mapping (environment) O:Term Variables- D,
the meaning of a term in is inductively defined by

O(x),

MN]lf M]]f N 0

Ax.M=" d where d" e=Me/] for all eD.

To interpret types we introduce the notion of intervals, i.e., sets of sets of values,
and some useful operations on them. The operations on intervals are defined using
the and operations on subsets of D. is set theoretic intersection and (the
function space constructor) must satisfy the condition (cfi [12])

{d Dd AB}AB{d D[d A B}

where d-A is sho-hand for the set {d’eleA} and is the range of e. In the
paaicular cases

AB={deDId’AB} and AB={deDId’AB}
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we have the constructors -->s and -->, respectively. To build a domain of intervals we
must choose a subset 5_ 2D and a relation 5’ 5’, which is a subset of the
inclusion relation (i.e., such that (A, B) implies A_ B). An obvious choice is
if’=2D and =.

DEFINITION 2.1 (Intervals and their operations). Let (D,-, r) be a A-model,
9
_

2D and
_
5’ 9 be such that (A, B) implies A

_
B.

(i) (A, B) defines the interval IA, B[ on 5’ and as

[A, BI={Ce9IAC_B}.

(ii) Let Int(,.9, ) be the set of intervals on 5’ and .
(iii) The partial functions [--] and ’Int(9,)xlnt(ht’,$l)--> Int(ht’,$l) are

defined by

]A, B] [--] C, E[ IA (3 C, B E] if A CI C, B (3 E) ,
[A, BI::::>]C, EI=]B-->C,A-->E if (B->C,A-->E).

(iv) An interval IA, B is maximal if and only if A B.
Note that A

_
B and C

_
E imply B --> C

_
A --> E. Using --> s, --> instead of --> in

Definition 2.1(iii) we obtain the definitions ofs and, respectively.
The order relation on intervals is the superset relation on sets, i.e.,

[A, B[___]C, E] iffAC and E___B.

Int(2D, ) is a c.p.o, with respect to =__ whose bottom is I, DI and whose maximal
elements are the maximal intervals. Note that is monotonic in both arguments. If
I is an element of Int(ht’, ), say 1 IA, BI, then 1= A and 1?= B.

An interpretation of types as intervals will be a mapping from types to Int(ht’,
satisfying suitable conditions, expressed by the following definition. Note that not all
choices of 5 and allow the construction of type interpretations.

DEFINITION 2.2 (Type interpretation). A mapping ’Env Int(, ),
where Env Type Variables- Int(, ) is a type interpretation if and only if for all
e Env

(1) ],
(2) ], does not contain the empty set,
(3) totalling, maximal,
(4) p,=p,.
(5) p,
(6) V.n n,[p/]],,
(7) v.,
(8) ffv.] ,,.,.

We say that is a simple type interpretation (or, respectively, an -type interpretation)
if and only if r, =]ns,( rn=, rn). A type interpretation
is total if and only if V.n =rtotal[T/]n. In this case by condition (6) we

ota, ff[/]],have p [p/]] n
Conditions (1) and (5) are standard. Condition (2) will be justified in Remark 1,

3. Conditions (3) and (4) take into account our requirements about totality and
equivalence of types, respectively. As an immediate consequence of condition (4) we
have the usual interpretation of as the fixed-point operator. In fact, .,
[./]n since. [./]. Note that the requirement that the meanings
of total types are maximal intervals prevents (in some cases) to choose the least
solution.
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Conditions (6), (7), and (8) give us some freedom in the choice of the range of
V. We want to allow different interpretations in which this range can be the set of
values of total types, or the set of maximal intervals (as in Cartwright’s semantics), or
the set of all intervals. In fact, these conditions imply

Int 5’,

and

Following the method of [12] we can construct a number of sets 6e closed under
N, that do not contain the empty set . Given a h-model (D,-, e) we say that
a nonempty subset Z

_
D is a zero set if and only if Vz Z Vd D, z- d Z. It is easy

to verify that for any zero set Z the set 6e {A_ D IZ
_
A} is closed under N, - and

does not contain . In [12] a list of h-models and zero sets is given.
We discuss now the meaning of types given by Cartwright and we prove that it

is a type interpretation according to Definition 2.2. The language considered in [5] is
the untyped A-calculus equipped with a suitable set of constants. Therefore the semantic
domain D* consists of a disjoint collection of subspaces, such as truth values, integers,
tuples, and functions. We refer to [5] for the details of the construction of D*; let us
only recall that D* is a consistently complete, to-algebraic c.p.o. Obviously D* can
be turned into a h-model simply by defining d e--- 2_ whenever d is not a function.
Let 6e be the set Ideo. of the ideals (i.e., nonempty closed sets with respect to Scott
topology) on D* and be _. The function space constructor is s (actually s and

coincide for D*)./z is interpreted as the least fixed-point operator and the parameter
of V ranges over maximal intervals. Actually, Cartwright also considers other construc-
tors, such as the 1 quantifier, which we could include without problems.

If Type(D*) Int(IdeD., ), Cartwright’s semantics is a mapping (()> 37" - Env
Type(D*) such that, for every environment r/ Env Type Variables- Type(D*)

(i) (< tr - p>>, (<r>>,
(ii) <<tzp.r>>,=Yf where Y’[Type(D*) Type(D*)]--> Type(D*) is the least

fixed-point operator and f(I)=<(o’)),ti/, for all I Type(D*).
(iii) <<V0.r)), [--1 ax <<O’)>,tZ/, where Max

_
Type(D*) is the set ofthe maximal

elements of Type(D*).
It is obvious that (()> satisfies conditions (1), (2), (4), and (5) of Definition 2.2.
Condition (3) is actually proved in [5], since the present notion of total type implies
the formal contractiveness as defined in [8]. In fact, in [5] Cartwright develops a metric
space of intervals (based on the corresponding theory for ideals) to assure that the
least solution to every formally contractive system of equations is a maximal interval.
Note that this proof essentially depends on the presence of constants in the language.
Condition (7) follows from condition (3). Condition (8) is verified since Max
Type D*

We prove that condition (6) is satisfied in Theorem 2.3.
TIqEOREM 2.3. Cartwright’s semantics << )) is a type interpretation.
Proof. We only need to prove condition (6) of Definition 2.2, i.e.,

<<V.tr>> , c_ n << cr p/ >> ,
p

To this end it is sufficient to observe that, for any p ,
IMax
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In fact, by monotonicity, if ((p)), I and J=[I , I1 then ((o’[p/q])),_((o’)),t:/ and
therefore ((o’[ p/ ])),

_
((o-)) ;tj/.

3. Soundness and completeness. The notion of semantic satisfiability is defined as
usual, taking into account the two different forms of membership.

DEFINITION 3.1 (Semantic satisfiability). (i) , 0, [[ ]], r/ M: :cr if and only if
[[M]]

(ii) , 0, ]], qB if and onlyif‘dx:o-B, 0, ], qx:o-.
(iii) B M:(o- if and only if ‘dA/, O, ]], r/

[, 0, ]], r/ B::=>, 0, ]], r/M’o’],

BsM’sCo" if and only if ‘d, 0, simple type interpretation ]], r/, 0, ]], n B:::>, 0, ]], rl M’o’],

BM’o" if and only if ‘d, 0, ’-type interpretation ]], r/

[J//, 0, ]], 7 BJ/, 0, ]], r/M’sCcr],
B TM" :cr if and only if ‘d, 0, total type interpretation ]], r/

[J//, 0, ]], r/ B=:>, 0, ]], r/M’sCo-].

Remark 1. Condition (2) of Definition 2.2 is justified by soundness and complete-
ness requirements. For example, if we allow o-]], I, AI for all r/, some o- and A,
then it turns out that x :! tr M :p is vacuously valid. In fact, no model and environ-
ment can satisfy x’!cr since o-]], is always empty. Moreover, the usual property
"BM:o’BIMM:cr" is not sound. Empty interpretations of types produce
similar pathologies in standard type assignment systems; they can be allowed by
modifying the inference system [12].

The soundness of the inference rules easily follows from the definition of type
interpretation.

THEOREM 3.2 (Soundness). BM o=C,B M o’.
Proof This proof is by induction on derivations. (!=:> ?) is proved by definition

of interval. (?3 !), (---), (‘dI), (‘dE?), and (’dE !) follow from Definition 2.2, namely,
from points (3), (4), (8), (6), and (7), respectively. The remaining cases, (I) and
(-E) are straightforward by using Definition 2.2(5) and the definition of =:> on
intervals, lq

Remark 2. We are now able to discuss the restriction on rule (‘dE !). In fact, a
rule of the shape

B F- M Vq.cr

B-M’!o’[p/]

is not sound. To show this, it is sufficient to observe that in the particular case M Ax.x
and or= q q we could derive ,x.x’!p- p for all types p. But ,x.x]op-p]],-
B- A in the general case p]], IA, nl whenever A is a proper subset of B.

To obtain a complete system we must add rule (Eq) of subject equality

(Eq) BM’sCcr M =t N

The soundness of this rule is straightforward. It is easy to verify that an equality
postponement theorem holds, i.e., if we deduce B-M :tr using rule (Eq) then there
is N =0 M such that we can deduce B N:sCcr without rule (Eq). This means that
rule (Eq) does not increase the expressiveness of the inference system.
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In the rest of the section BM’str will denote a modal typing statement that
can be derived in this new system.

We now build the set of intervals on the term model (fl) and we define a
mapping from types to these intervals. Lemma 3.5 proves that this mapping is a type
interpretation since it satisfies the conditions of Definition 2.2. This construction is
used to state the completeness of the type inference system. Recall that the term model
of fl-equality (fl)=(A(fl),’,[Axy.xy])is defined by

A(/3)={[M]lMisaterm} where[M]={SlS=M},
M] IN] [MS], and

[M]]0(3) [M[M,/Xl, ", M,Ix,]]

where O(x)= [M] and x,..., x are the free variables of M. As proved in [7], given
a term M and a basis B, we can assume that there is a basis B+_ B that contains
infinitely many statements x,e, :o- for all cre ’, e {!, ?}, and e o), where the variables
x,e, are all distinct and do not occur in B and M. We refer to [7] for the technical
details. It is easy to verify that B - M"The following definitions of intervals and type interpretation are done for a fixed
basis B.

DEFINITION 3.3 (Intervals on the term model).
(i) S(, cr)={[M]lB+M’cr}.
(ii) RA(t) {(S(!, tr), S(?, or))[ o’}.
(iii) Type(A())= Int(2A(, RA().

The inference system naturally induces an equivalence relation () between the types
that can be assigned to the same set of terms, that is

cr pC/B, M, B -M o"CB -M p.
For example, :q sc’’O.q. Obviously contains ---. Let Itr] denote the equivalence
class of cr under , i.e., Itr] {pip tr}. We will write BM" [tr] as short for
B.M’p for some p [tr] (this implies BM’p for all p [tr]). Let I(cr)
IS(!, or), S(?, cr)[. Clearly, cr p if and only if I(cr) I(p). Therefore an environment
r/"Type Variables o Type(A(fl)) associates a type variable with a type modulo . We
use this fact to define a type interpretation on Type(A(fl)).

DEFINITION 3.4. (i) (O’)--[O’[O’l/qPl,’’" O’n/qPn] where r/(%)= I() and
ql," ", q, are the free variables of

(ii) ff ff.7".* Env.* Type(A(fl)) is defined by ff, I(p) for some pc (r).
(iii) r/o’Type Variables-* Type(A(fl)) is defined by r/o(q) I(q).
(iv) 0o" Term Variables.* A(fl) is defined by Oo(x) [x].
Definition 3.4(ii) is sound since I(p) I(p’) for all p, p’ (cr). It is easy to verify

that /o(Cr)= [or] (which implies that fftrff, I(tr)) and M]](t)

Note that [M]g, if and only if B/M" (tr).
LEMMA 3.5. (i) g ] is a type interpretation.
(ii) (/3), 0o, g ], rto B.
Proof (i) We prove that g ]/satisfies conditions (1)-(8) of Definition 2.2.
Condition (1). r/(o) I(cr) implies /(o)= [cr]. By definition gqff, I(p) for some

p /(o) and so we conclude goff, r/(o).
Condition (2). [x,(),e,g] gcrff for all i.
Condition (3). Proved by rule (? !).
Condition (4). Proved by rule (---).
Condition (5). Recall that go-.* p], [gtr]/, .* gp], gcr]/ .* gp],[. Let cr .* p’

(cr.*p), this implies cr’(cr) and p’(p).
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N] ffo’ff ==> B+ N" (tr’ and then B+ - MN" p’ by rule (--> E), that is MN] t[Pff.
For the converse, let z : FV(M) U FV(B) and z’ :-(r’ B/.

V[N] gtr;, MN] gp;:>B+ Mz Cp’

=:> B+ Az.Mz cr’ --> p by (--> I)

=>[hz.Mz] :" [M] fftr --> p;.
Condition (6). Let V.o" ’(V.o’).

n+
=,B+M’?tr’[p’/q] where p’ 9(p) for allp by (E?)

==> B+ M :? @ (or[ p/q])

n

Condition (7). Let V.o-’e ,F/(V,.o’).
:=>B+ M l/q.o"[M] e ffVq.trff,
=,B+FM cr’[ -/ q

Condition (8).

[M] I"1
I Type(A())

for all p" since o-’[p’/] (cr[p/q])

for all " total by (rE !)

for all " total (- total implies

r closed and therefore ,](’)= [’])

:=>[M] e f’l
total

where q, is bindable in M with respect to B

:=>[M] (fftrffn+) where r;+= rt[i(q,)/q]

B+M" stir’ where or’ r/+(o-)
B+M’Vq,.tr by (VI)

B+-M’](Vq.tr) by definition of

Part (ii) follows immediately.
THEOI{EM 3.6 (Completeness). (i) (/3), 0o, [ /, oM:tr=BM:tr.
(ii) B M trCz B M sCo.
Proof (i)

/(fl), 0o, ff , r/o M’ :r:=>M]] ()oo e
=:>[M] 1(o’)

:=> B/ M o" since

BFM’o’.
Part (ii) follows immediately from (i) and Theorem 3.2. 1-]

The inference system so defined, without other suitable rules, is not complete with
respect to simple or ’-type interpretations since, for example, we have {x’!o-
p}FAy.xy:!(Vq.q) p but {x:!o’ p}V-x:t(Vq.q)/9. Moreover, it is not complete
with respect to total type interpretations, since, for example, {x’!Vq.
dj}- Ay.xy :! - q for all total - but {x !Vq.q - q} Ay.xy :!V. q.
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We can easily obtain two systems that are complete with respect to the simple
and total semantics of types, while it is an open problem to find a system complete
with respect to the ’-semantics.

DEFINITION 3.7 (Simple and total inference systems). (i) BsM:tr if and only
if this statement can be derived by the axioms and rules of Definition 1.3 together with
rules (Eq) and

(simple)
B}- hz.Mz" o- p

if z g FV(M).
B-M" o-> p

(ii) B-rM’r if and only if this statement can be derived by the axioms and
rules of Definition 1.3 together with rules (Eq) and

(total)
B I-- M" r[r] for all z total

BM :Vq.o-

The soundness of rule (simple) with respect to the simple semantics and of rule (total)
with respect to the total semantics is straightforward. Note that we must use transfinite
induction for the system -r, since (total) is an infinitary rule.

To prove the completeness of these systems, we must modify the definitions of
intervals and type interpretation on the term model, in an obvious way. These changes
take into account the added rule to obtain a simple, or a total, type interpretation.

In the case of the simple semantics we need to introduce a relation s on types.
o- p says that cr and p can be assigned to the same set of terms in the system -, i.e.,

extends 2, since it is easy to verify that

BsN’oCC,ZiM’M--nN and BM’o’.
Actually, = is a proper extension, since for example Vq.r q r- Vrp. whenever
z is total. Let [Cr]s denote the equivalence class of cr under , i.e., [cr] { p[p = or}.

Let us now consider the system r. Note that the addition of the infinitary rule
(total) to the system - leaves unchanged the set of types that can be deduced for the
(term) variables. More formally we have

Moreover, it is clear that the equivalence (and the corresponding equivalence for
the system -r) is completely characterized by means of the deductions in which all
subjects are variables. This is precisely stated by

(’VB, M, " B-M" crC:C,BM" p)

: (Vx, :" {x" :p} x’ :r and {x" :r} x" :p)

and the same implication where r replaces -. From these facts it is easy to prove
that characterizes the types that can be assigned to the same set of terms in the
system r, that is

o pC:VB, M, " B TM" o’C:B TM" p.
So we simply define [tr] r [r].

DEFINITION 3.8. Let {s, T}.
(i) I’(o’)={A_A(fl)I{[M]]B+ ,M’!o}_A_{[M]IB+ ,M’?o’}}.
(ii) Type(A(fl))= {I(o)loe,.’}.
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(iii) Let 7"Type Variables--> Typei(A()). Define:

(,) [o-[,,/,p, ,..., o-.I
where r/(y)= Ii(o’j) and (1, (’n are the free variables of

ffo- Ii(p) for some p E

(iv) Ti(o)= Ii(q).
THnOVM 3.9 (Completeness for the simple and total semantics).
(i) ff s is a simple type interpretation.
(ii) ff fir is a total type interpretation.
(iii) B -s M" trCe,, B s M" tr.
(iv) -M. a:> M".
Proof. (i) As the proof of Lemma 3.5(i). Notice that

B+ - Az.Mz" tr’ --> p’, z

_
FV(M)=>B+ M" o" --> p’ by (simple)

[M] E (fro’-> p/)

The proof of part (ii) is that of 3.5(i). Note that

[M]E fq (r[r/]fT)B+-rM’r’[r/]
total

where or’ E (or) for all z total (z total implies /(z) r])

==> B+ rM" VV:,.o"’ by (total)

==> M] E (ffV(p.o’17)

The proofs of parts (iii) and (iv) are that of Theorem 3.6(ii) using, respectively,
(i) and (ii). I-]

Note that s is not complete with respect to the ’-semantics, since, for example,
{x" Vqxq} sx" Vq.q but {x" Vq.q} -hy.xy" V.q.

Remark 3. Let us compare the present relations and =s with the containment
c_ between types introduced by Mitchell in [12]. Actually, Mitchell does not consider
recursive or partial types, so the comparison is only done for total types built using
-* and V. It turns out that r p (or p) if and only if r___ p c__ r is valid in all (simple)
inference models.

4. Relations with standard inference systems. It is natural to compare the type
inference system of Definition 1.3 with the system whose rules are obtained from the
rules of 1.3 simply by erasing modalities in the assertions (obviously, (?3 !) and (!3 ?)
become meaningless and (VE!) becomes a particular case of (VE?)). We write
B -* M’tr if this expression can be derived in the so-obtained system. Let /=
{x" trlx" :tr B}. Clearly, BM" :o- implies B * M" o-, since the erasure of modalities
does not affect the validity of the derivations. The reverse does not hold, since
B -* M’o- does not imply that there exist suitable B’ and such that /’= B and
B’- M" scr. Take, for example, {x" Vq.q, y" Vq.q -* q, z- p} * x(yz)" q. Moreover, it
is clear that, in the particular case of total types, the interpretation of types as intervals
coincides with the standard interpretation as sets. Using this fact and the completeness
proved in 3, it is easy to show that if B contains only total types and r is total, then
B-* M’r implies B’M’r where B’={X’xO’[X’o’EB} and the modalities , sc,
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are arbitrary. In fact, we have

B * M "r:=> B M "r by soundness

:=>B’ M:r since all involved types are total

=:>B’-M:sCz by completeness.

Note that the inference system * is different from the system presented in [8] for two
reasons; in [8] other type constructors (such as x, :I) are defined and rule (---) is omitted.

5. Possible developments. An interesting point to investigate could be the connec-
tion between properties of subtyping (as introduced in [2]) and the approximation
relation on types as intervals.

Let us consider two intervals I and J, say I IA, B and J IC, El, such that IJ.
I represents an approximant of J, i.e., I is a supertype of J in the sense that all sets
that are elements of J also belong to I (are included in B). This order relation on
intervals seems to suggest that, exploiting the use of modalities in typing statements,
we can recover some of the inheritance properties of types considered as sets of values.
Indeed the following hold:

(1) d Je implies d I ?,
(2) d implies d J.

According to (1), if d belongs to the set of values C (or E) we infer that d [A, BI ?,
i.e., d belongs to B (notice that C E B by definition of __=). So values of C can
inherit properties of the superset B. On the other hand, (2) allows us to pass from a
less defined characterization to a more defined one. Assume, for example, that we have
a function f(I:=>lH, HI) , which means that f belongs to the set Bo H. By the
monotonicity of =:>, I[H, H[ is less than J==>[H, H and then, by property (2), f
belongs to the set E - H where E B. So the function f can be applied not only to
values of the set B but also to values of the subset E. Again, values of a set inherit
properties of a superset.

A related work is [9], where Martini models both explicit polymorphism and
inheritance for subtypes using a modification of the interval model. Martini presents
a sound model for an extension of the language FUN introduced in [3]; this extension
supports also a general recursion operator for functions. To satisfy the requirement
that the function type constructor is antimonotonic in the first argument, the subtype
relation is not interpreted by the ordering on intervals.

Acknowledgments. The authors wish to thank the referee, Felice Cardone, and
Mario Coppo for their helpful comments on a previous version of this paper.
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SHORTEST CIRCUIT COVERS AND POSTMAN TOURS IN GRAPHS
WITH A NOWHERE ZERO 4-FLOW*

BILL JACKSONf

Abstract. Let G be a graph with a nowhere zero 4-flow. It is shown that the length of a shortest circuit
cover of E(G) is equal to the length of a shortest postman tour of E(G). Using this result an efficient
algorithm for constructing shortest circuit covers for graphs that possess two disjoint spanning trees is
obtained. It is also deduced that if H is a 2m-edge connected graph, m >- 2, then there exists a circuit cover
of E(H) of length at most IE(H)l+min {IE(H)I/(2m+ 1), IV(H)I- 1} and that if G has a nowhere zero
4-flow, then there exists a circuit cover of V(G) of length at most 21V(G)I- 2. Finally, it is shown that the
equivalence between shortest circuit covers and postman tours may be extended to binary matroids that
possess a nowhere zero 7/-flow.

Key words, shortest circuit covers, Chinese postman problem

AMS(MOS) subject classifications. 05C70, 94C15, 05C38

1. Introduction and definitions. All graphs considered are finite and may contain
loops and multiple edges. We shall adopt the terminology of [J] concerning flows in
graphs. By a network we shall mean a graph G for which a positive rational number
w(e) is associated with each edge e of G. We shall use w(G) to denote the sum of
the weights of the edges of G. We shall consider a graph G as a network for which
w(e) 1 for each edge e of G. A closed walk in G is an alternating sequence of vertices
and edges of G that starts and ends at the same vertex and is such that consecutive
vertices and edges are incident. The length of a walk Q is the sum of the weights of
the edges in the sequence representing Q and is denoted by w(Q). A postman tour of
G is a closed walk that includes every edge of G. A circuit of G is a closed walk such
that all vertices other than the first vertex are distinct. A circuit cover (vertex circuit
cover) of G is a set of circuits such that each edge (vertex) of G belongs to at least
one circuit in the set. The length of a circuit cover $ is the sum of the lengths of its
circuits and is denoted by w(S). We shall use p(G), c(G), cv(G) to denote the lengths
of shortest postman tour, shortest circuit cover, and shortest circuit vertex cover,
respectively.

Itai and Rodeh [IR] pointed out that, for any bridgeless graph G, p(G)-<_ c(G),
and gave the Petersen graph as an example for which strict inequality occurs. Since
there exists an efficient algorithm for determining p(G) and, as yet, no such algorithm
for c(G), it seems useful to describe families of graphs G for which p(G)= c(G). In
[BJJ] and [GF1] it is shown that p(G)= c(G) for all planar bridgeless graphs G. The
main purpose of this paper is to generalise this result by showing that p(G)= c(G)
for all networks G that have a nowhere zero 4-flow (note that all planar bridgeless
graphs have a nowhere zero 4-flow by the 4-colour theorem [AH]). Unfortunately it
is NP-complete to decide whether a given graph has a nowhere zero 4-flow (for 3-regular
graphs it is equivalent to decide if the graph is 3-edge coiourable and this decision
problem is NP-complete by [Ho]). However, by specialising to the family of networks
that possess two disjoint spanning trees (which have a nowhere zero 4-flow by [J]) we

* Received by the editors December 19, 1988; accepted for publication (in revised form) October 4,
1989. This work was carried out while the author was visiting the Department of Mathematics and Statistics,
University of Auckland, New Zealand.

t Department of Mathematical Sciences, Goldsmiths’ College, London SE14 6NW, United Kingdom.
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obtain a large family of networks for which there exists an efficient algorithm
O([ V3[ + IE]), to construct a shortest circuit cover.

Several authors, [IR], [ILPR], [BJJ], [AT], [Fr], IF] have obtained upper bounds
on the lengths of shortest circuit covers in graphs and networks. (Note that bounds
for graphs may be applied to networks with integer weights, by replacing each edge
e of a network by a path of length w(e). This may be extended to networks with
positive rational weights by suitable scaling.) A summary of the strongest results (from
[BJJ], [AT], [Fr], IF]) is the following.

THEOREM 1.1. Let G be a 2-edge connected network and T( G) denote the maximum
weight of a spanning tree of G. Then

c(a) _<- w(G) + min {2w(G)/3, 5 T(G)/4}.
In addition, for a 2-edge connected graph G:

(i) [AT] gives a O([ V[2 +]E[) algorithm for constructing a circuit cover of length
at most [El+min {2]E[/3, 7(IV[- 1)/3}.

(ii) c(G)<-[E[ +IV -1 if G has two edge-disjoint spanning trees [IR], or if G is

planar [Fr].
(iii) c(G)<-4[EI/3 if G has a nowhere zero 4-flow [BJJ].
(iv) c(G)<-81E[/5 if G has a nowhere zero 5-flow [JRT].
(v) cv(G) <- 50([ V[- 1)/23 in general, and cv(G) <- 2([ VI- 1) if G is planar [Fr].

In 4 and 5 of this paper we shall improve the above results for the case of graphs
that have a nowhere zero 4-flow.

Generalisations of the shortest circuit cover problem for binary matroids have
been considered in IT], [JT], [JRT]. In 6 of this paper we shall extend our main
result to binary matroids that have a nowhere zero 7’-flow.

2. Preliminary lemmas. Let G V, E) be a graph. We shall say S c E is a 7]2-cycle
of G if each v V is incident with an even number of edges of S. The cycle space of
G is the vector space formed by the set of all 7/2-cycles of G over 7/2, using the binary
operation symmetric difference (which we denote by A).

It was shown in [Tu] that, for each positive integer k, it is equivalent for a graph
G to have a nowhere zero k-flow or a nowhere zero F-flow for any abelian group F
of order k. We shall use the particular cases k-2 or 4.

LEMMA 2.1. The following statements are equivalent.
(1) G has a nowhere zero 2-flow.
(2) G has a nowhere7
(3) E G) can be decomposed into disjoint circuits.

(4) E G is a 7/2-cycle.
Furthermore, any incidence of i) can be converted to an incidence of (j) in O([E[)

time, 1 <- <j <- 4.

Proof The equivalence follows easily. Flows satisfying (1) or (2) may be con-
structed using Euler tours of the components of G. To construct (3) we may greedily
remove circuits from G.

LEMMA 2.2. The following statements are equivalent.
(1) G has a nowhere zero 4-flow.
(2) G has a nowhere zero
(3) E (G) is the union of two7
Furthermore, any incidence of i) can be converted to an incidence of (j) in O([E[)

time, 1 <= <j <-3.
Proof. (1)O(2). Suppose

{eEl(e)=- i(mod2)} for i= 1 or 2. Then M1 is a 7/2-cycle and hence by Lemma
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2.1 we may construct a Z2-flow and a 2-flow 2 for G such that l(e) 1 +/-2(e)
for eM1 and l(e)=0=z(e for eM2. Thus 3=+2 is a flow for G with
3(e) {0, +2, 4} for all e E. Putting 4(e) O if 3(e) O(mod 4) and 4(e) 1
if 3(e)---2(rood 4) we obtain a 7/z-flow 4 for G such that 4(e) 1 for e M2. Thus
5 (1, 4) is the required nowhere zero Zz2-flow for G.

(2) =:> (3). Immediate by Lemma 2.1.
(3)O(1). Let M1 and M2 be two Zz-cycles that cover E. By Lemma 2.1, we may

construct 2-flows i for G, i=1 or 2, such that i(e)=+l for eM and (e)=0
for e E M. Putting + 2Q2 we obtain the required nowhere zero 4-flow for G.

The final assertion of the lemma follows, since our proofs are constructive and
require at most O(]E]) time.

Following Jaeger [J], we shall say that an F4-flow for G is a flow satisfying either
Lemma 2.2.1 or 2.2.2. Our final lemma summarizes some well-known results on shortest
postman tours of networks.

LEMMA 2.3. Let G be a connected network and P be a shortest postman tour of G.
Let F be the set of edges that are traversed more than once by P. Then:

(1) Each edge of F is traversed exactly twice by P.
(2) E G) F is a Z2-cycle of G.
(3) w(P)- w(G)+ w(F).
(4) F contains no Z2-cycles of G.
(5) w(F)<-t(G), where t(G) denotes the minimum weight of a spanning tree

of G.

3. Shortest circuit covers for networks that have an F4-flow.
THEOREM 3.1. Let G be a connected network that has an F4-flow. Then c( G) p( G).

Furthermore, if we are given an F4-flow for G, then we can construct a shortest circuit
cover for G in O(] V] + ]E]) time.

Proof By Lemma 2.2 we can construct two 7/2-cycles X1 and X2 of G such that
E(G) X [.J X2. Let P be a shortest postman tour of G, and F the set of edges
traversed twice by P. By Lemma 2.3, X E (G) F is a 7/2-cycle of G. Put D1 X1 A X,
D2 X2 A X, and D X A X2 A X. Then each D is a Z2-cycle of G, each edge of X
belongs to exactly one Di, and each edge of F E(G)-X belongs to exactly two
Di’s, 1 _<-i_-< 3. By Lemma 2.1, each D has a decomposition Si into disjoint circuits.
Putting S $1 $2 [J $3, we obtain a circuit cover S for G with

w(S) w(G)+ w(F)= w(P).

Since c(G) >_- p(G) by [IR] we have

c(G)= w(S)= w(P)=p(G).

Now suppose that we are given on F4-flow for G. We may construct a shortest
postman tour P for G in O(IV]3) time by [L]. Since X, X2, X, {D, D_, D3},
{S, $2, $3}, and S can all be constructed from and P in O(IEI) time, we obtain an
O( VI --ILl) algorithm for constructing S. [3

COROLLARY 3.2. Let G be a 2-edge connected network which has no subgraph
contractible to K3.3. Then c(G)= p(G).

Proof It follows from [WW, Cor. 2] that G has an F4-flow. [3

The proof of [WW, Cor. 2] uses the 4-colour theorem. If we apply the 4-colour
theorem directly, instead of using [WW, Cor. 2], we obtain the weaker result given in
the following corollary.
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COROLLARY 3.3. ([BJJ], [GF1]). Let G be a 2-edge connectedplanar network. Then
c(G)=p(G).

Proof. The 4-colour theorem [AH] implies that G has an Fa-flow. [3
Remark 3.4. The proof of Corollary 3.3 given in [BJJ], [GF1] used a result of

Fleischner IF1] rather than the 4-colour theorem. Since Fleischner’s proof is essentially
constructive, it is conceivable that it could give rise to an efficient algorithm for
constructing a shortest circuit cover of planar networks.

COROLLARY 3.5. Let G be a network that has two disjoint spanning trees. Then
c( G) p( G). Moreover a shortest circuit coverfor G can be constructed in O([ V[ +[E[)
time.

Proof. It follows from [J] that G has an F-flow, and hence c(G)=p(G) by
Theorem 3.1. Furthermore, we can construct two disjoint spanning trees T and T2 for
G (or decide that two such trees do not exist) in O([V[2) time by [S]. Using T and
T2 we may construct a nowhere zero Z-flow for G in O(]E[) time by [ILPR]. The
corollary now follows by applying Theorem 3.1.

4. Bounds on c(G). Let t(G) denote the minimum weight of a spanning tree of
a connected network G.

THEOREM 4.1. Let G be a connected network with an F4-flow. Then c( G) p( G)
w(G) /min {w(G)/3, t(G)}.

Proof The proof follows from Theorem 3.1, Lemma 2.3, and [BJJ, Prop. 2].
THEOREM 4.2. Let O be a 2m-edge connected network, m

w(G) + min { w( G)/(2m + 1), t(G)}.
Proof Since G is 4-edge connected, it follows from [J] that G has an F4-flow.

The (in)equality c( G) p( G) -<_ w(G)+ t(G) now follows from Theorem 4.1. It only
remains to show

(1) p(G)<= w(G)+ w(G)/(2m+ 1).

We proceed by induction on [E(G)I, using an idea from the proof of [BJJ, Lem. 3.2].
First suppose that G has a vertex v of degree at least 2m /2. Using [M] we may
choose neighbours vl and v2 of v and edges ei, i- or 2, incident with v and vi such
that the graph H1 obtained from G-{e, eel} by adding a new edge e12 between v
and v is 2m-edge connected (we shall say that H is obtained by splitting el and e
from v). Putting w(e) w(el) / w(e2) and applying the inductive hypothesis to H,
we deduce that (1) holds for G, since a shortest postman tour of H gives rise to a
postman tour of G with the same length.

Next, suppose G has a vertex v of degree 2m. Again using [M] we may partition
the edges incident with v into pairs such that the graph H, obtained by successively
splitting each pair of edges away from v and then deleting the remaining isolated
vertex v, is 2m-edge connected. Applying induction to H2 we again deduce that (1)
holds for G.

We may now assume that G is (2m/ 1)-regular. It follows from results of [E]
that G has a set of 1-factors S such that each edge of G belongs to the same number
of 1-factors in S. Thus, if F is a 1.factor of S of minimum weight, then w(F)
w(G)/(2m + 1). Choosing a postman tour P of G that traverses each edge of F twice
and every other edge of G once, we have

w(P)<= w(O)+ w(F)<-_ w(G)+ w(G)/(2m+ 1).

Thus (1) holds for G.
Remark 4.3. It was conjectured in [IR] that c(G) = IE +[VI- 1 for all bridgeless

graphs G. This conjecture was verified for graphs with two disjoint spanning trees in
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[IR] and for planar graphs in [Fr]. Theorem 4.1 gives the common generalization that
the conjecture holds for all graphs with an F4-flow. It also suggests the following
conjecture.

CONJECTURE 4.4. For every bridgeless network G, c(G) -_< w(G) + t(G).

5. Bounds on cv(G). It was conjectured in [BJJ] that cv(G)<=2(IV[-1) for all
2-connected graphs G. The weaker bound cv(G)_-<50(IVI-1)/23 was established in
[Fr], and the conjecture itself was verified for planar graphs. We shall extend the
planar result by verifying the conjecture for graphs which have an Fa-flow.

THEOREM 5.1. Let G be a graph without isolated vertices, which has an F4-flow.
Then cv( G) <= 2([ V[- 1).

Proof. We proceed by contradiction. Suppose the theorem is false and choose a
counterexample G with as few edges as possible. Clearly G is connected. Let U be
the set ofvertices of degree two in G. If U V, then it can easily be seen that cv(G) IV[,
and thus U # V.

Suppose G-U contains a circuit C. Choose a nowhere zero Z-flow 1 for G,
and an edge eo of C. Let 32 be the Z2-flow for G defined by 2(e) l(eo) for e E(C)
and 2(e)= (0, 0) for eE-E(C). Let 3 1+_, and M={eEl3(e)=(O, 0)}.
Then eo M. Since G-M has no isolated vertices, has the F4-flow 3, and has fewer
edges than G, we deduce that cv(G-M)_2([ V]- 1). Since any circuit vertex cover
of G-M is also a circuit vertex cover of G, we contradict the choice of G. Hence
G- U has no circuits.

Let H be the graph homeomorphic to G and without vertices of degree two. Thus
[E(H)[=IEI-[U[ and [V(H)I=[V[-[U[. Clearly an F4-flow in G gives rise to an

F4-flow in H. Associate a weight w(e) with each e E(H) by letting w(e) be the length
of the path in G that corresponds to e. Thus w(H)=[EI. Let F {e E(H)lw(e) 1}.
Since G- U is a forest, we can choose a spanning tree T for H such that F c E(T).
Then each edge of E(H)- E(T) has weight at least two and thus,

w(T) <= w(H)-2(IE(H)I-IE(T)I)

w(U)-2(IE(U)l-lV(U)l+ 1)

=2(IVI-1)-IEI,

Using Theorem 4.1 we have

c(n) ___< w(n) / t(n) --IEI / 2(I VI- ) -IEI 2(I Vl- ),

Since any circuit cover of H induces a circuit cover of G of the same length, we have
cv(O) <-_ c(H)<= 2(I VI- 1). This contradicts the choice of G and completes the proof
of the theorem.

6. Minimum weight cycle covers in binary matroids. We define a binary matroid to
be an ordered pair M (E, N), where E is a finite set and N is a subspace of 2e

considered as a vector space over Z2 using the binary operation A. We shall refer to
N as the cycle space of M and to the elements of N as cycles of M. A cycle cover for
M is a set of cycles whose union is E. We shall say that M is weighted if for each
e E there is associated a positive number w(e), called the weight of e. For F c E,
the weight of F is the sum of the weights of its elements. The weight of a cycle cover
is the sum of the weights of its cycles.

The cycle matroid of a graph G V, E) is the binary matroid M (E, N) defined
by the cycle space N of G. Thus the cycles of M are the 72-cycles of G.
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LEMMA 6.1. Let M (E, N) be a binary matroid, X be a maximum weight cycle
in M, and S be a minimum weight cycle cover for M. Then

w(S)>=2w(E)-w(X).

Proof Let Z Aye S Y. Since S is a cycle cover, we have

w(S) >-_ w(Z)+ 2w(E Z) 2w(E) w(Z).

Furthermore, since Z N, we have w(Z)<-w(X).
Remark 6.2. If G is a connected network and X is a maximum weight 7/z-cycle

in G, then p(G)= 2w(E)- w(X). Thus Lemma 6.1 can be considered a generalisation
of the result from [IR] that c(G) >_- p(G).

A co-cycle of the binary matroid M (E, N) is a subset Yc E such that Y C1X[
is even for all X N. The set of all co-cycles N* is a subspace of 2E called the co-cycle
space of M. The binary material M*= (E, N*) is the dual matroid to M. A Z2-flow
in M is a mapping " E Z2 such that Ye Y (e)= 0 for all Y N*. We shall use
the following elementary result on 7/2-flows to extend Theorem 3.1 from networks to
binary matroids.

LEMMA 6.3. Let M (E, N) be a binary matroid. Then M has a nowhere zero

7/-flow if and only if E is the union of k cycles in N. [-1

THEOREM 6.4. Let M E, N) be a binary matroid that has a nowhere zero
Let X be a maximum weight cycle in M. Then the minimum weight for a cycle cover for
M is 2w(E)- w(X).

Proof By Lemma 6.3 there exists X1, X2 N such that E XI X2. Then S
{XAX, X2AX, X1AX2AX} is a cycle cover for M such that w(S)+w(X)=2w(E).
Using Lemma 6.1 we deduce that S is a minimum weight cycle cover for M and
w(S)=2w(E)-w(X).

The co-cycles or edge-cuts of a graph G (V, E) are the co-cycles of the cycle
matroid of G. These are the subsets of E consisting of all edges joining U to V- U
for each U c V. The co-cycle matroid of G is the dual matroid to the cycle matroid of
G. Applying Theorem 6.4 to the co-cycle matroid of a graph we obtain Corollary 6.5.

COROLLARY 6.5. Let G (V, E) be a 4-colourable network and r be the maximum
weight of a co-cycle of G. Then the minimum weight ofa co-cycle cover ofE is 2w(E)- r.

Proof. The co-cycle matroid of G has a 7/22-flow if and only if G is 4-colour-
able.

Remark 6.6. Unfortunately the problem of determining the maximum weight of
a co-cycle in a graph, and thus the more general problem of determining the maximum
weight of a cycle in a binary matroid, is NP-hard [GJS]. This remains valid for loopless
graphs of maximum degree three (which are necessarily 4-colourable) by [Y], and
hence the maximum weight cycle problem is NP-hard even for binary matroids that
have a nowhere zero 7/2-flow.It follows that Lemma 6.1, Theorem 6.4, and Corollary
6.5 are not as readily applicable to binary matroids as graphs. Since, however, poly-
nomial algorithms exist for constructing maximum weight co-cycles in planar graphs
[H], [OD], and more generally in graphs with no Ks-minor [B], we may apply Corollary
6.5 in these cases to give the following.

THEOREM 6.7. Let G be a graph with no loops and no subgraph contractible to K5
and let r be the maximum weight of a co-cycle in G. Then the minimum weight of a
co-cycle cover of E is 2w(E)-r. Furthermore, r may be determined in O([VI 5) time.

Proof It follows from the 4-colour theorem [AH] and a result of Wagner [W]
that G is 4-colourable. Applying Corollary 6.5 we deduce that the minimum weight
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of a co-cycle cover of G is 2w(E) r. The assertion that r may be calculated in O(I V[ 5)
time follows from [B].

Acknowledgment. I thank Francois Jaeger for suggestions and comments that gave
rise to 6 of this paper.
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GREEDY MATCHING ON THE LINE*

ALAN FRIEZE,? COLIN McDIARMID,t AND BRUCE REED

AbstraCt. The problem of finding a perfect matching of small total length in a complete graph whose
vertices are points in the interval [0, 1] is considered. The greedy heuristic for this problem repeatedly picks
the two closest unmatched points x and y, and adds the edge xy to the matching. It is shown that if 2n
points are randomly chosen uniformly in [0, 1], then the expected length of the matching given by the greedy
algorithm is 0(log n). This compares unfavourably with the length of the shortest perfect matching, which
is always less than 1.

Key words, greedy, matching, Euclidean, line, average case, worst case

AMS(MOS) subject classifications. 68Q25, 90C27, 68R10, 05C70, 60C05, 60D05

1. Introduction. We are interested in finding a perfect matching of small length
on a set of points drawn from the interval [0, 1]. That is, given a set A of 2n numbers
{Xl,’’ ", x2n}, each of which is between 0 and 1, we want to partition A into n pairs
{Yl, zl}, {Y2, Z2},"" ", {Yn, z,} so that we minimize Ei=I lYi-Zil. We can solve this
problem by reordering the elements of A so that x(1)<-=x(2)<-...<-x(2,) and then set
yi x(2i-1) and z x(2). It is easy to see that this method always gives the optimal
matching and, furthermore, the length of this matching is at most 1.

It is natural to ask how well the greedy approach performs in this simple setting.
The greedy matching algorithm first finds distinct elements a, b in A such that [a bl
min {Ic- d[" c, d A, c # d} and selects {a, b} as one pair ofthe partition. The remaining
pairs are found by using the same procedure on A- {a, b}.

It is not difficult to see that the greedy matching algorithm selects a matching of
length at most O(ln (n)) when applied to a set of 2n points. Also, one may construct
examples to show that the worst-case weight of a greedy matching is fl(ln (n)). Indeed,
in 5, we identify the worst-case behaviour rather precisely. (For related work see
Avis [1] and Rheingold and Tarjan [4].) However, we are more interested in average-
case behaviour. We prove that if 2n points are chosen at random from the uniform
distribution on [0, 1], then the expected length of the resulting matching is fl(ln (n)).
This settles a question raised by Avis, Davis, and Steele in [2], where results are given
on greedy Euclidean matching in d-dimensional spaces for d

_
2. (Note that the greedy

algorithm may be of practical use when d => 2, though it is only of theoretical interest
in the case d 1 considered here.)

Since this is our main result, we now state it again. Given n numbers x,. ., x,
(n even) in the interval [0, 1], let G[x1," Xn] denote the length of the corresponding
greedy matching (break ties arbitrarily).

THEOREM. Let X1,’’’, X, be n independent random variables, each uniformly
distributed on [0, 1 ]. Then E G(X1,. ", X, 2 In (n) for n sufficiently large.

2. Bags, sticks, and entropy. Rather than considering our points directly we shall
focus on the distances between them. To this end, we begin with some definitions.
Given an n-tuple x=(x,..., x,) of reals in [0, 1], let x)-<x<2)_-<...=<x.) denote
the numbers rearranged in nondecreasing order and let Zk Xk+l)- X(k) for k 0, , n

* Received by the editors September 28, 1988; accepted for publication (in revised form) October 9, 1989.
? Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
Department of Statistics, Oxford University, Oxford, England.
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada.
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GREEDY MATCHING ON THE LINE 667

where Xo 0, x,+l) 1. We shall refer to Zl, , z,_l as the (nearest neighbour) sticks
and Zo, z, as the endsticks. Let L(x)=[Zl,..., z,_] and let B(x) be the unordered
(multi)set of these values. Thus L(x) is the list of sticks and B(x) the bag of sticks.
Note that the endsticks are not included here.

Now, let X1,"’, X, be independently and identically distributed uniform on
[0, 1]. We shall use two easy properties of the corresponding random sticks.

Property 1. Let B be any bag of n 1 sticks (considered distinct). Then, conditional
on B(X) B the distribution of the corresponding list L(X) is uniform on the (n- 1)!
orderings of the n- 1 sticks in B.

This result is intuitively obvious, or see Feller [3], pp. 74-76.
Property 2. With probability --> 1 as n ,

max (Zk: k=0,’’’, n}_-<2 In (n)/n.

To check this result, note that for each k

Prob(Zk>t)=(1--t)" if0<t<l

(see, for example, Feller [3], p. 22). Thus

Prob(maxZk>t)<=(n+l)(1-t)"<=(n+l)/n2 if t=21n(n)/n.

To begin, we use the first property to obtain a lower bound on the conditional expected
value E (G[X] B[X B) that depends on the length of the sticks in B. Then we point
out that the second property ensures that this lower bound gives the desired result.

Thus, we now focus our attention on a fixed bag B of n sticks (where n is odd).
By Property 1 above, the distribution of G(X) conditional on B(X)= B is the same as
that of the value CHOOSE(B) returned by the following randomized recursive
algorithm.

Let x be a minimum element in B
if [B[ 1 then return x

else
with probability 2/n choose y uniformly from B-{x} and return
x +CHOOSE (B-{x, y}) (this corresponds to x being the leftmost
or rightmost stick, with neighbour y)
with probability (n-2)/n choose y uniformly from B-{x} and z
uniformly from B {x, y} and return x + CHOOSE (B {x, y, z}
{x + y + z}) (this corresponds to x having left neighbour y and right
neighbour z)

Now let
F(B)= E[CHOOSE (B)] E[G(X)IB(X)= B].

By considering the algorithm CHOOSE (B) we obtain a recurrence for F(B). Let
B ={al, a2, , an} be a bag of n sticks where n is odd, n > 1, and al is a minimum
element. Then

F(B)= al+- F(B-(al, a})
n n-lj=2

+ F(B -{al, aj, ak} (.J {al + aj + ak}).
n (n-1)(n-2) =2 k=/l

This recurrence is the key to our analysis. It will allow us to prove a lower bound on
F(B) in terms of the entropy of the stick lengths.
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3. A lemma.
LEMMA. Let A-{al,"" ", aN} be an odd cardinality set of positive numbers that

sum to 1. Let

H(A)=a , a, In -fl --2a E 2
i=1 i=2 i=2

1
where a

(12)
0.40243 and fl a In (24/11)- 0.31396. Then F(A)>-_ H(A).

Proof. We note that if N 1, then H(A) 0 and F(A) 1, so the inequality holds.
We shall assume it holds for N < n (where n > 1) and prove it for N n. Furthermore,
we may assume that a is a minimal element of A. Then, as we noted earlier:

F(A)=al+
2

E F(A-{al, aj})
n(n-1)j=2

F(A-(a,, a2, ak} U {al + a2 + ak}).n(n--1) 2=2 k=j+l

By the induction hypothesis,

F(A)>-al+2 , H(A-(a, aj})
n(n-1)j=2

H(A-(al, a, ak} {al + a + ak}).n(n--1) =2 k=j+l

By the definition of H,

2aln(n) 2aln(n-1)F(A) >- H(A) + al + fl-+ fl + +
n n-1 n (n-l)2

n(n-1)= -aln -aln

(a + ak + a) In
n(n 1) = k=+l a + ak + al

a, in ()(’) (-))ak In a In

2/3 2aln(n) 2aln(n-1) (a)F(A) >- H(A) + a q_mq_n n
+

(n 1 )2 tea In

a In
n(n-1)=2

+ (a+a + a) In
n(n- 1) j=2 k=j+l aj 4- ak nt- al
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We note that by the convexity of x In (x), the single sum is at most In (n- 1). We shall
show that, given that al =a, the double sum is minimized when a2 an
(1 a)/(n 1) b, say.

CLAIM.

S(A)= E
j=2 k=j+l aj + ak + a

aj In
1

ak In

-->- (n -1)(n -2) (a+2b) ln -2bin
-2 a+2b

Proof of Claim. Suppose a2#a3. Let a=a=(a2+a3)/2 and let a’i=ai for
i=l, 4, 5,...,n. It will suffice to show that S(A’)<S(A). To this end let
fk(X) X In (x)- (x + al + ak) In (x + al + ak) for k 4,. ., n.

Now,

S(A’)-S(A) {a In (a)+ a In (a)-a2 In (a2)-a3 In (a3)}

+ (f(a)+f(a’3)-f(az)-f(a3)).
i=4

Here, the first term comes from the term in the double sum where j 2 and k 3,
while the ith term in the sum comes from the terms in the double sum where k and
j=2 or j=3. Since the functions x In (x) and fk(X) are strictly convex, we have
S(A’) S(A) < 0 as required. V1

Applying the claim, we see that

F(A) >= H(A) + a +2fl+ 2t ln
n--5--- aa In (a1-)

2fl In(n) 2c (al_)>-_ H(A) ++n 2a
n2 n

a ln

--+aln +2bln
n o a+2b a+2b

Setting r= b/a and noting that a In (1/a)-<ln (n)/n since aN 1/n, we get

F(A)>-H(A)+--+ ozbf(r),
11 n

where f(r)=(1/ar)+(1/r)ln(1/(l+2r))+21n(r/(l+2r)). Now f’(r)
(1/rE)(-(1/ce)+ln (1+2r)), so f(r) is minimized when In (1 +2r)= 1/a and thus
f(r)>=-2 In (2+ (2/e1/ 1)). Hence

F(A)>=H(A)+2/3- n 2
2abln 2+ /n n e -1

Next we note that b -<_ 1/(n 1), so

F(A)>-H(A)+I 2-2aln 2+
11 e/ 1

Thus, by our choice of a and/3, we have F(A)>-H(A) as required.



670 ALAN FRIEZE, COLIN McDIARMID, AND BRUCE REED

4. Completing the proof of the Theorem. Consider n points Xl,’" ", x, in [0, 1]
(n even) such that each of the corresponding (n + 1) sticks (including endsticks) has
length at most d(< 1/2). Thus the corresponding bag B of n- 1 sticks has sum of lengths
cr >-- 1-2d. From the lemma (by scaling by l/or)

F(B)>=tr a
xB xlno" -fl

i=2
1/i-2a

i=2
2 J

---or a In fl 1 11n (i)]1/i-2a i2i---2 i--2

d -fl 1/i-2a i2=2 =2

Now set d 2 In (n)/n and use Property 2. We find that

E[G(X1,’’ ",X.)]>=(I+o(1))E[G(X1, ",X.) max Z<-21n(n)/n]
Oj

_--> (1 +o(1))((a +o(1)) In (n)-fl In (n)+ 0(1))

(a-fl + o(1))In (n) (0.088)In (n).

This completes the proof of the theorem.

5. Worst-case results. In this section we consider lists of points on which the
greedy algorithm performs particularly badly.

For any nonnegative integer k consider the list x(k)={i/3k: i=0, 1,...,3 k}
of 3k+ 1 points in [0, 1]. For k>-1 the greedy algorithm applied to x(k) can pick
3 k-1 intervals of length 3 -k, namely, the intervals [(3j+l)3-k,(3j+2)3-k] for
j 0, 1,. , 3k-l- 1, and then be left with the points x(k- 1). Hence x(k) has a greedy
matching of weight k/3 + 1. It follows that for any even n, there is a list of n points
that has a greedy matching of weight [log3 (n- 1)J + 1.

On the other hand, we shall show that any greedy matching on a list of n points
has weight at most 1/2 log (n- 1)+ 1. Thus for n of the form 3k+ 1 the above examples
are worst possible and for all other n we are not far off. From now on we shall just
use log (x) to denote log3 (x).

PROPOSITION. For a bag A {al,"" ", aN} of sticks (with N odd), let W(A) be
the length of the longest greedy matching of any n-tuple x such that the corresponding
list L(x) of sticks is a permutation of A, Then

W(A) <= - Y’, a log + ai.
i=1 i=1

Proof We prove this by induction on the cardinality of A. If[A[ 1, then W(A) al
and the theorem is true. So we suppose the theorem holds for N < n, where n _-> 3, and
prove it for N- n. Let x be a list of points such that L(x) is a permutation of A and
such that G(x)- W(A). We may assume that al is the minimal element of A chosen
in the first iteration when the greedy matching is applied to x.

Case 1. al is the rightmost or leftmost stick of L(x). In this case, let a2 be the
neighbour of a in L(x). Then

W(A) G(x) <- al + W(A-{al, a2}).
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Now, by our induction hypothesis:

ai log +W(A) < al +- i=3 i=3

=< g a log + a.
i=1 i=1

Case 2. a is an interior stick of L(x). In this case we may assume that a2 and a3
are the neighbours of a in L(x) and that a2=<

Now, W(A) G(x) a + W(A-{a, a2, a3} U {a + a2 + a3}). By our induction
hypothesis,

a log + (al + a2+ a3) logW(A) < a+ i=4 al + a+ a3

+ ai+(al+a+
i=4

a/log + ai+al+7(al+a2+az) log
i=1 = a + aa+ a- a log - a: log - a3 log

Fixing a and a + a2 + a3, since al a2 a3, we know that -a2 log (1/a2) a3 log (1/a3)
is maximized when a2 a. Fuhermore, fixing a and fixing a a: we see that

1 ( 1 ) 1 ()(a + a+ a3) log - a log
a + a+ a

is maximized when a3 a. Thus,

1 ailog() 1 () (1 ())W(A) =?i=< +
i=,

ai + a +? (3a)log -3 a, log

ai log + ai.
3 i=1 i=1

Now, for any bag A {a,. ., a,_} of sticks,

alog < log(n-l) and aN1.

Thus, from our proposition, the greedy matching applied to a set of n points constructs
a matching of length at most log (n- 1)+ 1. We note that this implies our examples
are the worst possible for n of the form 3+ 1. Indeed, it is easy to see from our
proposition that they are unique such examples.

elegets. Our thanks to Mike Saks and Bill Steiger for helpful dis-
cussions.
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A NOTE ON BENNE’IT’S TIME-SPACE TRADEOFF FOR
REVERSIBLE COMPUTATION*

ROBERT Y. LEVINE’ AND ALAN T. SHERMAN

Abstract. Given any irreversible program with running time T and space complexity S, and given any
e > 0, Bennett shows how to construct an equivalent reversible program with running time O(T1+) and
space complexity O(S In T). Although these loose upper bounds are formally correct, they are misleading
due to a hidden constant factor in the space bound. It is shown that this constant factor is approximately
e21/, which diverges exponentially as e approaches 0. Bennett’s analysis is simplified using recurrence
equations and it is proven that the reversible program actually runs in time O(T+/S) and space
O(S(1 + In (T/S))).

Bennett claims that for any e > 0, the reversible program can be made to run in time O(T) and space
O(ST ). This claim is corrected and tightened as follows: whenever T => 2S and for any e -> / (0.58 lg (T/S)),
the reversible program can be made to run in time O(T) and space f(S(T/S)’/2)fqO(S(T/S)). For
S <= T < 2S, Bennett’s 1973 simulation yields an equivalent reversible program that runs in time O(T) and
space O(S).

Key words, algorithms, reversible computation, time-space tradeoff

AMS(MOS) subject classifications. 68Q05, 68Q15

1. Introduction. A Turing machine is reversible if and only if its state-transition
function is injective. In other words, a program is reversible if for any input and for
any state in the program execution on that input, the preceding state is uniquely
determined from the current state. For example, the program "On input x and y,
output x + y." is not reversible because the input cannot be determined from the output,
but the related program "On input x and y, output (x + y, x)." is reversible. The notion
of reversible computation might someday radically alter the design of computers
because there are models of reversible computation in which computations do not
dissipate heat [3].

In 1973 Bennett [2] presented a general method for transforming any irreversible
program into an equivalent reversible program. This method works by reversibly
simulating the irreversible program. Let T and S denote, respectively, the time and
space bounds of the irreversible program. Bennett proved that his simulation runs in
time O(T) and space O( T+ S). Thus, because T can be exponential in S, the simulation
takes space exponential in S in the worst case.

In 1988 Bennett 1 improved his simulation by introducing a time-space tradeoff.
He proved the following result: given any e > 0, the revised simulation can be made
to run in time O(T1/) and space O(S In T). Although these loose upper bounds are
formally correct, they are misleading because there is a large hidden constant factor
in the space bound that depends on e; in fact, the tradeoff is between the exponent
in the reversible time and the constant factor in the reversible space. In this note we
exactly compute the constant factor in the space bound and show that it is approximately

* Received by the editors May 15, 1989; accepted for publication (in revised form) October 5, 1989.
t Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts 02173-0073.

This work was done while this author was a student at Tufts University.
t Computer Science Department, University of Maryland, Baltimore, Maryland 21228, and Institute

for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742.
Throughout this paper let In loge and lg log2.
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674 ROBERT Y. LEVINE AND ALAN T. SHERMAN

e21/. This constant factor diverges as e approaches 0, which is the interesting case in
which the reversible time approaches the irreversible time. Using recurrence equations
we also prove that Bennett’s revised simulation actually runs in time 19(T1+/S) and
space 19(S(1 +In (T/S))).

Bennett achieves his improved simulation by embedding his 1973 technique in a
clever general-purpose time-space tradeoff. Although unknown to Bennett, this general-
purpose time-space tradeoff was independently discovered by Chandra [5] in 1972.2

The rest of this note is divided into two sections. In 2 we give a simplified
analysis of Bennett’s time-space tradeoff using recurrence equations. We also plot the
tradeott curve for the reversible time and space for several values of T/S. In 3 we
compute the constant factor in the space bound and correct an error in Bennett’s paper.

2. Time and space analysis using recurrence equations. Consider any irreversible
program that runs in time T and space S. We assume that T-2S, since otherwise it
would be better to use Bennett’s 1973 algorithm to produce an equivalent reversible
program that runs in time 19(T) and space 19(S). Bennett’s 1988 tradeoff algorithm
depends on three integral parameters m-> 1, k => 2, and n-> 0. The tradeott algorithm
reversibly simulates the irreversible program in segments of rn steps using Bennett’s
1973 algorithm. For n > 0, a total of k m-step segments are simulated by performing
k forward and k-1 backward simulations each consisting of mk’-1 steps. For n =0,
the 1973 algorithm is used. At the end of each forward simulation only the final
configuration is stored. At the end of each backward simulation one previously stored
configuration is erased. Using Bennett’s notation, let R(z, x, n, m, d) represent the
reversible simulation of mk" steps of the original irreversible program from configu-
ration z to configuration x in segments of size m. The parameter d, which takes on the
values 1 and -1, signals whether a forward or backward simulation is taking place.

We now consider the associated recurrence equations for the time and space
complexity of the simulation. Let P, and Q, be the number of steps in R(z, x, n, m, d)
with d 1 and with d -1, respectively. We then have the following coupled recurrence
equations

p,=kP,_+(k-1)Q,_ if n>0
(1)

rn if n=0

and

Q,,=f kQ_,+(k-1)P_, ifn>O
(2)

m if n=O.

Substituting (1) into (2) yields the second-order recurrence

f2kP,,_l-(2k-1)P_2 ifn>l
(3) Pn m(2k- 1) if n=l

/

(m if n=0,
which can be solved exactly by characteristic equations [4] to obtain

(4) P,,=m(2k-1) ’.
The space bound S, satisfies the recurrence equation

S,=f(k-1)m+S,,_ ifn>l
(5)

(k-1)m if n 1,

For another interesting application of this tradeoff, see the "cycling known-plaintext attack" against
group ciphers by Kaliski, Rivest, and Sherman [7].
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which describes the number of stored intermediate configurations. By iteration [6] the
exact solution is

(6) S,=mn(k-1).

Bennett chooses rn S to ensure that each stored configuration takes at most S
space. From this assumption (4) and (6) yield, respectively, the following time bound
T’ and space bound $’ for the reversible program

(7) T’=S(2k-1)"

and

(8) S’=Sn(k-1).

Assuming

(9) T= Sk,
that is, assuming the number of simulated steps Sk" is equal to the running time of
the irreversible program, we have n (In (T/S))/ln k. Thus by appropriate choice of
k, the user can select any point along the tradeoff curve

T’ (2k- 1)
(10) 7= n(k_l).

Figure 1 shows the logarithm of this tradeoff curve for several values of T/S.
We now separately express T’ and S’ in terms of T, S, and k. By (7) and (9),

T’ 2 1 =(2_(1/k))(ln(r/s))/lnk_(11) -=

LOG (T’/S’)
8 ....................LO_G__(T/S) 0

6 "’.......... LOG (T/S) 8

4 ".................... LOG (T/S) 6

\
2 ...................... OG (T/S) 4

.................. LOG (T/S) 2

200 400 600 800 1000 1200 1400

k

FG. 1. Trade@ curves logo (T’/S’) for the reversible time and space as a function of the parameter k
and the ratio T/S of the irreversible time and space. e curves are drawn for T/S 102, 104, 106, lOs, 10.
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and thus

(12) (_) e(g) Tl+e(g)
T’= T s(k

where

(13) e(k)
In (2- (l/k))

In k

Similarly by (8),

In TS)
(14) S’=S

In k
T

(k-1)=c(k)Sln-
S

where

k-1
(15) c(k)

In k

Therefore, regardless of the relationship between T and S, given any e > 0 the reversible
program can be made to run in time O(T+/S) and space (R)(S(I+ln(T/S))).
Equations (12) and (14) differ from Bennett’s corresponding bounds in two respects.
First, our bounds are tight and include the dependence of T’ and S’ on S. Second,
the e used by Bennett is equal to 1/lg k, which is slightly larger and approximately
equal to e(k) for large k.

3. Calculation of the constant factor in the space bound. The constant factor for
the space bound is the term c(k) in (14). To express this factor in terms of e(k) we
first compute the Taylor series expansion of e(k) around 1/k to obtain

(16) e(k) =1-- In 2-2--8k----
Letting

In 2 1
(17) eo(k)

In k-lg k

be the first term in this expansion (i.e., eo(k) is Bennett’s e), we have In k (ln 2)/eo(k)
and k =21/e(k). Therefore, by (15)

eo(k) 21/eo(k) co(k) ,/(18) c(k) =in 2
..( 1)--- in 2

2 (k).

The most interesting case is when e(k) tends to 0--that is, when the reversible time
approaches the irreversible timembut in this case the term c(k) diverges.

To illustrate how the constant factor c(k) diverges when e(k) approaches 0,
consider what happens when aT <= T’<= bT for some constants 1 < a _-< b. In this case,
the identity e(k) (In (T’/T))/ln (T/S) from (12) implies that

In a In b
_<e(k)<-(19)

In (T/S)- --In (T/S)"

Note that to be able to find an integer k that satisfies (19), it is necessary for

Although Bennett did not explicitly state the dependence of T’ and S’ on S, the details of his proof
given in the appendix of [1] suggest that he was aware of this dependence.
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a(T/S) emax, where emax=max{e(k): k->2}= e(2)0.58. Since k=>2, (18) implies
that

(20)
co(k) 21/ok)<=c(k)<eo(k) 21/o(k)"
2 In 2 In 2

Using the fact that e(k)< eo(k)<2e(k), it follows that

2e(k) ke(k) 21/2k < c(k) < 2/(21)
21n2 ln2

By (19),

(22)
(lna)/ln(T/S) 2,r/s))/2n)<c(k)<(21nb)/ln(T/S) 20,r/s))/n

2 In 2 In 2

and hence

lga () /(’g’ 21gb () /lg

23
2 In TS)

< c(k <ln(TS)
Equation (14) then yields the space bounds

(24) lg S < S’ < 2(lg b)S
2

which grow superlogarithmically in T/S.
We conclude with one more refinement of Bennett’s results. Bennett claims that

for any > 0, the reversible program can be made to run in time O(T) and space
O(ST). But as Bennett notes, his depends on T; hence, Bennett’s argument does
not hold for arbitrary 6. We correct Bennett’s claim as follows. For any 6
1/(emax lg (T/S)), we can choose k such that a b=2/, in which case (24) yields
the tighter space bound

Zs <s’<?s(25)

Equation (25) proves that whenever T2S and for any 6 1/(emax lg (T/S)), the
reversible program can be made to run in time O(T) and space (S(T/S)/:)
o(s(r/s)).

Although Bennett’s clever time-space tradeoff provides a better way to transform
any irreversible program into an equivalent reversible program, its practical utility is
diminished by its huge constant factor in the space bound. It remains an open question
whether or not Bennett’s algorithm yields an optimum tradeoff.
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PLANAR DEPTH-FIRST SEARCH IN O(log n) PARALLEL TIME*

TORBEN HAGERUPt

Abstract. It is shown that, in the PRIORITY CRCW PRAM model and for the class of undirected

embedded planar graphs, depth-first search (DFS) trees are no more difficult to construct than breadth-first
search (BFS) trees.

Specifically, suppose that time T(n) _-> log n and p(n) processors suffice to construct a planar embedding
of a planar graph on n vertices and to compute a BFS tree of an undirected connected planar graph on 3n

vertices. Then, given an undirected connected planar graph G on n vertices, a DFS tree of G can be
computed in the stated model in O(T(n)) time with p(n) processors.

By using known results for the above problems, a DFS tree construction algorithm that runs in O(log n)
time and uses O(n3) processors is derived. The fastest previously known algorithm has time and processor
bounds of O((log n)a) and O(n), respectively.

Key words, depth-first search, planar graphs, parallel computing

AMS(MOS) subject classifications. 68C05, 68C25, 68E10

1. Introduction. Interest in the problem of parallel construction of DFS trees in
directed or undirected graphs (the directed or undirected DFS tree problem) stems
from two sources. On the one hand, depth-first search has proved to be an extremely
valuable technique in sequential graph algorithms [18], and a number of sequential
algorithms could easily be turned into interesting parallel algorithms if DFS trees could
be made available at a sufficiently low cost. On the other hand, depth-first search has
been conjectured by many to be hard or impossible to parallelizem"inherently sequen-
tial," to use a popular buzz word [17]. Hence wc can also be interested in the DFS
tree problem from a more complexity-oriented point of view. Reif [15] has shown the
problem to be P-complete if we insist on obtaining the DFS tree constructed by a
certain simple sequential algorithm. However, this seems a severe and artificial restric-
tion in the context of parallel algorithms, and indeed some positive results have been
obtained recently. Aggarwal and Anderson [1] and Aggarwal, Anderson, and Kao [2]
describe RNC algorithms to compute DFS trees in undirected and directed graphs,
respectively (see [4] for definitions of the complexity classes NC and RNC), and
Goldberg, Plotkin, and Vaidya [9] and Aggarwal, Anderson, and Kao [2] have given
deterministic PRAM algorithms for the undirected and directed DFS tree problem,
respectively, that use O(n3) processors and O(v/-(log n) I)) time on n-vertex input
graphs.

At the time of writing, neither the directed nor the undirected DFS tree problem
is known to belong to NC. Hence both motivations mentioned above lead naturally
to the consideration of more tractable special cases of the DFS tree problem. This
paper considers one such special case, that of undirected planar graphs. Smith [17]
showed the DFS tree problem for such graphs to be in NC by giving an algorithm
that runs in O((log n)3) time on a CREW PRAM with O(n4) processors. His method
is based on the divide-and-conquer strategy, whereby problem instances are divided
by means of a cyclic separator, a simple cycle in the graph with the property that neither

* Received by the editors December 1, 1987; accepted for publication (in revised form) October 10,
1989. This research was supported by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI
Entwurfsmethoden und ParallelitSt.

? Fachbereich Informatik, Universitit des Saarlandes, D-6600 Saarbriicken, Federal Republic of
Germany.
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its inside nor its outside contains more than of the graph’s vertices. The same idea
was used in subsequent improvements culminating in algorithms by Goldberg, Plotkin,
and Shannon [8], [16] that use O((log n)2) time and O(n) processors on a CRCW
PRAM, or O((log n)2 log* n) time and O(n) processors on a CREW PRAM. A recent
NC algorithm by Kao [13] for the directed DFS tree problem in planar graphs also
recursively computes cyclic separators (defined somewhat differently). Since the depth
of recursion can be (R)(log n) and the construction of a cyclic separator is a nontrivial
problem, a different approach seems to be needed if we want to achieve a logarithmic
running time.

We give an algorithm for the undirected DFS tree problem in planar graphs based
on a direct analysis of the structure of a planar graph imposed by a BFS tree of its
face incidence graph. It runs in time O(log n) and is the fastest algorithm known. The
number of processors is high, O(n3) on the PRIORITY CRCW PRAM. However, we
show that, except for the construction of a planar embedding and of a BFS tree of a
planar graph, all steps of the algorithm can be executed optimally with O(n/log n)
processors. Hence, while there may be little hope of overcoming the bottlenecks
mentioned, they have been clearly identified, and we have reduced the DFS tree
problem for undirected planar graphs to two maybe more central problems.

2. Preliminaries. This section introduces notation and terminology used in the
remainder ofthe paper, most ofwhich is standard, and mentions some elementary facts.

When f is a function and U is a subset of its domain, let f(U) 13 t f(u). For
k_>- 1, fk) denotes k-fold repeated application off, i.e., fl) =f and fi/l> =fofi>, for
>= 1. For n >= 1, log* n min {i >- 1 log> n _-< 1}.
A directed edge over a set V is an element of V x V. Given a directed edge e (u, v),

u and v are called the endpoints of e; u is its tail, and v its head. A directed edge is
said to leave its tail and to enter its head. An undirected edge over V is a subset of V
containing exactly two elements. The endpoints of an undirected edge are its two
elements. A directed or undirected edge is said to be incident on its endpoints. If
e (u, v) is a directed edge with u v, the undirected version of e is the undirected
edge {u, v}. The directed versions of an undirected edge {u, v} are the two directed
edges (u, v) and (v, u).

Given a finite set V , a directed (undirected, respectively) graph on the vertex
set V is a pair G V, E), where E is a set of directed (undirected) edges over V. The
elements of V are called the vertices and the elements of E the edges of G (sometimes,
depending on context, we say "in G" or "on G" instead of "of G"). The elements of
V t.J E are collectively called the elements of G, and a graph is said to contain its
elements. Given a graph G (V, E), (G) denotes its vertex set V.. We extend this
notation to sets of graphs by defining 7/’()= U (G), for all sets rg of graphs.
Graphs G1," ", Gl are (vertex-) disjoint if o//.(Gi) (’] o]/.(Gj) , for 1 --< <j 1.

Two vertices in a graph G= (V, E) are called adjacent in G if they are the
endpoints of a common edge in G, and a subset V’ V is called an independent vertex
set in G if no two vertices in V’ are adjacent in G. The indegree (outdegree) of a vertex
u in a directed graph G is the number of edges in G entering (leaving) u. The degree
of a vertex u in an undirected graph G is the number of edges in G incident on u.
Given a directed graph G V, E), the undirected version of G is the undirected graph
V, {{u, v}l (u, v) E and u # v}). Given an undirected graph G V, E), the directed

version of G is the directed graph (V, {(u, v)l{u, v} E}), i.e., each undirected edge is
replaced by its two directed versions. The edges of the directed Version of an undirected
graph G are called the darts of G. Given two undirected graphs G (V, E) and
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G’= (V’, E’), an isomorphism from G to G’ is a bijection h" V V’ such that for all
u,v V’({h(u),h(v)}E’Ce,,{u,v}E), and G and G’ are said to be isomorphic if
there exists an isomorphism from G to G’.

A subgraph of a graph V, E) is a graph V’, E’) with V’
_
V and E’ E. A graph

is said to contain its subgraphs. The subgraph of a graph (V, E) spanned by a vertex
set V’_ V is the graph V’, E’), where E’_ E consists of those elements of E that are
edges over V’. The subgraph of (V, E) spanned by an edge set E’_ E is the graph
(V’, E’), where V’_ V is the set of endpoints of edges in E’. Given directed graphs
G V1, E),. , Gl V1, El), their sum, denoted by G1 t_J. t_J GI, is the directed
graph V1 LJ. LJ V, E1 L). E). A bipartite graph on disjoint vertex sets V and W
is a graph G on the vertex set V LJ W such that each edge in G has one endpoint in
each of V and W. A maximal graph with a given property is a graph that has the
property, but is not properly contained in any other graph with the property.

The (directed, simple)path (Uo," ",l,ll), for I=>0 and uiuj for O<=i<j<=l, is
the directed graph ({Uo,’’ ", Ul}, {(ui, U+l)]O<-i<l}). The vertices on the path are
said to occur in the order Uo,’", Ul, its edges in the order (Uo, Ul),"" ", (Ul-1, Ul),
and the path is said to be from Uo to Ul. is called the length of the path. The internal
vertices on the path are ul,..., u_a. A path in a directed graph G is a subgraph of
G which is a path. A path in an undirected graph G is a path in the directed version
of G. Given two vertices u and v in a graph G, the distance from u to v in G is the
minimal length of a path in G from u to v, or oo if no such path exists.

The directed simple cycle (Uo," ", u_), for -> 1 and u uj for 0 -< <j < l, is
the directed graph ({Uo,’", u_t}, {(Ui, U(i+l)modl)lO<--i<l}). A simple cycle in a
directed graph G is a subgraph of G that is a directed simple cycle. A simple cycle
in an undirected graph G is the undirected version of a simple cycle with at least three
vertices in the directed version of G. A graph is acyclic if it contains no simple cycles.
For =0,..., l-1, U(i/l)moa is called the successor and U(i_l)mod/ the predecessor of
u on the directed simple cycle (u0,"’, Ul_). The nearest successor with a given
property of a vertex u on a directed simple cycle C (V, E) is the first vertex in the
sequence suc(u), suc(E(u), that has the property, where suc(v), for v V, denotes
the successor of v on C. The nearest predecessor is defined analogously.

A segment of a directed simple cycle C (V, E) is a subset I_ V that is either
empty or is the vertex set of a path in C. I is called trivial if I or I V. Given a
nontrivial segment I of a directed simple cycle C, we denote by Firstc(I) and Lastc(I)
the first and the last vertex, respectively, on the unique path p in C with F(p)= I.
We define a cyclic order of a finite set V to be a directed simple cycle on the vertex
set V. Given a directed simple cycle C- (V, E) and a nonempty subset V’_ V, the
cyclic order of Won C is defined to be the cyclic order (Uo,’", Ul-1), where V’=
{Uo," ", Ul-1} and U(+lnod is the nearest successor of u on C belonging to V’, for
i=0,...,1-1.

Given a vertex u in a graph G (V, E), a vertex v V is reachable from u in G
exactly if there is a path in G from u to v. Given an undirected graph G V, E), we
may define an equivalence relation on V by letting two vertices in G be equivalent
exactly if one is reachable from the other in G. The subgraphs of G spanned by the
equivalence classes of this relation are called the connected components of G. If G has
only one connected component, G is connected.

Given an undirected graph G- (V, E), we may define an equivalence relation on
E by declaring two edges el and e_ in G equivalent exactly if e e2, or if there is a
simple cycle in G containing both el and e. The (not necessarily disjoint) subgraphs
of G spanned by the equivalence classes of this relation are called the biconnected
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components or blocks of G. An articulation point of G is a vertex in G that belongs
to more than one of G’s blocks. If some block of G contains just one edge, that edge
is called a bridge in G. If G is connected and has only one block, G is called biconnected.
Given a connected undirected graph G, a vertex r in G and a block B of G, there is
a vertex in B whose distance from r in G is strictly less than that of any other vertex
in B. We call this vertex the r-dominator of B in G.

A directed tree is an acyclic directed graph T (V, E) in which all vertices have
outdegree one, except that precisely one vertex r has outdegree zero. r is called the
root of T, andT is said to be rooted at r. For all u V\{r}, the unique edge in T
leaving u is called u’s parent pointer in T, and the head of u’s parent pointer is u’s
parent in T. For all u, v V, u is a child of v in T exactly if v is the parent of u in T,
and u is a descendant of v in T and v an ancestor of u in T exactly if v is reachable
from u in T. For all u V, the depth of u in T is the distance in T from u to r. A
directed forest is a sum of vertex-disjoint directed trees. When talking about the trees
in a forest, we will always mean its maximal trees. An undirected tree is a connected
acyclic undirected graph. Given a connected undirected graph G (V, E), an un-
directed (directed) spanning tree of G is an undirected (directed) tree on the vertex
set V that is a subgraph of G (of the directed version of G). Given a directed tree
T (V, E), an undirected edge {u, v} over V is called a cross edge relative to T if T
contains neither a path from u to v nor a path from v to u. Given an undirected
connected graph G- (V, E), a DFS tree of G is a directed spanning tree T of G such
that G contains no cross edges relative to T. A BFS tree of G is a directed spanning
tree T of G such that for all u V, the depth of u’ in T is equal to the distance in G
from u to the root of T. The definitions of DFS and BFS trees are motivated by the
concepts known as depth-first and breadth-first search. For instance, a directed spanning
tree T of G is a DFS tree of G exactly if there is a depth-first search of G such that
an edge (u, v) V V belongs to T if and only if u is discovered during the search
via the edge { u, v}. Since we make no use of this connection except by way of motivation
and in informal comments, we will not elaborate on this point but refer the reader, in
the case of DFS trees, to the treatment in [18], in particular, to its Theorem 1.

A (topological) planar embedding of an undirected graph G V, E) is a function
that maps the vertices of G to distinct points in R2 and each edge {u, v} E to a

Jordan curve in R2 from (u) to (v) such that for all e={u,v}E, (e)O
((V) t_J (E\{e}))= {(u), (v)} (i.e., edges do not cross). G is planar if there exists
a planar embedding of G.

Let be a planar embedding of a planar graph G (V, E). The faces of ge are
the connected regions of 2\ (Vk.j E). The boundary (induced by ) of a face F of

is the subgraph of G consisting of those elements ce V kJ E for which each point
of (a) is arbitrarily close to points in F. If G is biconnected and VI >-- 3, the boundary
of each face of is a simple cycle. Let D be the set of darts of G, and for each dart
e-(u, v) D, let (e) be the dart e’=(u, w) D such that ({u, w}) is the first curve
in (E) with endpoint (u) encountered after ({u, v}) in a clockwise scan around
(u). is a permutation of D known as the combinatorial planar embedding corre-
sponding to . Whereas our proofs are based on properties of topological embeddings,
our algorithms work with combinatorial embeddings. Hence, for instance, "Embed G
in the plane" means "Compute for some topological planar embedding of G."
The graph (D, {((u, v), dp((v, u)))l(u, v)6D}), which is a sum of vertex-disjoint
directed simple cycles, is called the face cycle graph of ’, and its cycles the face cycles
of . The intuitive meaning of a face cycle C of is that it corresponds to a walk
inside a particular face F of along the image R under of the elements on the
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boundary of F, always keeping F to the left and R to the right (see Fig. 1). The face
cycle C is said to be a face cycle of/7. If G is connected, each face of has precisely
one face cycle. A face is said to be incident on the vertices and edges on its boundary,
as well as on the darts on its face cycles. For all u V, let D, __. D be the set of darts
in G leaving u. For all ue V with D,, we will call (D,,{(e,(e))[eD,}) the
cyclic order around u (induced by ). We also use this term for the cyclic orders derived
in the obvious way of the edges and, if G is biconnected, of the faces of incident
on u.

We define an embedded graph somewhat loosely as an undirected planar graph
G together with a particular planar embedding of G. We consider both the attributes
of G and the attributes of its planar embedding to be attributes of the embedded graph
so that, e.g., we can refer to its faces as well as its vertices. Subgraphs of embedded
graphs are considered to be embedded in the natural way.

Euler’s formula [6] relates the number of vertices, edges, and faces of a connected
embedded graph. Ifthese three quantities are n, m, andf, respectively, then n +f m + 2.
In particular, m _-< 3n for any planar graph.

Given an embedded graph G, the face incidence graph G of G is the undirected
graph whose vertex set is the set of faces of G, and that contains an edge {F1, F2},
for F1, F2 ff and F1 F, exactly if the boundaries of F and F2 have at least one
vertex in common. Ge clearly is connected.

An embedded simple cycle C has precisely two faces. Exactly one ofthese contains
points that are arbitrarily far apart. It is called the outside of C, whereas the other
face of C is called its inside. Inside C (outside C) means contained in the inside
(outside) of C.

For many of the concepts defined above relative to a particular graph G, we will
often leave the identity of G to be deduced from the context. We allow ourselves to
omit "the set of" in phrases such as "a graph on (the set of) n vertices."

A PRAM (parallel RAM) is a machine consisting of a finite number p of processors
(RAMs) operating synchronously on an infinite global memory consisting of cells
numbered 0, 1,. .. We assume that the processors are numbered 1,..., p and that
each processor is able to access its own number. All processors execute the same
program. We use the unit-cost model in which each memory cell can hold integers of
size polynomial in the size of the input and each processor is able to carry out usual
arithmetic operations including sign test, addition, subtraction, and multiplication and
integer division by powers of two, but not necessarily general multiplication and integer
division, on such numbers in constant time.

Various types of PRAMs have been defined, differing in the conventions regarding
concurrent reading and writing, i.e., attempts by several processors to access the same
memory cell in the same step. CRCW (concurrent-read concurrent-write) PRAMs

FIG. 1. An embedded planar graph and its face cycles.
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allow simultaneous reading from as well as simultaneous writing to each cell by
arbitrary sets of processors. Simultaneous writing is not immediately logically meaning-
ful, and a further subclassification based on the write conflict resolution rule employed
is standard. The algorithms in this paper use the PRIORITY (CRCW) PRAM, defined
by the property that in the event of several processors attempting to write to the same
memory cell in the same step, the lowest-numbered processor among them succeeds
(i.e., the value that it attempts to write will actually be present in the cell after the
write step). A CREW PRAM allows simultaneous reading from, but not simultaneous
writing to a memory cell by several processors.

A parallel algorithm for a given problem using p(n) processors and time T(n)
on inputs of size n is said to be optimal if its time-processor product p(n)T(n) is at
most a constant factor larger than the running time of the fastest known sequential
algorithm to solve the problem. Whenever employed in this paper, the term is used in
connection with problems that can be solved in linear sequential time. Hence "optimal"
means "in O(n/p(n)) time and with p(n) processors," for some p(n).

Suppose that some PRAM computation can be carried out with p(n) processors
in time T(n). Then, for any function g(n)=> 1 that is sufficiently easily computable
(this will never be an issue in this paper), it can also be carried out with O(p(n)/g(n))
processors in time O(g(n)T(n)) (i.e., PRAM computations can always be slowed
down). Note that this is true even for the PRIORITY PRAM model.

3. An informal description. Before we turn to the formal development of the
algorithm, we provide a sketch of the basic ideas.

If we take as our starting point the idea of cyclic separators used in previous
algorithms combined with a desire to reduce the running time below O((log n)2), a
natural question to ask is whether it might be possible to compute all cyclic separators
ever needed simultaneously, rather than in O(log n) successive stages. Consider the
following idealized picture of a planar graph (Fig. 2): There is one central face, and
the other faces form concentric rings around the central face. For a graph with this

FIG. 2. An idealized planar graph. Heavier lines denote black edges.
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structure, it is easy to identify a collection of disjoint simple cycles, namely, those that
separate the rings, i.e., the cycles formed by those edges that separate faces at different
distances from the central face in the face incidence graph. We call such edges black
edges, and the cycles that they form black cycles. Although, due to the lack of control
over the distribution of vertices, we cannot construe the black cycles as a collection
of successive cyclic separators, they are eminently useful in the construction of a DFS
tree. Suppose that we start a depth-first search at some vertex on the boundary of the
central face, that we arbitrarily assign an orientation to each black cycle, and that we
require the search to explore black edges first whenever there is a choice, and black
edges only in the direction defined by the orientation of the black cycles (recall that
the task is to compute any DFS tree). Suppose further for a moment that we know
for each black cycle the first vertex on the cycle to be discovered by the search, which
we call the leader of the cycle. Then the restriction of the corresponding DFS tree to
each black cycle is completely fixed: It is a simple (directed) path containing all vertices
on the cycle and ending in its leader. All that remains then is to compute the restriction
of the DFS tree to the subgraphs that connect consecutive black cycles. Since these
are treelike (which is one of the things that we have to make precise and to prove),
this is not too difficult. Between two consecutive black cycles, exactly one tree near
the leaders of the two cycles is explored in the direction from the inner to the outer
cycle, whereas all other trees are explored in the opposite direction.

If the leader of a particular black cycle is known, it is an easy matter to determine
the leader of the next enclosing black cycle. Hence by using a pointer-doubling
technique, we can hope to spread information about leaders from the innermost to
the outermost black cycle in logarithmic time. Indeed, a brute-force method solves
this problem by reducing it to finding the transitive closure of a suitable matrix.

Not all planar graphs are of the simple form shown in Fig. 2. The black edges do
not necessarily form a collection of disjoint black cycles, and even if they do, it may
not be possible to order the black cycles such that each cycle encloses all the previous
ones. The general situation, however, is not significantly more complicated, and the
ideas developed above essentially carry through.

Section 4 derives those properties of planar graphs on which our algorithms are
based, some of which were hinted at above. Section 5 presents a first and comparatively
simple DFS tree construction algorithm that uses (n3) processors, whereas 6
describes the modifications necessary to achieve optimality in all steps except the
computation of a planar embedding and of a BFS tree.

4. Properties of embedded planar graphs. Throughout this section, let G (V, E)
be an embedded undirected biconnected planar graph on at least three vertices, and
let r V. Let be the set of G’s faces, D the set of its darts, and G its face incidence
graph. When nothing else is stated, "face" means "element of ." Let Fo be an arbitrary
face incident on r, called the initialface, and for all F if, let Type(F) be the distance
in G from Fo to F. Extend the notation to VU E (_J D by defining

Type (a) {k >- O[ a has an incident face F with Type(F) k},

for allaVUEUD. ForaVUE
LEMMA 1. For all ce V U E, Type(a) is an element of the sequence

{0, 1}, {1}, {1, 2}, {2}, {2, 3}, ..
If e={u, v}e E, then Type(e)c_c_ Type(u), and Type(e) and Type(u) are either identical
or adjacent elements in the sequence.

Proof. The fact is obvious.
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DEFINITION. For all c V U E, a is called white if Type(a)l 1, and black if
Type(a)l 2.

Let G be the subgraph of G spanned by the set of black edges. By Lemma 1,
each endpoint of a black edge e is black and of the same type as e. Hence all vertices
and edges within a connected component of G are of the same type.

Fig. 3 illustrates the concepts introduced so far.
Motivated by the following lemma, define a total order < on the set of vertex and

edge types by

{0, 1}<{1}<{1,2}<{2}<{2,3}<’...

LEMMA 2. If both the inside and the outside of a simple cycle C in G contains a

face of type k, for some k >= O, then C contains a vertex u with Type(u) < {k}.

FIG. 3. An example graph G. Each face is labeled by its type, and the colours of vertices and edges have
been indicated, heavy lines signifying black edges.

Proof. Assume without loss of generality that Fo lies outside C, and let F be a
face inside C of type k. By definition of the types of faces, there are faces

Fo, F1, Fk_l, Fk= F

such that Type(Fi)= i, for i= 0,..., k, and such that the boundaries of Fi and Fi+l
have at least one vertex in common, for 0,. , k- 1. Now choose j, 0-<j < k, such
that F is outside C, whereas F+I is inside C (see Fig. 4). Let u be a vertex common
to the boundaries of F and F+I. Then Type(u)={j,j+l}<{k}, and clearly u
(c). D

LEMMA 3. Let e and e’ be distinct black edges with a common endpoint u, and
assume that e and e’ are not adjacent in the cyclic order around u in G. Then e and e’
do not belong to the same block of G.

Proof Assume the contrary and let C be a simple cycle in G containing e and
e’. Let Type(u) {k, k + 1}. As every black edge incident on u has an incident face of
type k, both the inside and the outside of C contains a face of type k (see Fig. 5). But
since all vertices on C are of type {k, k+ 1}, this is impossible by Lemma 2. D

LEMMA 4. Every block ofG is a simple cycle.
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C

FIG. 4. A path offaces from the outside to the inside of a simple cycle (Lemma 2).

eout ein

e

FIG. 5. A contradiction to Lemma 2: ein and eou both have an incident face of type k.

Proof Let u be a black vertex of type {k, k + 1} and consider the faces incident
on u in G in their cyclic order around u. Their types alternate between k and k+ 1,
with a change occurring exactly between those adjacent faces whose common boundary
edges are black. Hence all black vertices are of even degree in G (the parity condition).

Suppose now that B is a block of G that is not a simple cycle. Then either B
contains just one edge, or there is a vertex of degree >_-3 in B and therefore, by the
parity condition, of degree ->_4 in G. But the latter possibility is excluded by Lemma
3. Hence G contains a bridge e, and the removal of e splits the connected component
of G containing e into two connected components. Each of these, by the parity
condition, contains exactly one vertex of odd degree. But this is impossible. D

DEFINITION. A black cycle is a block of G. Let be the set of black cycles.
It is possible for a single black vertex to belong to several black cycles. Since this

situation causes us considerable (mostly notational) difficulty, from now on we will
assume that it does not occur, i.e., that each black vertex u belongs to precisely one
black cycle, which we will denote by Bu. We later show how to bring about this
favourable state of affairs if it does not exist initially.

DEFINITION, Let

Q={(u, e) V xEJe is incident on u in G and

:k _-> O: Type(u) {k, k + 1} and Type(e) {k + 1}}.
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Let Ge be the undirected graph (Vt_J Q, {k(e)leE}). Here for e’-{Ul, u2} E,
u}, whereb(e) ={u,

{ui if(ui, e)Q
fori=l 2.ui (ui, e) if (ui, e) Q

Intuitively, Q is a set of "edge attachments" in G, i.e., of pairs (u, e) Vx E with e
incident on u, and Ge is obtained by breaking each edge attachment belonging to Q
and giving all dangling edges new endpoints.

Note that the vertices and some of the edges of G are also vertices and edges,
respectively, of Ge. These are the proper elements of Ge. The remaining elements of
G are called improper. Improper vertices have degree one, and each improper edge
has at least one improper endpoint. For each improper vertex q (u, e) Q, u is called
the origin of q, and q is called a representative of u. We give each representative the
same type and colour as its origin, and for all e E, we give b(e) and its directed
versions the same type and colour as e. Figure 6 illustrates the various concepts related
to G.

FIG. 6. The graph Ge corresponding to the example graph G ofFig. 3. Improper vertices are shown smaller
than the proper vertices.

DEFINITION. A layer is a connected component of G:e. Let be the set of layers
and for all u 6 V, let Lu be the layer containing u.

The next lemmas investigate the structure of Ge.
LEMMA 5. For every layer L , there is a unique k >-O, called the level of L, such

that all vertices and edges in L belong to one of the following categories:
(1) Proper black vertices and edges of type { k, k + 1 }.
(2) Proper white vertices and edges of type {k}.
(3) Improper black vertices of type {k-1, k}.
(4) Improper white edges of type {k}.
Proof The proof is easy. The central observation is that if a and a2 are proper

graph elements of G:e with Type(t 1) <-- {k, k + 1} < Type(a2), for some k _-> 0, then a

and a2 do not belong to the same layer. [-!
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LEMMA 6. Each block of G:e either is a black cycle or is spanned by a white bridge.
Proof. It follows from Lemmas 2 and 5 that no simple cycle in Ge can contain

a white edge. Therefore all white edges in Ge are bridges. It is clear that if a layer
L ? contains one edge of a black cycle B, then B is a subgraph of L. Hence each
block of Ge that contains a black edge is a black cycle.

LEMMA 7. Let u and v be vertices in G that both have a representative in some layer
L . Then u and v belong to the same black cycle.

Proof Let Type(u) Type(v) { k, k + 1}. By the obvious translation of a path in
G, there is a path in G from u to v whose first edge is of type {k / 1}, and none of
whose internal vertices lie on Bu. Now clearly v V(Bu), since otherwise B, would
furnish a contradiction to Lemma 2 (see Fig. 7).

FIG. 7. A contradiction to Lemma 2: v has an incident face of type k.

Define the level of a vertex in G or of a black cycle to be the level of the layer
containing it, and for a eU VU N, denote the level of a by Level(a).

LEMMA 8. (a) contains exactly one layer Lo oflevel zero. Lo is the boundary ofFo.
(b) Every layer L Lo contains at least one improper vertex.

Proof Part (a) is obvious, For part (b), consider a layer L 6 of level k => 1. We
may assume that L contains a proper vertex u. Since the type of u is either {k} or
{k, k + 1}, u has an incident face F e of type k. By definition of the types of faces,
some vertex on the boundary of F is of type {k-1, k}. Hence there is a simple path
p on the boundary of F from u to a vertex v of type {k-1, k} such that all internal
vertices and all edges on p are of type either {k} or {k, k + 1}. Now clearly all internal
vertices on p belong to L, and v has a representative in L.

Let += \{Lo}. It follows from Lemmas 7 and 8 that for each L +, there is
a unique black cycle, henceforth denoted by p(L), that contains all origins of improper
vertices in L. For all L/, let pe(L) be the layer containing p(L). Clearly,
Level(pe(L)) Level(L) 1. It follows that T:e (, {(L, pe(L))]L +}) is a directed
tree.

Informal explanation. Although we will construct a DFS tree as a static object
without explicit reference to an actual depth-first search, it is useful to keep in mind
the dynamic process of a search. As described in 3, the DFS tree constructed by our
algorithm will be associated with a depth-first search that always explores black edges
before white edges whenever there is a choice. Hence as soon as the search "hits" a
black cycle for the first time, it immediately discovers the whole cycle.
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A depth-first search satisfying the above condition has a very useful property: It
follows from the definition ofp that when the search is in the maximal subtree T of
T rooted at some layer L + (i.e., it is at a vertex in some layer in T), then it cannot
leave T again until all vertices in layers in T have been explored, and when it does
so, the search will backtrack to the vertex in pe(L) from which the search of T was
originally begun. Hence the search of each layer L is entirely independent of the search
of layers that are descendants of L in T:e. Moreover, if L Lo, then the search of
Pe(L) determines the first vertex in L to be discovered, but does not otherwise influence
the search of L. The main outstanding difficulty is to compute for each layer L the
first vertex in L to be discovered. Since it turns out to be more convenient, we will
instead compute for each black cycle B the first vertex on B discovered by the search,
which, as in 3, we call the leader of B.

The following fact is well known and easily checked.
PROPOSITION 9. Let H be a connected undirected graph, let B1, Bt be the blocks

of H, and let s be a vertex in H. For i= 1,..., l, let T be a DFS tree of B rooted at
the s-dominator ofB in H. Then T [.J Tt is a DFS tree ofH rooted at s.

By Lemma 6 and Proposition 9, it is easy to compute DFS trees of the layers.
Shortly, we will prove a result similar to Proposition 9 (Lemma 10), which implies
that suitable DFS trees of the layers can be combined to yield a DFS tree of G.

We now orient the black cycles. Given a black cycle B , let k be the level of
B and define B as the directed cycle in the directed version of B spanned by the darts
of B of type k + 1 (equivalently, the orientation of B is clockwise if and only if Fo is
inside B). For each black vertex u, let pre(u) and suc(u) denote, respectively, the
predecessor and the successor of u on B,. For each pair u, v of black vertices with
B, B, let [u, v] denote the segment of B, consisting of the vertices on the simple
path in B, from u to v. Finally, for all B and all nontrivial segments I of B, we
abbreviate Firsta(I) and Lasts(I) to First(I) and Last(I), respectively.

DEFINITION. For all L+ and all vertices v V with a representative in L,
choose one such representative to be called the selected representative of v in L. For
each layer L w+ and each vertex v on p(L), define the L-successor of v to be the
selected representative in L of the nearest successor of v on p(Ll that has a representa-
tive in L.

For each black cycle B contained in some layer L +, let p(B)=p(L). Let
B0 Lo, += \{Bo}, V 7/’() and V

DEFINITION. For all black cycles B + and all vertices v on p(B), let Xn(v)
be the q-dominator of B in L, where L is the layer containing B and q is the L-successor
of v. Also let G be the directed graph (V, E), where

E--{(v,u) Vx Vlv(p(nu)) and XBu(v)=u}.
Informal explanation. The meaning of XB(v) is that if v is the leader of p(B),

then Xn(v) is the leader of B. Consider Fig. 8 to see why this should be true. When
the search hits p(B) at v, it first explores the rest of p(B). We stipulate that this
happens in the direction opposite to that given by the orientation of p(B. Then the
origin of the L-successor q of v represents the first opportunity to discover L, i.e., it
is reached after the least amount of backtracking, and we stipulate that q is given
preference over any other representative in L of its origin. Finally, if a search of L
starts at q, then Xn(v) will become the leader of B.

By the above characterization, the following holds for all black vertices u and v.
If there is a path in Ge from v to u and v is the leader of By, then u is in turn the
leader of Bu. Hence for all B , X(B), as defined below, is the leader of B.
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p(B)

t/
B

FIG. 8. If v is the leader ofp(B), XB(v) is the leader of B. An arrow indicates the orientation ofp(Bi,
and improper vertices that are not selected representatives have been marked with a cross.

DEFINITION. Let X c__ V be the set of vertices in G reachable from r. For all
B , let X(B) be the unique vertex in X f-)(B) (it follows trivially by induction
on the level of B that IX fq (B) 1).

DEFINITION. Let L f. A directed spanning tree T of L is called consistent if
(1) If L Lo, then T is rooted at r. If L Lo, then T is rooted at the L-successor

of X(p(L)).
(2) For each black cycle B in L, T contains all edges of B except

(X(B),suc(X(B))).
LEMMA 10. For all L , let TL (VL, EL) be a consistent spanning, tree of L. Let

T be the directed graph on the vertex set V that contains an edge (u, v), for all u, v V,
exactly iffor some L , either (u, v) EL, or else (u, q) EL for some representative q
of v. Then T is a DFS tree of G rooted at r (see Fig. 9).

FIG. 9. The construction of a DFS tree of the example graph from consistent spanning trees of its layers.
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Proof For all vertices u V, clearly the outdegree of u in T equals its outdegree
in Tzu. Hence the outdegree of r in T is zero, and the outdegree in T of each vertex
in V\{r} is one. A cycle in T must contain vertices belonging to distinct layers. However,
every edge in T with endpoints in distinct layers goes from a vertex of level k + 1 to
a vertex of level k, for some k => 0. Hence T is acyclic. We may conclude that T is a
spanning tree of G rooted at r.

Observe that by Lemma 6 and condition (2) in the definition of consistent spanning
trees, T/ is a DFS tree of L, for all L . We finish the proof by showing that G
contains no cross edges relative to T. Hence let e {u, v} E and consider two cases.

Case 1. Level(u)= Level(v). Then Lu= L, and since TLu is a DFS tree of Lu,
there is a path p in TL, from u to v, or vice versa. All edges on p are also edges of T.
Hence e is not a cross edge.

Case 2. Level(u)# Level(v). Then (after possibly interchanging u and v)
contains an edge {u, q}, where q is a representative of v. Let L= L,, let s be the root
of T/, and put T’= Tp(). Since T/ and T’ are consistent, the only vertices on p(L)
that are not ancestors in T’ of the origin z of s have no representatives in L (see Fig.
10). Hence v is an ancestor of z in T’ and therefore also in T. Finally, u is a descendant
of s in T, and therefore of z in T. It follows that e is not a cross edge. I-]

p(L)

X(pn(L))

z

B

FIG. 10. Since there is a path in Tfrom u to v, {u, v} is not a cross edge (Lemma 10).

We now turn to the problem of ensuring disjointness of the black cycles. Let us
call a black vertex u shared if it belongs to more than one black cycle, and m-fold
shared if the number of black cycles containing u is exactly m. Our approach will be
to split each m-fold shared vertex u into m + 1 pieces, one piece for each black cycle
containing u and one central piece connected to the other m pieces, thereby creating
a graph G without shared vertices. We then show how a DFS tree of G can be derived
very easily from the DFS tree of G co.mputed by our algorithm.

Since the following definition of (3 is somewhat complicated for technical reasons,
whereas the derivation of t from G is conceptually simple, the reader is invited to
use the formal definition only to confirm the intuition gained from Figs. 11 and 12.
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FIG. 11. A threefold shared vertex is replaced by four vertices.

FIG. 12. The elimination of a shared vertex u in an example graph.

Let S be the set of shared vertices in G. For all u c S, let Wu {(u, B) B c and
u c V(B)} and put W=us Wu. For all Bc and all darts (u,v)D, we will say
that B encircles (u, v) exactly if (u, B) W, and either e {u, v} is a black edge belonging
to B, or else (e is white and) the nearest black predecessor and the nearest black
successor of e in the cyclic order around u both belong to B.

Now let ( be the undirected graph (VU W,{YleE}U/). Here /=
u}, where for i= 1,2, ui= ui{{u, (u, B)}l(u, B) W}, and for e={ul, u2}c E, Y {Ul,

if (ui, u3_) is not encircled by any black cycle, and u’ (u, B) otherwise, where B is
the unique black cycle encircling (u, u3-i).

For all {u, v} E, there clearly is a path in (3 from u to v all of whose internal
vertices belong to Wu t.J Wv. It follows easily that G is biconnected. We will consider
G to be embedded in the plane in a natural way illustrated in Figs. 11 and 12. While
we will not spell out the tedious details of this planar embedding, we note that its
existence is guaranteed by Lemma 3. Let Go be the face incidence graph of (3. Note
that there is a one-to-one correspondence between the faces of (3 and those of (3 such
that if the face of t corresponding to a face F of G is denoted by/3, then:

(1) For all F if, if Ev is the set of edges on the boundary of F, then the edges
on the bo.undary of F are those in the set {Y[ e EF}, possibly together with some
edges in E.
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(2) Each edge in E is incident on two faces F1 and F2 of G with the property
that F1 and F2 have the same type in G.

For all F , let T-(/3) be the distance in to from ff0 to/3. We will show that
T() Type(F) for all F . Note first that for all F1, F2 , if/ and are
adjacent in Go, then F and F2 are adjacent in Go. Hence T(/3) => Type(F) for all
F . On the other hand, if Type(.F)< Type(F2) and F and F2 are adjacent in Go,
but F and F2 are notadjacent in Go, then the boundaries of F1 and F2 share a vertex
in S, in which case F2 is adjacent in to to a face/ with Type(F)= Type(F). Hence
by induction, T() <_- Type(F) for all F .

We now need to apply the concepts of initial face, edge colours, layers, and shared
vertices to G as well as to G. The clause "(in G)" will be used in otherwise ambiguou.s
cases to indicate when these conce.pts should be understood as defined relative to G.
Choose Fo as the initial face of G. By what we have just shown, each edge in E is
white, and for all e E, the colour of (in G) is the same as the colour of e (in G).
It follows easily that no vertex in t has more than two incident black edges (in t),
i.e., t has no shared vertices.

All that remains is to show that a DFS tree of G can be obtained from a DFS
tree of ( computed by our algorithm. First define Source(u)= u for all u V and
Source(w) u for all u S and all w Wu.

LEMMA 11. Let T (V t_J W, ET-) be a DFS tree of rooted at r and of the form
described in Lemma 10, and let T’ be the directed graph

(V, {(Source(u), Source(v))e Vx Vl(u, v)e ET- and Source(u) # Source(v)}).

Then T’ is a DFS tree of G rooted at r.

Proof. Let e {u, v}/ and observe first that u and v belong to the same layer
(in (), since otherwise we would have a contradiction to Lemma 7 (see Fig. 11). We
next show that a directed version of e is contained in T. Since e is not a cross edge
relative to T, T must contain a path p from u to v, or vice versa. Assume that p contains
more than one edge. Then, since e is a bridge in its layer L (in G), p must contain a
vertex outside L. But T is assumed to be of the form described in Lemma 10; hence
there can be no such path.

We now know that for all u S, there is precisely one vertex among {u}t_J Wu
whose parent in T does not exist or does not belong to {u}t.J W. It follows that the
outdegree of each vertex in T’ is one, except that the outdegree of r is zero. Furthermore
it is easy to see that for all u, v V t_J W, if there is a path in T from u to v, then there
is a corresponding path in T’ from Source(u) to Source(v). Hence T’ is a DFS tree
of G rooted at r. [3

5. A first DFS tree construction algorithm. We assume a standard adjacency list
representation of directed and undirected graphs, which we will not specify completely.
The representation of a graph consists of a list of its vertices together with an adjacency
list for each vertex. For each vertex u in the graph, each edge incident on u is represented
by one element in u’s adjacency list. All objects that are explicitly manipulated are
represented by unique integer names.

To be able to state the central part of the algorithm reasonably succinctly, we first
tackle a number of subroutines to be used later, sometimes without explicit reference.
Recall that our model of computation is the PRIORITY PRAM.

LEMMA 12 [3] (Prefix sums). Given n integers al,’",an of size n 1), the
quantities

k
i= ai, for k- 1,..., n, can be computed in O(log n/log log n) time with

O(n log log n/log n) processors.
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A frequent use of parallel prefix sums computations is to compact a data structure
spread over a large array into a smaller array to enable more efficient access to the
data structure. Assuming the data structure to be divided into records of size O(1),
associate with each such record a number equal to its size, associate with each array
element that is not part of the data structure a zero, and carry out a prefix sums
computation on the numbers thus defined. As a result, the records of the data structure
receive distinct integer values that may be interpreted as positions in a compacted
array. In case the data structure contains pointers into itself, these can easily be adjusted
before the records are moved to their new positions.

LEMMA 13 (Pointer doubling). The following problem can be solved in O(log n)
time with O(n/log n) processors. Given a directed forest F- (V, E) on n vertices, a set

R, a label A (u) R for each u V, and an associative operation R x R - R that can
be evaluated on specific arguments in constant time by one processor, compute for all
u V the value

A(u) ;(u) ;(u) 2 (u),

where (u, u, Uk) is the path in Ffrom u to the root of the tree in F containing u.

Proof First trivially handle and remove all trees in F with at most six vertices.
Then compute an independent vertex set S’ in F that contains at least - of the vertices
in F. This can be done in O(log n/log log n) time with O(n log log n/log n) processors
(see [12]). Let S be the set of nonroot vertices in S’, i.e., the set of vertices in S’ of
outdegree one in F. Next, for each child u V of a vertex v S, u is made a child of
the parent of v, and u’s label is replaced by A (u)o A (v). Finally, all vertices in S and
their incident edges are removed, and a prefix sums computation is used to "close up
the gaps" left in the representation of F by vertices and edges that were removed. This
reduces the number of vertices by at least a constant factor. Let F’= (V\S, E’) be the
resulting forest. It is clear that for all u V\S, A(u) computed with respect to F’ is
the same as A(u) computed with respect to F. Furthermore, for each u S, A(u) can
be computed as A(u)o A(v), where v is the parent of u in F (which is not in S). Since
the problem becomes easy once the number of vertices has been reduced to O(n/log n),
the desired conclusion now follows by an application of Lemma 1 of [12]. D

Pointer doubling has numerous applications. If each root is labeled by zero, all
other vertices are labeled by one, and denotes addition, we compute the depth of
each vertex in its tree. The special case of this computation in which F is a path is
known as list ranking. If each vertex is labeled by its own name and u v v for all
u, v V R, the root of the tree containing u is found for all u V. Given a directed
simple cycle C containing a number of "distinguished" elements, we may remove each
edge leaving a distinguished element and use the above setting to compute for each
vertex on C its nearest distinguished successor. This in turn may be used to construct
the adjacency lists of graphs such as the subgraph of a given graph spanned by a set
of marked edges.

LEMMA 14. The following problems can all be solved in O(logn) time with
O(n/log n) processors:

(a) (Connected components) Given an undirected planar graph G V, E) on n
vertices, compute its connected components, i.e., name the connected components of G
and mark each vertex u V with the name of the connected component containing u.

(b) (Spanning forest) Given an undirected planar graph G=(V, E) and a set

{r,. ., rl}
_
V containing precisely one vertex from each connected component of G,

compute a graph T1 U... U TI, where T, for i= 1,..., l, is a directed spanning tree,
rooted at r, of the connected component of G containing r.
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(c) (Biconnected components) Given an undirected planar graph G V, E) on n
vertices, compute its blocks, i.e., name the blocks ofG and mark each edge e E with the
name of the block containing e.

(d) Given an embedded undirected planar graph G on n vertices, construct an
embedded graph whose connected components are isomorphic to the blocks of G, together
with the relevant isomorphisms.

(e) (Expression evaluation) Given an n-vertex undirected planar graph G V, E)
and a label A (u) N for each u V, compute for each connected component of G the
maximum label of a vertex in the component.

Proof. Part (a) was proved in [12].
(b) Choose r with r V and construct the connected graph G’= (VU {r}, E U

{{r, ri}l I _-< =</}). Compute an undirected spanning tree T of G’ [12] and use optimal
list ranking to convert T to a directed spanning tree T’ of G’ rooted at r, as described
in 19]. Finally, obtain T1 (-J" t.J T/by removing from T’ the vertex r and its incident
edges.

(c) Use part (a) to compute a set {rl,"’, r} containing precisely one vertex
from each connected component of G. Then construct G’ as in part (b) and compute
the blocks of G’ [12]. The blocks of G are those of G’, except for those spanned by
the bridges {r, ri}, i= 1,..., I.

(d) We assume that the planar embedding of G is given via the ordering of its
adjacency lists: For each vertex u, the order of the edges incident on u in its adjacency
list is the same as their cyclic order around u in the embedding (take the first list
element to be the successor of the last element).

First mark each edge in G with the name of its block as in part (c). Then, for
each articulation point u and each block B containing u, create a new vertex (u, B).
The remaining problem is to construct the adjacency lists of the new vertices from the
original adjacency lists of G’s articulation points. Note that a vertex of the form (u, B)
should receive those elements of u’s adjacency list that represent edges in B, and that
the new graph will inherit an embedding from the embedding of G if the relative order
of these elements is preserved. Observe, finally, that if el, e2, e3, and e4 are edges in
G incident on a common vertex u, with el and e belonging to the same block B and
e2 and e4 belonging to a different block B’, then the cyclic order of the four edges
around u in G cannot be (el, e2, e3, e4). This follows from the fact that there are simple
cycles in G through (i.e., containing) el and e3, and through e2 and e4, but not through
el and e2. Hence if we first use list ranking and a prefix sums computation to move
the elements of each adjacency list to consecutive positions in an array, without altering
their order, we are left with an instance of the following more abstract problem"

Given a sequence of n symbols Z1,...,Zn such that for all i, j, k, with
1 -< <j < k < _-< n, it is not the case that Z Zk Zj Z (the nesting property),
determine for 1, , n the smallest j, <j _-< n, such that Z. Z, or determine
that no such j exists.

CLAIM. The above problem can be solved in O(log n) time with O(n/log n) processors.
Proof. Let U { 1, , n} and let Y {Zil U} be the set of used symbols. For

all y Y, put First(y)=min{i U[Zi=y} and Last(y)=max{i U[Z=y} and let
S {First(y)ly Y} and T= {Last(y)[y Y}. Our task is, for all U\T, to compute
N(i) =man {j> iIZ Zi},

Construct the directed graph H (U, EH), where EH consists of all edges (i, j)
U U for which Sj and either

(1) j=i+l, i T andjS, or
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(2) For some y Y, i= First(y) and j Last(y).
it is easy to see that H is a sum of disjoint paths (see Fig. 13). For all i U, let F(i)
be the last vertex on the path containing i, and for all i U\ T, let

+ 1 if Zi+l Zi,
N’(i)=

F(i+I)+I ifZi+lZi.

We will show that N’(i)= N(i) for all i U\ T. Since this is obvious if Zi+ --Zi, let
us assume that i U\ T and that Z/I Z.

A B B B C D D C E F E E C A

FIG. 13. An example sequence with the nesting property and the corresponding graph H.

On the one hand, N’(i)<= N(i) since no edge of H can leave the vertex set
W={i+I,..., N(i)-1}, i.e., be of the form (j, k), withj W and k U\W. On the
other hand, N’( i) >- N( i). To see this, let p be the path in H containing i+ 1 and
observe that ifj ?/’(p) f’) T and + 1 =<j < N(i) 1, then j + 1 S and hence (j, j + 1)
EH. This implies that F(i + 1)>-N(i)- 1, from which the desired conclusion follows.

We have shown how to compute N(i) for all i U\T. First(y) and Last(y) are
easily determined for all y Y by the PRIORITY PRAM, and the only other nontrivial
step, the computation of F(i) for all i U, can be carried out by means of pointer
doubling. This ends the proof of the claim and of part (d) of the lemma.

(e) First construct G’ as in part (c) and compute a directed spanning tree of G’
rooted at r. We may now use a slight modification of the optimal expression evaluation
algorithm given by Gibbons and Rytter [7]. For more details, see Lemma 9 of 12]. [3

LEMMA 15. Given a directed or undirected graph G (V, E) on n vertices, the
distance in G from u to v can be computed for all u, v V in O(log n) time with rl

processors.
Proof If G is undirected, replace G by its directed version. Assume for simplicity

that V {0,. ., n- 1}. After the execution of the algorithm below, the distance d (i, j)
from to j can be found in A[ i, j], for all i, j V. B is an auxiliary array. The meaning
of the construct

for i, j, k in {0,. ., n- 1) pardo S

is that the statement S should be executed for each value of (i, j, k) in {0,. ., n- 1}
by exactly one processor Pijk. For all i, j V, we require that if 0-< k < k2 -< n 1, then
Pok, should have higher priority (i.e., a lower processor number) than Pk2" The meaning
of

for i, j in {0,..., n-1} pardo S

is similar, except that all but n 2 processors remain idle. We assume that the processors
are synchronized at each acesss to A and B, but omit the necessary synchronization
details.
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(01)

(02)
(03)
(04)
(o)
(o6)
(o7)
(o8)
(o9)
(10)

for i, j in {0,. ", n 1} pardo A[ i, j] := /lc
for t:=l to [logn] do

for i, j, k in {0,..., n-l} pardo
begin

B[i, j, k] := 0;
if A[i, k]+A[k,j]<n
then B[ i, j, A[ i, k] + A[ k, j]] := 1;
if B[i,j,k]=l
then A[ i, j] := k;

end;

if i=j,
if (i, j) E and L
if(i,j)E and ij;

The algorithm works by repeated matrix squaring. Lines (05)-(09), which together
implement the instruction

A[i,j]:= min (A[i,k]+A[k,j]),
Ok<n-1

implicitly use the capabilities of the PRIORITY PRAM to compute the minimum of n
numbers in unit time. It is easy to see by induction that after the tth execution of the
loop in lines (03)-(10), A[i,j]=d(i,j) for all i,jV with d(i,j)<-2 t, for t=

0,..., [log hi. Hence the algorithm correctly computes d(i, j) for all i, j V in
O(log n) time.

Remark. Lemma 15 remains true if the PRIORITY PRAM is replaced by the weaker
COMMON PRAM (see [5, Thm. 4]). This, however, is of little consequence here since
we seem to need the PRIORITY PRAM in the algorithm of Lemma 14(d).

We now come to our main results.
THEOREM 1. Given an undirected connected planar graph G (V, E) on n vertices

and a vertex r V, a DFS tree of G rooted at r can be computed in O(log n) time by a

PRIORITY PRAM with n processors.
Proof Use the algorithm consisting of steps (1)-(17) below. We adopt the same

notation as in the previous section. Steps for which nothing else is stated can be carried
out in O(log n) time with O(n/log n) processors.

(1) Embed G in the plane. By the result of [14], this can be done in O(log n)
time with n processors, and possibly with fewer processors. Another algorithm
is given in [10].

(2) For each block B of G, compute the r-dominator of B in G. This is easy
using parts (b) and (c) of Lemma 14: Given any directed spanning tree T
of G rooted at r and a block B of G, the r-dominator of B in G is the
unique vertex in G that has an incident edge belonging to B, but whose
father pointer (if it exists) is not a directed version of an edge in B.

(3) Construct an embedded graph G’ whose connected components are isomor-
phic to the blocks of G, together with the relevant isomorphisms (Lemma
14(d)).

For the sake of simplicity, we will assume in the remaining description that G is
biconnected and that G’ G. The reader should keep in mind, however, that in reality
the computation described in steps (4)-(17) takes place simultaneously for all connected
components of G’. We omit the description of a final step in which the DFS trees of
the components of G’ are combined as described in Proposition 9 to yield a DFS tree
of the input graph. We also assume that VI => 3.
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(4)

(5)

(6)

(7)
(8)
(9)
(0)
(11)
(12)

(13)
(14)

(15)

(16)

(17)

Construct the face-vertex incidence graph G of G. This is the undirected
bipartite graph on the vertex sets V and that contains an edge {u, F}, for
all u V and F , exactly if F is incident on u in G. G is computed as
follows. Use the planar embedding of G to construct the face cycle graph
H of G. Execute a connected components algorithm on the undirected version
of H in order to obtain a name for each face and to mark each dart in D with
the name of its incident face. Finally, for each dart (u, v) D, include in G
the edge {u, F}, where F is the face incident on (u, v). Since for each vertex
a in G, precisely one edge incident on a is generated either for each dart
on some cycle in H (if c ) or for each element of a’s adjacency list in
G (if a V), it is easy to construct the adjacency lists of G. Note that G
is planar and that by Euler’s formula, it contains at most 3n vertices.
Choose a face Fo incident on r and compute the distance in G from Fo to
every other face. By Lemma 15, this can be done in O(log n) time with n
processors.
Compute Type(a) for all a V U E t_J D t.J o%. The type of a face is its distance
from Fo in the face incidence graph G, which may clearly be computed as
half its distance from Fo in G.
Construct G.
Compute the blocks of G, i.e., the black cycles.
Construct G, substitute it for G and redo previous steps as necessary.
Construct Ge.
Determine the connected components of Ge, i.e., the layers.
For each L S+, choose the selected representatives in L and determine
p(L).
For all u V, find sue(u).
Compute the set X and determine the L-successor of X(p(L)), for all
L Le+. First compute the L-successor of v for all layers L+ and all
vertices v p(L). This can be done via pointer doubling in O(log n) time
with n processors per layer, a total of O(n2) processors (one might think
that O(n) processors would suffice for this substep. However, since p is
not necessarily injective, this is not the case, and the size of the output may
be 1(n2)). Then determine the distance between each pair of vertices in Ge.
By Lemma 15, O(log n) time and n processors suffice. Using the information
computed so far, find XB(v), for each B + and each vertex v p (B), as
the vertex on B closest in Ge to the L-successor of v, where L is the layer
containing B. It is now easy to construct the graph G. By another application
of Lemma 15, the set X of vertices in G reachable from r can be computed
in O(log n) time with n processors.
For each layer L , construct a consistent spanning tree of L. This is trivial
for L= Lo. For L Lo, let rL be the L-successor of X(p(L)), which was
computed in step (14). Construct a directed spanning tree TL of L rooted at

r and modify it as follows" For each black cycle B contained in L, remove
from T all edges in the directed version of B and replace them with all
edges of/ except (X(B), sue(X(B))). It is easy to see that the resulting
graph is still a directed tree, and hence a consistent spanning tree of L.
Combine the consistent spanning trees computed in step (15) to a DFS tree
of G as described in Lemma 10.
Convert the DFS tree of G computed in step (16) into a DFS tree of G as
described in Lemma 11.
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Correctness of the algorithm follows from the results of 4. We have argued that steps
(1), (5), and (14) can be executed in O(log n) time with n processors, and all other
steps can be executed in O(log n) time with O(n/log n) processors.

6. Reducing the number of processors. In this section we describe a more compli-
cated but also more processor-economical computation of X. One reason the naive
approach of the previous section fails to achieve optimality is that G may have O(n2)
edges. It does, however, have a nice property that we will be able to exploit" For all
u V, the vertices v V with (v, u) E form a segment ofp. (Bu. Before we prove
this statement, let us introduce some convenient notation.

DEFINITION. For all u V, let f(u) { v V (v, u) E}, and let preio(u)
denote the nearest predecessor v of u on B-- with f(v) . For all u V(Bo) let
f(u)={u}.

DEFINITION. For all u V, let Gu be the connected component containing u of
the graph obtained from G by the removal of both black edges incident on u, and let

Y(u) (v V(pa(B)) v is the origin of a selected representative in V(Gu)}.

For allB@+ let Y(B)=U (Y(u)
LEMMh 16. Let u V. Then Y(u) is a segment of the cyclic order of Y(B) on

Proof. For all v V(B) with v u, Gu and G are vertex-disjoint since otherwise
there would be a cycle in G containing a white edge. The result now follows by
planarity considerations (see Fig. 14).

DEFINITION. For all u V such that Y(u) is a nontrivial segment of the cyclic
order C, of Y(B,) on p(B,t, let Last(u)= Lastcu(Y(u)).

LEMMA 17. Let u V. Then
(a) Y(u) :>f(u) .
(b) Y(u)= Y(B,)Cf(u)= T’(p(Bu))Cprefo(u)= u.

(c) If Y(u)c Y(B,), then f(u)=[Last(prefee(u)),pre(Last(u))].

p(B)

Y(u) Y(w)

u B v

FIG. 14. Y(u) is a segment of the cyclic order of Y(Bu). For a 6{u, v, w}, the elements of Y(a) are
marked "Y(a)."
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Proof. Observe that if q is a selected representative in L,, then u is the q-dominator
of B, exactly if q E o//.(G,). Hence

f(u)= {vE (p(B.))lthe nearest successor of v in Y(B.) belongs to Y(u)}.

Now (a) and (b) are obvious. Part (c) follows by planarity from the same characteriz-
ation (see Fig. 15). D

f(v)

P(B) f(w
f()

u B v

FIG. 15. A monotonicity property off (Lemma 17(c)). For a E {u, v, w}, f(a) is indicated by a wavy line

"spanning" f(a ).

LEMMA 18. f(u) can be computedfor all u V in O(log n) time with O(n/log n)
processors.

Proof. With Ge embedded in the obvious way, compute its face cycles by means
of pointer doubling. When we refer to face cycles and darts below, we mean those
of Ge.

We begin by showing that all white darts in a given layer L lie on the same face
cycle, which we will call the outer face cycle of L. First observe that if a face cycle
contains some white dart (u, v), then it must also contain (v, u), since otherwise suitable
"shortcutting" operations would yield a simple cycle in Ge containing { u, v}. It follows
that if two white darts have a common endpoint, then they lie on the same face cycle.
It is now easy to see that the same holds for two white darts that have an endpoint
each on a common black cycle, from which the above claim follows.

For each outer face cycle, choose an arbitrary dart on the cycle and label by means
of list ranking each dart e on the cycle with the distance from e to the chosen dart.
This allows the cyclic order of three given darts on a common outer face cycle to be
determined in constant time. Also compute by means of pointer doubling for each
dart e on an outer face cycle the nearest successor dart or(e) on the cycle whose tail
is a selected representative.
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Now let u V. If u has no incident white edges in Ge, clearly Y(u)=f.
Otherwise, let el and e2 be, respectively, the first white dart and the first black dart in
the cyclic order around u in Ge. Then the following holds (see Fig. 16)"

1 u

B

FIG. 16. The computation of Last(u).

(1) If tr(e) occurs after e2, i.e., if the cyclic order of e, e2, and o’(e) on the
outer face boundary of Lu is (e, e2, o-(el)), then (Gu) does not contain any selected
representatives, i.e., Y(u) .

(2) If o-(e) occurs before e, i.e., if the cyclic order of e, e2, and o-(e) on the
outer face boundary of Lu is (e, o-(el), e2), then the tail of o-(e) is a selected
representative in G,.
In case (2), we can say more. Let ql," ", ql be the selected representatives in Lu, and
for i= 1,..., l, let vi be the origin of qi, and let ei be the dart in G:e with tail qi. If
the cyclic order of e,..., el on the outer face cycle of L, is (el,"" ", et), then the
cyclic order of the origins of their tails on p(B, is (Vl,’’’, v). We may conclude
that in case (2) above, if Y(u) Y(B,), then Last(u) can be found as the origin of
the tail of o-(e).

By Lemma 17(a) and (1) and (2) above, we can decide for all u V whether
f(u)=. It is then easy to compute pres(u) for all u V by means of pointer
doubling. Finally, we use parts (b) and (c) of Lemma 17 and the above observation
to determine all remaining values off

We would like to compute X by means of pointer doubling applied to First of
and Last f One complication preventing us from doing this in a straightforward way
is the possibility of vertices u V with f(u)= . We get around this difficulty as
follows.

For all u V, introduce a new vertex t7 and put s--u-2(u) and s--fi-d(t) suc(u).
For all U V, let =Ut_J{alu U}. Let G be the directed graph
(ff’, {(u, Tff-d(u))lu }), and let be the set of nonempty segments of cycles of
G. In the following, the symbols First, Last, and [., will have the meaning of the
corresponding symbols without bars, but defined relative to the cycles of G. Infor-
mally, we have introduced a new dummy vertex fi "on" each black edge (u, suc(u)).
Correspondingly, define the level of t7 to be the level of u, for all u V.
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DEFINITION. For all u 6 V, let f(u) and f(a) be given as follows:
(1) Iff(u) # , let f(u)= [First(f(u)), Last(f(u))] and f()= {Last(f(u))}.
(2) Iff(u)=, let f(u)=f()= {Last(f(pref(u)))}.

Here First(f(u)) and Last(f(u)), for all u V with f(u)= (p(Bu)), are to be
understood as arbitrary but fixed elements of V with f(u First(f(u ), Last(f(u )) ].

Clearly, the values of f on single vertices can be computed from those of f in
O(log n) time with O(n/log n) processors. Define -(I), for all I 5, to be the cycle
of G containing f(I). The property stated in the following lemma is the reason for
introducing f. Informally, the lemma says that given a diagram as that of Fig. 17,
f(k(I) may be computed by following upward for k steps the leftmost and the rightmost
path starting at vertices in I, and then taking whatever lies between the end vertices
reached. The only exceptional case occurs when the two paths end in the same vertex.

LEMMA 19. Let k >- 1, I u, v and

J= [(First f)()(u), (Last f)()(v)].
Then

(a) IfJ f) V (, then fk(I) J.
(b) IfJ V= (, then either f<k(I) J, or else f<k)(I) (’fi’<k(i)).
Proof For k 1 this follows from the properties of f, as expressed in Lemma 17

(see Fig. 17). The general claim may be verified by induction on k. [3

p,(v,(B))

FIG. 17. A pictorial representation of an example function For each vertex u, f(u) is indicated by lines

from u to First(f(u)) and Last(f(u)). Fully drawn lines are used when u V and f(u) , dashed lines

otherwise. Dummy vertices are shown smaller and white.

By Lemma 19, fk)(u) for all u’ and all k_> 1. Hence "knowing" fk)(u)
kamounts to knowing two vertices v, wV with f (u) [v, w].

fJ)LEMMA 20. Let j, k >-_ 1 and U
_
". Suppose that for all u U, (u) is known,

and f(k)(v) is known for all v6 (--(J)({u})). Then, if a processor is associated with
each vertex in "4, f(J+k)(u) can be computed in constant time for all u U.

Proof Since f+k(u) =f(f(u)) for all u U, we may simply use Lemma 19
with I=fJ)(u). To decide whether fk)(I)f’) V= or f)(I)= V(’g)(I)) in case
(b) of Lemma 19, it suffices to choose one vertex v on the cycle of G confining I
with fk(v) f’) V#, and to test whether vI. Since fk(u)={U} for Ue ’(o), the
test need only be carried out if I_

LEMMA 21. X can be computed in O(log n) time with O(n/log n) processors.
Proof By induction on k it follows trivially that for all u V and all k->_ 1,

fk)(u)=fk(u)f3 V, so that for all ue V, uX if and only if ref")(u). Hence the
problem reduces to that of computing f"(u) for all u V. Note first that this is easy
if n processors are available" Simply use Lemma 20 repeatedly with U-- V and with
j= k equal to 1,2,4,... ,2 [lgnj. TO show that the same can be achieved with
O(n/log n) processors, we describe the construction of a smaller instance of the same
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problem. We proceed as in the proof of Lemma 13, except that we must be slightly
more careful rarding the choice of an independent set.

Partition v into the sets Vodd and Veven of vertices whose levels are odd and even,
respectively. If Voddl > Vevenl, let S Vodd, else let S Veven. By Lemma 12, S can be
identified in O(log n/log log n) time with O(n log log n/log n)_processors, provided
that the level of each vertex in " is known. Now for all u "-’’V\S, compute f2>(u)
by Lemma 20. Sparing the reader the formal definition of the relevant class of problem
instances, we state that by replacing "by"\S, f by the restriction off2 to"\S,
etc., we can use another parallel prefix computation to construct a problem instance
with the same essential characteristics as the original instance (in particular, and most
importantly, Lemma 19 holds with f replaced by f2>) and of at most half its size.
Here we define the size of an instance as the number of vertices of positive level. This
is legitimate since Lemma 20 does not require processors to be associated with vertices
of level zero. Once the smaller problem has been solved, we know fn>(u) for all
u ’\S, and we can determine fn>(u) for all u S by Lemma 20 with U= S and
j 1, k n. Hence we may finally appeal to Lemma 1 of [12] and conclude that f")(u)
can be computed for all u V in O(log n) time with O(n/log n) processors.

THEOREM 2. Suppose that time T( n >= log n andp( n processors suffice to construct
a planar embedding of a planar graph on n vertices and to compute a BFS tree with a
given root of a planar graph on 3 n vertices. Then, given an undirected connected planar
graph G (V, E) on n vertices and a vertex r V, a DFS tree of G rooted at r can be
computed in time O(T(n)) by a PRIORITY PRAM with p(n) processors.

Proof Consider the algorithm given in the proof ofTheorem 1. If G is biconnected,
the distance computation in step (5) can alternatively be done by constructing a BFS
tree T of G rooted at Fo and computing, by means of pointer doubling, the depth
in T of each F . The same method works if G is not biconnected, except that one
must first construct an auxiliary graph as in the proof of Lemma 14(b). Since steps
that can be executed optimally in time O(log n) certainly can be executed optimally
in time O(T(n)), it now suffices to show how to carry out step (14) in O(log n) time
with O(n/log n) processors. By Lemma 21, X can be computed within the stated time
and processor bounds. Hence all that remains is to determine the L-successor of
X(p(L)), for all L +. For all u V, label u with the distance on B--- from u to
X(Bu). Then label each selected representative with the label of its origin. Now for
each L+, the L-successor of X(p(L)) is the selected representative in L with
maximum label which, by Lemma 14(e), can be identified within the stated resource
bounds.

Remark. A straightforward implementation of the algorithm implicit in Theorem
2, exclusive of subroutines for constructing BFS trees and planar embeddings, uses
space which is polynomial in n. By the result of [11], the space requirements can be
reduced to O(nl+), for any fixed e > 0.
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A NOTE ON OPTIMAL BIN PACKING AND OPTIMAL BIN COVERING
WITH ITEMS OF RANDOM SIZE*

WANSOO T. RHEE’

Abstract. Consider a probability measure/x on [0, 1] and independent identically distributed random
variables X,..., X distributed according to/z. Denote by Qn Q(X,..., x) the minimum number
of unit-size bins needed to pack items of size X,..., X. Previous estimates of Qn are considerably
improved and simplified. Similar estimates are obtained for the maximum number of unit-size bins that can
be covered by X1,"" ", X.

Key words, bin packing, bin covering, stochastic

AMS(MOS) subject classifications. 90B99, 60K30

1. Introduction and results. The celebrated bin packing problem requires finding
the minimum number of unit-size bins Q,(X1,’", X,,) needed to pack a given
collection X1," ", Xn of items with sizes in [0, 1] subject to the requirement that the
sum of the sizes of the items allocated to any bin does not exceed one. Its companion
problem, the bin-covering problem, requires finding the maximum number
Q’(X1, , Xn) of unit-size bins that can be covered by a given collection X1," , X
of items with sizes [0, 1] subject to the requirement that the sum of the sizes of the
items allocated to any bin is greater than or equal to one.

In this paper, we consider the same stochastic model as in our previous work
[2]-[5]. We consider a probability measure /x on [0, 1], on which no regularity
assumptions are made. We consider n items X1,’", X independent identically
distributed (i.i.d.) according to/x. (For simplicity, we denote by Xk both item names
and item sizes.) We define c(tx)= lim,_ E(Q,,)/n, d(/x)= limn_ E(Q’)/n. The pur-
pose of this paper is to strengthen and streamline previous results of Rhee and
Talagrand. Before we discuss the relationship between the results of the present paper
and the previous ones, we recall some basic notation.

For k_-> 1, we set

Rk--{(XI,’’’,Xk)ERk’, O<Xl<’’’<Xk<l,
i<=k Xi<I}---

and

Sk:{(x1,’’’,xk) ERk" O<XI<’’’<Xk<I, 1< xi<3}ink

Both are compact metric spaces. For a compact metric space S we denote by MI(S)
the set of probability measures on S. For x [0, 1], we denote by 6x the unit mass
concentrated at x, i.e., for a Borel set G we have 6x(G)= if x belongs to G and
x(G) 0 otherwise.

For , M1(Tk), where Tk Rk or Sk, we consider the measure k(U)e MI([0, 1])
given, for each Borel set G of [0, 1], by

I 1
k(P)(G)-- E x,(G) dp(xl,’’’,xk).

Tk i<-k

* Received by the editors December 9, 1988; accepted for publication (in revised form) November 7,
1989. This research was supported in part by National Science Foundation grant CCR-8801517.
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To motivate our results, and make the paper more self-contained, we recall the
following.

THEOREM 1. Given a probability IX on [0, 1], the following hold.
(1) There exists a nonnegative sequence (ak)k>=O with k>-O ak 1, and a sequence

lk E M1 gk such that

(1) IX ao5o + Y, ak,(Vk)
kl

and Ekl a/k <- c(ix).
(2) There exists a nonnegative sequence (ak)kO with ,k-O ak 1, and a sequence

1k MI(Sk) such that (1) holds, and Ek>>_l Cek/k >: d(ix).
The first part of Theorem 1 is obtained in [2], by a compactness argument. The

second part is proved along the same lines in [5]. Given a decomposition of Ix as in
(1), it is proved in [2] that C(IX)<--k>=I ak/k. Much of [3], and part of[4] are devoted
to make this statement quantitative, and to give estimates of the type Qn<_-
n E k>>_l Cek/k+ error term. All these efforts are subsumed by the next result, which
replaces error terms that are powers of n by a power of log n.

THEOREM 2. Consider a nonnegative sequence (Olk)k>_0 with k>-O Ok--1, and a
sequence Pk MI Rk ). Consider the measure

l ao,5o + a(v).
kl

Consider a sequence sl, sn of items (n-> 2). Let

D- D(s,. ., sn) sup {card {i-< n, si -> t}-nix([t, 1])}
0tl

so D >= O. Then

(2) Cek )2Qn(Sl,. ", Sn) <= D+ n --+ K(log n
k>=l

where K is a universal constant (i.e., independent of ix, n, and sl,..., s,).
Given a decomposition ofthe type (1), estimates ofthe type Q’, >- n k>= ak! k-error

term are proved in [5]. The error term of [5] is not o(n-1/2). This creates complications
in proving the central limit theorem of [5] for Q’,, and forces to put some (mild)
restrictions on the sequence (ak)k_. The much improved estimate (3) below for
allows us to remove all these restrictions and complications and to prove the central
limit theorem for Q’, of [5] along the same lines as the theorem for Q, of [4], by just
"reversing inequalities."

THEOREM 3. Consider a nonnegative sequence (Ok)k>_0 with k>-o Ol’k 1, and a
sequence Vk M1 Sk ). Consider the measure

I ao6o + Y a(v).
k_l

Consider a sequence s,. s, of items (n -> 2). Let

D’= D’(Sl,""", s.)= sup {nix([t, 1])-card {i-< n; s,>= t}}.
0tl

Thus D’ -> O. Then

ak D’ )2.(3) Q’,,(Sl,’",s,)>-n -- -K(logn
kl

It is interesting and possibly challenging to determine whether the error terms in
(2) and (3) can be improved.
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2. Proofs. The proofs will make essential use of the following observation, usually
called the Carath6odory theorem. If a point z R’ is a convex combination of a family
of points, it is a convex combination of at most (r + 1) of these points. We denote by
d the family of functions of the type

g(t) card {i-< m; si t}

where m is arbitrary and 0_-< s =< 1, _-<m S <--1.
We first consider Theorem 2.
LEMMA 1. Consider k >- 1, p>=4 such that 2p-3-> k, and an index set L with

card L >- 2p. For L, consider 0 <= [31 < 1, and gl d. then there exists a set L’ L with
card L’ =< 2p-l, and for L’ numbers 0 < l < 1, integers nl such that

(4) /l-+- nl) <= fll + 4k,
lL’ lL

(5) min(2k’ lgl(t)) <-
IL’

(Tl+nl)gl(t)+l.

Proof We set g=Cllgt and we observe that g is left continuous. Set a

1 + 4k2-p. We define by induction a sequence u as follows. We set

U sup {t; g(t) >-- 1}

so that g(ul) ->- 1. We then set

Ui+ =sup {t; g(t) >-

so that g(Ui+l) >: txg(tli). The construction stops at the first u, for which either g(u) > 2k

or g(t)< ag(u) for O--<_ < U We have

2 >= g(u,-1) >= or-2g(Ul) -> 0/. r-2.

Since 8k2-p -<_ 1, we have a _-> 24:-’, and thus (r-s)4k2-p<= k, so that

r_<2+2P-2<2p-1.

We now apply the Carath6odory theorem to the convex combination
(/3t)-Ylfllgl. We can find L’cL with cardL’<-_r+l<=2p-, and for leL’
numbers : _-> 0 such that Yl, :l Yl/31 and that

Vi, 1 <= iN r, , lgt(ui) lgl(Ui) g(u).
IL’ IL

We set n [a:], % a:- hi. We observe that

(n+:)=a /3=< fl+4k2-P.2,
IL’ IL lL

which proves (5).
Consider [0, 1]. If > Ul, then g(t) < 1,so that (6) holds. If < u, and g(u,) > 2k,

we have , (Tl+nl)gl(t) -’c , lgl(t) >= , lgl(Ur)--’g(tlr)>2k,
lL’ lL’ IL’

so that (6) holds. In the other cases, there is a largest i_-<r such that t< ui and
g(t)<-cg(u), by definition of U/l. We have

g(t)<-ag(ui) ()’l+nl)gl(u,)<= , ()’l+ql)gl(t).
IL’ IL’

This completes the proof.
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Proof of Theorem 1. By (1) and the definition of D, we observe that for all > 0,

f(t) card { =< n; si -> t}

---< D+ n Y -- card {i <-_ k; xi >- t} dlk(X1," ", Xk).
k>--I R

Thus, approximating the integrals by finite averages, we can find a finite index set L,
for L a function gl d and numbers SOl with YlL SOl =< n Y__->I a/i such that

(6) /j<-n, card{i-<n; s>--s}<-D+l+ . lgl(sj).
IL

Let k be the smallest integer with n < 2k. Using the CarathOodory theorem, we can
assume that card L--- n + 1 _-< 2k.

Now it is clear that (6) implies

(7) /t>=O, card{i<--n;s>--t}<=D+l+ lgl(t).
lL

Let Po be the smallest integer for which 2p-> 8k. Since n->_ 2, we have that k >_-2

and po=>4. Also 2 po-1 <8k. Let fl :t-[/J. We observe that (6) implies

min(2k’lL fllgl(t)) <=l + lL, nlgl(t)+min (2k’ lL, Tlg(t)).
So, we can iteratively apply Lemma 1 for the values p k,...,po. We sum the
corresponding inequalities. We thus find integers nl, l L, a set L’c L with card
L’<=2p-I <8k, and for l L’ a number 0-</3 1 such that

I’ll+ E fl<---Y l+4k(k-3)
IL lL’ IL

and

min(2k’ y lgl(t))
leL

nlgl(t)+ ,L, flg(t)+k-3.
If we combine with (8), we see that we have found integers ml( n + [:J such that

lt>----O, card{i<-n;s>-t}<-D+k-2+ flgl(t)+ mlgl(t)
lL’ lL

and that

ml <=n --+4k(k-3).
lL il

We now appeal to Lemma 2 of [3] to see that our family of items can be split into
three families H1, H2, and H3 such that

(8) >-- 0, card {s H1 s ->_ t} -< mlgl(t),
lL

(9) f >-- O, card {s H2 s >- t} <-- flgl( t),
l L’

(10) card H3 --< D + k 1.

It is clear that H1 can be packed in at most ’IL m bins. The sum of the sizes of
the elements of H2 is given by

card {s H2" s _-> t} dr.
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Since fl=< 1, and loh(t)dt<=l for he , we see from (10)that the sum of the sizes of
the items in H2 is =<card L’=< 8k. Thus these items can be packed in at most 16k bins.
Since H3 can be packed in at most D + k- 1 bins, we have succeeded in using at most

h
ai--+4k(k-3)+ 16k+D+k- 1

i---1

bins. The proof is complete.
We now consider Theorem 3. We denote by the family of functions of the type

g(t) =card {i =< m; si -> t}

where m is arbitrary and 0 =< si =< 1, i_-<,, si -> 1. The proof of Theorem 3 is very similar
to the proof of Theorem 2, so we only indicate the necessary modifications. For a
function g, we set g/(t)= lim,_.t+ g(u). The following will replace Lemma 1.

LEMMA 2. Consider k >-_ 1, p >-_ 4, with 2p-3 >= k and an index set L with card L =< 2p.
For L, consider 0<-_ I < 1, and gl c. Set g 2IL lgl, Assume that g+(0) =<2k. Then
there exists a set L’ L with card L’-< 2p-1 and for L’ numbers 0 =< ! 1, integers n!
such that

(11) 2 (yl+nl)>= ., [3,-4k,
leL’ leL

(12) V ]0, 1 ], . (71 + nl)gl(t) =< 1 + g(t),
/L’

(13) . 71g(0)=<2k.
lL’

Proof. We set a 1/(1 k2-p/2) => exp k2 -p+2 _-> 2 k2-p/2. We construct the sequence
ui as in Lemma 1, but this time we stop only when we construct u> 0 such that

< Ur=:>g( t) < ag(ur).

Since g(ur)<g/(O)<-2k, we again have r-<l+2p-2. We set u/l =0. We observe that
g+(ui+) =< ag(ui), and g+(ul) =< 1.

There exists e > 0 such that all the functions gl, L are constant in all the intervals
]ui, ui + el, 1 _-< =< r + 1. Using the Carath6odory theorem, we can find L’ c L with
card L’ =< r + 2 =< 2p-1 and for L’ numbers 0 =< :l =< 1 such that

Vi, 1 =< =< r+ 1, lgl(tli + e) g(tl +
l L’

We set nl [l/trJ, 3’1 rll/a hi. Given [0, 1], consider the largest such that >= ui.
Since, for all l, we have gl(t)<-gf(u)=gt(u+e), we have

1 1
(nl+3/l)gl(t)=<-- Igl(ui+e)=--g(ui+e)

1
g+(ui).

IL’ Ol IL’ Ol

If 1, then g+(ui) =< 1, so that (13) holds since c _-> 1. Otherwise, g+(ui) <= ag(Ui_l) =<
ag(t), and (13) holds again. To complete the proof, observe that

Y’, Ylg[(O) < E (Tl+nl)gl(e)
1 =g+g(e) < (0)

IL’ IL’

and that

(nl.t. Tl) 1 1. 1_2 i 2P(1 1) >--_ F. Bl-4k.
lL’ Ol lL’ Ol lL lL Ol lL
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To prove Theorem 3, we proceed very much as in the case of Theorem 2. Let k
be the smallest integer such that 2k->_2n + 2->_ n + D+ 2. First we find a set L with
card L _-< n / 2 _-< 2k and for L, we find 1 >- O, gl such that

Ok

lL k>--I

n + D/ 1 >= lgl(O),
lL

Vj n, card { n; si s} + D + 1 lgl(Si).
lL

This last condition is easily seen to imply that

VtO, card{in;st}+D+l lgl(t).
lL

we set fll l-[/J, and we apply Lemma 2 to Lflg" Letting Po be the smallest
integer for which 2Po-3 k, we reiterate the use of Lemma 2 for k,..., Po, to obtain
integers (I)IL such that

and

nl >- n Y. ai-4(k-po+ 1)k-2 po-1

IL i>=l

Vt[O, 1], card{i<=n;s,>=t}+D+(k-po+2) >- nlgl(t).
IL

it is easily seen that this latter condition implies that we can cover at least Y,tL r/l- D-
(k-po+2) bins with Sl,"" ", s,. This implies the result.

It was mentioned in [5] that bin covering seems more difficult than bin packing.
This statement appears to be incorrect when we use the-present approach. Implicit in
the proof of Theorem 2 is the possibility of suitably choosing a few bins and using
their items to cover many of the small gaps that may remain in other bins. This
possibility was not used in the strategy described in the proof of Theorem 3 of [5],
contributing to the inefficiency of the bound there.
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Abstract. A normal basis representation of GF (2") allows squaring to be accomplished by a cyclic
shift. Algorithms for multiplication in GF (2") using a normal basis have been studied by several researchers.
In this paper, algorithms for performing exponentiation in GF (2n) using a normal basis, and how they can
be speeded up by using parallelization, are investigated.
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1. Introduction. The problem of exponentiating in GF (2n) has many important
applications in error-correcting codes and in cryptography. In cryptographic applica-
tions especially, it is often necessary to use very large fields. For example, suppose we
wish to employ the Diffie-Hellman key-exchange protocol in GF (2n) (see [5]). In
order that an opponent not be able to compute discrete logarithms in GF (2"), it is
preferable to use a field GF (2") where n> 800 (see [13]). Consequently, it is crucial
to have algorithms for arithmetic in GF (2") that are practical for large values of n.

This paper is an investigation of normal basis algorithms for fast exponentiation
in GF (2"), and how they can be speeded up by using parallelization. We use a
divide-and-conquer technique due to Agnew et al. described in [1] and [2].

The Galois field GF (2") is an n-dimensional vector space over GF (2). A basis
for GF (2") of the form {/3,/32, 4,. ", [2n-l} is called a normal basis. The element/
is the generator of the normal basis. It is well known that GF (2") has a normal basis
for every n => 1 (see, for example, [9]). If field elements are represented by coordinate
vectors with respect to a normal basis, we call this a normal basis representation for
the field.

In a normal basis representation, the operation of squaring a field element is
extremely simple. For example, suppose {/3,/3 2, 4,.. 2,/3 } is a normal basis, and

n-1
aijidenote/3 =/3 2’, for 0_-<i-<_ n- 1. A field element a can be expressed as a Y=o

a=0 or 1, for 0<i<n-1. Then, a2="-
i=o a-li, where the subscripts are reduced

modulo n. That is, the coordinate vector for a 2 is computed by a cyclic shift of the
coordinate vector for a.

The Massey-Omura algorithm [11] for multiplication in GF (2") uses a normal
basis representation. This algorithm has been studied further by several researchers.
In particular, we should mention the use of the so-called optimal normal bases of
Mullin et al. [ 12]. An optimal normal basis is a special type of normal basis that allows
for a very efficient hardware implementation of the Massey-Omura algorithm. For
more information, we refer the reader to [12].

The algorithms for exponentiation that we study will also make use of a normal
basis representation. All necessary multiplications would be done using the Massey-
Omura algorithm. For the purposes of this paper, the details of the Massey-Omura
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operating grant A9287.
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algorithm are unimportant. However, since squaring in a normal basis representation
is accomplished by a cyclic shift, we shall assume throughout this paper that the time
required to square any field element is negligible.

n--1Suppose that we want to compute ae GF (2"), where e i=o ei2, ei =0 or 1,
n--1n-1 ae,2i. The Hamming weight of e is wt (e) =Yi=o e,for 0 =< _<- n 1. Then, a Hi_-o

i.e., the number of nonzero coordinates in the vector e. Then ae can be calculated
using wt (e)-1 multiplications (ignoring the time required to perform the necessary
squarings). Since wt (e)=< n, at most n- 1 multiplications are required. However, on
average, wt (e) n/2, so the calculation of a requires (on average) n/2-1 multiplica-
tions. This method of exponentiation will be referred to as the binary method.

In the remainer of the paper we investigate algorithms for exponentiation that
require fewer multiplications than the binary method. We also discuss the parallelization
of these algorithms.

2. A divide-and-conquer algorithm. In this section, we describe the technique of
Agnew et al. 1 ], [2], which is essentially a divide-and-conquer algorithm. Let k be an
integer, and let s [n/k]. Recall that we want to evaluate a e. Write the exponent e

s--1 kias e =o w2 where 0-<_ w 2k 1, for 0_-< _--< s 1. Then, e can be rewritten as

e= 2 2ki .w= A(w).w,
w=l {i:wi=w w=l

where A(w)=:w,=w 2k.
Example 1. Suppose n 12, k 2, and e 1499 21+ 28 + 27 + 26 + 24 + 2 + 21 + 2.

Then s 6, and e would be expressed as

e (21 + 28 + 24) 1 + (22)2 + (26 + 2)3,

SO

A(1)=21+28+24, A(2)=22, A(3)=26+2.
Then, as in 1 ], we compute ae to be

2k--1 2k--1
ae-- 1-I aXW)W= H (aW)xw).

w=l w=l

We shall compute a in two phases, as indicated in the following algorithm.

ALGORrrHM d&c-exponentiate (a, e, k).
{compute a e}
Phase 1" compute the 2k 1 terms aW (1 _-< w -< 2k 1).
Phase 2" multiply the terms (aW)xw) together.

In Example 1, a 1499 would be computed as

a1499__ (al)2 (al)28 (al)24 (a2)22 (a3)26 (a3)2.
Here, we would require one multiplication in Phase 1, to compute a 3, and five
multiplications in Phase 2, to multiply the six terms together. This compares to
wt (1499) 7 multiplications required by the binary method.

Let us now investigate how many multiplications are required in general during
each phase of the computation.

In Phase 2, the total number of terms to be multiplied together is at most s n/k ].
The product of these s terms will be computed using s-1 multiplications.
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In Phase 1, we must compute all elements a (1 _-< w _-< 2k- 1). Let us define M(k)
to be the total number of multiplications required to compute all these elements. It is
immediate that M(k)<-2k- 1, for we can compute each a from a w-1 by multiplying
by a. In fact, M(k)<-2k-l-1, by means of the following algorithm"

ALGORITHM compute-small-powers (a, k).
{compute a for 1 _-< w -<_ 2k 1}
a := a;
for w := 2 to 2k 1 do

if w is even then {perform a cyclic shift of a w/2}
compute a as (awl2)2

if w is odd then
compute a as a w-1 x a;

Let us now return to our algorithm d&c-exponentiate for computing a e. Using the
above bound for M(k), we have the following bound.

THEOREM 2.1. Suppose elements of GF (2n) are represented by coordinate vectors
with respect to a normal basis. Suppose a GF (2n) and 0 <- e <- 2 1. Let 1 <- k <- n be
any integer. Then algorithm d&c-exponentiate can compute a in at most 2k-1 + In/k -2
multiplications.

We are free to choose k as we wish, so we would choose it so as to minimize the
number of multiplications. If we take k to be roughly log2 n-log2 log2 n, then the
number of multiplications is approximately

-t- -O
2 log n log n- log. log2 n log n- log log n

which is certainly an asymptotic improvement over n/2.

3. Parallel algodthms. Suppose n is even, and we have n/2 parallel processors.
Then, we can simultaneously multiply n elements in pairs, producing n/2 elements.
These can then be multiplied together in pairs, in a similar fashion. Continuing this
process, we obtain the value of a after [log n] rounds. Similarly, if n is odd, then
we can multiply n elements in [log2 n rounds using [n/2] processors. This is consider-
ably faster than a sequential algorithm, but we do require a considerable number of
processors. This technique will be called binary fan-in multiplication.

We are interested in the following two questions in this section. First, can we
perform an exponentiation in [log n rounds using fewer than n/2 parallel processors ?
Second, can we obtain a more modest, but still significant speedup using fewer
processors ? We answer both questions in the attSrmative using a parallel implementation
of algorithm d&c-exponentiate.

First, recall the two phases of algorithm d&c-exponentiate.
In Phase 2, the total number of terms to be multiplied together is at most s n/k ].

The product of these s terms will be computed using binary fan-in multiplication. If
we have Is/2] processors, then [log2 s] rounds will be required.

In Phase 1, we must compute all elements a (1 _<-w-< 2- 1). It does not seem
very promising to parallelize algorithm compute-small-powers, so we shall consider
other algorithms. Clearly, we can compute any particular element a (1-< w _-< 2- 1)
in at most k rounds using binary fan-in multiplication. Therefore, with sufficient
processors, we can compute all elements a (1 _-< w _-< 2 1) in k rounds. If we compute
every element a (1 <= w-< 2- 1) independently using binary fan-in multiplication, a
fairly simple calculation shows that (k- 1)2-2 parallel processors are needed. We can
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do better by using another divide-and-conquer algorithm. Consider the following
algorithm, which is similar to the algorithm POWERS in [14].

ALGORITHM d&e-eompute-small-powers (a, k).
{compute a for 1 _<-w =< 2k- 1 in parallel}
Phase 1" compute the 2j- 1 terms a (1-<_ w-<_2j- 1), where j= [k/2].
Phase 2: for each term a (1 <= u _<- 2k- 1) computed in Phase 1, compute (aU)2J.
Phase3" multiply every term a computed in Phase 1 by every term (aU)v

computed in Phase 2.

As an example, suppose we call d&e-eompute-small-powers (a, 5). Then, j 3. In Phase
1, we would compute a 1, a, a3, a4, a s, a6, and a7. In Phase 2, we would compute a s,
a 16, and a24. Finally, in Phase 3, we would compute 21 products of elements from
Phase 1 with elements from Phase 2.

in general, the elements computed in Phases 1, 2, and 3 comprise all a (1-<_ w =<
2k- 1). If we have enough processors to perform all calculations in parallel, how many
rounds of multiplication are required7 Denote the number of rounds required by
algorithm d&e-eomlmte-small-lmwers (a, k) by R(k), and the number of parallel pro-
cessors required by P(k). The number of rounds required in Phase 1 is R(j), if we
call the same algorithm recursively. No multiplications are required in Phase 2 (only
cyclic shifts are done). Finally, Phase 3 requires only one round. Hence, R(k) satisfies
the recurrence

R(2k)=R(k)+l ifk> 0,

R(2k+l)-R(k+l)+l if k> 0,

R(1) =0.

It is easy to prove by induction that the solution to this recurrence is R(k)= [log2 k ].
it is also easy to see that the number of processors required is

P(k) (2 1)(2k- 1) (2k/2 1)2 if k is even

(2(k+)/2-1)(2(k-l)/2- 1) if k is odd.

Hence, P(k)<2k, a significant improvement over (k-1). 2k-2 for large k.
Now, if we use algorithm d&c-compute-small-powers in Phase 1 of algorithm d&c-
exponentiate, the total number of rounds is [log2 k] + [log2 s ], where s In/k ], pro-
vided the number of parallel processors is at least max {P(k), [s/2J}. So we have
proved the following.

THEOREM 3.1. Suppose elements of GF (2) are represented by coordinate vectors
with respect to a normal basis. Suppose a GF (2) and 0 <- e <-_ 2" 1. Let 1 <-_ k <- n be
an integer, and define s Ink ]. Ifwe have at least max {P(k), [s/2J } parallelprocessors,
then algorithm d&c-exponentiate can compute a in at most [log2 k] + [log2 s] rounds
of multiplications.

it is easy to see that [log2 n <= [log2 k + [log2 s _<- [log2 n + 1; hence the number
of rounds is at most one more than required by binary fan-in multiplication. However,
if we choose k to be approximately log2 n- log log2 n, then the number of processors
required is approximately n/(log2 n-log2 log2 n), which is asymptotic improvement
over n/2.

If P(k) >- [s/2J, then we require P(k) processors in Theorem 3.1. Let us now
examine what we can do with P(k) processors when P(k)<- [s/2J. Phase 1 of algorithm
d&c-exponentiate operates as before, but now we do not have enough processors to
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perform the binary fan-in multiplication in Phase 2. However, we can modify binary
fan-in multiplication to work with fewer processors (but more rounds will be required).

Define F(m, p) to be the number of rounds required to multiply m elements using
p parallel processors. We have already observed that F(m, [m/2J )= [log2 m ]. Using
a straightforward modification of binary fan-in multiplication, it is not difficult to see
that

F(m, p)= [m TP] +log2po+ l,

where Po the largest power of two not exceeding p.
This is obtained as follows. There are a total of m-1 multiplications to be

performed. The last log2 2po log2 Po+ 1 rounds comprise a binary fan-in multiplication
of 2po elements, The total number of multiplications performed in these log2 po d- 1
rounds is 2po- 1. Hence, in the earlier rounds, there are m- 2po multiplications to be
performed. It is not difficult to see that we can perform m-2po multiplications in
[(m-2po)/p] rounds by the p processors, in such a way that we are left with 2po
elements to be multiplied together in the last log2 Po+ 1 rounds.

For example suppose we want to compute H9

i=1 xi using three processors. Then
Po 2, F(9, 3)= 4, and the product can be computed as follows:

Round 1 compute xlx2 and XsX9.
Round 2 compute (xlxz)x3, x4xs, and x6x7.
Round 3 compute (xx2x3)(x4xs) and (x6x7)(XgX9).
Round4 compute (xx2x3x4xs)(x6x7xgx9).

We now apply this technique in Phase 2 of algorithm d&c-exponentiate. For the sake
of simplicity, we shall assume that we have 2k processors (recall that P(k)<2k). We
obtain the following result.

THEOREM 3.2. Suppose elements of GF (2") are represented by coordinate vectors
with respect to a normal basis. Suppose a GF (2") and 0 <= e <- 2" 1. Let 1 <= k <-_ n be
an integer, and define s In k ]. Suppose we have 2kparallelprocessors, where 2k <- [s/2J.
Then algorithm d&c-exponentiate can compute a in at most [log2 k]+ [s/2k]+ k--1
rounds of multiplications.

Proof The number of rounds required is [log:k]+F(s, 2k)=[log:k]+
[s/Zk] + k--1. [3

This also compares favourably with the algorithm given in 1], where the number
of rounds of multiplications is (on average) 2k+ ISk + k/2-4.

4. An example: GF (2s93). To illustrate our algorithms, let us look at GF (2593).
This is an interesting example to study, since hardware to perform arithmetic in
GF (2593) has been developed (see [4]).

First, we consider the sequential algorithm of 2. The number of multiplications
required is 2k-+In (Theorem 2.1). For various values of k, we obtain the
information in Table 1. Thus the minimum is attained when k 6. A maximum of 129
multiplications suffice to exponentiate in GF (2593), as compared to the average of
291.5 and the maximum of 592 in the binary method.

When we incorporate parallelism, the number of rounds can be reduced to as few
as 10. We determine the number of processors required by Theorem 3.1 (see Table 2).
Hence, we can exponentiate in 10 rounds with 49 processors, a considerable reduction
from the 297 required for binary fan-in multiplication.

Finally, we determine the number of rounds required by fewer processors, using
the bound of Theorem 3.2. The information is summarized in Table 3. So, we can
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TABLE

2k-+[n/k]--2

297
200
155
133
129
147

TABLE 2

No. of No. of
rounds P(k) [s/2J processors

2 297 10 143 143
3 198 11 3 99 99
4 149 10 9 75 75
5 119 10 21 60 60
6 99 10 49 49 49
7 85 10 105 42 105

TABLE 3

k 2 [log2k]+[s/2k]+k-1

2 297 4 77
3 198 8 29
4 149 16 15
5 119 32 11

exponentiate in 77 rounds with 4 processors; in 29 rounds with 8 processors; in 15
rounds with 16 processors; or in 11 rounds with 32 processors.

5. Comments and summary. We have described sequential and parallel algorithms
for exponentiating in GF (2n) using a normal basis representation. These algorithms
are adaptive, in that we can vary the number of processors to suit our needs. They
should be very practical for realistic applications of arithmetic in GF (2n) for values
of n up to 1,000 and beyond.

We can also use the algorithms in this paper to compute multiplicative inverses
in GF (2"), using the formula a-l= a2"-2. Other algorithms for finding inverses in
GF (2") using a normal basis representation are presented in [2] and [8].

We should also mention that several other approaches to parallel exponentiation
in finite fields and related problems have been investigated in recent years. See, for
example, [3], [6], [7], [10], [15], and [16]. Most of these papers discuss the existence
of Boolean circuits for the given algorithms. In [6], for example, Eberly shows that
we can construct a Boolean circuit of depth O(log n) and size n) to exponentiate
in GF (2"). This is a very interesting and important result from a theoretical standpoint.
However, no precise upper bounds are given on the size of the resulting circuits, and
it does not seem practical to construct such circuits for large values of n.
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For purposes of comparison, we can give fairly precise upper bounds on the size
of circuits to implement the agorithms in this paper. The Massey-Omura multiplication
algorithm can be implemented by a Boolean circuit of depth O(log n) and size O(n3).
Moreover, if an optimal normal basis exists in GF (2n) (see [12]), then the size can
be reduced to 0(n2). Using these Boolean circuits, it is not difficult to see that the
parallel version of our exponentiation algorithm can be realized (in general) by a
circuit of depth O(log2 n) and size O(n4/(log n-log log n)). If an optimal normal
basis exists, then the size is reduced to o(na/(log n-log log n)).

Finally, we remark that the techniques of this paper do not appear to be readily
applicable to exponentiation in GF (pn), when p > 2. The reason for this is as follows.
A normal basis in GF (pn) is one having the form {/3, tiP, tip2,..., flpn-1}. Hence,
using a normal basis representation, the pth power of an element is given by a cyclic
shift. This does not seem to be of much help in exponentiating if p > 2.
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Abstract. The ability of many processors to simultaneously read from the same cell of shared memory
can give additional power to a parallel random access machine. In this paper, a natural Boolean function
of n variables is described, and it is shown that the expected running time of any probabilistic EROW PRAM
computing this function is in fl(x/g n), although it can be computed by a CROW PRAM in O(log log n)
steps.

Key words, shared memory parallel computation, PRAM, lower bounds, exclusive read, decision trees
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1. Introduction. In [8], Snir proved that the following range search problem has
time complexity (R)(x/log n) on an EREW PRAM:

Given distinct inputs Xl, Xn, and y, with xl <" "<xn, determine the
maximum index such that xi < y.

This problem can be solved in a constant number of steps on a CREW PRAM. Thus,
in certain situations, CREW PRAMs are more powerful than EREW PRAMs.

But this result does not tell us everything we would like to know. For example,
consider the relationship between the CROW and CREW PRAMs. The OR of n
Boolean values, at most one of which is 1, can be determined in a constant number
of steps on a CREW PRAM, but log2 n steps are required on a CROW PRAM [2]. In
contrast, Nisan [7] proved that any Boolean function f: {0, 1}" - {0, 1} has, to within
a small constant factor, the same time complexity on CREW and CROW PRAMs.

Two features of Snir’s result are important in this regard. The first is that, like the
restricted version of OR in the previous paragraph, the domain of his range search
problem is not complete. (A complete domain is one of the form,D" for some set D.)
Such a situation can be viewed as having information about the inputs built into the
program. This information can be used by the algorithm to ensure that no conflict
arises during a potentially concurrent read or write. In particular, it enables the range
search problem to be solved quickly on a CREW PRAM. Gafni, Naor, and Ragde [5]
recently improved Snir’s result by exhibiting a function with a complete domain that
is easy to solve on a CROW PRAM and still difficult to solve on an EREW PRAM.

Another feature of these results is that the proofs of the lower bounds depend on
the domains of the functions being very large. The essential idea is to show that, using
Ramsey theory, there is a large subset ofthe domain for which the states of all processors
and the contents of all shared memory cells at each point in the computation depend
only on the relative order of the input values, not on their values.
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It remains open whether all Boolean functions can be computed as quickly by an
EREW PRAM as by a CREW PRAM. We make progress toward solving this problem
by defining a natural Boolean function that can be computed quickly on a CROW
PRAM and we prove that it requires a long time to solve on an EROW PRAM, even
if the algorithm is allowed to make probabilistic choices. A new probabilistic technique
is used to obtain this lower bound. We also give evidence that this function is hard to
solve on an EREW PRAM. Finally, we explain where the difficulties arise when
attempting to extend the lower bound to the EREW PRAM.

2. Models. In this paper, we consider nonuniform parallel random access
machines (PRAMs) with an infinite number of processors and shared memory cells
that can contain arbitrarily large values. The n input values initially appear in the first
n cells of shared memory and the answer is the contents of the first shared memory
cell at the end of the computation. The processors work together synchronously to
solve a problem. At each step, a processor may read from one cell of shared memory,
then perform an arbitrary amount of local computation, and finally write to one cell
of shared memory.

In the concurrent read, exclusive write (CREW) PRAM, multiple processors may
not write to the same memory cell at the same step of a computation, although any
number of processors may simultaneously read from a single cell. The exclusive read,
exclusive write (EREW) PRAM does not allow simultaneous access to a shared memory
cell for either reading or writing.

Complete networks of processors are also interesting models of parallel computa-
tion. Again we assume that there is an infinite number of processors and they work
synchronously. At each step, a processor reads the message posted by one processor
of its choice, performs an arbitrary amount of local computation, and then posts a
new message. The input to a problem is initially distributed among the first n processors
and, at the end of the computation, the first processor has determined the answer.

This model is equivalent to a restricted version of the CREW PRAM in which
there is a one-to-one correspondence between processors and shared memory cells
and only the processor corresponding to a particular memory cell may write to it.
Many algorithms designed for CREW PRAMs avoid write conflicts in this way. Dymond
and Ruzzo, who introduced this model in [3], call it the concurrent read, owner write
(CROW) PRAM.

If we further restrict the CROW PRAM so that, at each step, at most one processor
can read from each shared memory cell, we obtain the exclusive read, owner write
(EROW) PRAM. This is the model for which we prove a lower bound. The EROW
PRAM corresponds to a complete network in which each posted message can be read
by at most one processor at a time. (Note that a processor is not required to know
which processor, if any, is reading its message at a given step.)

In many respects, these models are more powerful than any realistic parallel
machine. However, this does not affect the significance of the lower bounds we obtain.
On the other hand, the algorithms presented in this paper are quite simple and easily
implemented on less powerful models.

For our lower bound proof, it is necessary to introduce the concept of a CROW
PRAM processor knowing certain input bits. The processors’ knowledge is defined
inductively for each step of the computation. Initially, each of the first n processors
knows the input bit it has been given (i.e., the ith processor knows the ith input bit).
No processor knows any other bit of the input. The input bits known by a processor
after it reads the message posted by another processor are the union of the bits known



720 F.E. FICH AND A. WIGDERSON

by the two processors before the read occurred. Changing the value of any input bits
that a processor does not know at any given point in time cannot change the state of
the processor at that time.

The following two lemmas describe properties of knowledge that are important
for our lower bound proof.

LEMMA 1 (Cook, Dwork, and Reischuk [2]). For a CROW PRAM, on any input,
every processor knows at most 2 input bits immediately after step t.

LEMMA 2 (Beame [1]). For an EROW PRAM, on any input, each input bit is
known by at most 2 processors immediately after step t.

3. The Boolean decision-tree evaluation problem. Suppose we are given a decision
tree, each node of which is labeled by a Boolean variable (called a query). Suppose
we are also given an outcome for each query. Consider the path that starts at the root,
goes left whenever the query at the current node has outcome 0 and goes right whenever
the query has outcome 1. The decision-tree evaluation problem is to determine the
outcome of the query labeling the leaf reached by this path.

For example, given the decision tree in Fig. 1 and the outcomes Xo 1, xl 1,
x2 1, and x3 0, the second leaf from the left is reached and, hence, the decision tree
has value 1.

FIG. 1. A decision tree.

Let Dm,h’{O 1}m(2h+l--1)+2" {0, 1} be a Boolean function representing a Boolean
decision-tree evaluation problem for a complete binary tree of height h in which every
node is labeled by one of 2 queries. This can be done by dividing the first m(2h+l- 1)
input bits into 2h+l- 1 blocks of length m. The value yi of the ith block denotes the
index of the query labeling the ith node in the tree. The last 2" bits, x0,"" ", x_,
denote the outcomes of the queries. For example, D:,2(ll1001000110101110)= 1. (See
Fig. 1.)

Clearly, the Boolean function D’,h can be computed by a (sequential) random
access machine in (m+ 1)h steps, following the path through the tree, alternately
reading the label of the next node and then the outcome of the query labeling it.

Using an EROW PRAM, an O(log m + h) upper bound can be obtained by first
collecting the m bits comprising the label of each node into one memory cell, using
O(m/log m) processors and O(log m) time. This is done in parallel for each node in
the tree. Then the path through the tree can be followed in O(h) more steps.

This can be improved to O(log m + log h) on a CROW PRAM. After the bits of
the node labels have been collected, as above, one processor is assigned to each node
of the decision tree. In one step, each processor reads the outcome of the query labeling
its node. Because many nodes in the decision tree can have the same label, concurrent
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read is essential for this step. The outcome of the query labeling a node defines a
pointer from the node to one of its two children. Using pointer jumper [6], the unique
path from the root to a leaf can then be determined in O(log h) steps, even by an
EROW PRAM.

Another (although less efficient) CROW PRAM algorithm creates a table of values
for the function computed by the decision tree and then performs table look up using
the query outcomes. For each of the 22m possible outcomes for the queries, a group
of 2h+l 1 processors is allocated. In one step, each group of processors makes a copy
of the decision tree. Using pointer jumping, as in the previous algorithm, the processors
in each group determine the answer that would be obtained assuming the query
outcomes associated with their group. (The actual query outcomes have not been read
at this point in the algorithm.) In O(m) steps, the correct group can be determined
from the actual outcomes of the 2" queries. Then the answer can be determined by
reading from the appropriate place in the table. The total time taken by this algorithm
is O(m+log h).

Only the first step of this algorithm uses concurrent read. With exclusive read,
the 22m copies of the decision tree can be constructed in 2 steps. This gives rise to
an O(2 + log h) upper bound on the EROW PRAM.

4. The lower bound.
THEOREM 3. The expected number of steps performed by a probabilistic EROW

PRAM to solve the Boolean decision tree evaluation problem for m 3 T and h 6T is

more than T/2.

Proof. Let Xo,’’ ", X2_1 be random variables whose values are independently
and uniformly chosen from the range {0, 1}. The sequence of random variables X
(Xo,"" ", X2-1) is used to denote the outcomes of the queries. Let Y1," ", Y2h/l-1
be random variables with range {0,..., 2m- 1}. The sequence Y (Y,. , Y:h/l_)
is used to denote a labeling of the nodes in the decision tree. The label of the root

(i.e., the value of the random variable corresponding to the root) is chosen using a
uniform distribution. Once all ancestors of a node have been labeled, the label of the
node is chosen uniformly among those queries not labeling any of its ancestors. This

gives us a uniformly chosen labeling of the decision tree with the property that all
nodes along any path from the root to a leaf are labeled by different queries. It suffices
to show [9] that the average number of steps (with respect to this input distribution)
performed by any deterministic EROW PRAM solving this problem is more than T/2.

Imagine the decision tree sliced horizontally into T pieces, each of height k 6T.
For 0,. , T, the node at depth kt on the path determined by the query outcomes
X in the decision tree labeled by Y is denoted by Rt( Y, X) and the subtree rooted at

Rt( Y, X) is denoted by St( Y, X). In particular, So( Y, X) is the entire decision tree,
Ro( Y, X) is its root, and RT( Y, X) is the leaf that is reached. This is illustrated in Fig.
2. Finally, let Ut( Y, X) denote the set of queries that do not label any proper ancestor
of Rt( Y, X). Then Uo( Y, X) is the set of all 2 queries, Uo( Y, X)

_
U( Y, X) _. _

UT( Y, X), and JUt( Y, X)[ 2" kt.
CLAIM. The probability that there is a processor that, at the end of step t, knows

both the outcome of a query in Ut(Y, X) and (any bit of) the label of a node in the
subtree St( Y, X) is at most t212-.

In particular, from the claim, the probability is at most T2la-7 that processor P
(which is supposed to determine the answer) knows both the outcome of a query in
UT-( Y, X) and (a bit of) the label of R( Y, X) within T steps. We will show that the
probability that processor P1 has the correct answer is only slightly more than 1/2.
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 o(r, x)

Y,X)

/ x) \

FG. 2. A ecsioa tree s[iced into pieces.

Let C denote the event that processor P1 has determined the correct answer within
T steps, let B denote the event that P1 knows the label of RT-(Y, X) within T steps,
and let A denote the event that the label of Rr(Y, X) is a query whose outcome is
known by P1 within T steps. If the label of RT-( Y, X) is a query whose outcome is
not known by P1, then changing only the outcome of this query does not change Pl’s
state; although, for the algorithm to be correct, it should. Since the outcome of the
query labeling RT-( Y, X) is equally likely to be 0 or 1, it follows that

pr[Cl]1/2.

If P1 does not know the label of RT-( Y, X), changing the label of RT-( Y, X) to anything
else in Ur( Y, X) does not change Pl’s state. Because the label of R-( Y, X) is equally
likely to be any query in U-( Y, X) and, by Lemma 1, P1 knows the outcomes of at
most 27" queries,

2 T 2T
22-2T.pr <-[Ur( Y, X)I 23r -6T2

Thus

pr[C]=pr[C[A^B], pr[A^B]+pr[Clfi,], pr [fi,]+pr [C]A ^/]. pr [A ^/]
-<_ 1. pr [A^ B]+pr [Clfi,]. 1+1. pr [AI/

= 1/2+ T212-:r + 22-2r.

A correct algorithm always performs at least one step. If the correct answer has
not been determined within T steps, the algorithm must perform at least one more
step. Therefore, the expected number ofsteps performed by a correct algorithm is at least

pr[C], l+pr[C]. (T+I)= 1+ T(1-pr[C])

> 1 + T/2- T2212-’r T22-2"r

>T/2 for T->21.
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Proofofthe Claim. Let Qt( Y, X) denote the set ofprocessors that know the outcome
of a query in Ut( Y, X) immediately after step t. (Since there are 2 queries and, by
Lemma 2, the outcome of no query is known by more than 2 processors immediately
after step t, it follows that IQ,(Y, X)[ =<2m+t.) Similarly, let Lt(Y, X) denote the set of
processors that know the label of some node in St( Y, X) immediately after step t. We
prove by induction on that

pr Qt( Y, X) fq Lt( Y, X) th --< t212-T.
Before the first step, each processor knows at most one input bit. Hence the claim

is true for 0. Now assume the claim is true for t, where 0 =< < T. Then

pr [Qt+I(Y, X)f"l L,+I(Y, X) 6]

pr [Qt(Y, X) f’I Lt( Y, X) d,b

+ pr [Qt+I( Y, X)fq Lt+,( Y, X) 61Q,( Y, x) t,( Y, x) ].

By the induction hypothesis,

pr [Qt(Y, X)fq Lt(Y, X) b]_-__ t212-7.

Therefore, we suppose Qt( Y, x)
If Qt+l( Y, X) 1"] Lt+,( Y, X) ck then either
(1) There is a processor (in Lt( Y, X)) that knows the label of a node in S,+( Y, X)

at the end of step and, at step + 1, reads from a processor in Qt( Y, X), or
(2) There is a processor in Qt( Y, X) that, at step + 1, reads from a processor

(in Lt( Y X)) that knows the label of a node in St+l( Y, X) at the end of step t.
We handle these two cases one at a time.
First, consider the set of processors in L,( Y, X) that, at step + 1, read from

processors in Qt(Y, X). Each processor in Qt(Y, X) can have its message read by at
most one processor at step + 1, so there are at most [Qt( Y, x)[ =< 2m+t such processors.
Let N be the set of nodes in St(Y, X) whose labels are known at the end of step by
at least one of these processors. By Lemma 1, each processor knows the label of at
most 2 nodes; therefore IN[ <-- 2m+2‘. Since no processors in Lt( Y, X) are in Q,( Y, X),
they do not know the outcome of any query in Ut( Y, X), so changing the outcomes
of some of these queries cannot change the set N.

When the outcomes of the queries in Ut(Y, X) are allowed to vary, the node
Rt+l( Y, X) is equally likely to be any one of the 2k nodes of depth k in St( Y, X). This
is because no label is repeated along any path and the labels of the nodes in St( Y, X)
are chosen independently of the outcomes of the queries in Ut(Y, X). At most [NI of
the subtrees of St( Y, X) rooted at these 2k nodes can contain elements of N. Thus the
probability that St+( Y, X) contains some node in N is at most INI2-k <= 2’+t-k _<--2-.
Hence 2-7- is an upper bound on the probability that there is a processor (in Lt( Y, X))
that knows the label of a node in St+I(Y, X) at the end of step and, at step + 1,
reads from a processor in Qt( Y, X).

Next, we show the probability is also small that there is a processor in Q,( Y, X)
which, at step t/ 1, reads from a processor (in Lt(Y, X)) that knows the label of a
node in St+( Y, X) at the end of step t.

For any processor P, let Np( Y, X) be the set of nodes in St+( Y, X) whose labels
are known by P immediately after step t. If P Lt( Y, X), then Np( Y, X) b. Further-
more, it follows from Lemma 1 that [Np( Y, X)I <=2 t. Let Q Qt( Y, x) and let Po be
the processor that Q reads from at step + 1. Note that, since Qt( Y, X) Lt( Y, X) b,
processor Q does not know the label of any node in St(Y, X), so changing the label
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of any node in St(Y, X) does not change Q’s state and, hence, which processor Q
reads from at step + 1.

We prove that, with probability less than 2-r+211-, the subtree S,/I(Y, X)
contains a node whose label is known by some processor in L,(Y, X) that was read
by a processor in 0,(Y, X). Since there are no more than 2m+t24T processors in
Q,( Y, X), it suffices to prove that for an arbitrary processor Q Q,( Y, x), the probabil-
ity S,/(Y, X) contains a node whose label is known by processor Po is less than
2-ST + 2ll-ST

On input (Y, X), the state of processor Q is determined by the outcomes of at
most 2 queries. For any other input in which these queries have the same outcomes,
processor 0 will also be in the same state. Thus we may partition the set of possible
outcomes for the queries into those that give rise to the same state of Q. Since we may
assume, without loss of generality, that processors do not forget information, each
class of the partition can be specified by a set Z of at most 2’ queries and outcomes
z for those queries. Then

pr [Npo Y, X) fq St+( Y, X) 6]

Z pr[Nl%(Y,X)f-IS,+(Y,X)6lZ=z]pr[Z=z],
(Z,z)

where the sum is taken over pairs (Z, z), one for each class of the partition. Now
Yz, pr [Z z] 1, so it suffices to show that

pr [Neo( Y, X) f’l S,+( Y, X) b [Z z] <2-st + 2l-5r

for any pair (Z, z) that specifies a class of the partition.
We will show that for most labelings y of the decision tree, the nodes whose labels

are known by processor Po are unlikely to be contained in S,+(y,X), where the
probability is taken over all inputs that satisfy Z z. Note that the set of nodes whose
labels are known by processor Po may be a function of the labels of the nodes in the
decision tree.

A path in St( Y, X) from R,( Y, X) to a node at depth k is said to be constrained
if it contains at least 11 nodes labeled by variables in Z. Let E be the event that no
path of length k, starting from R,( Y, X), is constrained. Then

pr [Npo( Y, X) fq St+( Y, X) 61 z= z]

pr [Npo( Y, X) (q St+i( Y, X) b ]Z z ^/] pr [/]

+ pr [Npo( Y, X) f3 St+( Y, X) qb[Z z ^ E] pr [E]

-< pr [El+ pr [Npo( Y, X) fq St+i( Y, X) b ]Z z ^ E].

The labels of the nodes on a path can be viewed as being selected without
replacement from the set U,(Y, X). Thus the probability that a particular path is
constrained is at most

(k)( [21 )11 (kiN[)1111 [Ut(Y,X)]-k
<

]Ut(Y,X)I-k

and the probability pr [E] that some path in the tree is constrained is less than

<=2
k2t

2_st-< for T>5.
IUt(Y,X)I-k 2"- k(t+ 1)
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Now consider any labeling y of the decision tree that agrees with Y from the root
to Rt(Y, X) and in which no path of length k from Rt(Y, X) is constrained The
probability that Rt+l(y, X) is any particular node at level k of St(y X) is at most 2ll-k.
Thus the probability that St+I(y,X), the subtree of St(y,X) rooted at Rt>=I(y,X),
contains a node in Np, (y, X) is at most

21-lNpo(y, X)l < 2-+’ <= 21-5T.

Hence, pr[Npo(y,X)S,+(y,X)#qblZ=z^E]<=2-T and pr[Neo(Y,X)fq
S,+( Y, X) # &IZ z] -< 2-7" + 21-5, as desired.

Combining the information about both cases, we get that

pr [Qt+( Y, X) CI Lt+( Y, X) # 61Q,( Y, X)CI Lt( Y, X) 6]

< 2-T 4- 2-T 4- 211-T < 212-T

and

pr[Qt+I(Y, X)f"l Lt+,( Y, X) # th]

-< pr [Qt(Y, X) f") Lt( Y, X) # 6]

+ pr Q,+,( Y, X) f"l L,+,( Y, X) # dlQ,( Y, X) fq Lt( Y, X) oh]

< t212-T 4- 22-T + 1)22-T

Thus the claim is true

5. Conclusions. This paper shows that there is a Boolean function of n variables
that can be computed by a CROW PRAM in O(log log n) steps, but any EROW PRAM
that computes it has expected running time in (x/log n). We think that there is a
similar separation between CROW PRAMS and EREW PRAMs. Note that, for comput-
ing Boolean functions, CROW PRAMs are as powerful as CREW PRAMs (to within
a constant factor) and, hence, are at least as powerful as EREW PRAMs. However,
this is not necessarily the case if the domain is not complete. (For example, consider
the OR of n Boolean values, at most one of which is 1.)

There is a very close correspondence between CROW PRAMs and decision trees
[4]. If a function (over any domain) can be computed by a CROW PRAM in time T,
then it can be computed by a decision tree of height 2 T. (In particular, this implies
that any function computable in constant time on a CROW PRAM is also computable
in constant time on a PRAM with only one processor.) Conversely, if a function can
be computed by a decision tree of height h, then it can be computed by a CROW
PRAM in time [log2 hi+ 1. Thus the Boolean decision-tree evaluation problem is
complete for CROW PRAM computation in the following sense. If a function

f: {0, 1} R can be computed by a CROWPRAM in time t(n), thenf can be computed
by an EREW PRAM (or any other model of computation) using no more time than
it takes to compute Dn,2,,).

We conjecture that, on the EREW PRAM, a (log n)a() lower bound can be
obtained for the Boolean decision-tree evaluation problem for appropriate choices of
m and h. Unfortunately, the proof of Theorem 3 does not appear to generalize in a
straightforward way. The essential problem is that, on CREW and EREW PRAMs,
information about some input bits can be transmitted to a memory cell by virtue of
the fact that no value was written there during a particular step of a computation. (See
[2] for details.) The definition of knowledge must be modified to take this into account.
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For their CREW PRAM lower bound, Cook, Dwork, and Reischuk [2] used the
following definition to capture certain properties of knowledge. A processor or memory
cell is said to be affected by a particular input bit at time on input x if the state of
the processor or the contents of the memory cell immediately after step of the
computation is different for x than for the input obtained from x by changing the
value of the specified input bit. This definition supports lemmas analogous to Lemmas
1 and 2, provided the input domain is assumed to be {0, 1}.

LEMMA 4 (Cook, Dwork, and Reischuk [2]). For a CREW PRAM, on any input,
every processor and memory cell is affected by at most (1/2(5 + x/))t input bits immediately
after step t.

LEMMA 5 (Beame 1]). For an EREW PRAM, on any input, each input bit affects
at most (2 + x/) processors and memory cells immediately after step t.

There is another fact about knowledge used in the proof of Theorem 3 that,
unfortunately, is not shared by the affects relation. If a processor or memory cell does
not know certain input bits, then changing all of their values does not change the state
of the processor or the contents of the memory cell. Moreover, the set of input bits
that the processor or memory cell knows remains unchanged.

This motivates the following definition. A set of input bits is a dependency set for
a processor or memory cell at time on input x if the state of the processor or the
contents of the memory cell immediately after step of the computation is the same
for x as it is for the inputs obtained from x by changing the values of any set of bits
not in the dependency set. Furthermore, there is another version of Lemma 1 that
holds for the CREW PRAM with the complete input domain {0, 1} n.

LEMMA 6 (Nisan [7]). For a CREW PRAM, on any input, every processor and
memory cell as a dependency set containing at most (1/2(5 + x/))2t input bits immediately
after step t.

Note that this lemma does not imply that, after a small number of steps, all
(minimal) dependency sets are small. For example, consider the contents of the output
cell at the end of the computation of D,,,1 {0, 1}m+2m --> (0, 1}. Recall that for y {0, 1}"
and Xo," ", x2-i {0, 1},

Dm,l(y, xo, ,x2,,,_l)=Xy
and this function can be computed in O(log m) steps. On input 0"+2", the last 2" bits
comprise a minimal dependency set.

Even if we could somehow associate a small dependency set with each processor
and memory cell, the corresponding version of Lemma 2 would also be false. Suppose,
for example, that during the first O(t) steps of a computation, a processor accumulates
the values of 2 input bits and then writes a special value to the memory indexed by
this 2’-tuple. Each of the 22’ memory cells in which the special value can appear must
have at least one of these 2’ input bits in its associated dependency set. Hence, at least
one of these input bits must be a member of the dependency sets associated with at
least 22’- different shared memory cells.

The notions of affects and dependency set do not suffice to extend the proof of
Theorem 3. However, understanding these and other related definitions will provide
us with additional insight into the nature of exclusive read. We also believe that a
definition of knowledge can be obtained to show the Boolean decision-tree evaluation
problem is hard on EREW PRAMs.

The CROW PRAM model can be extended by allowing each processor to own
many different shared memory cells, instead of just one. At each timestep, a processor
could write to any one of the memory cells it owns. However, each memory cell would
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still be owned by only one processor. This new model is no more powerful than the
CROW PRAM because each CROW PRAM processor could use its single shared
memory cell to record the entire sequence of values that would have been written and
the locations to which they would have been written. All interested processors could
then read this information.

The EROW PRAM model can be extended in the same way. But it is not clear
whether the resulting model is more powerful than the EROW PRAM and whether it
is less powerful than the EREW or CROW PRAMs. One approach to obtaining our
desired separation between EREW and CROW PRAMs is to first attempt to prove
that the Boolean decision-tree evaluation problem is hard on this model.
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SCHEDULING SEQUENTIAL LOOPS ON PARALLEL PROCESSORS*

ASHFAQ A. MUNSHI" AND BARBARA SIMONS:

Abstract. Automatic parallelization of code written in a sequential language such as FORTRAN is of
great importance for compilers for parallel computers. First, the problem of automatically parallelizing
iterative loops on multiprocessors is discussed, and then a scheduling problem involving precedence
constraints that models a technique for the automatic parallelization is derived. Polynomial time algorithms
are presented for some special cases of this scheduling problem together with an upper bound on a naive
algorithm for the general case. Using one of the polynomial time algorithms, a heuristic for the original
compiler problem is obtained. Finally, test results obtained by applying our heuristic to EISPACK, a
well-known numerical analysis FORTRAN package, are presented. In these tests the amount of parallelism
obtained always equals and frequently surpasses that obtained by the best known techniques in the literature.
This approach represents one of the first attempts at understanding the complexity theoretic aspects of loop
parallelization.

Key words, compiler, parallel computing, sequential code, loop, scheduling, dependences, precedence
constraints

AMS(MOS) subject classifications, primary 68N20; secondary 68Q25, 68R10

1. Introduction. While much research and development is being devoted to design-
ing parallel machines and parallel algorithms, there is a large amount of code that has
been written for sequential machines in languages such as FORTRAN. It is expensive
and time-consuming to rewrite this code so that it will run efficiently on a parallel
machine. To further complicate the problem, people frequently do not know precisely
what the sequential code does or what side effects it might have. Consequently, there
has been considerable work on the problem of generating parallel code from sequential
code [KKLW]. Much of this work has focused on detecting parallelism in loops,
especially FORTRAN DO loops [Lam]. One important technique, known as
DOACROSS [Cyt], assigns a unique processor to execute the loop for a unique value
of the loop iteration variable. That is, if a loop is to be executed N times, and if there
are at least N processors, then one processor is assigned to each iteration of the loop.
Ideally, all N processors start at the same time and consequently finish at approximately
the same time. Because of data dependences within the loop, however, this idealized
version of DOACROSS usually cannot be realized. Data dependences may force certain
processors to wait for results that must be computed by other processors before they
can continue their local computations.

More precisely, let K be the iteration variable of the loop. Suppose that each
loop iteration is run on a different processor, and assume that each statement has unit
execution time. Label the statements in the loop in the order in which they initially
occur, i.e., Sl, s2,’’’, sn. Suppose that statement s accesses a memory location in
iteration K that is accessed by statement si in iteration K-1. Then we say that s
depends on si. If i>j, then processor K must wait until processor K 1 has computed
si before processor K can compute sj. If <j, then no delay is necessary, since by the
time processor K reaches si, processor K- 1 has already computed s. Finally, if =j,
then the delay must be at least 1, since processor K must wait for statement to be

* Received by the editors September 27, 1987; accepted for publication (in revised form) October 13, 1989.
? Oracle Corporation, 20 Davis Drive, Belmont, California 94002. This work was done while the author

was at IBM Almaden Research Center, San Jose, California.
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executed by processor K- 1. The length of a data dependence is J-il, and it is said
to be lexicographically backward if j 1 =< 0.

A simple extension of the above discussion shows that the amount of delay is
precisely the length of the longest backward dependence plus one [Cyt]. For example,
if there are no backward dependences, the delay is zero. A dependence from a statement
to itself (i.e., its occurrence in the previous iteration) has length zero and delay one.
If there is a backward dependence extending from the last statement of the loop to
the first statement of the loop, the length is n- 1, and the delay is n, the number of
statements in the loop. A loop is "parallel" if it has zero delay and "sequential" if the
delay is equal to the number of statements in the loop.

A natural question is how to minimize the delay associated with a loop by
rearranging the order of the code. This question is of considerable practical importance,
since its solution would allow a compiler to run sequential programs more efficiently
on parallel architectures.

2. Preliminaries and definitions. Most programs have two types of dependences:
data dependence and control dependence. Control dependences are caused by condi-
tional and unconditional branching. It has been shown [AK], [AKPW], [All] that
control dependences can be turned into data dependences via some simple transforma-
tions on the original program. The new program is semantically equivalent to the
original one but possesses only data dependences.

An alternative approach for dealing with control dependences is to eliminate
unnecessary control dependences by constructing a Program Dependence Graph
(PDG). (See [SAF] for an in-depth discussion of PDGs.) The control dependences
of the PDG are treated by our algorithm as if they were loop independent data
dependences (defined below).

We assume that control dependences have been dealt with in some manner. A
data dependence is defined as follows. Statement si is said to be data dependent on
statement sj when the following two conditions hold:

(1) There exists a possible execution path such that statements sj and si both
reference the same memory location M, and

(2) the execution of s. that references M occurs before the execution of s that
references M JAil].

Data dependence can be separated into two types: loop independent dependences
and loop carried dependences. A loop independent dependence of si on s exists if s
depends on sj for a fixed value of the loop iteration variable; otherwise, the dependence
is said to be loop carried. Intuitively, a loop carried dependence requires the presence
of the loop around the body of statements, whereas a loop independent dependence
is present regardless of the loop. If two statements participate in a loop carried
dependence, they can be permuted at will; statements in a loop independent dependence
must occur in the given order.

Loops may be nested, or loop carried dependences might arise because of depen-
dences on data computed several iterations prior to the current iteration. These potential
complications are eliminated as follows. We define distance to be the number of
iterations one has to go back to find the source of the dependence. If the distance is
greater than one, then the problem can be reduced to the distance one case by unrolling

Alliant Computer Corporation uses the DOACROSS technique of [Cyt] for running sequential
FORTRAN programs on its eight processor machine, the FX/8.
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the loop. That is, if the distance is k> 1, then each successive set of k iterations of
the loop is viewed as a single "large" loop. For nested loops the innermost loops are
first processed as if they are isolated loops, that is, as if they are not nested. Each
innermost loop is then collapsed into a single statement, and the process is repeated
on the new innermost loops until finally there is only one loop remaining.

The above simplifications allow us to assume that dependences occur only as a
result of the previous iteration. We also assume that there are no nested loops. (For
a further discussion see [Cyt] and [Mun].) Finally, we assume that the statements all
have equal execution time.

Given a loop L, the dependence graph, GL(N, A), of L is a directed graph where
the nodes of G/ represent statements and the arcs represent data (and control)
dependences. Figure 2 is the dependence graph for the loop of Fig. 1.

As an example, consider the data dependences of the DO loop in Fig. 1. Note
that s4 depends on s3 because s4 references memory location A3(I) after s3. Furthermore,
the dependence is a loop independent dependence, for it occurs no matter what value
I assumes. By contrast, statement s2 has a loop carried dependence on ss because s2
and s8 both reference memory location AS(I), but the reference is for different values
of I. Similarly, Sl has a loop carried dependence on itself since AI(I- 1) is needed to
compute A(I). This dependence is represented as a "self loop" and implies that the
overall delay must be at least one. Since it is not possible to eliminate the delay of
one caused by self loops, we ignore them in the construction of the scheduling problem.
If, subsequently, the heuristic succeeds in rearranging the statements of the loop to

SUBROUTINE SAMPLE
(A1, A2, A3, A4, AS, A6, A7, AS, A9, A10, All, A12, A13, A14, A15, A16, A17, N)

REAL AI(N), A2(N), A3(N), A4(N), AS(N), A6(N), A7(N), AS(N), A9(N), A10(N), All(N), A12(N),
A13(N), A14(N), A15(N), A16(N), A17(N)

Loop independent

DO 227 I=I,N
s AI(I)
s A2(I)
s A3(I)
s4 A4(I) A3(I)
s A5(I) A2(I)
s A6(I) AI(I)
s A7(I) A4(I)
s8 AS(I) A4(I) + A5(I)
S A9(I) AI(I)
So A10(I) A9(I)
s All(I) A9(I)
stz A12(I) A9(I)
s3 A13(I) A12(I)
S14 A14(I) A13(I)
s5 A15(I) A14(I)
S16 A16(I) A14(I)
s7 A17(I) A14(I)
227 CONTINUE

RETURN
END

Loop carried

AI(I-1)
A8(I- 1)
A5(I 1)
A7(I- 1)

A13(I- 1)

A17(I- 1)

A15(I- 1)

A9(I- 1)

FIG. 1. A FORTRAN DO loop.
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allow for a delay of zero, we impose a delay of one to satisfy the constraint of the self
loop. Applying the above definitions gives the dependence graph of Fig. 2.

Since control and loop independent dependences must be acyclic, any backwards
dependence arcs must be loop carried data dependences. Therefore, an optimal
schedule, which can be represented as a permutation of the statements of the original
schedule, either eliminates all backward arcs or minimizes the length of any backward
arcs that cannot be eliminated. The delay optimization problem can now be phrased
succinctly"

Given a loop L, find a permutation r of the dependence graph GL(N, A) such
that the semantics of the loop are preserved and max(s,,s)L(a){T(Si)--T(Sj)} is
minimized over all backward arcs.

As was mentioned above, two statements participating in a loop carried dependence
can be permuted while preserving the semantics of the loop. Therefore, a first approxi-
mation to the delay problem is to consider a loop that contains only loop carried
dependences, i.e., every permutation ofthe statements preserves the semantics. Unfortu-
nately, even determining if there is a permutation of the statements such that the delay
is no greater than some value h is NP-complete for this simple problem [Cyt]. The
reduction is from bandwidth minimization.2

In general, it is not possible to make arbitrary permutations of the statements
within the loop, since control and loop independent data dependences force a partial
order on the statements of the loop. Note that if the dependence graph does not have
any circuits, then a topological sort of the graph results in no backward arcs, which
in turn implies no delay.

We view the problem of minimizing delay as having two parts. The first part is
the problem of mapping the FORTRAN DO loop to an instance of a scheduling
problem, and the second part is the solution of the scheduling problem.

3. Constructing the scheduling problem. Given a loop L, let GLI(N, A) be the
dependence graph of L that is obtained when the dependences are restricted to control
and loop independent data dependences. GI is partitioned into levels as follows. All

loop carried
loop independent

FIG. 2. The dependence graph for Fig. 1.

Anderson, Munshi, and Simons [AMS] have shown that the Delay problem is NP-complete for a

forest of arbitrary trees (i.e., the trees are neither in-trees nor out-trees).
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the nodes of GLI that have no successors (i.e., sinks) are at level 1. In general, all the
nodes of GLI that have successors only at level i-1 and possibly at levels below level

1 are at level i. Note that if two nodes are at the same level, then they are independent
with respect to GLt. Therefore, GI can be partitioned into a set of independent sets

{Ei} by assigning all nodes at level to the set ;i. We define the obvious total
ordering < on E :E < E; if and only if <j.

Even though the nodes in Ei form an independent set in G, they might contain
some loop carried dependences. If there are loop carried dependences among the
nodes in E, then Ei is partitioned into subsets until no loops carried dependences
remain among the nodes in each of the subsets. A total ordering is then applied to all
the subsets and any remaining unpartitioned sets such that the total ordering among
the original sets in E is not violated.

An arc (s, s;) with s Ep, s 6Eq is forward if p > q and backward otherwise.
(The sets Ei have been constructed so that all control and independent data dependences
go from higher numbered E sets to lower numbered ones. Therefore, the backward
loop carried data dependences whose lengths we want to minimize all go from lower
numbered E sets to higher numbered ones.) If the loop carried dependences of E do
not form a loop in E, then the subsets of E can be ordered such that none of the
loop carried dependences is a backward arc. However, for some cases such an ordering
of the subsets will be globally suboptimal.

Assume we have a set of independent sets of nodes El, E2,’’ ", ;. We assign
sets of integers to the independent sets in E as follows. The integers from 1 to I1 are
assigned to EL, the integers from [ELI--1 to I.-LI-IEL_ll are assigned to EL_l, and so
on. The above construction partitions the integers 1... n, where n is the number of
statements in the loop (as well as the number of nodes in GL). Furthermore, the
mapping of the nodes onto the integers reflects the ordering imposed between the E
sets by the control and loop independent data dependences.

In the example of Fig. 3, the first E set constructed from only the control and
loop independent dependences is {6, 7, 8, 10, 11, 15, 16, 17}. Although these nodes are
independent with respect to the control and loop independent data dependences, there
are loop carried dependences from 15 to 10 and from 17 to 8. Therefore, the set has
to be partitioned into two E sets, each of which contains one node from each of the
loop carried dependences. Figure 3 shows a legal partitioning of the nodes and the
number line for Fig. 1 with E1 { 15, 17}, E2 {6, 7, 8, 10, 11, 16}, E3 {4, 5, 14}, E4

{2, 3, 13}, E5 { 12}, E6 {9}, E7 {1}.

2 3 4 5 6 7 8 9
I11111

10 11 12 13 14 15 16 17

FIG. 3. Independent sets and a partition of the number line for Fig. 1.

In addition to mapping nodes to partitions of the first n integers, we construct a
DAG that we call B(N,A), where N(B)= N(GL) and A(B) consists of all arcs
(s, s) A(G/) for which j is assigned to an earlier partition than is i. The scheduling
problem consists of assigning an integer start time to all the nodes in N(B) such that

While our techniques for constructing the independent sets Ei seem to work well in practice, an
implementor might wish to experiment with variations.
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(1) Each node is scheduled, that is, assigned a start time, within the interval to
which its set is assigned.

(2) The start times of any two nodes differs by at least one.
(3) The difference in start times of the endpoints of any arc in A(B) is minimized.

More formally:

The delay problem. Given an ordered set of disjoint intervals 11,... Ik, a
DAG B(N, A) of precedence constraints, and a mapping f: N(B)--> so that if (i,j)
A(B), then f(i)>f(j), find a mapping s:N(B)->I+ such that for all i,jN(B),
s(i)f(i), s(j)f(j), s(i)-s(j)>=l for ij, and max<i,jA<B{s(i)-s(j)} is
minimized.

To illustrate, consider again the dependence graph of Fig. 2 in which loop
independent data dependences force Sl to precede s9, which in turn must precede s12.
Hence, the set containing Sl must precede the set containing s9, which must precede
the set containing Sly_. Since the arc representing the loop carried dependence s13-> s6
is no longer a backward arc in the partition given in Fig. 3, the set of backward arcs
involves only the statements s2, s3, s4, ss, s7, ss, Slo, s5, and SiT. Consequently, B(N, A)
contains only nodes corresponding to these statements and only those arcs that are
backward arcs. The nodes corresponding to statements s and s3 must be scheduled
in the interval [4, 6], the nodes corresponding to s4 and s5 in [7, 9], the nodes correspond-
ing to $7, $8, and So in [10, 15], and the nodes corresponding to S15 and $17 in
[16,17].

This completes the mapping to the scheduling problem. For ease of exposition
we assume for the remainder of the paper that all arcs in the scheduling problem go
forward. So, if (si, sj) is an arc, then the interval into which node is mapped comes
before the interval into which node j is mapped on the number line. The reader should
understand that an arc in a graph for the scheduling problem is actually a backward
arc from the corresponding dependence graph.

4. Scheduling chains.4 A chain C =B(N,A) is a simple path where N(B)=
{C, C:,. , Cn} with A(B)= {(Ci, Ci+l)}. We first consider the version of the Delay
Problem in which B(N, A) is a single chain.

Problem SC (single chain). Let C B(N, A) be a single chain with f(Ci) =//. Let
the left and right endpoints of these (closed) intervals be l and ri, respectively, with

1<= ri < li+ <= r+ for 1 -<_ < n, and ri and l integers for 1 <- <- n. Find a mapping
s N(B) I/ such that s(Ci) Ii and maxi<n (s(Ci+) s(Ci)) is minimized.

We model the SC problem as a scheduling problem. A schedule is an assignment
of start times to each node in the problem instance. A feasible schedule is a schedule
in which each node is assigned a unique start time that falls within its assigned interval
and in which the difference between any two start times is at least one. If the integer
cf(i), then c is called a slot. If no element of N(B) is mapped to c, then c is said
to be empty.

An approach to solving problem SC is to initially schedule each node C at the
rightmost slot of its interval ri. Then a left shift y is computed for each Ci so that the
maximum separation between adjacent nodes is minimized.

All the algorithms presented in this paper can be easily modified to work for the case in which the
endpoints are rational. We use integer values throughout because of the formulation of the original compiler
problem.
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Mathematically, this amounts to solving the following optimization problem:

min max {(r/+l- Yi+I)-(ri-Yi)}
Yi

subject to 0 _-< Yi --< ri li, li, ri, and Yi integers.

This is equivalent to solving the integer linear program

min h
subject to (ri+l- Yi+l)-(ri -Yi) <-- h
and
0-<_ Yi--< ri li, ri, h integers.

If inequalities through i+j are added together, we get (ri+j-yi+j)-(ri-Yi) <-_jh. Since
0 _-< Yi/j -< ri+- li/ we have Yi+- Yi =< ri/j- li/j. Adding this to the previous inequality
gives

h ’ f((li+ ri)/j) hij(t).

This implies that A _-> maxij {A0}, since and j were chosen arbitrarily. We now show
that this lower bound is tight.

Let s(Ci) be the starting time of Ci, where Ci started at s(Ci) executes in the
interval [s(Ci), s(Ci)+ 1). The algorithm for achieving the lower bound (?) is

Algorithm SC (k)

Set s (C1) rl.
Set s(Ci) min (s(Ci_l) + A, ri), where A maxij {A/j}, for 2,. ., n.

To prove that algorithm SC is correct, we assume for contradiction that for some node
Cp, s(Cp) < l,. Let q max {k<,(s(Ck) rk)}. There must exist such a q since s(C1) rl.
Therefore, rq + (p q)A < lv, which implies A < (lp rq) / (p q), a contradiction. This
proves the following theorem.

THEOREM 1. Algorithm SC is an O( n2) time algorithm for optimally scheduling the
nodes of a single chain, where n is the number of nodes.

Because the SC problem is symmetric, the following algorithm also solves SC.

Algorithm REVERSE-SC (k)

Set s(C,) I,
Set s(C) max (s(C+I)-A,/) for j= 1,..., n-1.

Yet another algorithm for the SC problem is obtained by performing binary search on
A and checking feasibility using algorithm SC with the test value of A. For the original
compiler problem A _<- n; for this case the binary search approach gives an algorithm
with a running time of O(n log n). In summary,

LEMMA 2. There exists an O( n log A algorithm for Problem SC.
We next consider the problem of scheduling an arbitrary number of chains.
Let C {C1, C2," ", Cn} be a set of chains, with Ci being the simple path Ci,1,

Ci,2, , Ci, ni, and let 5 {11, I, , Im } be a set of intervals, with li -< ri < I+1 -<- ri+l,

for 1 _-< < m, and ri, li integers for 1-< _<-m. The intervals associated with Ci are the
subset of 5 to which the nodes of Ci are mapped by f The underlying interval of a
node is the interval into which the node is mapped by f A A-feasible schedule is a
feasible schedule in which the difference between the start times oftwo nodes connected
by an arc is no greater than A.

Problem Multiple Chain (MC). Given a set of intervals 11, , Im with li <- ri <
li+l <- ri+l, for 1 _--< < m, and a set of n chains C1, , C,, compute the minimum value
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of A such that there exists a A-feasible schedule for the problem instance. Algorithm
MC (A), presented below, constructs a feasible schedule if one exists for an instance
of problem MC and a given value of A. If no feasible schedule exists, it determines
that there is none for the given value of A.

The A-feasible intervals for a chain Ci are the intervals obtained by applying
algorithm SC (A) and REVERSE-SC (A) for a fixed value of A to Ci together with the
intervals associated with Ci. The left endpoint of the A-feasible interval for C,j is the
start time assigned to C,j by REVERSE-SC (A), and the right endpoint is the start
time assigned by SC (A). The A-feasible interval for C,j is denoted by A-feas(Ci,),
with the left endpoint (right endpoint) of A-feas (Ci,) being denoted left(A-feas(Ci,j))
(right (A-leas (C,j))). We drop the use of A when the meaning is obvious from the
context. The left (right) endpoint of an interval Ik is denoted by left(Ik) (right(Ik)).
Given a schedule (which may not be a feasible schedule) for an instance of MC, a
conflicting set is a set of two or more nodes which have the same start time. The
rightmost conflicting set is the conflicting set with the latest start time.

Algorithm MC (k)
(1) Compute the A-feasible intervals of each chain Ci separately. If SC (A) does

not construct a feasible schedule for some chain, then declare the problem instance
infeasible and halt.

(2) Schedule each node at the rightmost slot of its feasible interval.
(3) If each node is assigned a unique start time, then output the schedule and halt.
(4) Let S be the rightmost conflicting set and let S’_ S be the set of nodes in S

that are scheduled at the left endpoint of their feasible interval. If IS’I _-> 2, then declare
the problem instance infeasible and halt.

4(a) If there is a node x S-S’ such that x has no successor, shift x left one
unit else

4(b) Let x be the node in S-S’ whose successor is scheduled earliest among all
successors of nodes in S-S’. Shift x left 1 unit.

Go to step 3.

In the following example the chains are characterized by the underlying intervals into
which the chain nodes are assigned.

Example. {I" 1 <-_j <- 6}, with I 1 4], I2 [5" 7], 13 (8" 12], 14
[13... 15], 15=[16 21], I6=[22 24].

{A, B, C, D, E, F}, with A [I1, I3, I4, I5, I6], B [11, I3, I5], C
[I1, I2, I4, I5], D [I1, I2, I3, I5, I6], E [I2, I3, I], F= [I3, I4, I5, I6].

Observe that A 5 is an infeasible value for the B chain, since A 5 implies that
the third node in the B chain cannot start sufficiently late to reach I5. However, for
h 6, none of the chains is infeasible, and we get the following 6-feasible intervals"

A [2, 4], [8, 10], [13, 15], [16, 21], [22, 24]
B [4, 4], [10, 10], [16, 16]
C =[1, 4], [7, 7], [13, 13], [16, 19]
D=[1, 4], [5, 7], [10, 12], [16, 18]
E =.[5, 7], [10, 12], [16, 18], [22, 24]
F=[8, 12], [13, 15], [16, 21], [22, 24]

The initial schedule in which all nodes are scheduled at the rightmost slots of their
feasible intervals is illustrated in Fig. 4; Fig. 5 shows the final 6-feasible schedule.

Let SCHk be the schedule constructed by Algorithm MC after k_-> 0 left shifts.
LEMMA 3. Suppose that for any x, x’ SCHk such that x is the parent ofx’ we have

s(x’) s(x) <-- A. Then, in SCHk+lS(X’ s(x) A.
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A AA A
B B B
C C C C
D D D D

E E E
F F F

FIG. 4. The initial placement of nodes for A 6.

D C A B D E C F A B D E C F A B D E C F A E F A

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

FIG. 5. A 6-feasible schedule for the example of Fig,. 4.

Proof The lemma clearly holds for all x, x’ such that x is not the node that is
shifted left on the k + 1st left shift. Suppose that x is the node that is shifted left on
the k + 1st left shift. If x is selected by step 4(a), then the lemma follows trivially. So
suppose x is selected by step 4(b). Then if x is not the only node in S- S’, there exists
a y S-S’ with immediate successor y’ such that s(y’)> s(x’) in SCHk. In SCHk+
we have s(y’) s(y) <= A, s(y’) >- s(x’) + 1, and s(x) + 1 s(y). Therefore, s(x’) s(x) <=
A in SCHk+1. Finally, suppose that S-S’= {x} in SCHk. Then, since [S1=>2, there
exists some node y S’, which implies that s(y)= left (leas (y)) in SCHk. Since both
x and y are mapped to the same underlying interval, /, and since left (feas (y))>
left (feas (x)), y has an immediate successor y’. Suppose that s(x’)- s(x) A in SCHk.
By the induction assumption s(y’)-s(y)<=A. Because s(y)=left (feas (y)), s(y’)-
s(y) A. But this implies that s(y’)= s(x’) in SCHk, a contradiction since S is the
leftmost conflicting set. Therefore, s(x’) s(x) < A in SCHk hence, s(x’) s(x) <_- )t in
SCHk+ l-]

LEMMA 4. If Algorithm MC (A) has performed k left shifts, then for all x, x’ such
that x immediately precedes x’, s(x’) s(x) <= A in SCHk.

Proof The basis follows trivially from the construction offeasible intervals together
with step 2 of Algorithm MC, and the induction step follows from Lemma 3. [3

THEOREM 5. IfAlgorithm MC (A) halts at step 3, then it as constructed a A-feasible
schedule.

Proof Since all nodes are scheduled within their A-feasible intervals, every node
is scheduled within its underlying interval. Since all conflicting sets are eliminated, no
two nodes have the same start time. Lemma 4 guarantees that any pair of nodes that
are adjacent in some chain are scheduled no more than A apart. [3

LEMMA 6. At the beginning ofan iteration ofstep 4, let S be the rightmost conflicting
set and let x S be the node that is selected by the iteration of step 4 to be shifted left.
Then left (feas(x)) <-_ left (feas(y)) for all y S.

Proof. If x is shifted left by step 4(a), then since x has no successors it follows
from the definition of A-feasible intervals that left (feas (x)) is also the left endpoint
of the underlying interval. Hence the lemma holds.

Suppose that x is shifted left by step 4(b). Let y be any other element of S. If
y S’, then left (feas (x))_-<left (feas (y)). So suppose that y S’ and let x’ and y’ be
the successors of x and y respectively. Note that both x’ and y’ must exist, since
otherwise either x or y would have been shifted left by step 4(a). Also, since S is the
rightmost conflicting set, s(x’) s(y’).

We use an induction argument based on the number of shifts.
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Basis: x is the node shifted left by Algorithm MC applied to SCHo. Since x is
shifted left, it follows that s(x’) < s(y’). If x’ and y’ are in different underlying intervals,
then the lemma clearly holds. If they are in the same underlying interval, then since
no nodes have been shifted left prior to the shift of x, it follows from the definition
of A-feasible intervals and the fact that s(x)= s(y) in SCHo that s(x’)= s(y’), a
contradiction.

Induction step: Assume the lemma holds for all previous shifts and let x be the
node shifted left by Algorithm MC applied to SCHk_. Again, if x’ and y’ are in
different underlying intervals, the lemma holds. So suppose that x’ and y’ are in the
same underlying interval. Because s(x)= s(y), it follows from the definition of
feasible intervals that x’ had at least s(y’)- s(x’) left shifts applied to it. Therefore, x’
and y’ had earlier been in the same conflicting set. By applying the induction assumption
to x’ and y’, we get left(feas(x’))=<left(feas (y’)), which by the construction of
A-feasible intervals implies left (feas (x))_-<left (feas (y)).

LEMMA 7. If Algorithm MC (A) declares a problem instance infeasible in step 4,
then there is no A-feasible schedule for the problem instance.

Proof Assume for contradiction that Algorithm MC (A) declares a feasible prob-
lem instance to be infeasible. Let S, be the conflicting set on which MC (A) halted,
and let be the time at which the nodes in St were scheduled. Define"

S’d {x: =< left (feas (x)) and right (feas (x)) =<j}.
Since the number of slots in the interval It, j] is j-t+ 1, if [S’t,j]>=j t+2 for some j,
then by the pigeon hole principle, the problem instance is infeasible. So suppose that
[S’t,j[-<_j-t+ 1 for all values of j. Since this implies that IS[t[ =< 1, S, contains at least
two elements of S’,, for some j > t.

Let J be the largest number greater than such that Algorithm MC () processes
conflicting sets at times J, J- 1, , + 1, t, and each of these conflicting sets contains
an element of S’ It folllows from Lemma 6 that if node x is shifted left when at,./

conflicting set is processed at time i, <i<= J, and y is ultimately scheduled at time t,
then left (feas (x)) =< left (feas (y)). Therefore, by the definition of J, left (feas (y))_>- t.
If right (feas (y))> J, then the maximality of J is contradicted. Consequently, t=<

left (feas (y -< right (feas (y))=<J. Since at time there are at least two nodes from
S’,,j, a simple counting argument gives IS[j[ => J-t + 2, contradicting the assumption
that IS’,d =<j- + 1 for all j.

THEOREM 8. IfAlgorithm MC () halts in steps 1 or 4, then there is no h-feasible
schedule for the problem instance.

Proof The proof for step 1 follows from the correctness proof for SC, and the
proof for step 4 follows from Lemma 7. I-1

The following theorem bounds the optimal value for A.
THEOREM 9. If there exists a feasible schedule for an instance of MC, with chains
{C1,’", Cn}, then there exists a A-feasible schedule with Ao _-< A _-< ,to + n- 1 where

Ao maxl_<_i=<, A (Ci), and A (Ci) denotes the value of A computed by Algorithm SC for
chain Ci.

Proof The lower bound is obvious; the upper bound follows from Algorithm
UPPER, presented below.

Algorithm UPPER.
If any interval has more nodes mapped into it than it has slots, declare the problem
instance infeasible and halt.
Schedule C1 according to Algorithm SC with A Ao.

For i=2to n do
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end
od

Let {Ci,1,""", Ci,,,} be the nodes of Ci.
Schedule Ci, at the latest empty slot in f(Ci,1)
Forj=2to nido

Let to= min (s(Ci,_l) + Ao+ i- 1, right (f(C,))).
If to is an empty slot then set s(C,j)= to
else do
/* first test if nodes already scheduled can be shifted right */

if there exists an empty slot at time t, to < -< right (f(Ci,)), do
let tl be the minimum such
increase the start times of all nodes with start times to,
to + 1, , tl by one/* shift right to create an empty slot */
Set s(C,j) to

od
/* if right shift failed, then schedule node as late as possible
within its feasible interval *!
else do

let t2 be the largest valued empty slot with left (f(C,j))-<
t2 < to; if there is no such t2, then declare failure and halt
Set s(C,) t

od
od

od

The proof of the correctness of UPPER follows from the succeeding lemmas. [3

LEMMA 10. In the ith iteration ofthe outer loop of UPPER, s(Ck,)+ i-- 1 >= S(Ck,j),
k <= i, where s i(Ck,) denotes the start time assigned to Ck,j at the completion of the ith
iteration of the outer loop of UPPER and S( Ck,j) denotes the start time assigned to Ck,j
by Algorithm SC with A Ao.

Proof The proof is an induction on i. For 1 we have that all nodes C, 1 <=j <= nl
satisfy the lemma since sl(C1,j)= s(C,j). Assume that all nodes scheduled in the first
i-1 iterations satisfy the lemma.

C, is scheduled so that s(C,)+ i-1 >= s(C,l), because at most i-1 nodes can
be scheduled to its right. Assume that all nodes up to and including the C, satisfy
the inequality. In particular, si(C,) + i- 1 >- s(C,). This implies that
min {right (f(Ci,+)), s(C,j)+ i- 1 +Ao}_->min {right (f(Ci,j+l)), s(Ci,j)’31"tO} Note
that the right hand side of the inequality is the expression for s(C,j+l), while the left
hand side is the value of to computed by UPPER. Hence, to -> s(C,j/).

There are three cases to consider. First, if UPPER schedules C,+ at to with or
without shifting any nodes, the lemma clearly holds for Ci,/. Second, if UPPER shifts
some nodes right by one unit, the lemma still holds because by the induction hypothesis
each such node satisfies si(x)+i-2>=s(x) and shifting x by one unit to the right
amounts to increasing si(x) by one. Third, if UPPER schedules Ci,j/ at some time
t < to, then te cannot be more than i-1 units to the left of to, because at most i-1
nodes could have been scheduled contiguously. Therefore, t2+ i- 1 >= to. Equivalently,
s(C,+)+ i- 1 >= to>= s(Ci,+l). This proves the lemma. [3

THEOREM 11. Algorithm UPPER constructs a feasible schedule if one exists.

Proof Assume a feasible schedule exists. By a pigeon hole argument, this implies
that every interval has at least as many slots as it has nodes mapped into it. Therefore,
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Algorithm UPPER will not determine infeasibility on the first test. Furthermore, each
node Ci,j will be assigned a start time so long as si(Ci,j_l) + Ao+ i- 1 _->left (f(Ci,)).

We need only prove that no node falls short of the left endpoint of its interval.
So suppose for contradiction that there exists a node C, such that si(Ci,_l) + Ao+ 1 <
left (f(Ci,)). Bythe previous lemma, s(Ci,j_l) si(Ci,j_l)-" i-- 1. Hence, s(Ci,j-1)+ Ao <
left (f(C,)). This is a contradiction, because it implies that ho is not sufficiently large
to construct a feasible schedule for Ci using Algorithm SC.

LEMMA 12. There exists an instance of MC with chains CI,. ., Cn and intervals
I1, 12 such that A Ao + n- 1.

Proof. For each C there are two nodes C, and Ci,2 withf(C,l) I andf(Ci,2) I.
For this instance Ao left (I)- right (I). Further, for any ordering of the nodes in the
first interval, the ordering of the nodes in the second interval that minimizes A is the
same as that of the first interval. This implies that A => Ao + n 1, which in turn implies
the lemma.

TI-IEOREM 13. Given an instance of the MC problem, the running time required to
determine the minimum value ofAfor which a A-feasible schedule exists is O(m( n log n)2).

Proofi We note that by Theorem 9 the optimum value of A is bounded between
Ao and Ao+ n- 1. Therefore, the optimum value of A can be determined in O(log n)
iterations of Algorithm MC. The running time of Algorithm MC is dominated by the
shifting of nodes in step 4. Since there are n chains, there can be no more than n
nodes per interval. Therefore, the number of shifts per interval is bounded by n(n 1)! 2.
Since there can be no more than rn intervals, the total number of shifts is O(mn2).
Selecting the node to shift in step 4 can cost O(log n), thus giving a running time for
a single iteration of algorithm MC of O(mn log n). The bound follows from the first
observation.

5. A general upper bound on the performance of a naive algorithm. Consider an
instance of the Delay Problem with B(N, A) being the DAG of precedence constraints.
Partition the elements of N(B) as follows.

Ns is the set of nodes in N(B) that have only successors (sources);
Np is the set of nodes in N(B) that have only predecessors (sinks);
Nps is the set of nodes in N(B) that have both predecessors and successors;
No is the set of nodes in N(B) that have neither predecessors nor successors

(singletons).
Let A be any naive algorithm for solving the Delay Problem with all of the

following properties.
(1) First A schedules the nodes in N, with each node going in the rightmost

empty.slot in its interval;
(2) Then A schedules the nodes in Np, with each node going in the leftmost empty

slot in its interval;
(3) Finally, A schedules the nodes of Np and No arbitrarily.
Let AA be the value that A computes for A and let Aop be the optimal value of A

for the problem instance. Then we have the following theorem.
THEOREM 14. /A - 3/opt 2.

Proofi First observe that since each node in N has a successor, no node in N
can be scheduled by A further than Aopt-1 from the right endpoint of its underlying
interval, since otherwise some node in Ns would have its successor scheduled more

Anderson, Munshi, and Simons [AMS] use preprocessing to obtain an algorithm for testing the existence
of a A-feasible schedule in time O(n log n). The result also holds for forests of either in-trees or out-trees.
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than hop away in any schedule. Similarly, any node in Np cannot be scheduled by A
further than ’opt--1 from the left endpoint of its underlying interval.

Now, consider any arc (y, z) A(B). Clearly, the length of this arc cannot be larger
than right (f(z))-left (f(y)). Let Sop be some optimal schedule, and define Sopt(X
to be the start time of node x in Sopt.

Case 1. y, z Nps. Let (x, y) and (z, w) be two neighboring arcs of (y, z). Clearly,
right (f(z))=<left (f(w))- 1 and right (f(x))_-<left (f(y))- 1. Adding these
gives right (f(z))-left (f(y))_-<left (f( w)) right (f(w))-2. Now, left (f(w))-
right (f(x))<-Sopt(W -Sopt(X 3hop Combining this with the previous inequality, we
get right (f(z)) left (f(y)) _-< 3 hopt- 2.

Case 2. y Ns and z Np. Let (z, w) be a neighboring arc of (y, z). From the
observation made at the beginning we know that right (f(y)) SA(y) <= hopt-- 1, where
SA(y) denotes the start time assigned to y by algorithm A. Since Sopt(W) Sopt(Y -< 2Aopt,
we have that Sopt(W)--SA(y)3Aopt--1 and consequently, left(f(w))--SA(y)<--_
3hop 1. Also, since right (f(z)) <= left (f(w)) 1, we get right (f(z)) SA(y) <-- 3hopt 2.
Hence, the maximum length of arc (y, z) is bounded by 3Aopt-2.

The remaining cases are similar.
LEMMA 15. Algorithm A runs in linear time.

Proof. The partitioning into sets can clearly be done in linear time. Similarly, the
actual scheduling can be done by always scheduling nodes at either the rightmost or
leftmost empty slot in an interval. This scheduling requires only that two pointers be
maintained for each interval, the updating of which can be performed in O(1) time
for each node scheduled.

6. An approximation algorithm. We have implemented an approximation
algorithm called APPROX. The basic idea of APPROX is to create a subgraph that
we know how to schedule optimally, i.e., a set of chains. We iteratively refine the initial
schedule for the subgraph to obtain a schedule for the entire graph B. During this
process we attempt to prevent the value of h from increasing by first trying reasonable
shifts of the nodes, and increasing h only when the shifts alone do not resolve conflicts.

The algorithm begins by pruning the graph as follows:

If there exists p, q, r such that (p, q), (q, r), (p, r) A(B), and f(p) <f(q) <f(r),
then the arcs (p, q) and (q, r) are eliminated.6

Subsequently, a greedy algorithm is used to create a set of spanning chains such that
every node of N(B) is contained in some chain. We then apply Algorithm MC to the
set of all chains containing more than one node. Using the resulting schedule, we
measure the length of each arc that is not an arc of some chain. If its length exceeds
A, we attempt to shift the nodes of one of the chains in a manner that preserves h
while still resulting in a feasible schedule. Failing this, we increase h and continue.
Finally, each "singleton" chain is inserted in a manner that attempts to minimize the
lengths of the arcs incident to it.

7. Comparison with previous results. The percentage parallelism of a loop with n
statements and delay A is (n-,)/n [Cyt].

Figure 6 contains results obtained when our techniques were tested on some
EISPACK routines, written in FORTRAN, that seem to exhibit very little parallelism.
Listed is the percentage parallelism obtained after optimizing the code using the Illinois
optimizing compiler but without using the DOACROSS feature that is currently a
portion of that optimizing compiler (Unopt), Cytron’s algorithm (CYT), and our
algorithm (APPROX). Note that significant improvements over [Cyt] can be obtained

Recall that we have reversed the direction ofthe backward loop carried arcs for the scheduling problem.
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Name Unopt CYT APPROX

CINVIT 6.3 6.3 9.6
COMLR2 11.1 11.1 11.1
COMQR2 5.6 5.6 11.1
HQR2 0 0 3.0
HTRIB3 4.0 4.0 33.3
HTRIDI 18.8 25.0 37.5
HTRID3 3.1 3.1 14.2
INVIT 0.0 2.9 5.8
MINFIT 8.0 8.0 20.0
QZVEC 23.1 36.3 36.3
SVD 0 0 14.3
TQLRAT 0 0 7.7

FIG. 6. Percentage parallelism obtained on EISPACK routines.

using our algorithm, and that in several cases where algorithm CYT was not able to
find any parallelism in the code, our algorithm did find some parallelism. Indeed, in
some cases our results are better by a factor greater than three. This does not actually
contradict Theorem 14, since our technique for constructing independent sets tends
to improve performance.

In summary, it has been shown that important special cases of the Delay Problem
can be solved optimally in polynomial time. These solutions represent an improvement
that is frequently considerably better than extant methods. Empirical evaluations show
that in practice parallelism can be detected using our methods where none or little
could be detected before.
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Abstract. The problem of finding locally optimal solutions to combinatorial problems in the
framework of PLS as defined by D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis [J. Comput.
System Sci., 37(1988), pp. 79-100] is considered. A PLS-complete problem is exhibited such that the
problem of verifying local optimality can be solved in LOGSPACE. For all previously known PLS-
complete problems, verifying local optimality was P-complete, and it was conjectured in [J. Comput.
System Sci., 37(1988), pp. 79-100] that this was necessary.

Key words, computational complexity,,local search, PLS, NP-complete

AMS(MOS) subject classifications. 68Q15, 68Q20, 68Q25

1. Introduction. A recent approach to uncovering the structure of NP-complete
problems [1] is the question of finding locally optimal solutions. Of course, if P NP
then it is asking too much to find globally optimal solutions quickly, but even the
question of local optimality is unclear.

To formalize this notion, Johnson, Papadimitriou, and Yannakakis [3] have de-
fined a class of local search problems called PLS (Polynomial-Time Local Search). A
PLS problem consists of a set of instances, feasible solutions, a cost function, and
a neighborhood structure. A feasible solution is locally optimal if it has no neigh-
bor with better cost. For example, consider GRAPH PARTITIONING with the 2-opt
neighborhood. Instances are undirected graphs with an even number of vertices and
weights on the edges. A feasible solution is a partition of the vertices into two equal-
size pieces, and the cost function (which we are trying to minimize) is the sum of
the weights on the edges that cross the partition. The 2-opt neighborhood consists of
those partitions obtained by swapping one node from each side.

It is an open question if even locally optimal solutions for GRAPH PARTITIONING

under 2-opt can be found in polynomial time. This problem is especially intriguing
because it seems so natural that we should be able to find at least locally optimal
solutions, yet it is not known. As a partial answer, we turn to completeness. Say that
A is PLS-reducible to B if we can transform instances of A into instances of B such
that given a local optimum for B, we can construct a local optimum for A. Refer-
ence [3] then shows that GRAPH PARTITIONING under the (much more complicated)
Kernighan-Lin neighborhood structure [4] is PLS-complete. This result has two sur-
prising corollaries. First, it is NP-hard to determine the output of the Kernighan-Lin
algorithm on an arbitrary instance, and second, there are instances of GRAPH PARTI-
TIONING for which Kernighan-Lin takes exponentially many iterations. Naturally, the
completeness result also implies that local optima can be found in polynomial time
under the Kernighan-Lin neighborhood structure only if local optima can be found
for all problems in PLS. This result is especially important because, in practice, the
Kernighan-Lin algorithm produces among the best feasible solutions of any heuristic
algorithm [2].

The precise complexity of PLS problems is still open. Certainly they are no

Received by the editors September 12, 1988; accepted for publication (in revised form) Septem-
ber 11, 1989. This research was supported in part by National Science Foundation grant CCR-
8809370. An extended abstract was presented at the Fourth Annual IEEE Symposium on the Struc-
ture in Complexity Theory, Eugene, Oregon, June 1989.

Department of Computer Science, Rice University, P.O. Box 1892, Houston, Texas 77251-1892.
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harder than NP problems because globally optimal solutions can be found with an
NP oracle. However, it is unlikely that they are NP-hard because if a PLS problem
is NP-hard, then NP coNP [3]. On the other hand, LINEAR PROGRAMMING with
the simplex neighborhood is in PLS, and for simplex, local optimality implies global
optimality. Although it would not imply any collapse, a polynomial-time algorithm
for a PLS-complete problem would provide another proof that LINEAR PROGRAMMING
is in P.

An essential feature of the construction in [3] is that, given a particular feasible
solution, it is P-complete [6] to verify that the solution is locally optimal. The 2-
opt neighborhood does not have this property; in fact, for 2-opt, local optimality
can be verified in LOGSPACE. Also, since the 2-opt neighborhood is simpler than
the Keringhan-Lin structure, it may be easier to find locally optimal solutions for 2-
opt. Johnson, Papadimitriou, and Yannakakis conjectured that a problem could not
be PLS-complete without the corresponding verification problem being P-complete.
Actually, a lovely conjecture would be that local optima can be found in polynomial
time if and only if the verification problem is in LOGSPACE, and in fact, this was our
original motivation, to determine under what conditions local optima can be found in
polynomial time.

In this paper, we disprove the above conjecture (under the assumption that
P LOGSPACE) by exhibiting a PLS-complete problem such that the correspond-
ing verification problem is in LOGSPACE. The problem we consider is CNF FLIP,
i.e., given a Boolean formula in conjunctive normal form (CNF) with weights on the
clauses, try to maximize the sum of the weights on the true clauses, under the neigh-
borhood of flipping single variables. Reference [3] shows that the same problem using
Boolean circuits (CIRCUIT FLIP), instead of formulas in CNF, is PLS-complete and
that its verification problem is P-complete. Our result says that the P-completeness
is not necessary and suggests that more problems are actually PLS-complete than
was previously believed. We conjecture that GRAPH PARTITIONING under 2-opt is
PLS-complete, but as of now, our result does not carry over. We leave it as an open
problem under what conditions local optima can be found in polynomial time.

2. Definitions. The definitions below of PLS, and later PLS-reducible, are de-
signed to formalize the question of when it is possible to find locally optimal solutions
in polynomial time. Note that there are no constraints on the number of neighbors,
or on the diameter of the neighborhood structure (the minimum distance between
two feasible solutions, maximized over all pairs of feasible solutions), or even that the
neighborhood relation is connected or symmetric. It would be valid to have every
feasible solution a neighbor of every other feasible solution, but then algorithm CI]

would imply that testing global optimality is in polynomial time. Also note that CI
is not required to compute the best neighbor.

DEFINITION. A PLS (Polynomial-Time Local Search) problem, II, consists of the
following.

(1) A set of instances :D C_ E* for some finite alphabet E.
(2) A set of feasible solutions .$r(x) c_ Ep(Ixl) for every x E :DrI, for some

polynomial p.
(3) A set of neighbors A/’(s) c_ .PSn(x) for every x E pI and s 9srI(x).

[I 9$[I(x) N for every x TrI where N(4) A measure function mx

{0, 1, 2,...}, the set of natural numbers.
We require that TI, 9$n(x), and Aft(s) be polynomial-time recognizable. There

is no requirement that we can enumerate A/’(s), and in fact, s may have more than
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polynomially many neighbors. In addition, we require the following three algorithms
to be computable in polynomial time.

(1) Algorithm An, on input x E Dn, produces an initial feasible solution in
rsn (x).

H(2) Algorithm Bn, on input x E/)n and s $’Sn(x), computes mx (s).
(3) Algorithm Cn, on input x 7:)n and s $’Sn(x), determines if s is locally

optimal, and if not produces another solution s’ Aft(s) with better cost.
DEFINITION. CIRCUIT FLIP. Instances are Boolean circuits with n inputs and n

outputs. A feasible solution is an assignment to the inputs, and the measure function
(which we are trying to maximize) is the output sequence viewed as a binary num-
ber. The neighborhood of an assignment contains all other assignments obtained by
flipping the value of a single input.

DEFINITION. CNF FLIP. Instances are Boolean formulas in conjunctive normal
form with (binary) weights on the clauses. A feasible solution is an assignment to the
variables, and the measure function (again, maximization) is the sum 0f the weights
on the satisfied clauses. The neighborhood is again, all other assignments obtained
by flipping the value of a single variable.

DEFINITION. A is PLS-reducible to B if there are polynomial-time computable
functions f and g such that f maps instances of A to instances of B, and g given
X E )A and a locally optimal y T’sB(f(x)), produces a locally optimal g(x,y)
JzSA(x). A problem is PLS-complete if it is in PLS and if all other problems in PLS
are reducible to it.

Note that PLS reductions are transitive. Also, local optima can be found in
polynomial time for a PLS-complete problem if and only if local optima can be found
in polynomial time for all problems in PLS.

THEOREM 2.1. [3]. CIRCUIT FLIP i8 PLS-complete, and its corresponding verifi-
cation problem is P-complete.

THEOREM 2.2. Local optimality for CNF FLIP can be verified in LOGSPACE.
Proof. Let O(xl,..., Xn) be a Boolean formula in CNF and let A (a1,..., an

be an assignment to x,..., Xn. Then A is locally optimal for (I) if and only if for all
1 _<

_
n, the sum of the weights on the clauses with xi as the only satisfying literal

is greater than or equal to the sum of the weights on the unsatisfied clauses containing
xi. It is straightforward to identify in LOGSPACE which clauses a variable appears
in and which clauses we would gain or lose by flipping a variable. So it suffices to
show how to add and compare n binary numbers each with n bits in LOGSPACE.

To add n numbers in LOGSPACE, first add the least significant bit of each of
the numbers on the work tape. This uses only O(logn) space and gives the least
significant bit of the result. Then, shift the result to the right by one bit and add the
next least significant bit, and so on, keeping a "window" of O(log n) bits of the result.
Of course, a LOGSPACE machine does not have the space to write down the entire
answer, but it suffices to see the result bit by bit.

3. Main result. This section gives the PLS-completeness construction for CNF
FLIP, and in the next section, we draw corollaries for local search algorithms.

THEOREM 3.1. CNF FLIP is PLS-complete.

Proof. The problem is clearly in PLS, so it suffices to reduce CIRCUIT FLIP
to CNF FLIP. Let C be a circuit with inputs X1,’",Xn, outputs Y,’’’,Yn, and
gates G,..., GM. Assume for convenience that M _> n and that the first n gates,
G,..., Gn, just copy the input and that these are the only gates in which X1,..., Xn
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appear. We also assume that the gates are topologically ordered, so that if Gi is an
input to Gj, then < j.

Variables. We reduce C to a CNF Boolean formula (I) with variables x1,..., Xn,
fl,’", fn, gl,’’’,gM, and t,...,t for each 1 _< _< n. Obviously, the variables
x1,..., Xn represent the input to the circuit, and gl,’", gM represent the output of
the gates. For each input xi, the variables t,... ,t (called test circuits) represent
the new output of C’s gates if we were to flip the value of xi. Since G1,..’, G, just
copy the input, in general we want gj t xj for 1 _< j _< n, except that we want

t i. The variables fl,’", fn are used to flip the inputs x1,’", Xn. Normally, all
fi will be zero, but when we are ready to flip xi, we first set fi to one and then flip
xi and reset gl,’", gM, and then reset fi to zero. This allows us to switch to the
circuit’s new output from t,...,t with a single flip of fi, and will be a key point
in the construction.

Clauses. The clauses are divided into three classes: hard constraints, medium
weights, and small weights. The hard constraints have the heaviest weight, and it
will turn out that if any hard constraint is violated, then it will always be possible to
improve the weight by flipping a single variable. Thus, a feasible solution must satisfy
the hard constraints in order to have any hope of being locally optimal. The medium
weights represent the output of the circuit, and the small weights give a credit for
setting the test circuits correctly.

Hard constraints. The largest constraint is that at most one fi can be set to one.
This can be expressed as

(1) A +
l_i<j_n

where ()w means that all clauses in have weight w.
The second hard constraint is that the output of the circuit is computed correctly.

If all fi 0, then we use gl,"’, gM to compute the circuit, and if some fi 1 then
we use t,..., t. Thus, the constraint we wish to express is

(2) (gate 1 correct)2M (gate M correct)2
M+1

where "gate j correct" means

For example, consider the gate "gj ga A gb." This can be expressed in CNF as

(4) gj -- -a + -b (-j " -a -- gb "j + ga

So, the constraint "gate j correct" can be expressed as

(fl +"" + fn + gj -t- -a + b)(fl + + fn + "j + Ya + gb)(fl +’’" + fn -t- "j + ga)

-i -i .-4 .-4 |(5) A A (f + tj + ta + )(i t_ tj + ta + t)( + tj + ta)
_i_n, iCj
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A similar construction is possible for the "or" and "not" gates. Note that there is no
constraint that t i. This will be necessary for allowing xi to be flipped at the
appropriate time.

Medium weights. The next largest constraints, the medium weights, represent the
outputs Y1,’", Yn. Recall that the output of the circuit is represented in a subset of
the gates and that the output is taken from gl,..., gM if V fi 0, or from t,...,
if fi 1. These weights are computed similarly to the constraints that the gates are
set correctly and can be expressed as

(6) (output 1 is 1)24M+n (output n is 1)4M+1

For example, if gj is an output gate, "output j is 1" is expressed as

((7) (f + + fn + gj) A A (7i + tj)
l_i_n

Small weights. There are three groups of small weights. The largest gives a credit
for setting xi t when fi 1 and can be expressed as

M -i 2TM(8) A (-] / i / t)23 (f / xi / ti)
l<i<n

The second group gives a credit for setting fi 0 and can be expressed as

(9) (]1)2:M (Tn)2M

The third and smallest group gives a credit for setting the values of the test
circuits correctly, except that here, "ti_i correct" means t i. This can be expressed
as

(10) (gl correct)2M. (gM correct)21 I M )A A (t correct)2 (t correct)21

l(i(n

where "gj correct" is expressed as in (4). Then (I) is the product of the clauses in (1),
(2), (6), (8), (9), and (10).

Remark. Note that the weights are constructed in descending powers of two. This
technique makes it easier to argue about the structure of a local optimum because
a higher power of two will completely dominate all of the lower powers. Another
point is that the CNF constraints in (1), (3), (4), (5), (7), (8), and (9) are carefully
constructed so that if a constraint is violated, then exactly one of the clauses is unsat-
isfied. Although it may take several clauses to express one constraint, the difference
between satisfying the constraint and violating it is just the weight on a single clause.
Thus, we may pretend that each constraint is expressed by a single clause.

Claim. Let B be a locally optimal assignment for (I). Then B corresponds to a
locally optimal solution for C.

First we claim that at most one fi 1 in B. If not, then the weight from (1)
can be improved by a single flip of some fi to zero. Second, we claim that the gates
representing the circuit, either g,...,gM or t,...,tz are correct. Again, if not,
the weight from (2) can be improved by flipping the lowest numbered incorrect gate;
and again, this weight dominates any other weight that could be lost. Therefore, B
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must satisfy the hard constraints. This implies that B corresponds to some feasible
solution A for C, and also that the output of A can be determined from the weight
of B. (Although there is no constraint that t Zi if fi 1, use t for the value of
input in A. Later we will see that all f must be zero in B anyway.)

The remainder of the proof splits depending on whether or not some f 1.
Suppose first that all f 0; later we will see that the second case is actually not
possible. Then we already know that gl,"’, gM are correct. Suppose that some tj
is incorrect (including the case that t is incorrect, meaning t = ). Because all
fi 0, the test gates play no part in the hard constraints, the medium weights, or in

improves the weight of B from (10)the largest of the small weights. Thus, flipping tj
and it does not destroy any of the heavier weights. So, the test gates must be correct.
This says that the new output of flipping any one of the inputs is available in B by the
single flip of some f 1. Because the test gates are correct, flipping f 1 would not
violate the hard constraints, but it would represent the new medium weights. Thus,
if B is locally optimal, then flipping one input cannot improve the output in C, and
thus A is locally optimal for C.

Now suppose that B is locally optimal and that f 1 for some 1

_
_< n.

From the hard constraints, we already know that t,...,t are correct and reflect
the circuit’s output. Here it is gl,..., gM that play no role in the hard constraints or
the medium weights. First, fi 1 implies that x does not affect the hard constraint
for t correct (this was the reason for omitting the case j in (5)). So, if x % t, then
we can improve B’s weight by flipping x t, because the weight of (8) dominates
the weight of any other clause containing x. Therefore, xi t in B. Then, if
any g is incorrect, we can improve B’s weight by flipping the incorrect gate because
gl,’", gM does not affect the hard constraints as long as fi 1. Thus, gl,’", gM
must be correct, and then x t implies that g,..., gM must have the identical
values as t,-.., t. But then, flipping f to zero preserves the hard constraints and
the medium weights and also picks up the weight from (9). This implies that B is
not locally optimal; and, in fact, all fi 0 in any locally optimal solution for . This
completes the proof.

4. Local search algorithms. This result has implications for local search al-
gorithms for CNF FLIP; in fact, these corollaries were one of the original motivations
for defining PLS. Associated with every PLS problem, H, there is a "standard" local
search algorithm. Given an instance x E :Dn, start at the solution produced by An(x)
and continue to move to the solution produced by Cn until locally optimal. Since the
set of feasible solutions is finite, this algorithm always terminates, and by hypothesis
it takes polynomial time per iteration. So the question is how many iterations will be
necessary.

There are PLS problems and instances for which the standard algorithm takes
exponentially many iterations, and in fact, for which computing the output of the stan-
dard algorithm is an NP-hard function. Johnson, Papadimitriou, and Yannakakis [3]
give the following example (although without naming it).

DEFINITION. LINEAR SAT. Instances are Boolean formulas in conjunctive normal
form, and feasible solutions are assignments to the variables considered either as
strings over {0, 1} or as binary numbers. The cost of solution s (to be minimized) is
0 if s is a satisfying assignment and s + 1 otherwise. The neighborhood of s is {s- 1 }
for s 00... 0 and for s 00... 0. The initial feasible solution is 11... 1.

Due to the degenerate neighborhood structure, the standard algorithm for LINEAR
SAT is forced to exhaustively search through all feasible solutions. Furthermore, the
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output of the standard algorithm starting at 11.-. 1 is either solution 00... 0 with
cost 1 if the formula is not satisfiable, or some other solution with cost 0 if the formula
is satisfiable. Thus computing the output of the standard algorithm is an NP-hard
function, and there are instances for which the standard algorithm takes exponentially
many iterations. It is interesting to note that, although it is hard to compute the local
optimum produced by the standard algorithm, this does not imply that it is necessarily
hard to find some local optimum. In fact, 00... 0 is always locally optimal for LINEAR
SAT.

These properties for local search algorithms generally carry over to PLS-complete
problems. For CIRCUIT FLIP, it is NP-hard to compute the output of the standard
algorithm and there are examples that take exponential time [3]. This result does
not follow directly from the definition of PLS-reduction; it is necessary to analyze
the reduction from LINEAR SAT to CIRCUIT FLIP. Essentially, the neighborhoods in
CIRCUIT FLIP embed the neighborhoods in LINEAR SAT, with a path in CIRCUIT FLIP

corresponding to a path in LINEAR SAT. This forces a local search algorithm for
CIRCUIT FLIP to simulate the standard algorithm for LINEAR SAT. Furthermore, these
results hold for any local search algorithm using any local improvement rule, even an
omniscient one. As long as the algorithm obeys the neighborhood structure (i.e., only
moves to a neighbor of the current solution with improved cost), a path in CIRCUIT

FLIP will correspond to a path in LINEAR SAT.

THEOREM 4.1. (i) It is NP-hard to compute the output of the standard algorithm
for CNF FLIP on arbitrary instances and starting points, and (ii) there are instances
and starting points for CNF FLIP such that any local search algorithm takes exponen-
tially many iterations before reaching a local optimum.

Proof. These results are proved in [3] for the CIRCUIT FLIP problem. It suffices
to show that the reduction to CNF FLIP embeds the same neighborhood structure
as CIRCUIT FLIP and that a local search path for CNF FLIP corresponds to a path in
CIRCUIT FLIP. Say that an assignment is stable if it satisfies all of the hard constraints
and all fi 0. A stable assignment corresponds to an assignment for CIPCUIT FLIP.

Starting from a stable assignment, as long as all fi 0, no local search algorithm
can flip any xj because this would violate the constraint that gj is correct. So, in
order to make progress, the algorithm must at some point flip some fi to one. Then,
as long as fi 1, no algorithm can flip any x for :/: j because this would violate

is correct. So, at some later point, the algorithm must flip fithe constraint that tj
back to zero. Thus, the algorithm has simulated a flip in CIRCUIT FLIP, and so a local
search path for CNF FLIP corresponds to a path for CIRCUIT FLIP. ["!

5. An update. After submitting this paper, the author has learned of substan-
tial progress on PLS and several new complete problems. Schiffer and Yannakakis [9]
have extended the result for CNF FLIP to formulas with bounded size clauses and also
to POSITIVE NOT-ALL-EQUAL 3-SAT (a special case of 2-CNF FLIP). As corollaries
they can show PLS-completeness for GRAPH PARTITIONING under 2-opt, MAX CUT,
and also STABLE CONFIGURATION FOR CONNECTIONIST NETWORK. Inspired by these
results, the author extended the result for CNF FLIP to formulas with simultaneously
bounded size clauses and bounded number of occurrences of variables [5]. A corol-
lary is that TRAVELING SALESMAN is PLS-complete under the k-opt neighborhood
for sufficiently large k. Also, Papadimitriou [7] has a construction for TRAVELING

SALESMAN under the Lin-Kernighan algorithm based on 3-opt moves. The results
from [7] and [9] appear together in [8].
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Abstract. This paper introduces the cone decomposition of a polynomial ideal. It is shown

that every ideal has a cone decomposition of a standard form. Using only this and combinatorial
methods, the following sharpened bound for the degree of polynomials in a Grhbner basis can be
produced. Let K[xl,... ,Xn] be a ring of multivariate polynomials with coefficients in a field K,
and let F be a subset of this ring such that d is the maximum total degree of any polynomial in F.
Then for any admissible ordering, the total degree of polynomials in a Grhbner basis for the ideal

generated by F is bounded by 2((d2/2)
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1. Introduction. Many problems of symbolic computation can ultimately be
reduced to determining if a given polynomial p is contained in the ideal generated by
a set of polynomials F. Grhbner bases are special bases for polynomial ideals with
several important computational properties including the ability to rapidly determine
ideal membership. The term Grhbner basis was coined by Buchberger, who earlier
had pioneered the idea in his thesis. Grhbner bases differ only slightly from the
standard bases defined by Hironaka, and many of these concepts can be traced back
to the H-bases of Macaulay.

The increasing interest in Grhbner bases as a computational tool is in large part
due to the algorithm provided by Buchberger whereby for any set of polynomials F,
it is possible to construct a Grhbner basis for the ideal generated by F.

Although modified versions of Buchberger’s algorithm have shown success in prac-
tice (including some commercial systems), the complexity of the algorithm has not
been well understood. Giusti [6] has shown a Grhbner basis construction that always
produces a Grhbner basis containing only polynomials of the lowest possible degree.
A first step in understanding the complexity of the algorithm then is to bound the
degree of polynomials that occur in a minimal Grhbner basis.

It has been widely known (thanks to [8] and [10]) that in the worst case the
degree of polynomials in a Grhbner basis is at least double exponential in the number
of indeterminates in the polynomial ring. This lower bound precludes the existence of
an upper bound that would show the Grhbner basis algorithm to be tractable, but it
does not answer the following question: "How large can the polynomials in a Grhbner
basis be?"

The direction for producing an upper bound was provided by Bayer [1]. Bayer’s
thesis, together with the results of [6] and [10], shows that the degree bound of ele-
ments in a Gr6bner basis is bounded by (2d) (2n+2)n+i

The steps in producing this former bound may be summarized as follows:
(1) Begin with a basis F for I C_ K[xl,..., Xn], with d the maximum degree of

polynomials in F.
(2) If the ideal I is affine, introduce a new variable xn+l to homogenize the ideal

/to hi.
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(3) Place hi into generic coordinates [1]. Here it must be assumed that K is of
characteristic zero.

(4) In generic coordinates the degree of polynomials required in a Grhbner basis
with respect to reverse lexicographic ordering is bounded by (2d)2n-1 ([6]).

(5) The degree bound in generic coordinates also serves as a bound on the regu-
larity of hi ([6]). (An ideal has regularity m if for every degree m polynomial p, the
ideal (I,p) has a different Hilbert polynomial than I.) Since hi has n + 1 variables,
the regularity m of hi is bounded by (2d)2n

(6) A polynomial ideal over n variables with regularity m has its Macaulay
constant (bl as used in this paper) bounded by (m + 2n / 2) (2n+2)n ([10]). The
Macaulay constant of hi is therefore bounded by D ((2d)2 + 2n + 2) (2n+2)
,,,-- (2d)(2n+2)n+l

(7) For any admissible ordering, the degree of polynomials in a Grhbner basis for
hi is bounded by the maximum of m and bl ([1]). The degree of these polynomials
is therefore bounded by the value D given above.

(8) Specializing hi back to I by setting xn+ 1 produces a Grhbner for I whose
polynomials also satisfy this same degree bound.

A first remark concerning this procedure is that bounding the regularity of hi is
an unnecessary detour. Reference [6] shows that in generic coordinates with respect
to reverse lexicographic ordering a Grhbner basis G can contain a polynomial g with
Hterm(g) E PP[x,... ,xi] only if for every degree z such that d _< z _< deg(g), G
contains a polynomial gd with deg(gd) d and Hterm(gd) E PP[x,...,xi]. This
condition is nearly equivalent to what is defined in this thesis as a standard cone
decomposition, and in fact the standard cone decomposition was developed as a way
to mimic this behavior. Directly from Giusti’s decomposition, the Hilbert polynomials
of and K[X]/[ can be written in the forms needed to produce the bound on the
Macaulay constant given in Chapter 3.

Furthermore, the methods for obtaining the old bound use fairly specialized
branches of commutative algebra and algebraic geometry. Expertise in these areas
is not common among computer scientists. Since there are a growing number of com-
puter scientists who will want to use Grhbner bases, there is a need for a self-contained
treatment. The methods of algebraic geometry are concise and elegant, but there is
often much more insight gained by using brute force.

A major result of this current study was to obtain a new upper bound for Grhbner
basis degree. If F is a set of n variable polynomials of degree at most d, then we prove
that a reduced Grhbner basis for the ideal generated by F has degree at most

I believe that the method of obtaining this bound is perhaps of greater impor-
tance than the bound itself. The method, which involves decomposing the ideal into
disjoint cones, avoids the need to change to generic coordinates. This greatly sim-
plifies the description of the proof and eliminates the requirement that the field K
have characteristic zero. Moreover, it sheds much light onto the structure of an ideal
I and the quotient ring K[X]/I, and it is expected that further applications for cone
decompositions could be found.

2. Background. The material in this section is presented primarily for the pur-
pose of establishing notations and terminology. For a more thorough introduction to
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Grbbner basis, the reader is directed to [2], [3], [4], or [9]. The notations for homo-
geneity and nilbert functions are borrowed primarily from [12] and [11], and a more
detailed summary of all this information can be found in [5].

2.1. Admissible orderings and Gr6bner bases.
DEFINITION. A total ordering _> on the power products PP[X] PP[xl,." ,xn]

A

of the ring Jt is called an admissible ordering if the following axioms hold:
(1) For all power products a, b, c e PP[X], a>b ==ez ca>cb.

A A

(2) For all variables xi, xi>l.
A

Closely related to the concept of admissible orderings is that of head terms.
The >-greatest power product contained in a monomial of a polynomial h is called

A

the head term of h with respect to > and is denoted by HtermA(h). For an ideal I,
A

HeadA(I) is used to denote the ideal generated by the set {HtermA(h) h 6 I}.
DEFINITION. Let G be a basis for the ideal I and let > be an admissible ordering.

A

G is called a Gr6bner basis of I (with respect to >) if HeadA (I) is generated by the
A

set (Hterm(g) g e G}.
Let F be a set of polynomials and > a fixed admissible ordering. A polynomial

A

h is said to be F-reducible, if there exists f F, and monomial c jt such that
HtermA(cf) is a monomial of h. The polynomial g h- cf is then called a reduct

of h, and this relationship is denoted as hF g. The transitive closure hF g of the

reduction operation is defined to mean that there exists a sequence of polynomials
F

Pl,’’’,Pk such that pl h, Pk g, and for all < k, p ---,p+l. Finally, g is called
an F-normal form of h if

f and(1) h ----, g,

(2) g is not F-reducible.
The following conditions are all equivalent (e.g., [3], [9]):

(1) G is a Grbbner basis for I with respect to >
A

(2) G C I and for every h I there exists a g G such that HtermA (g) divides
HtermA(h).

(3) For all h 6 A, 0 is a G-normal form of h if and only if h I.
(4) G is a basis for I and every h ,4 has a unique G-normal form that may be

denoted as nfG (h).
One of the most important features of Grbbner bases is the existence of unique

normal forms. The following lemma shows that these normal forms provide a system
of representatives for the residue class ring

LEMMA 2.1. Let G be a Grbbner basis for I with respect to the admissible ordering
>. Then the following properties hold for all s, t .4:
A

(1) s- nfv(s) I.
(2) s--teI nfG(s)=nf(t).
(3) nfG(s + t) nfG(s)+ nfG(t).
In a slight abuse of notation NI will be used to denote the set of normal forms

NI (nfv(a) ae.4},

where G is an arbitrary fixed Grbbner basis for I.
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2.2. Direct decompositions. Let T be a subset of the polynomial ring jl, and
let $1,..., Sm be a (possibly infinite) family of subsets of T. The sets Si are said
to be a direct decomposition of T if every p E T can be uniquely expressed in the
form p -]ir__l Pi, where pi Si and r is finite. The fact that the Si form a direct
decomposition of T is expressed using the notation

T S@S2@’.’@Sm.

The following two important properties of direct decompositions can be easily veri-
fied.

(1) Let S,..., Sk be a direct decomposition for T, and let R,..., Rm be a direct
decomposition for S. Then $2,..., Sk, RI,..., Rm is a direct decomposition for T.

(2) Let P {hf h T} for some polynomial f, and let S,..., Sk be a direct
decomposition of T. Then the sets Q {hf h S} form a direct decomposition
of P.

Example 1. For any ideal I C_ Jr, I and NI form a direct decomposition of 4.
Proof. Let G be the GrSbner basis of I used to form NI nfG(A). Since G is a

GrSbner basis, each polynomial h has a unique G-normal form, and the decomposition
h nfG(h) + (h- nfG(h)) is unique.

DEFINITION. Let I be any ideal of 4, and h .4. The ideal quotient operation
I" hisdefinedbyI" h {f A fh e I}. Note that it trivially follows that
(I" g) h I" (gh).

Example 2. For an ideal J C ,4 and f ,4, let

I (J,f), L J’f,
{aI aeg};

then I J @ S.
Proof. Let G be the GrSbner basis for L used to form NL and S fNL. The

sets J and S are clearly subsets of I, so it need only be shown that each h I can be
uniquely expressed as h hj + hs. It will first be shown that such a decomposition
exists, and then that the decomposition is unique.

Every polynomial h I can be written as h aj + aff with aj J. It is now
claimed that a decomposition of h exists with hj h-nfG(af)f and hs nfG(af)f.
Since the sum of these two polynomials is trivially h, it must only be shown that
hj J. This follows directly from the definitions of the sets involved:

ai-nfv(ai) e L,
(ai nf(af))f J,
hj aj + (ai nfv(ai))f e J.

Now consider any two decompositions of h:

h a + nfv(b)fr a2 + nfG(b2)fr

where a, a2 J.

(nf((bl) nf((b2))fr a2 a E J,
nfv(b) nfv(b2) L,
nfG(b) nfv(b2) 0.
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Therefore the decomposition is unique.
Applying this technique recursively, we obtain the following decomposition of an

ideal.
Example 3. Let F {fl,..., fr} be a basis for an ideal I. Let $1 be the principal

ideal (fl), and for each 2,..., r, let

L (fl,’",f-l)" f, and

S {hf hENL,}.

Then, I- S ... @ St.
In summary, for any ideal I, the ring jt can be decomposed into I and NI.

Furthermore, I itself can be decomposed into sets of the form S {hf h NL },
which in turn could be further decomposed if we could decompose NL. Sets of the
form NI need to be studied more closely.

2.3. Homogeneity. Let f be a polynomial in ,4; then f can be written as a finite
sum f fk + fk- +’’" + f0, where each fz is either zero, or a sum of monomials each
of which has total degree z. In such a decomposition of f, each nonzero fz is called
the homogeneous component of f of degree z. The nonzero homogeneous component
fk of greatest total degree is called the initial form of f and is denoted by in(f). A
polynomial f is called a homogeneous polynomial if f consists of at most one nonzero
homogeneous component.

DEFINITION. A set S C_ .4 is called homogeneous if it satisfies the following two
properties"

(1) f S implies that each homogeneous component of f is also in S.
(2) f is a K-module.

A homogeneous set S that is an ideal of jt is called simply a homogeneous ideal.
A direct decomposition S,..., Sr of a homogeneous set T is called a homogeneous
direct decomposition if each S is homogeneous.

For a homogeneous set T, the subset of degree z homogeneous polynomials will
be denoted by Tz, i.e.,

Tz {f e T f is homogeneous of degree z}

If T is closed under addition, then the collection of sets {T0, T,...} trivially form a
homogeneous direct decomposition of T.

For p a polynomial in the affine ring 4 K[xl,..., xn], let p be written as a sum
of monomials p pl +"" + Pm. The homogenization function hp is a mapping from
the affine ring jt to the projective ring K[xl,..., Xn;y] where y is a new variable and
the mapping is defined as

m

hp piydeg(p)-deg(p
i--1

Throughout this paper, y will be used to denote the extra variable, which is intro-
duced by homogenization, hA will denote the projective ring hA K[xl,...,xn; y],
which results from the introduction of y.

To return from hA to the original ring, use the natural homomorphism ap defined
by partially evaluating p at y 1. For example, h(x -X2) X31 + x2y2, and

+ +
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2.4. Hilbert functions. The Hilbert function of a homogeneous set T is de-
noted by T(Z) and is defined as follows:

T(Z) the dimension of Tz as a vector space over K.

Equivalently, let > be any fixed admissible ordering. The Hilbert function may be
A

defined to be the number of degree z power products that occur as the head monomial
of a polynomial of T. That is,

T(Z) I{PePP[X] peHeadA

The definitions of homogeneous direct decompositions and Hilbert functions lead im-
mediately to Lemma 2.2.

LEMMA 2.2. Let $1,..., Sr be a homogeneous direct decomposition of T; then
(z).

Let I C_ hA be a homogeneous ideal. If N is any homogeneous set of representa-
tives for the quotient ring hA/I, then I @ N is a homogeneous direct decomposition
for the entire ring hA. Therefore the Hilbert function of N (and hence hA/I) satisfies
the relation

v (z)

In particular, since I is a homogeneous ideal, a homogeneous system of representatives
for the ring hjt/I can be constructed as

N1 {nfo(a)" a e hA},

where G is any Grhbner basis for I.
It is a classic result that for any ideal I, at sufficiently large z, the Hilbert functions

i(z) and h4/(z become polynomials in z. These polynomials will be denoted

using the notation i(z) and g hA/i(z).
3. Cone decompositions of the polynomial ring. The main goal in finding

a direct decomposition for an ideal I is to partition I into subsets whose Hilbert
function can easily be described. In particular, the types of elements desired are sets
of the form {ah a E g[u]}, where h is a homogeneous polynomial and u is a subset
of X {x,...,x,}.

DEFINITION. For h a homogeneous polynomial and u C_ X, the set {ah a K[u]}
is called a cone and is denoted by C(h, u).

Some insight into the behavior of cones can be gained from considering mono-
mial ideals with n 2. This case can be well understood because the cones may
be depicted graphically. However, since many interesting phenomena occur only at
the higher dimensions this simple case can at times be misleading. For example, in
two dimensions all Borel-fixed ideals are lexicographic. Furthermore, there are many
features of general polynomial ideals that do not appear in the monomial case. This
problem is not so important here though, because the cone decomposition will be
applied mainly to monomial ideals.

The graphical representation in two dimensions is illustrated in Fig. 1. The power
products are represented in a triangular grid with 1 at the bottom. Powers of x run
along the left side of the grid, and powers of y to the right. To reach the vertex
associated with a given power product xayb count a places upward to the left and then
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FIG. 1. The power-products of K[x, y].

FIG. 2. Examples of cones.
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b places upward to the right. Figure 2 illustrates that cones may then be represented
in the diagram by encircling the power products which the cones contain.

For a cone C(h, u), the nilbert function of C(h, u) is dependent only on deg(h)
and lu I. Counting the number of power products in Head(C(h, u)), we find that if
u q}, then

and for [u > O,

0, z :/= deg(h),C(h,O)(z) 1, z deg(h),

{ 0

i )
z<deg(h),

C(h,u)(Z) z- deg(h)+ lul- 1

lul-1 z>_deg(h).

DEFINITION. Let hi,’", hr be homogeneous polynomials of A, and let ul,..., ur
be subsets of X. A finite set P ((hi, u1),..., (h, u)} is a cone decomposition of
T C_ Jt if the cones C(hi, ui) form a direct decomposition of T.

The cones (hi, ui) E P that have ui form a finite part of T and do not
contribute to the Hilbert polynomial of T. The remaining cones, for which ui
form a direct decomposition of a set that is equivalent to T at large degrees. This
portion of the cone decomposition will be denoted as

P+ {(h,u) EP u=q}.

A cone decomposition P for T is said to be k-standard k an integer) if the
following two conditions hold:

(1) There is no pair (h, u) e P+ with deg(h) < k.
(2) For every (g, v) P+ and degree d such that k _< d _< deg(g), P contains a

pair (h, u) with deg(h)= d and lul >_
Note that if P+ is the empty set, then P is k-standard for all natural numbers k.

On the other hand, if P+ is nonempty, the only possible value for k is min{deg(h)
(h,u) e P+}.

The following list contains an assortment of easily verifiable properties of cone
decompositions and k-standard cone decompositions.

(1) q} is a 0-standard cone decomposition for
(2) { (h, u)} is a deg(h)-standard cone decomposition of C(h, u).
(3) { (1, X)} is a 0-standard cone decomposition of ,4.
(4) Let $1 and $2 be a direct decomposition of T, and let P1 and P2 be cone

decompositions of $1 and $2, respectively. Then P1 U P2 is a cone decomposition of
T.

(5) Let $1 and $2 be a direct decomposition of T, and let P1 and P2 be k-standard
cone decompositions of $1 and $2, respectively. Then P P1 U P2 is a k-standard
cone decomposition of T.

(6) If P {(hi,u1),..’, (hs,us)} is a k-standard cone decomposition for T,
then for any homogeneous polynomial c, the set P’ {(chl, ul),..., (chs, us)} is a
(k + deg(c))-standard cone decomposition for {ch h e T}.

There is one special cone decomposition that provides a useful function for ma-
nipulations.

DEFINITION. Let u {xjl,..., xj,} C_ X. Then define the set E(h, u) as

E(h,u) {(h,)}i{(xjh,{xi,...,x,} i= l,...,m}



758 THOMAS W. DUBI

It is easy to verify that E(h, u) is a (deg(h) + 1)-standard cone decomposition of
C(h,u).

LEMMA 3.1. Let P be a k-standard cone decomposition for T. Then, for any
d >_ k, there exists a d-standard cone decomposition Pd for the set T.

Proof. If P+ , then the result holds trivially, so assume that P+ is nonempty.
It suffices to show that (k + 1)-standard cone decomposition exists for T. Let R
{(h, u) E P deg(h) k}, and S P- R. The original set P was k-standard, so
after removing the cones in R, the remaining set S is (k + 1) standard.

Since R contains only pairs (h, u for which deg(h) k, R is trivially k-standard.
The set spanned by the cones in R also has a (k + 1)-standard cone decomposition,
namely,

R’ U E(h,u)
(h,u}eR

Finally, Pk+l R U S is a (k + 1)-standard cone decomposition for T.
COROLLARY 3.2. Let St,..., Sr be a direct decomposition of T, where for each

Si there exists a ki-standard cone decomposition Pi. Then there exists a k-standard
cone decomposition P of T with k max{k,..., kr}.

4. Splitting a system of representatives. In this section it will be shown
that for any homogeneous ideal I, it is possible to construct a 0-standard cone de-
composition for Nx. Recall that once the ordering > and a Grhbner basis G for I

A

are fixed, then NI and NHeadA(G) have a termwise agreement as sets. Thus, only
monomial ideals need be considered.

Let I be an ideal of ,4 generated by the set of monomials F {fl,...,
given variable xfi, there is a direct decomposition of I consisting of I0 and I1, where

and,

Io I N K[X {xj}]

I I N (xj) {xjh h E .4 and xjh e I}

Clearly, I0 is an ideal of g[x {xj }] generated by F g[x {xj }]. It is also easy
to verify that I is an ideal of A generated by the set G {g,..., gr }, where

xjfi, Yieg[X-{xj}],
gi

fi otherwise.

Comparing the ideal I defined above with the quotient I xj, shows that I
{xh h I" xy}. Furthermore, this leads to the fact that I" xj is generated by
H {hl,...,hr} where

I e g[x
xj gi

xj f otherwise.

This method of forming a basis for I" xj is restated as an algorithm in Fig. 3.
DEFINITION. Let P U Q be a cone decomposition of T C_ jr, and let I be an ideal

of ,4. Then P and Q are said to split T relative to I if {h, u) P implies C(h, u) C_ I
(i.e., h E I), and (h, u) Q implies C(h, u) I- {0}. We may easily verify that P is
a cone decomposition of T I. Furthermore, the following lemma shows that under
proper restrictions Q is a cone decomposition for T NI.
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QUOTIENT_BASIS(F, x)
Input F a monomial basis for I C_ ,4

xj 6 X a variable
Output F’ a monomial basis for I’x..

For f/ e F
if f/ 6 K[X {xj}] then F’ F’U {fi}

else P’ P’U{xIf/}
return (F’)

End.

FIG. 3. The algorithm for forming a basis for I" xj.

LEMMA 4.1. Let P {<gl, Ul},’", <gr, Ur}} and Q {<hi, Vl},’", {he, vs}} split
T relative to a monomial ideal I, where for each {hi, vi} Q, hi is a monomial. Then
Q is a cone decomposition for T N NI.

Proof. If i is a monomial ideal, then regardless of admissible ordering > and
A

GrSbner basis G,

f 6 NI = each monomial of f is not in/..

Furthermore, if hi is a monomial then

f 6 C(hi, vi) each monomial of f is in C(hi, vi).

By the definition of a splitting set of cones, C(hi, vi) N I {0}, so

f 6 C(hi, vi) =:v no monomial of f is in I.

Let f 6 T NI. f 6 T implies that f can be written uniquely as

f fP1 +fP2 +’"+fP "Ji"f(l -’’"Jf-fQ.s"

The partial sum f fp + fP2 +"" + fP is in I and therefore is a sum of monomials
in I. Since no such monomials appear in the cones C(hi, vi), all monomials of f
must also appear in f. But f 6 NI and can include no monomial of I. Hence, f 0
and f can be written uniquely as f fQ +... + fQs. D

As an example, consider the monomial ideal I (x4y, xy3, y5). This ideal has a
cone decomposition given by the set

{x}), c(x4 {x}), C(x {x,

This particular cone decomposition is illustrated in Fig. 4. Viewing this figure should
make it clear that this cone decomposition is not unique.

For example, the cones C(xy3, {x, y}) and C(y5, {y}) can be equivalently replaced
by C(xy3, {x}), C(xy4, {x}), and C(y5, {x, y}).

Now, let T be the ideal generated by x2. Then T 6 I has a cone decomposition
described by the set

P {<x4y, {x}>, <x4y2, {x}>, <x2y3, {x,y}>}.
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{x})\o o o/ -. .////

FIG. 4. The cone decomposition o] I (x4y, xy3, yh).

This cone decomposition is illustrated in Fig. 5.
But splitting I requires not only a cone decomposition P for the ideal, but also

a cone decomposition Q for T N NI. In this example, Fig. 6 shows that Q may be
chosen as the set of cones described by

Q {<x, {x}>, <xy, >, <x:y, >, <xay, >, <xay, >}
From the definition of what is meant by a cone decomposition P J Q splitting a

set relative to an ideal I, it is immediate that a cone C(h, u) can belong to such a
decomposition only if either C(h, u) c_ I or C(h, u) I . The following lemma
shows that if the ideal I is a monomial ideal and h is also a monomial, then this
condition can be effectively determined. This will provide an algorithm to split the
ring J[ relative to a monomial ideal I.

LEMMA 4.2. Let I be a monomial ideal, h E PP[X], u C X, and let F be a power
product basis for I h. Then,

(1) C(h, u) C_ I if and only if 1 e F.
(2) C(h, u) I if and only if F
Proof. (1) IF == lI:h =:v hI C(h,X) C_I.

(2) (==) Assume C(h, u) I q}. Then for g e PP[u],

hg E C(h,u) == hg . I

== g I h

:: g_F.

(2) (==) Assume Fee[u] 0. Then for g ee[u], g cannot be in I: h
since otherwise F would have to contain a divisor of g and this divisor would also be
in Pe[u]. So

gC.I:h == hg.I.
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FIG. 5. The cone decomposition of (x2) r’l I.

By the definition of C(h, u), every polynomial contained in this cone is of the form
hg with g E PP[u] and hence not in the ideal I. rl

Figure 7 provides an algorithm SPLIT for splitting a cone C(h, u) with respect to
a monomial ideal I.

LEMMA 4.3. The algorithm SPLIT terminates.

Proof. For a set of arguments h, u, and F, define the rank of the arguments as

lul + feFdeg(f). It is now claimed that if SPLIT is invoked with arguments of
rank r, then the two recursive calls (if reached) have arguments of rank _< r- 1.
For the first call, this is trivial. For the second call, it must be shown that there is
some f e F such that f PP[X {xj}]. But, this must be true since otherwise
F C g[s U {xj }] i, contradicting the choice of s, and hence xj.

If r 0, then F must either be {1}, or . In either case, the recursion stops.
Therefore the depth of recursion is at most r, and hence the algorithm terminates. D

LEMMA 4.4. The algorithm SPLIT is correct.
Proof. The previous lemma assures the termination of the algorithm, so the

correctness of the algorithm can be proven using induction on the depth of recursion.
The basis case in which no recursive calls are made occurs if 1 F or F N PP[u]. In both of these cases, Lemma 4.2 shows that the trivial decomposition (P, Q)

satisfies the definition for splitting C(h, u) relative to I.
Otherwise, the cone C(h, u) is decomposed into

C(h, u) C(h, u {xj}) (9 C(xh, u)

Since F is a power product basis for I" h, the function OIIOTIENT_B/SIS produces
a power product basis F for the ideal I xjh. Inductively, the algorithm SPLIT
returns

(1) (P0, Q0), which splits C(h, u- {x}) relative to I, and
(2) (P1, Q1), which splits C(xh, u) relative to I.

These two decompositions are then joined to produce the desired decomposition of
C(h, u). D
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FIG. 6. The cone decomposition o] (x2) rh NI.

In the SPLIT algorithm, the choice of s C u such that F N PP[s] as a maximal
subset is not a necessary condition for the correctness of the algorithm in producing a
splitting decomposition. However, it will soon be shown that the set Q returned by this
algorithm has the additional property of being deg(h)-standard. To prove that this
is indeed true, we begin with a simple lemma regarding the condition F n PP[s] .

LEMMA 4.5. Let h, u, I, and F be as in algorithm SPLIT. Then for any v C_ X,

C(h, v) C_ C(h, u) rq Ni = v C_ u and F rh PP[v] O

Proof. (==) C(h, v) C_ C(h, u) clearly implies v C_ u. To see that F r3 PP[v] ,
let f be any nonzero element of g[v]. Then hf E C(h, v) C_ NI. But I rq NI {0}
and neither h nor f is zero, so hf [ I. Then,

h:1 == :_I’h
=:. :.F.

(=) v C_ u implies C(h,v) c_ C(h,u), so it only remains to be shown that
C(h, v) C_ Nz. To prove this, it is sufficient to show that no monomial of C(h, v)
belongs to 1. Each monomial of C(h, v) is of the form hf with f a monomial of K[v].
Then,

FnPP[v]= fI.h
== hf I.

LEMMA 4.6. Let h, u, I, and F be valid input for algorithm SPLIT, and let
(P, Q) denote the sets returned by SPLIT(h,u,F). Then for any power product g,
C(g, v) c_ C(h, u)r3 NI implies that Q contains a pair {h, s) with

Proof. Using the previous lemma,

C(g, v) c_ C(h, u) rq gi == C(h, v) c_ C(h, u) rq gi

== vC_uandFNPP[v]=
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SPLIT(h,u,F)
Input

Output

PP[X]
X is a set of variables
power product basis for I" h

(P,Q) which split C(h,u) relative to I.

If leF then return (P {<h, u)}, Q @)
If FCIPP[u]=@ then return (P=qi, Q={(h,u)))
Otherwise
Choose 8 C u a maximal subset such that F N PP[s]
Choose xj 6 u-s [If s=u this point would not be reached.]

(P0, Qo) SPLIT(h,u- {xj}, F)

End.

F’ QUOTIENT_BASIS(F, xj)
(P1,Q1) SPLIT(xjh,u, F’)
return (P=PoLP1, Q=QoLQ1)

FIG. 7. The algorithm for splitting C(h, u) relative to I.

We proceed inductively on lul- Ivl. If v u, then the algorithm returns Q { (h, u>},
satisfying the lemma. Otherwise, the choice of s as a maximal subset such that
F C PP[s] @ implies that Isl > Ivl. The previous lemma can now be applied in the
opposite direction to get

C(h, s) C_ C(h, u {xj}) C NI

Using the induction hypothesis, the set Qo formed by the recursive call
SPLIT(h,u- {xj},F)contains a pair (h,w)with Iwl _> Isl > Ivl. The lemma then
follows from the fact that Qo is a subset of Q. F1

A basis R {fl,..., fk} for an ideal I is called a reduced basis if each fi satisfies
fi (R- {fi}). On the other hand, suppose that F is not a reduced basis, and that
fi 6 (F-{fi}). Then, F-{fi} is also a basis for I. Successively removing redundant
generators produces a subset of F that is a reduced basis for I.

LEMMA 4.7. Let R be a reduced power product basis for a monomial ideal I,
and let P {(hl,ul),"’, (h,u)} be any cone decomposition of I where the hi’s are
power products. Then, for each f 6 R, there is a pair (f, u) 6 P.

Proof. Let f be any element of R. Since f 6 I, there is some (h, u) 6 P such
that f 6 C(h, u). But, now h is also in I, so h bg for some g 6 R. But f 6 C(h, u),
so f can be written as f ah abg. Since R is reduced, we have ab 1,
and f h. [3

LEMMA 4.8. Let F be a power product basis for I jr, (P, Q) SPLIT(l, X, F),
and let R C_ F be a reduced basis for I. Then for every f 6 R, Q contains a pair
<h, u) with deg(h) deg(/)- 1.

Proof. Let f be any element of R. By the preceding lemma there is a pair
(f, v) 6 P. Consider how this pair got into P. Since deg(f) > 0, there must have
been a recursive call SPLIT(f, v, F’), where F’ is a basis for I" f. This invocation of
SPLIT must have been the child of either

(i) SPLIT(x71f, v,F"), or
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(2) SPLIT(f, v D {xj }, F’).
Using the first possibility as a basis case, inductively, we may step backward through
the computation of SPLIT(1, X,F) to find an invocation SPLIT(x-lf, v’,F’’) with
vDv.

The cone C(xif, v) could not have been a subset of I, since then a recursive
call would not have been generated. Therefore, if

(P’,Q’) SPLIT(x’lf, v’,F"),

then Q is nonempty. But then Lemma 4.6 assures that Q contains a pair of the form
(xf, sl. Since deg(x-f) deg(f)- 1, the existence of this pair in Q’ c_ Q satisfies
the lemma.

COROLLARY 4.9. Let F be a power product basis for I, and let (P, Q)
SPLIT(1, X,F). Then if d 1 + max{deg(h) (h, u) e Q}, I can be generated by the
set {f e F deg(f) g d}.

LEMMA 4.10. Let (P,Q) SPLIT(h,u,F). Q is a deg(h)-standard cone de-
composition.

Proof. If Q is either q} or {(h, u)}, then the lemma follows trivially. Otherwise,
assume inductively (on the number of recursions) that Q0 and Q satisfy the lemma.
That is Q0 and Q1 are, respectively, deg(h)-standard and (deg(h) / 1)-standard.

To show that Q is a deg(h)-standard cone decomposition, it must be shown that
for any (g,v) E Q and degree d such that deg(h) _< d g deg(g), there is a pair
(p, t) e Q with deg(p) d and Itl >_ Ivl. Since Q Q0 D Q, there are two cases to
consider.

(1) {g, v) Q0. Since Q0 is itself a deg(h)-standard cone decomposition, Q0
contains all the pairs needed to satisfy the condition for (g, v), and Q0 is a subset of
Q.

(2) (g, v)
contains the pairs needed to satisfy the condition for (g, v) for deg(h)+ 1 g d g deg(g).
For d deg(h), Lemma 4.6 assures that Q contains the needed pair. [:l

The remarks at the beginning of this section allow these results to be extended
beyond monomial ideals.

THEOREM 4.11. Let G be a Grb’bner basis for I with respect to >. Let (P, Q)
A

SPLIT(1, X, HtermA(G)). Then Q is a O-standard cone decomposition ofNi nfG(4).
Furthermore, if d-- 1 + max{deg h (h, u) e Q}, then G’ {g e G deg(g) g d} is
also a Grb’bner basis for I with respect to >.

A

Proof. HtermA(G) is a basis for inA(I). Therefore the SPLIT algorithm returns a
0-standard cone decomposition for NinA(i) NI.

By Corollary 4.9, the set

{h E HtermA(G) deg(h) g d} C_ HtermA(G’)

is a basis for inA(I), and hence G’ is a Grhbner basis for I. D

5. Splitting a homogeneous ideal. So far we have seen that for any ideal I,
there exists a 0-standard cone decomposition of NI. But what about I itself? The
construction SPLIT provides a cone decomposition of I that is only valid for monomial
ideals, and even this does not produce a standard cone decomposition. The answer is
found in the following lemma.
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LEMMA 5.1. Let F (fl,’", fr} be a homogeneous basis .for an ideal I; then
there exists a k-standard cone decomposition P for I with

k max{deg(fi) i- 1...r}.

Proof. Let $1 (f), and for 2...r let Ji (f,...,fi_), Li Ji fi
and Si {cfi c E NL}. The sets S,..’,Sr form a direct decomposition of
I. $1 is a principal ideal that has the deg(f)-standard cone decomposition P
{(f,X)}. Using the construction provided by SPLIT, we form a 0-standard cone
decomposition Qi for each NL. If Qi {(h, ul),..., (As, us)}, then it follows that
P {(frh, u),..., (frhs, us)} is a deg(fi)-standard cone decomposition for S.

It then follows from Corollary 3.2 that there exists a k-standard cone decompo-
sition P for I. rl

For I (0}, it will be preferable to use a slightly modified version of this result.
When the sets Pi are united to form P, do not include P in the union. This produces
the following modified result.

COROLLARY 5.2. Let F {f,...,fr} be a homogeneous basis for an ideal I
with r > O, and let St,..., Sr be as above. Then there exists a direct decomposition
of I consisting of the primary ideal S (f), and a k-standard cone decomposition
P for $2 @ $3 @’" ( Sr with

k-- max(deg(fi) i-- 1...r}.

6. The exact cone decomposition.
DEFINITION. For T C_ K[X], Q is called an exact cone decomposition of T if Q is

a k-standard cone decomposition of T for some k, and additionally for every degree
d, Q+ contains at most one pair (h, u) with deg(h) ----d.

If Q+ is nonempty, then there is a unique value of k for which Q is k-standard.
Let Q denote this value of k. In the case that Q+ is empty, let Q .0. Both of
these cases can be captured with the single definition: q is the least value of k such
that Q is k-standard. However, this unified definition fails to emphasize the fact that
in the more important case (Q+ q}) the value of k is unique.

For 0,...,n / 1, let

bi-min(d>_Q (h,u) EQandlul_>i = deg(h)<d}.

It is a simple consequence of this definition that the bi’s satisfy bo >_ b >_ >_ bn+
Q. Furthermorei

1 + max{deg(h) (h,u) e Q+},
bl O,

LEMMA 6.1. Let Q be an exact cone decomposition, and let b0,’.’, bn+ be defined
as above. Then for each 1,...,n and degree d such that bi+ <_ d < bi, there is
exactly one pair (h, u) e Q+ such that deg(h) d and in that pair lul i.

Proof. If Q+ is empty, then b b2 bn+ 0 and the lemma follows
vacuously. Otherwise, for each 1,..., n, the definition of bi requires that b 1
be the largest degree such that Q contains a pair (g, v) with Ivl >_ i. Since Q is
bn+l-standard, each degree d bn+,"" ,bi 1 must have a pair (hd, Ud) Q with
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deg(hd) d and lUdl >_ Ivl >_ i. Since Q is an exact cone decomposition (hd, Ud) is
the only pair (h, u) e Q+ with deg(h) d.

Now if bi bi+l the range d bi+l,..., bi 1 is vacuous. Otherwise, for each d
in this range lUdl since lUdl > would contradict the definition of bi+l. S

The following trivial lemma provides a tool by which any standard cone decom-
position may be transformed into an exact cone decomposition.

LEMMA 6.2. Let Q be a k-standard cone decomposition of T, and let (f,s),
(g, v)E Q such that deg(f)= deg(g), and Ivl >_ Isl > O. Then for any xj e s,

Q’ (Q {(f, {(f,, (x f,

is also a k-standard cone decomposition of T.
Proof. It must be shown that for every pair (, w) Q’ and degree d k,..., deg(i)

there is a pair (h, u) Q’ with deg(h) d and lul _> Iwl. For (, w) Q N Q’, Q’ in-
herits all the required pairs from Q. For the two new pairs, the presence of (g, v) Q
is sufficient to show that Q must again contain the required pairs. []

This lemma provides a tool to shift pairs away from degrees occupied by other
pairs.

One new term will be introduced only for the purposes of proving the correctness
of the following algorithm. A k-standard cone decomposition P is called m-exact if for
each degree d there is at most one pair (h, u) E P such that deg(h) -d and lul > m.
With this definition, a cone decomposition is exact if and only if it is 0-exact. It also
follows vacuously that any cone decomposition is n-exact. Consider the algorithm of
Fig. 8.

SHIFT (Q, k, m)
Input
Output

Q a k-standard m-exact cone decomposition for T
Q’ a k-standard (m-1)-exact cone decomposition for T.

If ((h, u) e Q lul _> m} q} then return(Q’).
c := I{(h,u>eQ lul_>
For d:=k to k+c-1 do
B := ((h,u) e Q’ deg(h) d and lul _> m}
While IBI > 1 loop

Choose (h,u> 6 B with lul m
Choose xj 6 u
B := B-{(h,u)}
Q’ := (Q’ {(h, u>}) t2 {(h, u {xj}>, <xjh, u>}

End While loop
End For d loop
return (Q’)

End.

FIG. 8. The algorithm for shifting pairs in a standard cone decomposition.

LEMMA 6.3. The algorithm SHIFT is correct.
Proof. If Q is a k-standard partition, then it follows from the previous lemma

that the set Q will also be k-standard. Furthermore, the action of the algorithm
assures that for each degree d < k + c, Q will contain at most one pair (h, u) with
deg(h) d and lul >_ m. But what about degrees >_ k + c? Checking the line at
which Q is modified will show that throughout the execution of this algorithm the
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size of the set {(h, u> e Q’ [u[ > m} remains invariantly c. Now since Q’ is k-
standard, a pair (g, v> 6 Q’ with [v[ > m requires that Q’ contain a pair (hd, Ud> with
[Ud[ > m and deg(hd) d, for every degree d k,...,deg(g). The c pairs in the
set { (h, u> 6 Q’ [u[ > m} must then include the deg(g) k + 1 pairs of the form
(hd, Ud>. Therefore, deg(g) < c + k 1. [3

Now, the SHIFT algorithm can be used to produce an exact cone decomposition
using the algorithm in Fig. 9. Note that the action of the EXACT and SHIFT algorithms

EXACT (Q, k)
Q a k-standard cone decomposition for T
Q’ an exact cone decomposition for T.

For m := n down to i do
Qm-1 := SHXFT(Qm, km)

End For m loop
return(Q0)

End.

FIG. 9. The algorithm for producing an exact partition.

assures that if Q’ is the exact cone decomposition produced by EXACT(Q, k), then the
Macaulay constant b0 for Q’ satisfies

b0 > 1 + max{deg(h) <h,u} e Q}.

7. Exact cone decomposition and Hilbert function. For any cone decom-
position P of a set T, the Hilbert function of T can be described by summing the
Hilbert functions of the cones in P:

(h,u>eP

For degrees z greater than or equal to

z’ max{deg(h) <h,u) e P}

each of the cones has a Hilbert function described by the binomial coefficient

qOC(h,u)
z- deg(h)+ lul- x )

I 1-1 )
and so

T(Z) z- deg(h)+ lul- 1 ’lul- 1 J

But, if P is exact, then the constants bl,’", bn+l describe all of the cones in P+, so

n bj

j=l d=bj+l

z-d+j- 1 )j_
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Furthermore, the constant b0 is defined to be the same as the constant z given above,
so the Hilbert function attains this polynomial form for degrees z >_ b0.

Using the combinatorial identity

b

d----bj+

the Hilbert function of T can be written in the form:

"[( ) (i’= z-bj+.12 +j z-bj.2 +j

(z-bn+l+n)_(z-b+l)n1

+[( z-bj+l +j ) ( z-bj+ +j + l )1
J=

j j+l

n 1
J=

j+l

1_ )n j+l
j=0

Replacing the summation variable with j + 1, this can be restated as

( 1 )Z bn+l Jr" n z bi + 1
n

i-1

In the classic paper [7], Macaulay first proved that for sufficiently high degree
z, the Hilbert function of a polynomial quotient ring always attains the form of a
polynomial such as the one given in (,). For this reason the constants bo,... ,bn+
will be referred to as the Macaulay constants of T. The formulation given above has
the added benefit of the additional constant b0, which provides a bound on the point
at which the Hilbert function T(Z) attains its polynomial form T(Z) as given in (,).

For z in the range b g z < b0, the Hilbert functions of the cones in P+ attain
the polynomial forms used in calculating T(Z). For z in this range however, there
are also some cones C(h, )- E P P+, which contribute to the Hilbert function of
T. Therefore, for z _> bl the following form of the Hilbert function is valid:

T(Z)+ I{(h,O) e P deg(h) z}.

LEMMA 7.1. Let P be any exact cone decomposition for a set T. Once the
constant bn+ -5Q is fixed, the constants bo, b,..., bn are uniquely determined.

Proof. The Hilbert polynomial of T can be written in the form

zn--1 2zn’-2T(Z) an-1 + an- +"" + alz + ao
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Assume inductively that the constants bj+l,..., bn+l have been uniquely determined
such that Hilbert function given by (.) agrees with the coefficients an-I,’", aj. The
binomial coefficient

z-bi+i-1 )
is a degree monic polynomial in z. So, the coefficients bj-1,..., bl do not effect the
coefficient of zj-1 in the Hilbert polynomial (.). Therefore, matching the coefficient
aj-1 requires a unique choice for bj.

We may then also uniquely determine b0 as

b0 min{d >_ 51 Vz)dT(Z) T(Z)}
LEMMA 7.2. Let I be a homogeneous ideal, then the Hilbert function of NI is

described by a unique set of Macaulay constants bo >_ bl >_... >_ bn+l O. Further-
more, for any admissible ordering > the degree of polynomials in a reduced Grhbner

A

basis for I with respect to > is bounded by bo.
A

Proof. Since NI has a 0-standard cone decomposition, it is possible to find an
exact cone decomposition for NI with bn+l O. Once bn+l is fixed as zero, the other
Macaulay constants are uniquely determined.

Let G be a Grhbner basis for I w.r.t. >. The set NI admits a 0-standard cone
A

decomposition Q, which may be found using the algorithm SPLIT(l, X, HtermA(G)).
Let d l+max{deg(h) (h, u) e Q}. Theorem 4.11 assures that {g e G" deg(g) _< d}
is also a Grhbner basis for I. The construction using algorithm EXACT then shows that
the unique Macaulay constant b0 is _> d, and hence is also a bound on the degree of
polynomials required in the Grhbner basis.

8. A bound for Grhbner basis degree. Let F {fl,’",fr} be a homoge-
neous basis for an ideal I. Assume without loss of generality that fl has the largest
degree deg(fl) d. In the previous section, it has been shown that for any ideal I,
there exists an exact partition Q for NI in which the constant aQ is zero. Further-
more, if the Macaulay constants associated with Q are bo >_ bl >_ >_ bn+l O, then
for degrees z _> b0, the Hilbert function of NI attains the polynomial form

N’^--xz z+n z-b+i-1
n

It also has been shown that i itself has a direct decomposition consisting of the
principal ideal (fl) and an exact partition P with p d. Let a0 _> al _> >_
a+l d be the Macaulay constants for the portion of I partitioned by P. Then, for
degrees z _> a0 the Hilbert function of I is equal to the polynomial

z-d+n- 1 z-d+n z-ai +i- 1
-t- -1-

Now since I and NI form a direct decomposition of K[X], the sum of their Hilbert
functions must be equal to the Hilbert function of K[X], which is

flK[XI(Z) ( z W n-1 )n--1
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Therefore, for z _> max{a0, b0},

(i) +(zWn)-2n
i1 Z-hi + 1 + z bi + 1

The backwards difference operator V is defined for any function F(z) by VF(z)
F(z) F(z- 1), and VJF(z) V(VJ-IF(z)). Using the identity

(z) _(,z-l,) _(z-l)_l
we have

(z)__(_)n n-1

It then follows inductively that

()_ (z_).-If F(z) F2(z) for z > k, then clearly VFI(z) VF2(z) for z > k + 1. For
each j in the range j 0,..., n- 1, apply the operator Vj to (1). This yields the
following set of equations for j 1,..., n 1, which are valid for large enough z:

(__1), (z___)1 (--)_.

Z-hi +i-j- 1 z-bi +i-j- 1
i-g i-)

i=j+l

Each side of these equations is a polynomial in z, so they must agree for each power
of z. In particular, they must have the same constant term. Note that the constant

termf(+k)isgivenbyn

(o) , o,
n (_1) n--

n
k<0.

Taking the constant terms of the previous set of equations, we obtain

n- j 1 + (-1)n-J n-’

(_1- [()
The technique of using the backwards difference operator has been used in a slightly different

manner in [10].
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At j n- 1, this is simply

1-(d-ll-l+an+bn=l1

So an + bn d. Together with the conditions an >_ d and bn >_ 0, this implies that
an d. When we substitute these values, the series of equations becomes

( [( )]2(_l)n_j_ d 1
n-1

n j 1 z_ "--l’-J j j
i--j+l

Let cj+l denote the sum aj+l + bj/l. Solving for this expression yields

ej+l ( [( )]2(_l)n_j d- 1
n-1

n 1
,__,i-j

j j
2 +

i=j+2

At this point, we may note that the sum on the right is vacuous for j n- 2 and
conclude that Ca-1 2 + 2(d- 1) 2d. And since

() k

is true for all i, for j n- 3 we have

Ca-2 <_ 2--2( d-1
d2 + 2d.

The remaining equations (j < n- 3), all contain the expression

2 + (-1)n-J [2(
The magnitude of this combination is bounded by

so the inequalities above may be replaced with the weaker inequalities:

ej+l

n-2

(en-1)n-j-1 + (-1)i-J i-j + i-j
i--j+2

The term in the sum for j + 3 has a negative sign, and hence this term may be
discarded. Giving all the remaining terms a positive sign produces the following still
weaker inequalities"

Cn
n--2

ai bi
cj+l <_ (n-j-I)+ [( aJ2+2 )+ (bJ2+2)1 +i--’+4 [( i-j )+ (i-j)]

n--1

<_ c2 + i-j
i=j+4
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Or, upon repairing the subscripts by the change j j 1"

n-1

Cj
i--j+3

These inequalities may now be solved inductively to provide a bound on the magnitude
of cj.

LEMMA 8.1. For j

_
n- 2, the value of cj satisfies the inequality cj

_
Dj, where

Dj=2 -+d
2n-j-1

Proof. It was already determined that Ca-2 <_ d2 + 2d, satisfying this claim. Now,
assume inductively that ci has the indicated bound for j < <_ n- 2.

For _> j + 3 the inequality 2i-j-1 >_ i-j + 1 can be used to see that (2n--i--)(i--
j + 1) <_ 2n-j-2. Therefore,

I I -J+ D2-J-1 2-Di Di < -- Dj+Ii-j+l -< (i-j+l)! (i-j+l)! (i-j+1)!

And so,

cj

<
Dj+.2.

Dj.
2

From this, we may conclude that the Macaulay constants a and b are each less
than D 2((d2/2) + d)2n-2. But what about the constants ao and bo that did not
appear explicitly in the Hilbert function? For z in the range max(a,b} < z <_
max(ao, bo), use the equality

+ v v,   :ixl(z)

to obtain the relation

(i(z) + [{(h, q}) e P deg(h) z}[)
+(LI (z) + [{(h, q}) e Q deg(h) z}[) [xl(z).
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At this point, we may note that the relationship I(Z) + LI (Z) K[X](Z), which
was claimed valid for z > max{a0, b0} actually holds for z >_ max{a1, bl}. Therefore,
for z in the range max{a, b} < z _< max{a0, b0}, it must be the case that

(l{(h, 0) e P deg(h) z}l + (]{(h, O) e Q deg(h) z}l 0.

This implies that PuQ contains no pair (h, q}) with deg(h) > max{a, b}. Therefore,
the constant D1 is also a bound on the value of b0. Using this bound within Lemma
7.2 provides the proof of the following theorem.

THEOREM 8.2. Let I be an ideal of K[X] K[x,... ,Xn] generated by a set of
homogeneous polynomials F. Let d max{deg(f) f E F}. Then for any admissible
ordering >, the degree of polynomials required in a Grd’bner basis for I with respect

A

to > is bounded by 2((d2/2)+ d)2n-.
A

For I an affine ideal, we can homogenize a basis F for I using one additional
variable xn+. Therefore, for any set of polynomials F we have Corollary 8.3.

COROLLARY 8.3. Let F C K[X], I the ideal generated by F, and let d be the
maximum degree of any f F. Then for any admissible ordering >, the degree

A

of polynomials required in a Gr6bner basis for I with respect to > is bounded by
A

2((d2/2) + d)2n-1
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THE SPATIAL COMPLEXITY OF OBLIVIOUS k-PROBE HASH
FUNCTIONS*

JEANETTE P. SCHMIDT? AND ALAN SIEGEL$

Abstract. The problem of constructing a dense static hash-based lookup table T for a set of n elements
belonging to a universe U {0, 1, 2, , m is considered. Nearly tight bounds on the spatial complexity
of oblivious O(1)-probe hash functions, which are defined to depend solely on their search key argument,
are provided. This establishes a significant gap between oblivious and nonoblivious search. In particular,
the results include the following:

A lower bound showing that oblivious k-probe hash functions require a program size of 12((n/ kZ)e-I +
log log m) bits, on average.

A probabilistic construction of a family of oblivious k-probe hash functions that can be specified in
O(n e-’ + log log m) bits, which nearly matches the above lower bound.

A variation of an explicit O(1) time 1-pr0be (perfect) hash function family that can be specified in
O(n + log log m) bits, which is tight to within a constant factor of the lower bound.

Key words, hashing, oblivious, spatial complexity, power bound, perfect hashing

AMS(MOS) subject classifications. 68P05, 68P10, 68Q05, 68R05, 68R10

1. Introduction. Hashing is one of the most important and commonly used
methods to organize simple collections of information (see References for a partial
list). The applications are extensive, and the subject has a correspondingly rich
theoretical literature. In this paper, we will be restricting our attention principally to
the dictionary problem, which concerns how to organize a set S of distinct keys within
a table T so that the elements can be retrieved quickly. We shall take the data set to
be static, so that the hash table need not support insertion or deletion, and consider
only open addressing, so that pointers will not be used. Most Of our results will focus
on 100 percent utilized tables.

The history of this problem, which we detail in the next subsection, would seem
to suggest that virtually .all questions have been answered for this specific problem; a
variety of lower bounds have been established [Y81] and [Me84], and elegant construc-
tions have been discovered, which nearly meet the lower bounds [FKS84].

Recently, however, new techniques for organizing data have been devised
[FMNSSS88], [FNSS88], which show that an enormous amount of information can
be encoded within a search table. The thrust of these results is to show how to exploit
nonoblivious search, which can use an adaptive probe strategy based upon information
gleaned from unsuccessful probes. The consequences are performance bounds and
extensions for the dictionary problem that had been believed to be impossible, for
O(1)-probe hashing schemes [FNSS88].
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The unexpected opportunities demonstrated by these results have led us to examine
afresh the computational models and assumptions underlying the lower bound of
[Me84] and the construction of [FKS84]. These results are for 1-probe schemes, which
by definition cannot be adaptive. The natural question to ask is whether the opportunity
to use the information encoded within the constant number of probed locations is
genuinely significant, or if the power of the [FNSS88] scheme is actually due to the
ability to query several locations for the search key.

A few preliminary definitions help formalize the problem. We let the data set S
comprise n elements belonging to the universe U {0, 1, 2, , m 1}. Our hash-based
lookup table T is also of size n. A sequence H =(h, h_,..., hk) of functions is a
k-probe hash function for S, if H" U--[1, n] k, and T[1... n] can be organized so
that each item s S is located is one of the k probe positions defined by applying the
k-probe functions to s.

The method of probing must be defined quite precisely. A hashing strategy is
oblivious if the search locations computed by H are based solely on the key s, and not
on other keys stored in T. In this case, the search strategy is

for i 1,2, , k do
if T[hi(s)] s then return (hi(s))

endfor;
if s has not been found then return (FAIL).

In contrast, a nonoblivious hashing scheme can make computational use of the
keys encountered during unsuccessful search, which offers a wider and conceivably
more powerful range of search strategies. Formally, such a hashing scheme differs in
that hi is an i-ary function mapping U into [1, n]. The nonoblivious search strategy is

for i-1,2,... ,k do
Si - T[hi(s, Sl, s2, ", s/-1)];
if si s then return (hi(s, s, s2,.

endfor;
if s has not been found then return (FAIL).

A family H is a k-probe family for U if every n-element subset S = U has some
k-probe hash function in H. A 1-probe hash function for S is called a perfect hash
function, and a perfect family for U denotes a corresponding 1-probe family. (In the
exposition that follows, we shall frequently take the liberty of suppressing the implicitly
understood parameters n, m, and even k, for notational convenience.) The principal
problem we analyze is how many hash functions are needed to define a k-probe family
H, in the oblivious hashing model. In particular, we attain estimates for log (H), which
is the number of bits needed to specify a particular hash function H H.

1.1..Background. Mehlhorn showed that the bit length of a perfect hash function
mapping S into a table T of size nl, where n=< n < (1-e)m, is lower bounded by
l)(n2/n + log log m log log n) [Me82], [Me84]. The explicit construction of efficient
perfect hash functions has been explored, among others, by [Me84], [Ma83], [FKS84],
[JvE86], and [SvE84]. In [FKS84], an O(1)-time computable perfect hashing scheme
for full tables (that is to say, n n) is presented, which requires a description of
O(log log m + nx/log n) bits. Jacobs and van Emde Boas [JvE86] reduce the upper
bound for O(1) time 1-probe (FKS-like) hashing to O(log log m + n log log n)-bits.
Slot and van Emde Boas [SvE84] show that a variation of the FKS-scheme can be
made space optimal at a cost of taking O(n) time to hash a value. We show that a
space-optimal variation can be attained while maintaining the O(1) time performance
for hashing.
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Nonoblivious O(1)-probe schemes turn out to be much more powerful than
1-probe schemes, where the question of obliviousness, of course, has no bearing. A
nonoblivious scheme that needs only O(log log m + log n) bits is presented in [FNSS88]
and [FN88] has recently shown that no additional memory is required when m is
polynomial in n. No comparable oblivious schemes are known, and the natural question
to resolve is how much ofthe exponential spatial advantage of O( 1)-probe nonoblivious
schemes over 1-probe schemes is due to their adaptive character, and how much is
due to the opportunity to perform additional oblivious search. The counting arguments
used in [Me84] seem to provide no help in an effort to construct lower bounds for
multiprobe oblivious hashing" the fl(n)-bit portion of the argument collapses even for
3-probe schemes.

We show that the spatial complexity of k-probe oblivious hash functions for full
tables is lower bounded by l)(na k+log log m), and that this bound is tight with
e-l-21gk/k Ol e-l+5/k. It is worth noting that in contrast to 1-probe schemes, no
comparable lower bound can be obtained for O(1)-probe schemes for load factors
less than 1. Indeed, a probabilistic construction shows that k-probe oblivious hash
functions can be specified in as few as O(log n + log log m) bits, when the size n of
the hash table is (1 + e)n, e > O.

For completeness, we note that Mairson [Ma83], [Ma84] analyzed a number of
related problems, including binary search adapted to a page oriented hash scheme,
where the cost to read a 2k-record page is fixed, and the data is sorted on each page.
He analyzed a scheme limited to reading one page and supporting k rounds of binary
search. While his scheme is not oblivious since it uses binary search, its spatial
complexity is remarkably close to the spatial complexity of fully obvious k-probe
schemes, analyzed in this manuscript.

In 2, we prove that the spatial complexity of a k-probe oblivious hash function
for a set of n elements from the universe U [1, m] is (e-kn/k2+log log m). Sec-
tion 3 shows that, with probability (1- o(1)), a random set of (2 ("e-k) log m) k-probe
hash functions contains a perfect k-probe hash function for every n-element subset
of U. Section 4 exhibits an explicit O(1)-time 1-probe hash scheme that uses only
O(log log m / n) bits of external memory, and thereby shows that the lower bound for
1-probe schemes can be met for O(1) time hash functions.

2. Lower bounds for oblivious search. Mehlhorn’s [l(n) bound for the size of a
perfect hash function [Me82], is based on the following counting argument: the number
offunctions must be at least the number of n-item subsets, which belong to an m-element
universe U, divided by the maximum number of subsets that can be mapped one-to-one
into [0, n 1] by a single hash function: count >= (7)/(m/n) n. Taking the logarithm of
this estimate gives the size bound for such hash functions. Unfortunately, this ratio
decreases by a factor of k when k-probe maps are allowed. Formally, a hash function
defines a bipartite graph on B U x {0,..., n- 1}. In the 1-probe case, each vertex
in U has degree 1, and the count of the number of possible coverings of {0, , n 1 },
(subgraphs in which each vertex in {0,..., n -1} has degree 1), afforded by a single
function is precisely the number of different subsets serviceable by the hash function.
Once k probes are allowed, the degree of each vertex increases by a factor of k. When
the resulting bipartite graph supports a perfect matching for some n-element subset
A in U, this perfect matching can be used to store A in the table and the k-probe hash
function can retrieve it. The number of coverings of {0, , n- 1} is easily estimated
(by (km/n)"), but may overcount the number of serviceable subsets by as much as a
factor of k", for k > 1.
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Consequently, we are obliged to model the /c-probe scheme more carefully. We
model a family of such hash functions as a set H of bipartite graphs on B, where each
node of U has degree/c, for each graph. H contains a/c-probe perfect hash function
for each n-element subset of U if and only if each n-element subset has a perfect
matching for some H e H. It should be emphasized that these performance bounds
are for oblivious probe schemes with sufficient probing to store the data: given a
suitable bipartite graph, the data cannot be successfully stored without some means
of extracting a matching within the graph. Algorithms for such problems are well
known [HK73], and probabilistic incremental approaches have also been analyzed in
connection with hashing [SS80]. In any case, the lower bound for the number of bits
needed to describe such a/c-probe oblivious hash function is thus log IHI.

To estimate IHI, we choose an arbitrary H e H and a randomly selected n-element
set Vc U and compute an upper bound/ for the probability that H e H provides a

perfect matching for V. It then follows that the number of n element subsets of U, for
which h is perfect is at most ()/. Thus

and members of H cannot be identified in fewer than log2 (1//) bits.
By letting V be selected at random, we may imagine an honest intermediary who

conveys, as answers to queries by our (partial) matching algorithm, precise (minimal
amounts of) information about the items selected.

We will estimate the probability that a carefully selected subset
items is covered by edges emanating from V. (The exact value of c will be specified later.)

For v e U, we define Image(v)= {ie [1, n] I{v, i} is an edge in the graph H},
For ie[1, n] we define Preimage(i)={ve Ul{v i} is an edge in the graph H}.
Let Pi --[Preimage(i)l.
Let V/be an ordered set of elements denoted by (v, v2," ).
The selection process for , which is based on the fact that elements with small

Pi value in are not overly likely to be covered by the edges emanating from a
randomly selected set V, proceeds as follows"

0. Let Vo<-V, 7o-{1, .,n}, <-0.
1. For <-- 0 to n/ck 1 perform 2 through 5"
2. Let /’i be an element in 7 with minimum Pi, and set <- {,i}.
3. Sequence through the elements of V/ and stop at the first vie Vi that is in

Preimage(ui). If no such v is found return "fail", H is not perfect for V.
4. g/+ <--- V/
5. Set i+1 <-- qi-Image(vi).

Note that all the preimages of items in qi+l are contained in Vi+l, and 17i+1[
n-(i+ l)/c>=n-n/e.

If the above procedure fails, then there is no matching from V to 1, n]. (The converse
is not true, of course, but our aim is to upper bound the probability of a success.)

We have to estimate the probability that V contains an element in Preimage(,i),
for O<-_i< n/ck, at step 3. The query at step 3 is whether vie V/ is in Preimage(1.i).
Only at step 5 is Image(v i) actually revealed. Since Po<-_km/n, the conditional

oprobability that v, the jth element in Vo, covers Uo given that the first j- 1 do not, is

0Prob {v e Preimage(Z,o) v, vj_ : Preimage( Z,o)} -<-
km k

n(m-(j-1))-- n(1- n/rn)

The estimates of the probabilities of success for i> 0, in step 3, are slightly more
)delicate. In particular, the event: v e Preimage(,i)lvl, , v-i ;: Preimage(,i has
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to be conditioned by the additional information concerning v! acquired by previous
is not in the Preimage of some of thequeries. However, all we have learned is that vj

elements Uo, Ul," ", /]i--l, that Vj V- V/and that vje{vl,"’, vj-1}. The probability
that vj e Preimage(ui) is maximized if none of the elimimated candidates are in Preim-
age(ui). Since Preimage(u,) (where u, is selected in step 2) is among the kl + 1 smallest

i-1 Pu, < ikm/ n" also g-v/cPreimages of elements in ro, it follows that =o
U/=oi-1 Preimage(Vl), and therefore in the most extreme case, the conditional information

i-1
Pu.+j-1 <m/c+ n) elements of U as candidates for vjcan eliminate at most (=o

It follows that

and

Prob { vj Preimage(ui) all previous events} _-<
(m-m/c-n)’

Prob { vi image( Vi) all previous events} <_ l (1 Pu, ) n--i

m-m/c-n

And finally

m-m/c-n

p Prob {H is perfect for V}

<= Prob {that the Image of V contains all the elements in }

H 1-1-
i=o m- c-n

i--1 pu . ikm/n, by construction, the above product is maximized when all P,Since Y/--o
are set to km/n. Hence

p Prob {H is perfect for V}<_- 1- 1-m-g_n

-< (1-(1- o(1)) exp (- km

m-m/c-n

We choose c (k + 1) m/(m n) and conclude that

p<-p=(1-(1-o(1)) e-(k+l)/(1-n/m)) n(1-n/m)/(k+)k.

Computing log2 (1//5) gives roughly ((n/k) e-(k+)/(1-n/rn)) bits necessary to
specify an oblivious search strategy. We have proved Theorem 1.

THEOREM 1. The spatial complexity of a k-probe oblivious hash function for a set

ofn elements belonging to the universe 1, m] is fl((n k2) e -k(m/(m-n))) (or 12((n k2) e-k

for n o(m)).
This lower bound for IHI, as we shall see, captures the complexity resulting from

the size parameter n, but it is quite insensitive to the growth of m. A simple information
theoretic argument, however, which was mentioned to us by Fiat and Naor and also



780 JEANETTE P. SCHMIDT AND ALAN SIEGEL

independently by Fredman, shows that f(log m/(k log n)) is also a lower bound on
the size of HI. The argument is given here for completeness. We may encode the
target sets, under the IH[ k-probe hash functions, of the elements in U as one function
g from U to (,)11. One of the conditions a k-probe scheme satisfies is that no k+ 1
items in U have all k probe locations in common, and thus no k+ 1 items may have
the same image under g. It follows that m _-< k(,) I/1, and thus

log(m/k)IflI > log ()
and O(log log (rn) k log (n)) bits are needed to name H.

Combining the information theoretic bound with Theorem 1 we get Theorem 2.
THEOREM 2. The spatial complexity of a k-probe oblivious hash function for a set

of n elements belonging to the universe [1, m] is l(log log m+(n/k2) e-k"/’-n))).
By appealing to a hypergraph model and extending the prooftechnique ofTheorem

1, the method of Fredman and Koml6s [FK84] can be incorporated to show that IHI
is actually lower bounded by the product of the two bounds, rather than the maximum
of the two, which gives a slightly stronger result.

Theorem 2 also shows that the O(n) portion of the lower bound for the spatial
complexity of oblivious hash functions holds even for relatively small universes (such
as m 2n). On the other hand, for k > 1, our lower bound proof collapses if we were
to map n elements into a table size (1 + e)n. The upper bound in Observation 5 of 3
shows that the lower bound indeed does not hold for e > 0.

3. Upper bounds for oblivious search.
3.1. Oblivious k-probe schemes. Our lower bounds suggest that, while k-probe

perfect hash schemes must have a reasonably large program length, in the case of
oblivious search, the k-1 additional search opportunities might reduce the length by
a factor of about e k in its n dependence. We appeal to methods from the theory of
random graphs to give a nonconstructive demonstration that this reduction is indeed
possible, at least in a formal sense. The proof is actually a probabilistic construction
of a k-probe oblivious hash function. For k-- 1, such a probabilistic construction has
been given in [Me82]. In fact, the lower and upper bound of [Me82] were both attained
by essentially one argument. When additional probes are permitted, the lower bound
argument, as we have seen, is more delicate, while the upper bound, as we now
demonstrate, requires much more care.

The procedure is to imagine constructing a random bipartite graph G on U x 1, n ],
where each vertex in U has degree k. We then select a random set S of n items from
U and estimate a lower bound for the probability p that G contains a perfect matching
on S. With positive probability, a family H of log/l_p) (nm) such random.graphs will,
for each n-element subset in U, contain some graph that has a perfect matching for
that set, and it therefore follows that such an H exists. The number of bits required
to designate an element H 6 H is then log lOgl/l_p) ().

Accordingly, let S c U, IsI n be the subset we wish to match. For convenience,
let G be used to name the portion of our random graph that is restricted to S [1, n].
A few preliminary remarks and definitions will help simplify the subsequent exposition.

Recall Hall’s (a.k.a., the marriage) theorem: A matching exists if and only if
for all j, the image of every set of j vertices in S contains at least j vertices (in
[1, n l). Let Hall (j) be the property that the image of every set of j vertices in
S contains at least j vertices.

Our aim is to lower bound the probability of the event (Hall (k) ^. ^ Hall (n)).
Our estimates for Hall (j) are based on expected number of sets of j vertices that
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violate the Hall (j) property and hence are connected to fewer than j vertices:

j- 1 .n n k

Unfortunately, the above estimates become useless for values ofj close to n. For those
cases we will estimate Hall (j), by running a matching algorithm on G and estimating
the probability that the algorithm fails in a fairly late stage.

Let, for each s e S, the first three random edges that are chosen to emanate
from s be gold. The remaining k-3 edges will be green.

Our analysis uses the following simple (not most efficient) matching algorithm,
which is based on n successive breadth first searches from unmatched vertices. For
each s S, a new breadth first search is initiated to find an augmenting path from s.
A bfs level explores nonmatching edges from a current vertex set R c S, which is
initially {s}. The search is successful for s if it discovers a vertex in [1, n] that has not
been visited by any of the previous searches, and is therefore unmatched. Otherwise,
the currently matched mates (in S) of the [1, n] vertices that are newly encountered
in the current level of the search (i.e., that have not been previously seen by the current
search) are used to replace R for the next level of exploration. Once a previously
unmatched vertex , [1, n] is visited, the alternating property of being matched or
not, along the path of edges from s to u reversed. Then a new s is selected and a new
search stage is initiated.

Our use of the algorithm has two constructive phases. The first phase pursues a
partial matching on the subgraph of gold edges, until a set X of n/4 vertices of S
have been matched, or a subset ofj _<- n/4 elements have been encountered that violates
Hall (j). In the second phase, the count is extended, if possible, to n via both gold
and green edges. If a match does not occur by the time (k-4)n green edges have been
looked at (in phase 2), the algorithm aborts and fails. The postamble can be entered
upon failure encountered during phases 1 or 2, or upon a successful matching (comp-
leted in phase 2). If success or failure occurs before (k-4)n green edges are explored,
we may imagine that the algorithm continues to select and report new green edges
until the requisite number of edges is used.

Let A be the event that the Hall (j) property holds for j <- n/4 for the subgraph
restricted to the gold edges.
Let B be the event that the Hall (j) property holds for n/4<j<-n-n/(k-3),
where both gold and green edges are used.
Our matching algorithm will be uncovering the random edges of G as the
algorithm progresses. Let the set X comprise the first n/4 vertices of 1, n] that
are matched (initially by gold edges).
Let C be the event that the first (k-4)n green edges encountered by the
algorithm cover [1, n]-X. We could imagine an adversary taking note of
matched vertices, which will be announced whenever the partial matching is
augmented. It will also be told of every green edge that is encountered by the
matching algorithm.

Our algorithm can switch to the fail state in phase 1 only if A does not hold. In
phase 2, failure can occur for any of four reasons:

(1) Hall (j) does not hold for j <-_ n/4 for the full (unrestricted) graph, in which
case A does not hold.
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(2) B does not hold.
(3) Hall (j) does not hold, for j> n n/(k-3), in which case the algorithm must

have uncovered at least j(k-3)>-n(k-4) green edges and hence C does not hold.
(4) No matching occurs before n(k-4) green edges are used, which is to say that

C does not hold.
These observations prove Lemma 3.
LEMMA 3. Pr {matching} ->_ Pr {A f-I B (-I C}.
Consequently, Pr {matching} -> Pr {B (l C IA} Pr {A} -> (Pr {BIA} + Pr {C IA} ) x

Pr {A}.
We now estimate these probabilities. The edges, for each vertex, are selected

without replacement (i.e., each k-tuple of edges comprises k distinct members). It is
also helpful to denote [1, n]-X by {Yl, Y2,"" ", Y3,/4}. There follows

Pr{a}_->l- (n)( n )(j-lj-2 J3-2)3<j<=n/4 j j-- 1 n n-- 1 n

>=1 (n]( n ](j-l] 3 1 O(n --4).
3<j<=n/4 \ ]\ ]\ Mj- 1

Pr{B]A} -->1- Z (n)(n)(Jnl)(k-3Jn/n<j<=n(k-a)/(k-3) j j- 1

> 1 0((4-5)3n/4), k > 6.

Note that Pr {CIA}= Pr {C}. Let hit(y) be the event that y is hit by one of the
first (k 4) n green edges examined.

Pr {C}= Pr {hit(y)} x Pr {hit(y)lhit(y)} x... Pr {hit(y3,/4)lhit(yl),..., hit(y3n/4-)}

>- 1 > (1 e-k+5) 3n/4.
n

Since 1-Pr {B[A} o(Pr {C IA}) for k>6, and Pr {A}= 1- o(1), the probability
p of a matching is >=(1-- e-k+5)3"/4(1-- O(1)).

As we have already observed, a family of IH] log/(_p) (,m) such random graphs
can supply a hash function (graph) for all n-element subsets. Computing log2 (IH])
log2 log m+ eS-kn gives an upper bound on the number of bits necessary to designate
which random graph gives a k-probe perfect hash function for a given set S. If time
and workspace are of no significance, we can follow the theme given for 1-probe
hashing in [Me82], which is to use the lexicographically smallest collection H among
all collections of such 2b bipartite graphs that supports k-probe hashing for all n-item
subsets of [0, m- 1]. Then the b-bit number H names a graph within that collection
(with respect to the lexicographic order within H). The desired datum is found in at
most k probes, as specified by the graph’s edges.

We have shown Theorem 4.
THEOREM 4. A k-probe hashfunctionfor a set ofn elements belonging to the universe

[1, m] into a table of size n can be specified in loglog m+ O(ne-k) bits, which is tight to

within a factor of k2 of the lower bound (or tight to within a constantfactorfor constant

k).
Finally, we remark that a straightforward application of Hall’s theorem shows

that if we were to map the elements of S into a table of size (1 + e)n, then the probability
of a successful matching using k probes is 1 o(n-(k+l), for k > max {3, 2(ln (1 + e))-l}.
Observation 5 follows.

OBSERVATION 5. A k-probe hash function for a set of n elements belonging to the
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universe [1, m] into a table of size (l+e)n, with k>max{3,2(ln(l+e))-}, can be
specified in O(log log m + log n) bits.

4. Explicit construction of an optimal O(1)-time 1-probe scheme. The upper bound
in the previous section uses a probabilistic construction to establish the spatial com-
plexity of/c-probe oblivious hash functions. Unfortunately, such a technique does not
yield any explicit O(1)-.time hash function. In this section we give a construction for
an O(1)-time 1-probe scheme that uses auxiliary tables of only O(n)-bits and is
therefore optimal in both time and space. The scheme is a variation of the perfect
hashing scheme originating in [FKS84]; other variations appear in [SvE84] and [JvE86].
Interestingly, the construction has commonality with the O(n) time variation presented
in [SvE84].

The hashing technique given in [FKS84] uses a table of linear congruential
functions of the form (ax mod p) mod q. The basic idea, which we detail below, is to
use such a hash function to define an implicit partition of the data set into a favorably
distributed collection of collision buckets. Given a bucket index, an explicit (locally
defined) secondary hash function is looked up, which determines a unique address
(within the bucket) for the item sought.

Altogether, the address evaluation uses a few log n-bit arithmetic computations,
several array accesses, and one long word computation, which consists of the modular
reduction of a log m bit word and the subsequent (modular) multiplication of two
log n+log log m bit words, and has the form (/cx modp)mod n2, where/c, pc U and
/c <p < n2 log m and p is prime. It is natural to ask if the [FKS84] scheme or some
other reasonable hash scheme can be expressed in an optimal O(log log m + n) bits,
while maintaining O(1) time search, as conjectured in [SvE84].

We show that an [FKS84]-based scheme can be expressed in an optimal number
of bits (up to a multiplicative factor) and can be performed with essentially the same
selection of O(1) arithmetic operations and array accesses.

We use the usual machine model associated with this problem, which is somewhat
idealized. The model is basically that of a random access machine, although as in all
other schemes which preceded this one, the standard RAM model is augmented with
multiplicative arithmetic. In particular, an array access of an O(log n)-bit word takes
unit time, and index computations are permitted. Words can be added, subtracted,
multiplied, and (integer) divided in constant time. We also use the same single long
word computation as in [FKS84] and [Me82] to map elements from U into [0, n2].
Similarly, we employ the expositional expediency of calling this computation an O(1)
time operation.

The original FKS construction has. four basic steps.
(1) A (long word) function ha(x) is found that maps S into [0, n2-1] without

collisions, so that all subsequent computations can use normal length words. Corollary
2 and Lemma 2 in [FKS84 show that it is possible to set ha(x) (/cx mod p) mod n z,
with suitable /c < p < n log m, where p is prime. Let Z be the image of ha S.

(2) Next, a function ht(x) is found that maps Z into [0, n-1] so that the sum
of the squares of the collision sizes is not too large. Corollary 3 in [FKS84] shows
that it is possible to set ht(x)= (Kx mod p)mod n, where p is any prime greater than
n and K [0, p] so that o<_-j<n [h-l(J)f3]2<3n.

(3) For each hash bucket (i.e., integer having at least one appearance in the
multiset {ho(t)},c.) a secondary hash function hi is found that is one-to-one on the
collision set. Let ci be the size of the collision set for bucket i; ci Ih(i)CI ZI. Then
for xh-(i)V]Z, hi(x)=(kixmodp)modc, where k[O,p-1]. The item sS,
(which is represented by t-ha(s) and located in hash bucket i= ht(t)) is stored in
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2 This locates all n items withinlocation Ci+hi(h(s)), where Ci c+cl+’"+ci_.
a size 3n table, say A*[1... 3n].

(4) Finally, the table is stored without vacant locations in an array All... n],
i.e., the array contains the items of S in the order of appearance in the table A*.

The composite hash function requires the parameters k, p, K, and p for ha and
ho, a table K[0 n] storing the parameters ki for the secondary functions hi, a table
C[0. n] listing the locations Ci, which separate elements from different buckets in
A*, and finally a compression table D[1... 3n], where D[j] gives the index, within
A, of the item (if any) that hashes to the value j in A* (by the function outlined in 1
through 3 above). As presented, the description of this perfect hash function needs
2 log log rn + O(n log n) bits. Fredman, Koml6s, and Szemer6di [FKS84] then apply
this same formulation for a rescaled number range (and a 2-level pair of tables for D)
to achieve a hash function that is compressed to 2 log log m + O(nx/log n)bits.

Elementary information theoretic calculations can show that rescaling cannot be
used to give a function size that matches the lower bound. Accordingly, we use the
basic [FKS84] formulation given above. In choosing the secondary hash functions hi
for each bucket, we appeal to [FKS84]. They point out that since their existence proofs
are based on expected case analysis, at least half of the numbers in [0, p 1] will yield
appropriate functions hi if the hash range is doubled. In particular, their Corollary 4
shows that given a collision set of any ci items in E, at least half of the numbers in

2[0, p 1] will, if selected as multiplier ki, yield a function hi(x) (kix mod p) mod 2ci
that is one-to-one on the set. Consequently, if we have z collision buckets requiring
multipliers, we may select a single multiplier that is one-to-one for [z/2 of the buckets,
provided we double the size of the hash range in each case. Altogether, we need at
most [log n + 1 different ki values, where ki is the ith multiplier servicing about 1/2
of the buckets. In summary, the optimal perfect hash function is that described above,
with two modifications"

(1) The (uncompressed) hash value is hi(x ((kix mod p) mod 2c )-.-. 2Cio
(2) The multiplier values k are iteratively selected to satisfy the one-to-one

requirement of the maximum number of (unsatisfied) h’s.
Up to this point our method turns out to be essentially the same as the O(n) time

version presented in [SvE84].
Now the information content of the map from bucket indices into the [log n] + 1

multipliers (i.e., the representation of the table K with Huffman coding) is O(n). We
must show how to achieve compact encodings of the tables K, C, and D that require
only O(n) bits, and readily are decodable in O(1) time, in our computational model.
The basic decoding operations we use are as follows:

(1) Extract a subsequence of bits from one word.
(2) Concatenate two bit strings of altogether O(log n) bits.
(3) Compute the bit-index of the kth zero in a word.
(4) Count the number of consecutive l’s in an O(log n)-bit word, starting at the

beginning.
(5) Count the number of zeros in an O(log n)-bit word.
(6) Access a few constants.
The first two operations are a matter of arithmetic. The last four can be performed

with small lookup tables. In particular, it suffices to break the words into words of
log n/2 bits (padded with leading zeros) and to use these words to access decoder
arrays. The third operation, for example, requires for each k, 0 < k <= log n/2, an array
of x/’-ff words. Using operations 5 and 3 above, a word of 2 log n (for example) bits
requires up to four accesses to compute the location of a kth 0. The fourth and fifth
operation are accomplished in a similar matter.
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The table C, which contains the values Ci(=Z21o is encoded-as follows. First,
2the values ci are stored in a table To in unary notation (in order of appearance,

separated by O’s). (Note that the bit length of To is at most 4n.) We let stri denote the
2string that encodes c. Because of operations 1 and 2, we may suppose that each bit

of To is addressable. Let a be the address (index) of the starting point of stri[log(4n)
in To, so that 0-<a,<4n, for i=l,...,n/[log(4n)]. (Note that ai=Citog4n)l+
i[log(4n)].) A second table T1, (of n bits), contains, in binary, the indices
al," ", an/riog4,)l, stored as [log (4n)] bit words. If ai+l-a <2[log (4n)], the table
information for intermediate c} (i.e., for /[log (4n)] _-<j < (i+ 1)[log (4n)]) can be
readily decoded via O(1) accesses to To and T1 and O(1) of our decoding operations
((3) and (5)).

The case ai+l- a-> [log (4n) ])- is handled via a third table T2, (of size 4n) which
stores, starting in (bit) location a, [log (4n) 1 binary indices for the starting locations
of stir, i[log(4n)]<j<(i+l)[log(4n)] (in To).

The remaining case, 2[log (4n)] <_- a+-a < ([log (4n)])2, is handled with an
additional level of refinement. Let bi,j be the address (index in To) of the starting point
of stri[log(4n)]+j[loglog(4n)], (j < [log (4n) ]/[log log (4n) and a < bi,j < a/+l). In T2 we
store, starting in location a, the binary offsets b,-a, b,2-a,.... Each offset is
stored as a 2[log log (4n)]-bit binary number. If b,j+l-b,j<-2 log n the information
for intermediate Ce, [log (4n) +j [log log (4n) < < [log (4n) +j [log log (4n) ], is
readily decoded (from table To); for all other cases, the offsets (of size 2[log log (4n)])
of all intermediate ce’s are encoded through one last level c f indirection in a table T3,
starting at bit location bi.j. (This last encoding requires [log log (4n)]2_< [log n ].)

The table K can be encoded in exactly the same way. In particular, a table Ko
contains, for its ith sequence of bits, the integer a in unary, if ks, is the multiplier
assigned to hash bucket i, 0_<i< n. (Recall that the first multiplier (encoded by the
string "1") is usable for at least half of the hash buckets.) The total length of the
sequence comprises at most n O’s, n/2 singleton l’s, n/4 doubleton l’s, etc., for a total
length of 3n. The multipliers kl,’’ ", kogn are stored in a log n-word array.

It is evident that we have encoded a perfect hash function in O(n) bits. To
summarize, the above construction, combined with the lower bound of [Me84], gives
Theorem 6.

THEOREM 6. The spatial complexity of a O(1)-time perfect (1 -probe) hash function
for a set of n elements belonging to the universe [1, m] is O(log log tn + n).

5. Conclusions and open problems. We have shown how to construct explicit
space-time optimal perfect hash functions. It is worth noting that the construction
illustrates the computational significance of a Random Access Machine model aug-
mented with a size n auxiliary program store.

In addition, we have given tight bounds on the spatial complexity of oblivious
k-probe hash functions and have helped quantify the difference between oblivious and
nonoblivious strategies. In particular, we have shown that, for full tables, O(1) addi-
tional oblivious probes can reduce the requisite size of the search program by a constant
factor, but no more. As is well known, the decrease in program size, for partially full
search tables, is more dramatic: probabilistic arguments show the formal existence of
oblivious O(1) probe schemes that need only O(log log m + log n) bits.

It would be interesting to find an explicit construction of a small O(1)-probe
oblivious family of hash functions that map n elements into a table of size (1 + e)n,
and to find such a family where function evaluation can be accomplished in O(1) time.

On recent results on the above problem, see [SS90] and [$89].
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DOMINO GAMES AND COMPLEXITY*

ERICH GR,DEL-

Der Mensch spielt nur,
wo er in roller Bedeutung des Wortes Mensch ist,
under ist nur da ganz Mensch, wo er spielt.

FRIEDRICH SCHILLER
ber die iisthetisehe Erziehung des Menschen

Abstract. Domino games which describe computatins of alternating Turing machines in the same way
as dominoes (tiling systems) encode computations of deterministic and nondeterministic Turing machines
are considered. The domino games are two-person games in the course of which the players build up domino
tilings of a square of prescribed size. Acceptance of an alternating Turing machine corresponds to a winning
strategy for one player--the number of moves in the game is the number of alternations ofthe Turing machine.

Let ATIME(T(n), m) denote the class of all sets that are accepted by some alternating Turing machine
in time T(n) with at most m alternations. It is shown that any problem in such a complexity class can be
reduced to the strategy problem for some domino game. In particular domino games which are complete
in the classes EP,,, and H,, of the polynomial time hierarchy are found. This corresponds to the approach
of Savelsbergh and van Emde Boas and of Lewis and Papadimitriou, who have shown that the theory of
NP-completeness may also be founded on a finite domino problem instead of the satisfiability problem for
propositional formulae.

Similar generalizations are possible for domino connectability problems: Domino thread games where
the players build up a thread of dominoes are introduced; the first player ,ins if he can ultimately connect
two given points. It is shown that a certain class of such games captures deterministic time complexity. In
particular, games are found whose strategy problems are P-complete.

In the last section applications to the complexity of simple prefix classes in logical theories are briefly
discussed.

Key words, domino problems, games, alternating Turing machines

AMS(MOS) subject classifications. 03D15, 68Q05, 68Q10, 68Q15

1. Introduction. Domino problems have now been used for almost 30 years as a
tool for proving undecidability or lower complexity bounds of various systems of
propositional logics (see 12] for a survey) and of subclasses of the predicate calculus
11 ], 14], 16]. Usually a domino system is described as a finite set of tiles or dominoes,

every tile being a unit square with fixed orientation and coloured edges; we have an
unlimited supply of copies of every tile. A domino problem asks whether it is possible
to tile a prescribed subset of the cartesian plane with elements of a given domino
system, such that adjacent tiles have matching colours on their common edge and with
perhaps some constraints on the tiles that are allowed on certain specific places (e.g.,
the origin).

Domino problems have turned out to be quite powerful for proving undecidability
or lower complexity bounds essentially for two reasons. First, they are strong enough
to encode the computations of Turing machines in a straightforward way: successive
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was done while the author was staying at the University of Pisa, Italy, and was supported by the Swiss
National Science Foundation.

? Mathematisches Institut, Universitit Basel, Rheinsprung21, CH-4051 Basel, Switzerland, email:
graedel@urz.unibas.ch.
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rows of the tiling represent successive configurations of the Turing machine. Thus we
can design--by reduction of halting problems of one sort or another--domino problems
that are undecidable or complete in some complexity class.

Second, dominoes have a very simple geometrical and combinatorial structure.
Therefore reductions from domino systems to instances of other problems are easy to
construct and simple in outcome. This makes them useful for proving the undecidability
of "simple" classes of quantificational formulae. The most famous of these results is
the undecidability of the :lV-class of the predicate calculus (without functions),
established by Kahr, Moore, and Wang [14]. Refinements of this and extensions to
other classes may be found in 11] and 16]. The economy of quantifiers that is possible
in reductions from domino problems t. first-order formulas can also be exploited in
complexity theory. Ffirer [8] has proved with this method that the (solvable) prefix
class :i ^ ::l::l of the predicate calculus has exponential complexity, and in [9] GrS.del
has shown that domino problems also yield good lower complexity bounds for sub-
classes of specific logical theories.

Since tilings of dominoes correspond to Turing machine computations and since
domino problems ask about the existence of tilings they are particularly useful for
nondeterministic complexity (,,zi tiling" corresponds to "::! computation"). For alternat-
ing complexity classes games seem to be a more appropriate device than dominoes as
has been pointed out by Harel [12]: "Domino problems are existential in nature and
do not seem to extend in any natural way to capture alternation Thus while games
are good for alternation, dominoes are good for single existentials."

But what sort of gam should be chosen for describing alternating computations ?
Since every nonmathematician considers dominoes a game, why not also bring this
into mathematics? In 3 we define domino games which generalize domino problems
in the same way as alternating Turing machines generalize nondeterministic Turing
machines: Given a domino system as above, two players, the constructor and the
saboteur, build up a tiling of a square of size T(n) (T a time resource function, n the
length of some reasonable encoding of the domino system). The constructor wins if
the square is at the end entirelyand correctlytiled, otherwise the saboteur wins.
The strategy problem of whether the constructor has a forced win in rn moves is shown
to be hard for U>o ATIME(T(cn), m). It thus may serve as a starting point for
reductions to other problems in order to show lower bounds of the form
ATIME(T(cn), rn).

The idea of introducing domino games and of translating alternating computations
into their strategy problem is due to Chlebus [4]. His approach differs from ours in
that Chlebus is not interested in bounding the number of moves (i.e., of the alternations
of the Turing machines) to a fixed number, but in defining complete games for classes
such as PSPACE, EXPTIME, and 2EXPTIME. The rules in his games are thus quite
different from ours (the players alternate after every tile) and he obtains other sorts
of applications.

Section 4 deals with the description of the polynomial-time hierarchy by domino
games. Lewis and Papadimitriou [17] and Savelsbergh and van Emde Boas [19] have
shown that the theory of NP-completeness may be founded on a bounded domino
problem and that this approach has some advantages over the more common use of

In the literature, the terms domino systems, domino problems, and domino games are sometimes used
interchangeably. In this article we distinguish between them: A domino system is a set of dominoes, a
domino problem asks after the existence of a tiling, and a domino game is a two-person game played with
a domino system.
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the satisfiability problem for propositional formulae. In 4 we will generalize this to
the polynomial-time hierarchy" we will find complete domino games for all levels
and I-I of the hierarchy and also for PSPACE.

In 5-7 we discuss other kinds of domino problems, e.g.: Given a domino system
@ and two points of the plane, it is asked whether there is a thread of dominoes from
@ connecting the two points. Such domino connectability problems have been considered
by Myers [18] and Ebbinghaus [6], [7]; their results are reviewed in 5. In 6 we
discuss generalizations to domino thread games. There are several possibilities. The
first is a straightforward analogue of the domino (tiling) games treated in 3. By
introducing an additional restriction on the tread to be constructed we will define a
second sort of domino thread game which w tl capture deterministic time complexity
classes. In 7 we treat several very simple variants of domino games whose strategy
problems are complete for deterministic polynomial time. We conclude with a short
discussion of applications.

2. Alternating Turing machines. The concepts of alternating Turing machines and
of ATIME-complexity classes were introduced by Chandra, Kozen, and Stockmeyer:
We recall here the definitions and some basic properties, following a slightly different
approach which emphasizes from the beginning the close correspondence between
alternating Turing machines and games. Further results are found, e.g., in [3].

An alternating Turing machine is a nondeterministic Turing machine whose set
of states is partitioned into existential, universal, accepting, and rejecting states. For
every input x the operation of M on x defines a computation tree -4,x whose nodes
are the configurations (the instantaneous descriptions); the root is the initial configu-
ration of M on x and the children of every node are those configurations reachable
via the transition relation ofM in one step. Thus a computation of M on x corresponds
to a path through 4,x from the root to a leaf. A node of 9-4,x is called existential,
universal, accepting, or rejecting according to the attribute of the state belonging to it.

While we say in the nondeterministic case that M accepts x if and only if there
is a path in the tree that leads to an accepting node, acceptance for alternating Turing
machines is defined in a more complicated way: It is described best by a two-person
game in the course of which players t and V define a path through the computation
tree or4, at every existential node :1 selects one of the children of the node, at
universal nodes V makes a similar move. If the path defined like this eventually leads
to acceptance ::! wins the game; otherwise /wins. We say that M accepts x if and
only if ::1 has a winning strategy for the game on -4,. Moreover, we say that M
accepts x in time and with m alternations if such a winning strategy for ::! still exists
when all paths -a4, longer than nodes or with more than m changes of players
automatically lead to rejection. It follows that nondeterministic Turing machines are
just alternating Turing machines without universal states.

Let T(n) and A(n) be nondecreasing functions from natural to real numbers;
we always assume that 1-<A(n)_-< T(n) for all n. The complexity class
ATIME (T(n), A(n)) consists of the sets decided by an alternating Turing machine in
time T(n) and with A(n) alternations. In analogy to deterministic and nondeterministic
complexity classes we define:

APTIME= U ATIME (n k, nk), AEXPTIME= U ATIME (2 2")
kN kN

Where no bound on the number of alternations is imposed, i.e., if A(n)= T(n) we
usually omit A(n) and write ATIME (T(n)) instead of ATIME (T(n), T(n)). It is
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known [3], that for all functions T(n)>= n and S(n)=>log n:

ATIME (T(n))
_
DSPACE (T(n))

_
C] ATIME (c. T(n)2),
c>0

ASPACE (S(n))= C] DTIME (cS(").
c>0

In particular, APTIME PSPACE and ALOGSPACE P.

3. Dominoes and domino games. Let S be N x N or a finite square {0,..., m} x
{0,..., m}. The classical domino problem, as described in the introduction may be
formulated as follows:

Instance" consisting of a finite set D and binary relations H, Vc D x D.
Question: Is there a tiling -:S- D such that for all (x, y)S

’(x, y) di ^ z(x + l, y) dj =: (di, dj H,

z(x,y)=d, ^ z(x,y+l)=dj :==> (d,,dj) V.

This formulation is equivalent to the more intuitive description by unit squares with
coloured edges. In fact, H (respectively, V) just contain those pairs (d, d’) of dominoes
for which the right (upper) colour of d is equal to the left (lower) colour of d’.
Conversely, given @--(D, H, V) as above, take a unit square tile for each triple
(d, d’, d") with (d, d’) H and (d, d") V and colour its left and lower edge with d,
its right edge with d’, and its upper edge with d".

A variant of this problem which is particularly convenient for the encoding of
Turing machine computations is the origin constrained domino problem. We are given
@ (D, Do, H, V) where D, H, and V are as above, Do is a subset of D, and it is
asked whether there is a tiling which places a tile from Do on the point (0, 0). For
S N x N both problems are undecidable [23], [1].

We now generalize this to the notion of domino games which describe computations
of alternating Turing machines in the same way as domino-tilings encode the computa-
tions of deterministic and nondeterministic Turing machines. Thus domino games will
provide a convenient tool for proving lower bounds for ATIME-complexity classes.

We assume in the sequel that Turing machines and domino systems are encoded
in a suitable way as strings over a finite alphabet and we identify them with their
encodings. S, denotes the square {0,..., t} x {0,..., t}.

DEFINITION. A domino game (9, t) is given by a domino system @ (D, Do, H, V)
where D is the disjoint union of two subsets E and A and Do is a subset of either E
or A; tiles from E and A are called existential and universal tiles, respectively; is a
natural number specifying the size of the playboard.

The game is played by two persons, 3 and ’q’ also referred to as the constructor
and the saboteur. The constructor tries to build a tiling of the square S,, the saboteur
wants to prevent him from achieving this goal. In the course of the game the players
tile S,, row after row, according to the following rules:

(1) Odd rows are tiled from the left to the right and even rows from the right to
the left; so the game proceeds like a meander through S,.

(2) The adjacency conditions imposed by H and V must be satisfied. If no player
can place a next tile, the saboteur immediately wins.

(3) The constructor (3) uses the tiles from E, the saboteur (’q’) the tiles from A.
A player moves--and has to move--until he cannot place a next tile. Then the other
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player begins to move. Thus, whether Do is contained in E or in A determines which
player has the first move.

(4) If S, is entirely tiled, the constructor wins.
DEFINITION Let GAME (t, m) denote the set of all dominoes @ such that the

constructor has a strategy to win the game (@, t) in at most m moves; may be a
function of I1.

TI-IEOREM 3.1. Let M be an alternating Turing machine, and let T(n) be a time
constructible function. There is a polynomial reduction, taking every input x Xo
to a domino x with length O(n) such that for all m and for T(n):

M accepts x in time with m alterna ons : Dx GAME (t + 2, m).

Proof There are well-known techniques to encode computations of deterministic
and nondeterministic Turing machines into domino tilings in a very natural way:
Successive rows of a tiling represent successive configurations of a computation. Here
these techniques are modified such that the alternations of the Turing machine corre-
spond to the changes of players in the domino game. In particular it must be assured
that the moves of the saboteur do indeed correspond to valid steps of the Turing
machine; he must be restrained from making moves which destroy this correspondence.
Otherwise the saboteur could "cheat" by leading the game to a dead end for both
players, which would not represent a rejecting configuration but a deviation from the
intended course of the game.

(1) First we consider M as a nondeterministic machine and, for simplicity of
notation, we assume that M has just one tape. Generalization to k-tape machines
requires only minor modifications. To avoid "cheating" in the sense described above
we first construct a domino system such that the following holds. If the first row is
tiled in such a way that it encodes the initial configuration of M on input x, then every
player who proceeds to place tiles in the appropriate order produces a tiling which
corresponds to a computation of M on input x. It will be essential for our construction
that odd rows are tiled from left to right and even rows from right to left.

If Q is the set of states and 5; the alphabet of the Turing machine, then every
configuration can be described as a word over the alphabet F:= (Q U {L, R, .})x 5;.

The letter L or R that we attach to a symbol on the tape indicates whether it is at the
left or the right side of the scanning head; this is to assure that there is exactly one
element from (Q x 5;) in every configuration. The is for control purposes which will
be explained below.

Informally the encoding idea is the following: the dominoes are triples (a, b, c) F
which encode a symbol in a configuration and its two neighbours; a configuration

ai-3, ai-2, ai-l, (qai), ai+l, ai+2,’’" is represented by

(Lai_3, Lai-2, Lai_)(Lai_2, Lai_l, qai)(Lai_, qai, Rai+l)(qai, Rai+l, Rai/2) ’’’.

Not all triples from F are useful; e.g., in every configuration, to the right of a symbol
qa Q 5;, only symbols from {R} may occur. So define, e.g., the set

LQR:={(abc)F3Ia{L}5;, bQY, c{R)5;).

For every other triple A, B, C of letters from { Q, R, L, .} a subset ABC c 3 is defined
in an analogous way. Furthermore we take to every such set ABC a disjoint copy ABC.
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The set of dominoes D is now the union of the following fourteen sets: LLL,
LL,, LLQ, LQR, QRR, ,RR, and RRR and their overlined copies.

Odd configurations are represented by "overlined" dominoes and even configura-
tions by "normal" ones. Thus the adjacency conditions H and V force the horizontal
neighbours to be of the same type, whereas vertical neighbours change their type from
"normal" to "overlined" or vice versa. In addition H imposes that two adjacent
dominoes have an overlap of two symbols as follows. First assume that both dominoes
(abc) and (a’b’c’) are not contained in LL, or ,RR (or their overlined copies); in
this case the pair (abc)(a’b’c’) is in H if and only if b a’ and c b’. A domino from
LL,, say (La, L, *3’), should be consk ered a "substitute" for either (La, L, L3") or
for some domino (Lee, L/3, q3’) (where is a state symbol). It will be played when a
row is tiled from leftto right at a position where the scanning head may move in from
the right. In this case the overlap condition requires that a domino (abc) can be the
right neighbour of (La, L, ,y) if a L/3 and if either b L3" or b q3" for some q.
Analogous conditions hold for left neighbours of ,RR-dominoes. In addition to the
condition that "normal" and "overlined" dominoes alternate, the relation V forces

(i) the vertically adjacent dominoes to be compatible with the transition relation
of the Turing machine (e.g., a domino (La, qfl, R3") may have the upper
neighbour (q’a, R’, R3") if the transition relation contains the five-tuple
(qq’’L));

(ii) the LL,- and ,RR-dominoes to be avoided whenever possible.
The following table indicates the possible upper neighbours (computations are

described bottom up):

LQR LQR QRR RRR
LLQ LLQ LLQ LQR QRR
LLL LLL LLL LLQ LQR ,RR

LLL LL, LQR LQR ORR RRR

LQR QRR RRR
LLQ LQR QRR

LL, LLL LLQ LQR RRR
QRR QRR

RRR

LLL LLO LQR QRR RRR ,RR

possible upper neighbours,

possible upper neighbours.

This produces the following. Assume that an odd row (e.g., the first) is tiled with
dominoes of the types LL,, LQR, QRR, RRR, possibly LLL and LLQ, but not ,RR.

Then the next row is even and tiled from right to left. Above the RRR-dominoes, only
RR-dominoes can be placed (which means that the player does not know whether

the head will move in from the left). But before the player reaches the points where
he must place upper neighbours of LL,-dominoes he must tile the points where the
running head is encoded; hence he has already chosen the successor configuration and
this leaves him no more liberty for the tiling of the rest of the row. In particular, the
row will not contain any LL,-domino. In the next row the situation is symmetric: The
player comes from the left and Jwill encounter tiles "with incomplete information"
(now ,RR-tiles) only after he has crossed the square currently scanned by the Turing
machine. Thus every row will contain dominoes with an asterisk only on one side of
the running head and in the next row these dominoes will be met last so they cannot
damage the game. Therefore the only liberty of the player lies in choosing one among
several possible successor configurations.
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The following diagram shows the possible tilings of an even row which follows
an odd row with minimal possible information (i.e., containing no LLL and no
LLQ-dominoes):

row 2k; head does not move

For @ (D, H, V) defined in this way we conclude the following. Ifwe can arrange
that the bottom row of a tiling encodes the initial configuration ofM on input x, then the
tiling produced during the game on S, corresponds to a computation of a length on
input x.

(2) There is a straightforward way to encode the initial configuration on x with
O(n) tiles. But this is not good enough" A representation of such a domino system by
bit-matrices for H and V has length proportional to n 2. A more terse description can
be given by listing explicitly the pairs in H and V; there are O(n) such pairs so the
total length of the list would be proportional to n log n. But even that is not good
enough" We want a representation of length O(n).

For this purpose we define a more complicated encoding ofthe initial configuration
by a domino system with O(x/-ff) tiles whichmusing bit-matrices for H and V--can
be represented by a string of length O(n):

LEMMA. The input configuration ofM on an input x of length n can be encoded by
the (unique) tiling of three rows with a domino system -- (X, Xo, Hx, Vx) with O(x/-ff
dominoes. Moreover, has the property that any player who begins by placing the unique
element ofXo at the origin and then proceeds as required by the rules of the game must

produce in the third row a tiling which corresponds to the input configuration (via the
encoding defined above).

The input configuration on x is encoded by a word XoXl"’" xn* D* ( is a
domino which represents the blank symbol). Assume, for simplicity, that n + 1 q2.
We divide Xo’..xn into segments of length q and encode each segment separately.
The domino system (X, Xo, H,, V,) is constructed as follows:

X contains the dominoes"
(.), (**), () and (V);
(i) and (/) for i=0,..., q-l;
(a, i) and (a,i_) for a D, i=0,..., q-1.

Thus X consists of O(q)= O(v/-ff) tiles. Xo only contains the tile (.).
H contains the pairs"

(,, 1), (**, 1);
(i, j), (/, j) for j + 1 in ZqZ;
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--((a,i), (a’,i)), ((a,j), (a’,i)) and ((a,i-1), (a’,i._)) for every and every
a, a’ D;

(, ’), (’, [,’) and ((a, q- 1), ) for every a @.
Vx contains the pairs:

<,, **>, <**, (Xo, _0)>, <0, >;
(_/, i} and (i, ’} for i=O,..., q-1;
(i, (a,j)) for which i# 0 and Xq+i a;
(0, (a,j)) for which xm= a.

It is easily verified that when we begin by placing the domino (.) at the origin
and then proceed in tiling the first row from left to right, the second from right to left,
and the third again from left to right, then we have at every point one and only one
possibility to place a domino and we will produce a rectangle of the following form:

Xo X

0 0

** 1

Xq Xq Xq+ Xjq+ Xn

0 1 1

q-1 0 1 q-1 0 l

q-1 _0 1 / q,-1 O_

This proves the lemma. So we are able to encode the computations of length of
M (considered as a nondeterministic Turing machine) on input x by the tilings of the
square S,+2 by a domino system of length O(n) that we obtain by putting together @
and in an appropriate way.

(3) Now we want to capture the alternations of M by changes of players in a
domino game. The states of M are partitioned into existential, universal, accepting,
and rejecting states. With each state q of M we can associate some of the dominoes
in @, namely, those triples (a, b, c) for which a, b, or c is equal to qa (for some a E).

We now modify @--(D, H, V) in the following way. Take two distinct copies E
and A of D, one for the existential, one for the universal player, and set E A.
V contains all pairs (d, d’) that were contained in V except if d and d’ are both in
E(A) and d is associated to a universal (existential) state; H contains all pairs that
were in H. In other words, if the existential player places a domino associated to a
universal state, then no other tile from E can be put above it, and so his move will
be terminated in the next row. Similarly, the move of the universal player ends with
laying a domino associated to an existential state.

Finally, we merge in a suitable way @ and f into one domino system @x. W is
included in E if the initial state of M is existential, otherwise it is included in A.

(4) Because T(n) is a time constructible function we may assume that the accepting
computations remain after acceptance in the accepting configuration, whereas the
rejecting computations of M on inputs of length n reject after at most T(n)- steps.
Thus the computations of length are precisely the accepting computations.

When the domino game (@, t) is played, the two players build up a tiling of S,+2,
which corresponds to one particular computation of M on x. In the game a move of
either player is terminated in one of the three following situations:

(a) The constructor has placed a tile that is associated to a universal state or the
saboteur has placed a tile associated to an existential state; this corresponds
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to a change from an existential to a universal configuration or vice versa of
the Turing machine.

(b) The space is entirely tiled, i.e., the constructor has won. This corresponds to
a computation of length which is by the remark above an accepting compu-
tation.

(c) No player can move anymore, but S,+_ is not yet fully tiled. Thus, the saboteur
has won. This corresponds to a computation shorter than t, hence a rejecting
computation of M on x.

So the constructor wins (a run of) the game if the corresponding computation is
accepting and the number of moves in the game is equal to the number of alternations
of M. Hence the constructor has a winning strategy in m moves for the game (@x, + 2)
if and only if M accepts x (in the sense of the definition given in 2) in time with
m alternations. [q

COROLLARY 3.2. Let T( n be a time constructiblefunction such thatfor some d > O,
T(dn) log (T(dn)) o(T(n)). Then there exists a positive constant c such that

GAME (T(n), m) : ATIME (T(cn), m).

Proof If T fulfills the required condition, then there exists a set L
ATIME (T(n), m) ATIME (T(dn), m). Let M be an alternating Turing machine
deciding L in time T(n) with m alternations. If @x is the domino constructed from
M and x (Ix[ n) in Theorem 3.1, then

GAME(T(n),m) iffxL.

The construction of @ requires time bounded by nk and has length less than or
equal to kn for a constant k. Choose a c > 0 with T(ckn)+ n " < T(dn) for large n. If
GAME T(n ), m) were in ATIME T(en ), m) we had L ATIME T(dn ), m), contra-
dicting the assumption.

Note that, in general, ATIME-classes with alternations bounded by a constant
probably do not contain complete sets. Indeed we have the decomposition

ATIME (T(n), m) E,n-TIME (T(n)) U Hn-TIME (T(n))

where m-TIME (T(n)) is the restriction of ATIME (T(n), m) to sets accepted
by alternating machines whose initial state is existential; Hm-TIME(T(n)) is
defined analogously for universal initial states. If a set L were complete
in, say, U,.>oATIME(T(cn),m), then either LU,.>oEm-TIME(T(cn)) or L
U c>o IIm-TIME (T(cn)). Because L is complete in ,.>o ATIME T(cn ), m), both cases
would imply that U,.>o Em-TIME (T(cn)) is closed under complement which is gen-
erally believed to be false for most functions T(n).

So, in particular, GAME (T(n), m) is probably not ,.>o ATIME (T(cn), m)-
complete. However we can decompose GAME (T(n), m) into two subsets according
to which player has the first move:

CONSTRUCTOR-GAME (T(n), m) {@ GAME (T(n), m)lDo E},

SABOTEUR-GAME T( n ), m) { GAME T( n ), m)l Do A}.

Theorem 3.1 proves that these two sets are hard for E,,-TIME(T(n)) and I-I,,-
TIME (T(n)), respectively. The following result gives almost matching upper bounds.

THEOREM 3.3. If T( n) is a time constructible function, then

CONSTRUCTOR-GAME (T(n), m) m-TIME (nT(n)2),
SABOTEUR-GAME (T(n), m) rim-TIME (nT(n)2).
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Proof We can design an alternating Turing machine which, given a domino game
@, constructs the tree of all possible runs of the game with at most m moves and
verifies whether the constructor has a winning strategy. Every branch of the tree
represents a possible sequence of moves, i.e., simulates the covering of (at most) T(n)2

points. At each Of these points, one tile from D must be chosen and it must be verified
that the rules of the game are satisfied; in particular it must be checked that the
adjacency conditions are fulfilled: if the alternating machines has two working heads
this can be done in time O(n). Therefore the entire procedure takes O(nT(n)2) steps
and m alternations. The initial state of the machine is existential for CONSTRUCTOR-
GAME (T(n), m) and universal for SABOTEUR-GAME (T(n), rn). By the Linear
Speedup Theorem the theorem follows. [3

Observe, that for functions T(n) with at least exponential growth there is a constant
c such that nT(n) is dominated by T(cn). Thus for functions T(n) with at least
exponential growth

CONSTRUCTOR-GAME (T(n), m) is U Z,,-TIME (T(cn))-complete, and
c>0

SABOTEUR-GAME (T(n), m) is Hm-TIME T(cn))-complete.
c>0

4. Domino games and the polynomial-time hierarchy. In the textbook of Lewis and
Papadimitriou [17] as well as in an article by Savelsbergh and van Emde Boas [19] a
bounded tiling problem is introduced which is shown to be a viable alternative to
SATISFIABILITY as a foundation of the theory of NP-completeness. In particular,
if we are interested in the NP-completeness of combinatorial problems arising in
computational practice such as EXACT COVER, KNAPSACK, TRAVELING
SALESPERSON, or LINEAR INTEGER PROGRAMMING, it seems more elegant
to define direct reductions from bounded domino problems, avoiding the detour over
the (in this context) rather unnatural satisfiability problem.

The only difference to the approach in 3 is that we now include the size of the
square to be tiled as part of the instance of the problem. The size of the square is
given in unary notation.

DEFINITION. SQUARE TILING := {(@, 1")1@ tiles Sn}.
THEOREM 4.1 [17-1, [19]. SQUARE TILING is NP-complete.
Domino games allow a generalization to the whole polynomial time hierarchy as

follows (see [21] for definitions and basic results on the polynomial time hierarchy).
DEFINITION. DOMINO GAME (m, ::!) and DOMINO GAME (m, V) consist,

respectively, of the pairs (@, 1 n) such that ::1, respectively, V has the first move in the
game defined by @ on an n x n playboard, and such that the constructor has a winning
strategy in m moves; thus, with the notation of 3:

DOMINO GAME (m, ::1)={(@, I")[GAME (n, m) and Do___ E},
DOMINO GAME (m,V)={(@, I")[@GAME(n, m) and Doc__A}.

Note that DOMINO GAME (1, :I) SQUARE TILING.
TIqEOREM 4.2. For all m >-_ 1:

DOMINO GAME (m, 5t) is Pm-complete,

DOMINO GAME (m, V) is IIP,,-complete.

Proof It is clear that DOMINO GAME (m, 51) and DOMINO GAME (m, V) are
contained in ZP,, and rIPm, respectively. Completeness follows from Theorem 3.1. If L
is in E P,, (H P,,), then it is decided by an alternating Turing machine M with m alternations
in time p(n) (p a polynomial), beginning in an existential (universal) state. Hence,
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any input x may be mapped in polynomial time to a domino @x and a string 1
such that (@x, 1 p(n)) is in DOMINO GAME (m, q) (DOMINO GAME (m, ’)) if and
only if x L.

Without restriction of the number of moves we obtain a PSPACE-complete
problem. Let SQUARE DOMINO GAME denote the set of pairs (@, 1 n) such that
the constructor has a winning strategy (with arbitrary number of moves) for the tiling
of a n n-square with @. Because PSPACE=APTIME we infer that SQUARE
DOMINO GAME is PSPACE-complete. A similar theorem has also been proved by
Chlebus [4].

5. Domino connectability problems. Given a domino system @ we can not only
ask whether it is possible to tile a given space S by D but also whether two given
points can be connected by a thread of dominoes. Such domino connectability problems
have been investigated by Myers [18] and Ebbinghaus [6], [7]. Let us shortly review
their definitions and results.

DEFINITION. Let Stun be the rectangle {0,. ., m} x {0,. ., n}. A thread (R) in S,
is a finite sequence sl," ’’, s of distinct elements of S, such that si and s have a
common edge if and only if j i+ 1 or -j / 1.

Let D be a domino system as defined in 3. A D-thread is a tiling z:(R)- D of a
thread O by D (satisfying the adjacency conditions imposed by H and V). 19 is the
support of z.

There are various undecidable connectability problems.
THEOREM 5.1 (Ebbinghaus [6]). Let (n, m) be a fixed point in N N, not adjacent

to (0, 0). Then the following two problems are undecidable:
(1) Given a domino system D, decide whether there exists a D-thread in Z N from

(0, O) to (n, m).
(2) Given a domino system D with a distinguished element d, decide whether there

exists a D-thread z from (0, O) to (n, m) with r(O, 0)= d.
In fact these problems are E-complete. Problems with higher degrees of unsolva-

bility are obtained by considering infinite threads. For instance, the problem of deciding
whether a domino system D with a distinguished element d allows a D-thread r from
(0, 0) to infinity with r(0, 0)= d is 1-I-complete and if we impose the additional
requirement that the support of r is not finally a straight line, then we obtain even a
E-complete problem (see [7]).

If we drop the restrictions that the D-thread from (0, 0) to (n, m) must start with
a distinguished tile d or that it must lie entirely in the upper halfplane we no longer
have undecidability"

THEOREM 5.2 (Myers) [18].

{(D, 1", 1")1=1 D-thread from (0, O) to (n, m)} is PSPACE-complete.

Now we shift our attention to connectability problems in finite rectangles S,,,. In
analogy to SQUARE TILING and RECTANGLE TILING (see, e.g., [19]) which are
NP, respectively, PSPACE-complete we have Theorem 5.3.

THEOREM 5.3 (Ebbinghaus [7]).

{(D, 1")1:! D-thread from (0, O) to (0, n) in Sn,} is NP-complete,

{(, 1")1i D-thread from (0, O) to (0, n) in some Sm,} is PSPACE-complete.

The general idea of the proof is due to Myers. A Turing machine computation is
represented by a thread which winds through the rectangle. The instantaneous descrip-
tions (ID’s) are encoded by the geometry of subthreads which go from left to right at
a distance of six and which are separated by transition threads going from right to left.



798 E. GR)i,DEL

The domino system is constructed in such a way that the only valid vertical arrangements
of a transition thread between two ID-threads (with respect to the requirement that
each domino has a common edge only with its immediate predecessor and successor)
are those allowed by the transition relation of the Turing machine. Furthermore, it is
arranged that an ID-thread is connectable with the point (0, n) if and only if it encodes
an accepting configuration. For details see [18] and [7].

6. Domino thread games. Exactly as domino tilings were generalized to two-person
domino games which describe alternating computations we could define connectability
games in the following straightforward way: The game is given by a domino system

with tiles partitioned into two subsets E and A, and by a number specifying the
size of the playboard. The two players, the constructor and the saboteur, build up a
domino thread from (0, 0). Each player moves until he cannot place a next tile; then
his opponent begins to move. The constructor wins the game when a connection from
(0, 0) to (t, t) in St is established; otherwise the saboteur wins.

Obviously the set of domino systems @ for which the constructor has a winning
strategy in m moves for the game defined by @ in this way on the playboard of size
T(]@]) is hard for ATIME (T(n), m) (for T(n) satisfying the conditions of the previous
theorems).

So this gives nothing that is really new; it is just a combination of the techniques
of Myers and Ebbinghaus with the idea of 3.

Therefore we prefer to look at a different class of domino thread games, which
will capture deterministic-time complexity classes. The goal of the constructor is to
connect (0, t) with (0, 0) by a @-thread which never goes upwards, only downwards,
to the left or to the right. Thus, if either player puts a tile on the point (x, y) then in
the next move his opponent must place a tile at one of the points (x-1, y), (x, y-1),
or (x + 1, y).

DEFINITION. A domino thread game is a given by a pair (@, t), where @=
(D, Do, H, V) is a domino system and is a natural number. It is played on the square
{0,. ., t} {0,. ., t} by two players, the constructor and the saboteur, according to
the following rules:

(1) The constructor begins by placing a domino do Do on (0, t).
(2) The players alternately select a tile from @ and put it at the right, left or lower

(not the upper!) edge of the last tile placed by the opponent, such that it has no
common edge with any other tile and such that the adjacency conditions are satisfied.

(3) The constructor wins the game when a thread is constructed that connects
(0, t) to (0, 0); otherwise the saboteur wins.

DEFINITION. Let THREAD GAME (T(n)) denote the set of domino systems @
such that the constructor has a forced win for the thread game defined by @ on the
square of size T([[).

THEOREM 6.1. Let T(n) be afunctionfrom N to N such that T(n) >- nfor all n. Then

THREAD GAME (T(n)) J DTIME Tk (n)).
k>0

Proof We show that THREAD GAME (T(n)) is contained in
LJ .>o ASPACE (log T(n)) (which is equal to Llk>o DTIME (T(n)) by Theorem 3.3 in
[3]). In fact, to simulate a run of the game defined by @, the alternating Turing machine
must only "keep in mind" the coordinates of the last point that was tiled, which tile
was placed, and the directions of the last two moves (down, right or left); this is
because the next move may go to the right (left) if and only if none of the last two
moves went to the left (right). Moves that go downwards are never forbidden.
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Thus the simulation requires space O(log T(n)). [3

For proving a corresponding lower bound, we must encode the computations of
a deterministic Turing machine M into the game. Let Q and Z be the set of states and
the alphabet of M and set F:= Z t_J (Q 2;). With M we can associate a function
F:F3- F such that the computation of M on input x Xo,"" ", xn-1 is described by
a t-matrix (the computation table) with entries from F; is the length of the
computation and the elements C(i,j) of the matrix satisfy:

C(i,j+ 1)= F(C(i- 1,j), C(i,j), C(i+ 1,j));
C(O,O)=(qo, Xo), C(i,O)=xi for0<i<n and C(i, 0)=(blank) fori->_n.

TrEOREM 6.2. Let M be a deterministic Turing machine. There is a polynomial
reduction, taking every input x XoX xn_ to a domino system @, oflength O( n log n)
such that for all N:

M accepts x in time => @, THREAD GAME (2t).
Proof For any input x consider the following game G,. Player ::! wants to prove

that M accepts x and states that M enters the accepting state at time while scanning
symbol a at position i. In terms ofthe computation table, he claims that C (i, t) (qa, a).
To prove this he indicates a triple (y_, To, 3/) [’3 such that F(T_, To, Yl)= (qa, a)
and states that C(i- 1, t- 1) Y-l, C(i, t- 1) 3’o and C(i+ 1, t- 1)-- y. Player V
doubts this: he chooses m from {-1,0, 1} and challenges ::1 to justify that
C(i+m, t-l)= Ym. =1 answers by selecting a new triple (y’__, y;, 3/P)G F-l(3/m) for
C (i + m 1, 2), C (i + m, 2) and C (i + m + 1, 2). Then he is challenged again
by V to prove one of the three claims, and so on. The game is terminated when the
last row of the computation table is reached. =1 wins if and only if his last challenged
claim for, say, C(j, 0), is true (which is easily verified). Obviously, =! has a winning
strategy for Gx (namely, to make always correct claims) if M accepts x. Conversely,
if M does not accept x, V can win the game by. always challenging one of the false
claims of =!.

This game is implicit in the proof due to Chandra, Kozen, and Stockmeyer [3]
that DTIME (T(n)) c_ ASPACE (c log T(n)) for all T(n) _-> n and all > 0. We define
a domino system @x such that Gx corresponds (almost) step by step to the thread
game defined by @x. The size of the board will be 2t and the thread that is constructed
in the course of the game will consist of three subthreads:

(1) A thread from (0, 2t) to (2i, 2t’) which ends with a tile (q, a), placed by the
constructor (::!). This subthread represents ::l’s claim that M enters the accepting state
at time t’<= at position i, reading tape symbol a. Three tiles are enough to enforce
this beginning.

(2) The main part of the thread goes from (2i, 2t’) to a point (2j, 0) in the bottom
row and represents the actual game G. The set of dominoes includes F and F x
{=t, V, V’}. Suppose the constructor has placed a tile (a,/3, 3’) from F at the point
(2i, 2j) below a tile (6v)Fx {V}; by the construction of the domino system this is
only possible if F(a,/3, y)= and represents the claims in Gx that C(i,j-1)=cr,
C(i,j)= fl and C(i+ 1,j) y. The saboteur (’q) now can place either (av) at the left
side, (/3v) at the lower side or (yv) at the right side of (a,/3, 3’); each ofthese possibilities
represents the corresponding challenge in G. Assume that the saboteur has placed
(Cv). The constructor puts (a3) at the left side of (Cv), which leaves the saboteur the
only possibility to place (av,) below it; if the saboteur has gone to the right (challenging
3’) symmetric moves are done (but no such moves are necessary, if the saboteur has
challenged/3). Now we are in the same situation as at the beginning: The constructor
must place a new triple (c’,/3’, 3" at the point (2(i + m), 2(j 1)) (m {- 1, 0, 1 }) to
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meet the challenge of the saboteur. This is repeated until the last row is reached. The
number of tiles to represent this part of the game depends only on M (not on x).
The thread reaches (0, 0) if and only if/3 is, in fact, the jth symbol of the input
configuration. The domino (/3,j, .) is a copy of (/3,j) with the exception that it allows
no adjacent dominoes on its right edge.

(3) The last part of the thread goes from (2j, 0) to (0, 0). Here the players have
no more free choices: the thread can be terminated to (0, 0) if and only if the tile
placed on (2j, 0) corresponds to the jth symbol in the initial configuration of M on x,
i.e., if the last claim of the constructor was correct. It is straightforward to encode this
part with O(n) tiles such that H and V also have cardinality O(n); therefore the
domino system may be encoded by a string of length O(n log n).

Thus, the constructor has a winning strategy for (gx, 2t) if and only if M accepts
x in time t. The explicit construction of 9, is left to the reader. [3

COROLLARY 6.3. Let T be a time-constructible function such that there is a d > 0
with T(dn) log (T(dn)) o(T(n)). Then there is a constant c > 0 with

THREAD GAME (T(n))_ DTIME (T(cn/log n)).

Proof If T1 and T2 are two time-constructible functions such that
T1 (n) log T(n)) o(Tz(n)), then there is a language L decidable in time Tz(n) but
not in time T(n). We thus can find an L DTIME (T(n)) DTIME (T(dn)). By
Theorem 6.2 every input x is reducible in polynomial time to a domino system 9 of
length O(n log n), which is in THREAD GAME (T(n)) if and only if x L. [3

7. P-complete domino games. From Theorems 6.1 and 6.2, together with the
observation that the reduction in Theorem 6.2 can actually be done in logarithmic
space, it follows that THREAD GAME (n) is P-complete. To obtain an analogous
notation with SQUARE TILING and SQUARE DOMINO GAME we can define
SQUARE THREAD GAME to be the set of pairs (9, I n) such that the constructor
has a winning strategy for the thread game (9, n). Certainly SQUARE THREAD
GAME is P-complete.

There are, however, even simpler possibilities for defining P-complete domino
games. These games are purely one-dimensional: we have instead of H and V only
one adjacency relation A and the distinction between tiling games and thread games
thus becomes meaningless.

DEFINITION. We consider three sorts of one-dimensional domino games G1, G2,
and G3. All are based on a one-dimensional domino system, i.e., a binary relation A
on a finite set of tiles D. The players alternately place a tile next to the last tile plac.ed
by the opponent such that the adjacency relation A is satisfied. The constructor begins
the game. In addition we have the following rules:

G1: Given a one-dimensional domino system (D, A) and subsets Do and D of
D. The constructor wins if he accomplishes a tiling that begins with a tile
from Do and ends with a tile from D.

G2: Given D,A, and Do as above, but instead of D1 a number 1 in unary
notation. The constructor wins if he can construct a tiling oflength n beginning
with an element of Do.

G3: The same as Gz but without initial constraint: Given D, A, and l n; the
constructor wants to build a tiling of length n.

For 1, 2, 3 denote by Gi those instances of the corresponding game for which
the constructor has a winning strategy.

THEOREM 7.1. G, G2, and G3 are P-complete.
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3 places (q,,a) on (2i,2t), i.e. he claims

that M accepts at time at tosition i.

To justify this he puts (c,fl,7) on (2i, 2t 2),
such that F(a,fl,7)= (qa,a). V challenges a.

To justify a 3 places the tile (at,/3, 7’)
with F(a’,/3, 7’) a. V challenges 7.

(q,,a)

(q,,a)

The next moves of botl players are deter-

mined, (i.e. they have no free choices).

:1 wins x2,2 X2,2 :al
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Proof All three games are in P, because they can be simulated by an alternating
Turing machine in logarithmic space. To prove completeness we reduce the problem
GEN to each of the three games. GEN was defined and proved to be P-complete by
Jones and Laaser [13]:

Instance: A set X, a binary operation on X, a subset S
_
X, and an element x X.

Question: Is x contained in the set (S) generated by S under. ?
We first reduce GEN to G1. Set:

D=X(..J(XX), Do={(a,b)la.b=x}, D,=S,

A={(a,(b,c))lb. c=a}LJ{((b,c),a)la=bva=c}.

Obviously this defines a log-space reduction. Furthermore, if x (S) the constructor
wins by answering any move a of the saboteur with a pair (b, e) such that b.c a
and such that b and e have shorter representations than a as a product of elements
of S. Conversely, if x (S) the saboteur wins by always choosing that element of a
pair (b, c) not generated by S.

Observe that if x is generated by S, then it can be written as a term with depth
over S at most IX[. So the winning strategy of the constructor requires at most 21XI
moves of both players together. Set n := 21X]+ 1 and let D, Do, and A be as above.
First we add to A all pair,s of elements of S, i.e., we set A’= A LJ (S S). Now we can
define the reduction G2" D := D { 1, , n},/o := Do { 1 }, and A contains those pairs
(d, i-1); (d’,i) for which either(d,d’)A’ and i<n or for which i=n and d,d’ are
both in S.

Thus (/,/o, A, ln) allows a winning strategy to build a tiled thread of length n
if and only if (D, Do, D, A) allows a winning strategy for a tiling ending with a tile
in D=S.

Finally, note that the initial constraint is redundant, since every winning strategy
for the constructor requires that he begins with a tile indexed with one. Thus we also
have a reduction to G3. Hence all three games are P-complete. [3

Remark. One-dimensional domino games were independently introduced by
Torn in his doctoral thesis [22]. He defines games R(m) consisting of 2 tiles, each
tile being a pair of colours coded by a string of length 2ran; Tortn shows that the
problem of whether the constructor has a strategy for tiling a row of length m + 1 is
complete in the class Zm of the logarithmic time hierarchy. (The logarithmic time
hierarchy was defined in [3] by logarithmic time bounded alternating Turing machines
with indirect access.) Torn also found a P-complete domino game which is similar
to our game G1.

8. Applications.
Nessuno ha mai sostenuto seriamente
che giochi siano inutili.
UMBERTO ECO

Domino problems have been important for proving undecidability and lower com-
plexity bounds for subclasses of the predicate calculus [14],[11],[16],[8] and for
various types of propositional logics [4], [12]. Their simple combinatorial structure
allows elegant reductions to formulae with a simple syntactical structure, e.g., with a
simple quantifier prefix. As has been mentioned before, the classical domino problems
are existential in nature and thus provide a tool for dealing with nondeterministic
complexity classes.

For measuring the complexity of specific (decidable) logical theories, alternating
time complexity classes seem most appropriate: a huge amount of results is known to
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the effect that the decision problem of a theory is complete in some class
kJ c>o ATIME (expr (on), cn) for an r_-> 1. (expr is the r-fold iterated exponential func-
tion.) For a survey on such results see, e.g., [5].

The fact that almost all interesting mathematical theories have at least exponential
complexity, together with the observation that decision problems occurring in mathe-
matical practice are usually formulated by formulae with quite a simple quantifier
prefix, leads to the question, how the complexity of a formula in a theory Th depends
on its quantifier structure: is it possible to find subclasses of Th which are strong
enough to express interesting statements but which are much easier to decide than the
whole theory. It has turned out that a restriction of the number of quantifier alternations
usually results in an exponential decrease of complexity (see [9] for a survey on such
results). For instance, the theory of real numbers with addition RA is complete in

LJc>oATIME (2 on, on) [2], whereas its subclasses RA,, of sentences with at most rn
quantifier alternations are contained in the ruth level of the polynomial-time hierarchy,
as was shown by Sontag [20]. To be precise RA, is the disjoint union of RAm,3 and
RA,,,v (consisting of those sentences in RA,, which begin with an ::!, respectively, with
an V) and

RAm,3 is -complete,

RAm,v is HPm-complete.

Using domino games we are able to show that this does not hold for all theories.
A counterexample is provided by the theory of Boolean algebras BA. Its decision
problem is treated by Kozen [15] who shows that BA is complete in
kJ .>o ATIME (2 C", n), i.e., it has essentially the same complexity as RA. This computa-
tional equivalence does not, however, extend to the subclasses with bounded quantifier
alternations: in the case of Boolean algebras, these still have exponential complexity
as shown in Theorem 8.1.

THEOREM 8.1. There is a positive constant c such that for all tn >- 1

BAm+ : ATIME (2n/m, m).

In particular, we already have a nondeterministic exponential lower boundfor the sentences
in BA with only two alternations:

BA2 : NTIME (2’n).

The proof proceeds by reduction from GAME (2n, m) [10]. Similar results can be
obtained for other theories, e.g., Th (N, I) and Th (N, 3_), the theories of natural numbers
with divisibility and with coprimeness, respectively. These results and related questions
will be discussed in a subsequent paper.

What is the particular merit of domino games for obtaining such results? In order
to prove lower complexity bounds for a (subclass of a) logical theory we normally
perform (at least implicitly) two steps: First we define large finite sets by short formulae
of the theory and then we show that these sets can be given the minimum of structure
which is necessary to encode Turing machine computations. For the first step domino
games certainly offer no helpmreductions from domino games require the same large
sets as direct encodings of the computations. (In the case of Boolean algebras this is
possible because the free Boolean algebra generated by n elements has cardinality
22".) But the simple combinatorial structure of dominoes makes the second step easier
in many cases. In particular, if we look for reductions for formulae which are not only
short in length but which also have a simple quantifier prefix, then we believe that
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domino tilings (for nondeterministic complexity) and domino games (for alternating
complexity) may be very useful.
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THE HOUGH TRANSFORM HAS O(N) COMPLEXITY ON NxN MESH
CONNECTED COMPUTERS*

R. E. CYPHER’, J. L. C. SANZ, AND L. SNYDER"

Abstract. This paper presents algorithms for implementing an important image processing operation,
the Hough transform, on a mesh connected computer (MCC). The MCC consists of an N N array of
processors, each of which holds a single pixel of the image. The MCC operates in a Single Instruction
Stream, Multiple Data Stream (SIMD) mode, which is in agreement with the hardware constraints found
in existing meshes. Five algorithms for computing the Hough transform are presented. These algorithms
use a number of different techniques, and they have varying time complexities and architectural requirements.
The most notable algorithm presented computes any P angles of the Hough transform in O(N+P) time
and uses only a constant amount of memory per processor. Because the Hough transform is a particular
case of the discrete Radon transform, all of the algorithms will be presented for computing the Radon
transform of gray-level images.

Key words, radon transform, Hough transform, image processing, parallel algorithms, mesh array
computers

AMS(MOS) subject classifications. 68U10, 68Q20, 68Q35, 68Q80

1. Introduction. Parallel computing for image processing and computer vision has
received considerable attention during the last few years [30], [14], [3], [10]. Techno-
logical advances have made possible new processor interconnection topologies [35],
[17] and fine-grained architectures [2], [19]. Mesh connected computers (MCCs) are
of particular interest to the image processing community [21], [31], [12], [8], [37],
[27], [13]. Many practical algorithms have been implemented on fine-grained MCCs
[29], [9] and, more recently, on coarse-grained MCCs [23]. Theoretical advances in
developing algorithms for MCCs have also been reported [26], [24], although it will
take some time before these ideas can be put into practice. This paper addresses the
issue of calculating the Hough transform on an MCC. The fastest previously published
algorithm for this problem calculates P projections of the Hough transform in O(NP)
time [34]. Algorithms will be presented here that calculate P such projections in
O(N+ P) time. A different algorithm with the same asymptotic complexity was created
simultaneously and independently by Guerra and Hambrusch [16].

Section 2 of this paper summarizes the basic hardware characteristics of MCCs.
This material is important because it justifies the assumptions for the computing models
used in 3, where the main results of the paper are given. Conclusions are presented
in 4.

2. Mesh connected computers. An MCC consists of N2 processing elements (PEs)
arranged in an Nx N array (see Fig. 1). Each PE consists of a processor and an
associated memory. The PEs operate in a Single Instruction Stream, Multiple Data
Stream (SIMD) mode, with all control signals coming from a single control unit. The
control unit reads instructions from its private memory, decodes them, and broadcasts
the control signals to the PE array. In addition to broadcasting the control information
to the processors, the control unit typically sends addresses to the memory units, so
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FIG. 1. Mesh connected array.

every PE accesses the same memory location at a given time. There is usually no direct
data connection from the controller to the array. There are, however, situations in
which a number must be broadcast from the controller to the PEs. This broadcast can
be accomplished by using the control lines from the controller to the array and having
the PEs calculate the number one bit at a time. For instance, if each PE has the ability
to calculate arbitrary Boolean functions, they can be directed to calculate the function
that always returns TRUE for those bit positions that contain a 1 and to calculate the
function that always returns FALSE for the remaining bit positions.

It is common to provide a special register, called a mask register, in each PE.
When an instruction is sent from the controller to the array of PEs, only those PEs
with a 1 in their mask register perform the instruction; all others do nothing. This
allows operations to be performed on a subset of the PEs in a data dependent manner.
Of course, there are some instructions that operate on all PEs regardless of the setting
of the mask registers, thus allowing the disabled PEs to be used again.

The array structure is easy to construct because it is regular, it has short connections,
it requires only four connections per PE, and it is possible to build in two dimensions
without having any connections cross. Each PE that is not on an edge of the array has
a direct connection with its four nearest neighbors. The edge PEs can either be connected
to a smaller number of PEs or they can be connected to the corresponding PEs on the
opposite edge. In the latter case, the top row is connected to the bottom row and the
leftmost column is connected to the rightmost column, so the interconnections logically
form a torus. The construction of such a machine in two dimensions requires that
some connections cross.

While the above description provides a simple, idealized model of MCCs, actual
computers vary slightly, as is seen by examining MCCs that have been built [15], such
as the CLIP4 [8], the GAPP [27], and the MPP [2].

Before presenting the architectures that will be studied in the next section, it is
useful to examine the issue of SIMD versus MIMD (Multiple Input Multiple Data)
control in some detail. Both of the architectures presented later in this section have a
large number of PEs that operate synchronously under the direction of a single
controller. The controller broadcasts instructions to the PEs which are then executed
in parallel by the PEs. Because all PEs perform the same operation (such as addition
or multiplication) at the same time, the machines can be considered to operate in an
SIMD mode. However, there are actually three aspects to the distinction between the
SIMD and MIMD modes of operation. First, the operation performed at a given time
can be the same in every PE, which corresponds to an SIMD mode of operation, or
different operations can be performed at a given time in different PEs, which corre-
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sponds to an MIMD mode of operation. Second, the memory addresses of the operands
and result can be the same for every PE at a given time, or they can be different in
different PEs. The first case will be referred to as SIMD addressing, while the second
will be referred to as independent addressing. It is possible to have independent
addressing even when all PEs are operating under the direction of a single controller.
This can be accomplished by using indirection. The third aspect of the distinction
between SIMD and MIMD operation is whether or not every PE receives data from
the same neighbor (e.g., the North neighbor) at a given time. The case where every
PE does receive data from the same neighbor at a given time will be called SIMD
communication, and the other case will be called independent communication.
Independent communication can be implemented when there is a single controller, by
using indirection to choose the communication port from which data will be received.
All of the MCCs studied in this paper operate in an SIMD mode and use only SIMD
communication.

The first architecture studied is an N N array of PEs that processes N N
images. This will be referred to as the "plain MCC" architecture. The PEs communicate
directly with their four closest neighbors, one neighbor at a time. The top and bottom
rows are connected and the leftmost and rightmost columns are connected, so the
interconnections logically form a torus. It is assumed that the PEs can be selectively
disabled through the use of a mask register. Different types of plain MCCs will be
considered, where the types vary in the amount of memory present per PE and in the
ability to perform independent addressing.

The second architecture is identical to the first except that in addition to the square
array of PEs, it includes a tree of PEs per row of the array. The trees of PEs are built
on top of the array, so that the PEs in each row of the array form the leaf nodes of a
tree. The root of each tree has an output port for the removal of results from the tree.
A second controller is provided so that the PEs internal to the tree can perform one
operation while the PEs in the array perform another. This architecture will be referred
to as the "augmented MCC" architecture. For the algorithms presented in 3, it is
sufficient that the PEs in the nonleaf levels of the trees be adders. These trees can be
shown to be useful in solving a number ofimportant vision problems 5 ]. The augmented
MCC architecture is similar to the mesh-of-trees architecture [25], [36].

In both the plain and augmented MCCs, the PEs in the N N array will be
indexed by a pair of integers. PE (x, y), where 0 =< x < N, 0 _<- y < N, is located in column
x and row y, with PE (0, 0) being located in the lower left-hand corner of the array.

The time and memory requirements of the algorithms will be analyzed in terms
of words, where each word has O(log N) bits. It is assumed that a pixel can be stored
in a single word of memory. Although operations on words that are longer than one
bit are not directly supported by the bit-serial machines currently in existence, they
can be implemented in software as a sequence of bit-serial operations. The time analysis
will be for the worst-case data.

3. Hough and Radon transforms. The Radon transform of a gray-level image is a
set of projections of the image taken from different angles. Specifically, the image is
integrated along line contours defined by the equation:

((x, y): x cos (0) + y sin (0) p},

where 0 is the angle of the line with respect to the positive y-axis and p is the (signed)
distance of the line from the origin. This parameterization of the line contours is used
rather than the slope-intercept parameterization so that vertical lines can be represented
with finite values of the parameters. It is fair to assume that O< O=< r, because
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projections are the same for 0 and for 0 + 7r regardless of the value of 0. The original
definition of the Radon transform involves a line integral. For digitized pictures, this
integral is replaced by a weighted summation. It will be assumed that each line contour
is approximated by a band that is one pixel wide. All of the pixels that are centered
in a given band will contribute to the value of that band. Because each band is one
pixel wide, there are at most x/ N values of p for each value of 0. The parameter P
will be used to denote the number of projections (values of 0) that are to be calculated.
Some of the computational aspects of the discrete form of the Radon transform and
its implementation in pipeline architectures have been studied previously [33].

The Hough transform is just a particular case of the Radon transform, where the
input image is binary. Both transforms have many uses in computer vision [1] and
image processing [18]. The Hough transform is often used to locate the edges in an
image. This application of the Hough transform has been widely used in solving
industrial vision problems [11], [28].

The Hough transform has been implemented on different architectures including
the GAPP [34], systolic arrays [4], and pipeline architectures [32]. Also, special
architectures for computing peaks of the Hough transform have been proposed [22]
and built [7]. In addition, Kushner, Wu, and Rosenfeld [20] studied the problem of
implementing the Hough transform on the MPP and concluded that because the
projections are at various orientations, the problem "is of a form that the fixed geometry
of the MPP cannot easily handle." This section contains five new algorithms for the
Radon (Hough) transform on MCCs having different time complexities and resource
requirements.

One way to calculate the Hough transform on a plain MCC is to rotate the columns
of the image until all of the pixels that lie in the same band (line contour) for a given
projection angle are in the same row. The projection is then calculated by totaling the
values for each band by using horizontal shifts and adds. The first four algorithms are
all based on this general approach. One algorithm based on this technique is given in
[34]. The first algorithm presented here is faster by a constant factor, and the remaining
algorithms are asymptotically faster.

In the algorithm descriptions that follow, two simplifying assumptions will be
made. First, it is assumed that different PEs can perform a constant number of different
operations at the same time. This is not possible with SIMD machines, but it is easy
to simulate in constant time by selectively disabling PEs. Second, it is assumed that
whenever a PE attempts to access an array location in its memory that does not exist,
the PE is disabled for that operation. Again, this is easily implemented in constant
time with an SIMD machine.

3.1. Algorithm 1. The first algorithm operates on a plain MCC with a constant
number of words of memory per PE and SIMD addressing. The algorithm requires
O(NP) time to calculate P projections of the Hough transform. First, the case where
7r/2 < 0 <- 37r/4 will be examined. The values of 0 from 7r/2 through 37r/4 are treated
in order starting with 7r/2 and increasing through 37r/4. For each value of 0, the
controller first broadcasts the values sin (0) and cos (0) to all of the PEs. Each PE (x, y)
calculates d x cos (0) + y sin (0). The value d is the (signed) distance from the origin
to the line that passes through the point (x, y) at angle 0 with respect to the positive
y-axis. Next, each PE calculates p floor (d), which is the distance from the origin to
the lower edge of the one pixel wide band that passes through (x, y) at the desired
angle. Then each PE calculates v ceiling (p/sin (0)), which is the smallest value on
the y-axis within the band containing the point (x, y).
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Each PE then creates a record containing its pixel value and the variables x, y,
and v. These records are shifted vertically (cyclically, because of the connections
between the top and bottom rows) until each record is in row r where r= v mod N
(see Fig. 2). For instance, if the record originally in PE (10, 3) has a v value of 1, the
record is shifted down two rows. The details of how the vertical shifting is performed
will be presented shortly. After this vertical shifting, each row r will have the pixels
from all bands that cross the y-axis at distance v from the origin where v r mod N.

Because 7r/2 < 0 =<37r/4, there are at most two bands with different values of v
on the same row r. Also, because each band is one pixel wide, it is possible that at
most two pixels in the same column of the image lie within the same band. To avoid
shifting one record on top of another, the vertical shifts should be performed in two
stages, one for the even y-coordinates and one for the odd y-coordinates. After all of
the records have been shifted vertically until they are in row r v mod N, they are
stored so that they can be used in calculating the next projection.

Then, the pixel values of the records with odd y-coordinates are added to those
of the records with even y-coordinates. Next, the total of each band is calculated by
shifting the pixel sums horizontally and adding them together. This process has
(log N)- 1 stages, where stage i, 0-< < (log N)- 1, consists of 2 left shifts of the
pixel sums followed by an addition of the shifted and unshifted sums. Because each
row may have the pixels for two bands within it, this summation of pixels across the
rows must be performed in two passes, one for each band. The totals formed in the
first column form the desired projection. The next projection is calculated in the same
manner, starting with the records in the PEs where they were stored after performing
the vertical shifts in the calculation of the previous projection.

7
6

pixels tall 5

-5o
-6o

FIG. 2. Bands for 0 3(7r/4) for an 8 8 image.
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By performing the projections in order and storing the records after shifting them
vertically for each projection, the later projections can take advantage of the shifts
performed for the earlier projections. In fact, it will be shown that only O(N+ P)
vertical shifts are required for all of the projection angles 0 where 7r/2 < 0-<37r/4.
Although performing the vertical shifts in O(N+P) time does not improve the
asymptotic complexity of Algorithm 1, the technique will be essential for the next three
algorithms. The following lemma will be useful in showing how to perform the vertical
shifts efficiently.

LEMMA 1. For all values of O where 7r/2< 0_-<37r/4 and all values ofx and y, if
v ceiling (floor (x cos (0) + y sin (0))/sin (0))

then x cot (O)+ y-x/<= t,<-x cot (O)+y+ 1.

Proof First, it will be shown that , => x cot (0) + y -x/. From the definitions of
the ceiling and floor functions and from the fact that 1 -< 1/sin (0) -< x/ for the given
values of 0,

, _-> floor (x cos (0) + y sin (0))/sin (0)

_-> (x cos (O) + y sin 0 1 / sin (O)

>=x cot (O)+y-x/.

Next, it will be shown that v_-< x cot (0)+y + 1. From the definitions of ceiling and
floor and from the fact that 0 < sin (0) for the given values of 0,

v _-<floor (x cos (O)+y sin (0))/sin (0)+ 1 _-<x cot (0) +y+ 1,

which completes the proof. I-]

If the floor and ceiling functions were not present in the calculation of v, then
successively larger values of 0 (in the given range) would create successively smaller
values of v, and only downward shifts would be required to move each record to row
r v mod N. The floor and ceiling functions could cause a larger value of 0 to have
a slightly larger value of v, thus requiring upward shifts in addition to the downward
shifts. However, Lemma 1 places a bound on the number of upward shifts that are
required. From Lemma 1, it follows that if r/2 < Oi < 0 =<3r/4 and if t,i and .j are
the v values for 0i and 0j, respectively, for any pixel (x, y), then ,j ,-< 1 + x/. Because, and , are integers, ,- ’i -< 2. As a result, the algorithm for performing the vertical
shifts for the records with even (or odd) y-coordinates and for a given value of 0
consists of performing two upward shifts and then performing downward shifts until
each record has reached row r v mod N. Given this technique of implementing the
vertical shifts, it will now be shown that O(N+ P) such shifts suffice.

LEMMA 2. Ifthe vertical shifts are implemented as described above, then Pprojections
in the range 7r/2 < 0=<37r/4 require only O(N+ P) vertical shifts.

Proof First, consider the vertical shifts required for the pixels with even y-
coordinates. From Lemma 1, it follows that if 7r/2 < 0 < 0 =< 37r/4 and if , and , are
the v values for 0i and 0, respectively, for any pixel (x,y), then ,i-,-<
x(cot (0)-cot (0)) +x/+ 1. Therefore, at most N(cot (0i)-cot (0)) +x/+5 vertical
shifts are required to process the pixels with even y-coordinates for angle 0 after angle
0 has been processed. As a result, P projection angles in the range rr/2 < 0_-<37r/4
require at most N(cot (Tr/2)-cot (37r/4))+ P(x/+ 5)= N+ P(x/+ 5)= O(N+ P)
vertical shifts for the pixels with even y-coordinates. Because the pixels with odd
y-coordinates require an equal number of vertical shifts, a total of O(N + P) vertical
shifts are sufficient, thus completing the proof. [3
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The projections where r/4 < 0 _-< r/2 are calculated in the same way, starting with
the original unshifted image and processing the values of 0 in decreasing order. There
is a problem with using the same algorithm to calculate the projections for 0 < 0 -<_ r/4
and for 3r/4 < 0 _-< r. These projections use bands that are more vertical than horizontal,
so it is possible that many bands with different values of v would have the same value
of r. Because these bands would have to be totaled sequentially, the total time for the
algorithm would increase. One solution is to modify the algorithm so that the use of
rows and columns is reversed. Then each band would be shifted horizontally (instead
of vertically) until each of the bands occupies a single column of PEs and then the
bands would be totaled within columns.

However, a different technique will be presented here. This technique has the
advantage of being easily modified to create an algorithm for an augmented MCC.
This algorithm calculates the transpose of the image before calculating the projections
where 0< 0-< r/4 or 3r/4 < 0-< r. To obtain the transpose, the original image is
shifted in four stages. In the first stage, the pixel in PE (x, y) is shifted down x times.
In the second stage, the pixel in PE (x, y) after the first stage is shifted to the right y
times. In the third stage, the pixel in PE (x, y) after the second stage is shifted down
x times. Finally, in the fourth stage, the pixel in PE (x, y) after the third stage is shifted
down 2y mod N times. Figure 3 demonstrates the operation of this transpose routine,
and the following lemma establishes its correctness.

2. 3 4 14 11 8

5 6 7 8 5 2 15 12
Stage 1._

g 10 11 12 9 3 1

13 14 15 16
’1,/ 13 10 7 4

14 11 8

,’ 14 10 6 2

15 12 5 2 15 11 7 3
S,tacje ,3

16 9 6 3 16 12 8 4

13 lO 7 4

16 12 8 4

13 9 5

15 11 7 5

14 10 6 2

1,5 9 5

FZG. 3. Pixel locations before and during the transpose routine.

LEMMA 3. Thefour stageprocess described above creates the transpose ofthe original
image in O(N) time.
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Proof Each stage requires N-1 shifts, so a total of 4N-4= O(N) shifts are
required. If a pixel is originally located in PE (x, y), then following stage 1 it is in
PE (x, y-x mod N), following stage 2 it is in PE (y, y-x mod N), following stage 3
it is in PE (y, -x mod N), and following stage 4 it is in PE (y, x), which completes the
proof, lq

Because the transpose is obtained in O(N) time and each of the four groups of
projections is calculated in O(NP) time, the following theorem is proven.

THEOREM 1. Algorithm 1 calculates Pprojections ofthe Hough transform in O(NP)
time on a plain MCC with a constant amount ofmemory per PE and SIMD addressing.

3.2. Algorithm.2. In the Hough transform algorithm presented above, there are
O(N+ P) vertical shifts and O(NP) horizontal shifts. The second algorithm is identical
to the first except that it uses an augmented MCC to sum the pixels within rows. The
augmented MCC can calculate totals for all rows in parallel in O(log N) time. More
importantly, the row totals for successive projections can be pipelined. As soon as the
totals for one projection angle start up the trees of PEs, the vertical shifts for the next
projection angle are started. As a result, only O(log N+ P) time is spent calculating
the row totals. Because O(N+P) vertical shifts are performed, and because the
transpose is obtained in O(N) time, the entire algorithm requires O(N+ P) time. As
was the case with the first algorithm, the second algorithm uses only a constant number
of words of memory per PE and SIMD addressing. Thus, the following theorem is
obtained.

THEOREM 2. Algorithm 2 calculates P projections of the Hough transform in

O(N+ P) time on an augmented MCC with a constant amount of memory per PE and
SIMD addressing.

3.3. Algorithm 3. There are two versions of Algorithm 3, depending on the
relationship between the parameters N and P. The following description will be for
the case 2P=< N. When 2P<= N, Algorithm 3 calculates P projections of a Hough
transform in O(N) time on a plain MCC that has O(P) words of memory per PE and
the ability to perform independent addressing. This algorithm also uses the technique
of performing vertical shifts to place the pixels from each band into a single row of
PEs, and horizontal shifts to total the pixels in each band. Algorithm 1 alternated
between performing the vertical shifts for a projection and totaling the bands for that
projection. Although there is some overlap between these operations in Algorithm 2,
the totals for the bands of one projection start up the trees of PEs before the vertical
shifts are performed for the next projection. In contrast, Algorithm 3 performs the
vertical shifts for all of the projections before calculating any of the totals for the
bands. First the vertical shifts for the projections where 7r/2 < 0 =< 37r/4 are performed
in order, then the vertical shifts for the projections 7r/4 < 0 -< 7r/2 are performed. Next,
the transpose of the image is calculated. Then the vertical shifts for 0 < 0 =< 7r/4 and
for 37r/4 < 0=< 7r are performed.

Each PE contains a 2P element array, called the "buffer array," that is initialized
to all 0s. After the vertical shifts for the ith projection angle are performed, the shifted
pixels are stored in the buffer array either in location or in location + P. Specifically,
the pixels that have v values (refer to Algorithm 1 for the definition of v values) where
0 =< v < N are stored in location and the remaining pixels are stored in location + P.
As a result, the pixels that lie in a single band all lie in the same row of PEs and they
are all at the same offset within the buffer arrays. Furthermore, no two bands are stored
in the same row of PEs at the same offset. This is because, for a given projection, a
row of PEs can hold pixels from at most two bands, and if pixels from two bands are
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present, one of the bands is stored at offset and the other is stored at offset i+ P.
From Lemmas 2 and 3, it follows that the above operations require O(N+ P)= O(N)
time.

Next, the totals for the bands will be calculated in O(N) time. Each PE has a
variable, called band_total, that is initialized to 0. The totals for the bands are calculated
by using an N stage routine. During stage k, 0-< k < N, each PE (i, j) adds location
(i-k) mod 2P from its buffer array to its band_total and then shifts its band_total

1 PE to the right. Note that this routine requires the ability to perform independent
addressing. The effect of this routine is shown in Fig. 4. Once this N stage routine is
completed, each band_total variable contains the total for a different band. Assuming
that the leftmost column of PEs is connected to I/O ports, the band_total variables
can be shifted to the left N times to remove the result from the MCC. This completes
the calculation of the Hough transform in O(N) time, assuming 2P-<_ N.

PE COLUMN

( 0 0 0 0 0 0 0

Q

BUFFER
OFFSET

2 2 Q 2 2 2 2 2

3 3 3 ( 3 3 3 3

4 4 4 4 ( 4 4 4

5 5 5 5 5 ( 5 5

6 6 6 6 6 6 ( 6

7 7 7 7 7 7 7 7
FIG. 4. Numbers indicate band to which pixel belongs. Circled numbers are accessed first. The arrow

indicates the direction in which each band_total variable moves.

The description of Algorithm 3 for the case 2P > N is given next. When 2P > N,
the P projection angles are divided into ceiling (2P/N) sets, each containing at most
N/2 projection angles. Then each set of angles is processed using the algorithm for
the case 2P_< N. Because each set of at most N/2 projections requires O(N) time,
and because there are O(P!N) such sets, the entire algorithm requires O(P) time.
Also, note that only O(N) words of memory are required per PE. As a result, the
following theorem is established.

THEOREM 3. When 2P<-_ N, Algorithm 3 calculates P projections of the Hough
transform in O(N) time on a plain MCC with O(P) words of memory per PE and
independent addressing. When 2P> N, Algorithm 3 calculates Pprojections ofthe Hough
transform in O(P) time on a plain MCC with O(N) words of memory per PE and
independent addressing.

3.4. Algorithm 4. There are two versions of Algorithm 4, depending on the
relationship between the parameters N and P. The description of the algorithm for
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the case 2P<= N is given next. When 2P<= N, Algorithm 4 uses a plain MCC with
SIMD addressing and O(P) words of memory per PE to calculate the Hough transform
in O(N + P log P) time. Once again, each PE has a buffer array with 2P entries that
are initialized to 0. The same technique that was used in Algorithm 3 is used to place
the vertically shifted pixels into the buffer arrays in O(N + P) time. Algorithm 4 differs
from Algorithm 3 in the way the bands are totaled. In Algorithm 3, independent
addressing was used so that the N PEs in each row accessed different locations in
their buffer arrays. In Algorithm 4, this is impossible because SIMD addressing is
required. Instead, each PE (i, j) rotates the contents of its buffer array downward
mod 2P positions. These downward rotations are cyclic, so that the contents of buffer

array location j is moved to buffer array location (i +j)mod 2P. The technique used
to perform these downward rotations will be explained shortly.

Once the downward rotations have been done, an N stage routine is used to
calculate the totals for the bands. Each PE has a variable, called band_total, that is
initialized to 0. During stage k, 0=</ < N, each PE adds location / mod 2P from its
buffer array to its band_total and then shifts its band_total one PE to the right. This
procedure is illustrated in Fig. 5. Once this N stage routine is completed, each
band_total variable contains the total for a different band. Assuming that the leftmost
column of PEs is connected to input/output (I/O) ports, the band_total variables can
be shifted to the left N times to remove the result from the MCC. This completes the
calculation of the Hough transform assuming 2P <_-N.

PE COLUMN

0 7 6 5 4 3 2

BUFFER
OFFSET 2 0 7 6 5 4 3

3 2 0 7 6 5 4

4 3 2 0 7 6 5

5 4 3 2 0 7 6

6 5 4 3 2 0 7

7 6 5 4 3 2 0

FIG. 5. Numbers indicate band to which pixel belongs. Circled numbers are accessed first. The arrow

indicates the direction in which each band_total variable moves.

The mechanism used to perform the downward rotations of the buffer arrays was
not given above. One way that these rotations could be performed would be to process
in parallel only those columns of PEs that are being rotated the same amount. While
processing the columns that are rotating downward x positions, 0 -< x < 2P, all other
columns would be disabled. Each buffer array in the enabled columns of PEs would
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be copied to a temporary array in the same PE. Then the contents of this temporary
array would be copied to the buffer array in the correct rotated position. Because each
such rotation takes O(P) time, and because O(P) different rotations would be required,
the rotations would require O(P2) time.

Instead of using the above technique, a routine based on the idea of a barrel
shifter is used to perform the rotations in O(P log P) time. This routine consists of
ceiling (log 2P) stages where stage k, 0 =< k < ceiling (log 2P), shifts the buffer arrays
in the enabled PEs downward (cyclically) 2k positions. During stage k, each PE (i, j)
is enabled only if the kth bit of (i mod 2P) is a 1, assuming that the least significant
bit is the 0th bit. As a result, the buffer array in each PE (i, j) is rotated downward
mod 2P positions. Because each stage requires O(P) time, and because there are

O(log P) stages, the buffer arrays are rotated in O(P log P) time. As a result, the entire
algorithm requires O(N+ P log P) time when 2P-_< N.

The algorithm for the case 2P > N is given next. When 2P > N, the P projection
angles are divided into ceiling (2P/N) sets, each containing at most N/2 projection
angles. Then each set of angles is processed using the algorithm for the case 2P_-< N.
Because each set of at most N/2 projections requires O(N+ N log N) O(N log N)
time, and because there are O(P/N) such sets, the entire algorithm requires O(P log N)
time. Also, note that only O(N) words of memory are required per PE. This yields
the following theorem.

THEOREM 4. When 2P <- N, Algorithm 4 calculates P projections of the Hough
transform in O(N+ P log P) time on a plain MCC with O(P) words of memory per PE
and SIMD addressing. When 2P > N, Algorithm 4 calculates Pprojections of the Hough
transform in O(P log N) time on a plain MCC with O(N) words of memory per PE
and SIMD addressing.

3.5. Algorithm 5. Finally, Algorithm 5 uses a plain MCC with SIMD addressing
and only a constant number of words of memory per PE to calculate P projections of
a Hough transform in O(N+ P) time. The technique used differs significantly from
the techniques used in the four previous algorithms. The previous algorithms all
performed vertical shifts on the image in order to simplify the totaling of the pixels
in each band. Algorithm 5, however, does not perform such vertical shifts. Instead,
the total for each band is calculated by having a variable, called "band_total," visit
all of the pixels in the band. As a band_total encounters a pixel in its band, it adds
the pixel’s value to itself. An informal description of the algorithm is given next.

In order to understand how the algorithm works, it is useful to first examine how
a single band_total variable is moved across the image. This band_total is assigned a
particular value of p and 0. It must move across the image in such a manner that it
visits all of the pixels (x, y) where floor (x cos (O)+y sin (0))= p. The set of pixels
that must be visited by this band_total will be referred to as the pixels "owned" by
the band_total. An example of the set of pixels owned by a band_total is shown in
Fig. 6. Note that because the bands are one pixel wide, a band_total owns at least one
pixel in each column, except where the bands extend beyond the upper or lower
boundaries of the image.

In the following discussion, it will be assumed that zr/2< 0=<3r/4, but the
techniques that will be presented are easily adapted to the other cases. In particular,
when r/4 < 0 =< ,r/2, the roles of up and down shifts are reversed. The remaining cases
are identical except that the roles of rows and columns are reversed.

Because it is assumed that r/2 < 0=<3r/4, each band_total owns at most two
pixels in each column. One way the band_total could visit these pixels would be by
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FIG. 6. Pixels owned by a given band.

visiting all of the PEs that contain them. This technique has the disadvantage that it
requires shifting the band_total vertically in order to access both of the pixels that it
owns in a single column. The algorithm presented here avoids these vertical shifts of
the band_total by performing a single downward shift of the image. Thus there are
two versions of the image, the original version and the down-shifted version. The
band_total is moved across the image, visiting the PE that contains the lower of the
band_total’s pixels in each column. This PE contains both of the band_total’s pixels
in that column, one from the original version of the image and the other from the
down-shifted version.

The set of PEs that will be visited by the band_total in Fig. 6 is shown in Fig. 7.
The set of PEs that a band_total must visit will be referred to as the PEs that are
"owned" by the band_total. In order for a band_total to visit all of the PEs that it
owns, it is placed initially in the leftmost PE that it owns. It is then shifted one column
to the right and then shifted up one row, if necessary, to visit the next PE that it owns.
This process of shifting to the right and optionally shifting up is repeated until the
band_total has visited all of its PEs. The decision of whether or not the band_total

should be shifted upwards is based on a local calculation that will be explained below.
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The fact that at most one upward shift is required following each shift to the right
follows from the fact that zr/2 < 0 <-37r/4.

Having examined the behavior of a single band_total, it is now possible to explain
how the band_totals operate in parallel. First consider the calculation of a single
projection angle 0, still assuming that r/2 < 0-<37r/4. This projection is calculated
by placing the band_totals for this value of 0 in the first column of PEs. Each band_total

is placed in the PE that it owns in the first column (for the time being, ignore band_totals
for bands that do not own a PE in both the first and last columns). The PE that is
owned by a given band_total sets its column_contrib (column contribution) variable
to the sum of the pixels that are owned by the given band_total in the given column.
The band_total adds this column_contrib to its current value. The band_totals are then
shifted right to the second column and some of them are shifted up so that all of them
are placed in the PE that they own in the second column. Again, the PEs set their
column_contrib variables and these variables are added to the band_totals. This
procedure is repeated until all of the columns have been visited. At any one time, the
band_totals for the given projection angle 0 are all located in the same column of PEs.
Note that collisions between band_totals are impossible because the paths of two
band_totals with the same value of 0 can never cross.

In order to calculate the projection for a given angle 0, it is therefore necessary
to visit the PEs in the first column, then the PEs in the second column, etc., until all
of the columns of PEs have been visited. Thus, the PEs that are used in calculating
one projection of the Hough transform form a wave that ropagates from the left to
the right. As a result, it is possible to pipeline the calculation of the Hough transform
by starting the calculation of the second projection angle as soon as the first projection
has finished using the PEs in the first column. As many as N projections can be
pipelined in this manner at one time. Because the calculation of a single projection
requires O(N) time, and because the calculation of P projections can be pipelined,
the calculation of the entire Hough transform can be performed in O(N+ P) time.

The above discussion ignored a number of details of the algorithm. In particular,
it did not specify how the band_totals know when to shift up, how the column_contrib

variables are calculated, or how bands that do not include pixels in both the first and
last columns are handled. These issues are addressed next. When the calculation of a
new projection angle 0 is started, the values cos (0) and sin (0) are broadcast from
the controller to the PEs in the first column. The values cos (0) and sin (0) are then
shifted to the right whenever the corresponding band_totals are shifted to the right.
In addition, each band_total is accompanied by a band_number that identifies which
band it is following. After performing a right shift of the band_total, band_number,
sin (0), and cos (0), the PEs calculate d x cos (0) + y sin (0) and p floor (d).

Then each PE determines if it is the lowest PE in its column with its value of p.
This is done by shifting the p values up one row. Each PE compares the received p
value with its own p value, and if they match, sets its own p value to infinity. At this
point, the PEs with finite p values are the ones that are owned by some band_total

for the current projection angle 0. Next, the (possibly infinite) p values are shifted
down one row. The down-shifted p values are used to determine whether or not there
are two pixels in the given column that lie in the same band. If a PE’s own p value
is finite and the p value that it received from the PE above it is infinite, then the PE
knows that it contains the lower of two pixels that lie in the same band. If a PE’s own
p value is finite and the p value that it received from the PE above is finite, then the
PE knows that it contains the only pixel in its column that lies in its band. Based on
this information, each PE with a finite p value sets its column_contrib variable to the
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sum of the pixels in its column and band. Next, each band_total examines the p value
of the PE in which it is located. If the PE has a finite p value that matches the
band_number, then the band_total is in the correct PE. Otherwise, the band_total and
band_number are shifted up one row. The column_contrib is then added to the
band_total.

So far, band_totals have only been created for bands that contain pixels in the
leftmost column. However, some bands may not contain any pixels in the leftmost
column. Such a band is handled in a similar manner, with the only difference being
that its band_total variable is created in the leftmost column that has a pixel in the
band. Also, it has been assumed tha! all of the bands continue all the way to the
rightmost column, although in reality some do not (they go off the top or bottom of
the image). When a band_total goes off the top of the image before reaching the
right-hand edge, it arrives in the bottom row of PEs because of the toroidal connections
between the top and bottom rows. It continues to follow the wave of processing
associated with its projection angle 0, and it continues to follow its band, but it no
longer is increased by the column_contrib variables that it encounters. The description
given above was a simplification because it assumed that each PE has a single band_total
variable at a given time. In reality, a PE can have two band_total variables at once:
one that is actively visiting PEs in its band and one that has completed its calculations
and has gone off the top or bottom of the image. This completes the description of
Algorithm 5. The following theorem has been established.

THEOREM 5. Algorithm 5 calculates P projections of the Hough transform in
O(N+ P) time on a plaint MCC with a constant number of words of memory per PE
and SIMD addressing.

A detailed analysis of the algorithm shows that it requires 20P + 48N + 4 communi-
cation operations, and a similar number of local operations, to calculate P projections
[6]. While this is fairly fast, it is possible to improve the speed in certain situations.
If the same set of projection angles is used for calculating the Hough transform for a
large number of images, the values of sin (0) and cos (0) do not have to be shifted
across the image. This is because the path of each band_total variable across the image
is completely determined by the values of 0 chosen for the Hough transform. Instead
of shifting the values of sin (0) and cos (0) across the image to calculate the paths of
the band_totals, the paths can be precomputed and stored in the PEs. Each PE can
contain a single bit for each time a "where" clause in the program is executed. This
bit indicates whether or not the "where" clause is true at the given time. This requires
an additional P bytes ofmemory per PE. When this approach is used, only 6P / 14N/ 4
communication operations are required to calculate P projections [6]. In addition,
this approach requires fewer local operations and it requires no multiplications. Finally,
it should be noted that in any case the multiplications can be avoided if the values of
cos (0) and sin (0) are sufficiently accurate. The function x cos (0)+ y sin (0) can then
be calculated by using forward differencing.

4. Conclusion. Five new algorithms for calculating the Hough transform on MCCs
have been presented. The asymptotically fastest algorithm previously published requires
O(NP) time to calculate P projections of the Hough transform, whereas a number of
the algorithms presented here require only O(N+ P) time. In addition to the theoretical
value of these algorithms, the authors hope that they will prove fast enough to have
practical applications. Typical values of the parameters N and P are 512 and 180,
respectively, so the algorithms presented here do seem to offer a time savings for
realistic problems.
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AN ANALYSIS OF RANDOM d-DIMENSIONAL QUAD TREES*

LUC DEVROYE’ AND LOUISE LAFOREST

Abstract. It is shown that the depth of the last node inserted in a random quad tree constructed from
independent uniform [0, 1] d random vectors is in probability asymptotic to (2/d) log n, where log denotes
the natural logarithm. In addition, for d 2, exact values are obtained for all the moments of the depth of
the last node.

Key words, average time analysis, probability ineq, alities, random quad tree, multidimensional data
structures, search tree, expected behavior, analysis of a gorithms
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1. Introduction. Various data structures have been proposed for retrieval on com-
posite keys (or associative retrieval) such as k-d trees (Bentley (1975)), multi-
dimensional trees (Rivest (1974); Orenstein (1982)); grids with variable-sized cells
(Tamminen (1981), (1982)); quad trees (Finkel and Bentley (1974)); k-d-b trees
(Robinson (1981)); quintary trees (Lee and Wong (1981)); and multipaging structures
(Merrett and Otoo (1981)). A partial survey of these structures can be found in
Tamminen (1981) or Gonnet (1984). In this paper, we analyze random quad trees.
These trees have been used with a great deal of success in computer graphics (see
Woodwark (1982) and the references found there) and image processing (Hunter and
Steiglitz (1979)). Detailed discussions of some common operations on quad trees, and
possible improvements, can be found in Bentley, Stanat, and Williams (1977), and
Samet (1980). See also the survey article by Samet (1984). The quad trees considered
here are known as point quad trees since they are used to store points. Many applications
require region quad trees for storing screenfuls of pixels. Random region quad trees
were analyzed for example by Puech and Yahia (1985).

A quad tree is constructed as a binary search tree. When a key Xi occupies a node,
it partitions the rectangle it belongs to orthogonally into 2a parts (called quadrants),
and thus creates 2a new rectangles, each having Xi as a vertex. We should note here
that the traversal of one node requires d comparisons. A random quad tree is constructed
by inserting X1,"’, Xn, independently and identically distributed uniform [0, 1] a

random vectors, in the standard manner into an initially empty quad tree. We will
look at Dn, the depth of X after it is inserted into the tree, where, by convention, the
depth of the root is zero. The level L of a node is equal to its depth plus one. Other
important quantities are the average depth A,=(1/n)Ei:I Di and the height
maxl<=i<_nDi. The height is in probability asymptotic to (c/d)logn, where c=
4.31107... is the unique solution greater than two of the equation c log (2e/c)= 1
(Devroye (1987)). However, unsuccessful search times are in most cases appropriately
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measured by Dn, the depth of the last node added to the tree. Our main result is the
following.

THEOREM M1. Dn/1og n tends in probability to 2/ d as n- o. Also, ED,
(2/d) log n as n o.

For d 1, the quad tree reduces to the binary search tree, and the random quad
tree coincides with a binary search tree constructed from a random equiprobable
permutation. Its properties, including the law of large numbers given in Theorem M1,
have been obtained in a series of papers by Lynch (1965), Knuth (1973), Robson
1979), Sedgewick 1983 ), Pittel (1984), Mahmoud and Pittel (1984), Brown and Shubert
(1984), Louchard (1987), and Devroye (1986), (1987), (1988).

In 3, we will derive large deviation inequalities for Dn. In effect, we will prove
the following theorem.

THEOREM M2. For every 6 > O, there exist positive constants a, b such that

--1 > <=an -bP
(2/d)logn

The extra material needed to prove this is presented in 2. In 4, for the planar case
(d 2), we obtain exact values for EDn and Var (D,). Both are of the order of log n.
Chebyshev’s inequality then gives

-1 >6P
(2/d) log n =log n’

which is weaker than the bound obtained in Theorem M2. The exact expressions are
obtained by solving some recurrences. It should be noted that the mean was obtained
independently by Flajolet et al. (1988), based upon an analysis that involves computing
the generating function.

THEOREM M3. Assume that d 2. For n >- 2,

1 2
ED,=H,

6 3n

and

where

1
Var (D.) H)+- H +

5 4 13

9n 9n 2 6

H a-- 1/i and H’a-- (1/i2).
i=1 i=1

In 2, we obtain auxiliary results that allow us to prove Theorems M1 and M2.
This will be done by reducing the d-dimensional problem to d one-dimensional
problems for which we have ready solutions at hand. We consider the quad tree formed
by consecutive insertions of X,..., X,+, independently and identically distributed
uniform [0, 1] d random vectors. The depth D,+ of Xn+ is equal to the number of
times the rectangle in the quad tree partition containing X,+ gets "cut" by X, , X,.
We start with the full rectangle [0, 1]d. The process of cutting can be summarized by
a sequence of random variables (Tk, Zk), k => 0, where To=0, Zo 1. Tk is a time
counter, and Zk is the size of the rectangle containing X,+ after it has been cut
precisely k times. Given (Tk, Zk), X,+ and X, , XT, it is easy to see that Tk+- Tk
is geometric with parameter Zk, i.e., it takes the value with probability Zk(1- Zk)i-
for i_-> 1. Furthermore, Zk+l is distributed as the size of the rectangle containing X,+
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after it has been cut precisely k+ 1 times. Note that D,+I is equal to the maximal k
for which Tk <= n. Thus, we have

P(D.+, >-_ k) P( Tk <- n).

We will exploit this duality and offer a study of the properties of the Zk’S in 2.

2. Auxiliary results about spacings, records, and random cuts. Consider indepen-
dently and identically distributed uniform [0, 1] random variables U1,. ., U,, and
let S,x be the size of the interval to which x, a fixed number from [0, 1], belongs.

LEMMA S1. For any x [0, 1],

L
S,x min (x, U,,..., U,)+..-max (x, U,,..., U,),

L
where denotes equality in distribution. Ifx U, and U, U1, , U, is an independently
and identically distributed uniform [0, 1 sequence, then S,u is distributed as the second
smallest of U, U,..., U,.

ProofofLemma S 1. We verify the distributional equality in three cases, according
to the signs of min Ui-x and max Ui-x. Consider first the case min U/<_-x and
max Ui >= x. Then, define

x-U/if U/<x,
V/=

l+x-U/if U/_>-x,

and note that

l<--_i<--_n,

i: Ui<x i: Uix

min V+l-max V/
i" Ui<x i: Ui>=x

min V/+ max V/.

It is easy to verify the two other cases now. For example, if min U/-_> x, then

S,x x + 1 max V/= min (min V/, x) + 1 max V.
i: Uix

The second statement of the lemma follows from a property of uniform spacings (see,
e.g., Pyke (1965), (1972) for a survey), which states that the sum of any k spacings is
distributed as the sum of the first k spacings. [3

LEMMA $2. For (0, 1),

P(S,u < t) 1 -(1 + tn)(1 t)" =< (tn) +
n(1-t)

Also,

P(S.u > t)=(l+tn)(1-t)"<--(l+tn) e-’"<=e-(m)z/(2(’+t")).

For tn >= 1, the last upper bound is not greater than e -t"/4.
Proof of Lemma $2. Let Y be binomial (n + 1, t). Then, by Lemma S1,

P(S.u < t)= P(Y_-> 2) 1-P(Y= O)-P(Y= 1)

(n+l) to(l_t),+,_(n+l)=1-
0 1

(l-t)

1-(1-t)"(1-t+(n+ 1)t)= (1 t)"(1 + tn).
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Using log (1 + u)>= u- u2/2, valid for u >= 0, and log (1- u)>=-u(1- u), valid for
0 =< u < 1, we see that

P(Snu<t)<l exp[tn (tn)2 tn ] (tn) tn ( ___)<---tn+ += (tn) +
2 1-t 2 1-t n(1-

The second part of the lemma follows from the first one and the inequality log (1 + v)-
v<--v/(2(1 + v)), valid for v=>0.

Let U, U1," ", Un be independently and identically uniform [0, 1] random vari-
ables, and define V, U] and U, W] as the spacings nearest to U after U, U1, ,
have been considered, with the convent on that Vo 0, Wo 1. Let N, be the number
of indices for which V, W) V/_I, /-1), 1 -< -< n. In Devroye (1988), it is shown
that N, is distributed as the sum of n independent Bernoulli random variables Y, i.e.,
Nn i= Y, where E Y 2/(i+ 1). We will need to know more about the properties
of N, since N, represents the number of times the spacing containing U is "cut" as
we process the Ui’s. In particular, we need solid tail bounds. These can be obtained
by Chernoit’s exponential bounding technique (Chernoff (1952)).

LEMMA S3. Define/x 2(Hn+l- 1). For k

P(N>k)<exp(-(k-/z))2k

and for k <= p,,

p(N < k)_< exp ((/x k)2- /o

Proof of Lemma $3. By Jensen’s inequality, for arbitrary h > 0,

i= i+1 i+l]

N exp [-hk + 2(e 1 )(Hn+ 1)].

The exponent is minimal for e k/(2(H.+l- 1)). Resubstituting this value and using
the notation y eh 1 > 0 gives the further upper bound

exp [2(H 1)(y-(l+y) og (l+y))]exp -[ 2(H+1- 1)y]-
+1 3’

where we used the fact that y 1 + y) log 1 + y) -y/(2( 1 + y) ), which can be verified
by using Taylor’s series expansion with remainder. The last upper bound coincides
with the first inequality in the statement of the lemma. To obtain the second inequality,
we pick another h > 0 and note that

P(Nk)ehgE(e-hN")=e (1i=1 ---+i+12 2e-)i
N exp [Ik 2(H+- 1)(1 e- )].

The upper bound is minimal for e-=k/(2(H+-l)). We define y= 1-e-, and
resubstitutethese values to obtain the upper bound

exp [-2(H.+ 1)(y + (1-y) log (1-y))] N exp [-(H+ 1)y],
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where once again we used Taylor’s series expansion with remainder. This concludes
the proof of Lemma $3.

Lemma $3 shows very clearly that Nn is close to its expected value, 2(Hn+l- 1).
We are almost ready to get to the main lemma about uniform cuts. Consider an infinite
sequence of independently and identically distributed uniform [0, 1 random variables
U, U,. , U,,. ., and let Zk be the size of the spacing to which U belongs after it
has been "cut" or "hit" k times by members of the sequence U1, U2," ". In notation
introduced above, Zk W-V where (V, W) is the kth pair not equal to its pre-
decessor. Interestingly, Zk, S,c, and N are connected via the following inclusions of
events:

LEMMA $4. Let k > 0 and (0, 1) be fixed. Then, for any positive integer n,

[& < t]___ [& < t] U IN. < k],

and

[Z > t]c[Su t]U[Nn>k].

Proof of Lemma $4. The proof is obvious. [-1

We can now announce our main lemma for the uniform k-cuts Zk.
LEMMA $5. For k >-_ 3 and 6 > O, we have

P Zk<exp
2

(1+23) _-<6exp[-6(k-1)]+exp -2(1+3)
Also, if 6 (0, 1/2), 6 >- 3/k, and k >- 2/(1 6), we have

( [ kz ]) [ ()eka/2]+(2e)a2/(’-a)exp[ -]P Zk---->exp -(1-26) _--<exp

Proof of Lemma $5. From Lemmas $2, $3, and $4 we recall that for some n to
be picked further on,

P(Zk < t)--< P(S.c < t) +P(N. <k)

+ +exp
n(1-t [-(H+I- 1)(1 2(H+l_ 1)

valid for k- l_--<2(H,+l- 1). Consider a constant 6 (0,1/2), and define

n= 2exp
2

(1+3)

We note that

n,ll f+21 (rt +2) k-I
H,+- 1 ->- dx log ->_ (1 + 3).

i=2i X 2 2

This implies that k-l_--<2(H,+l-1), as required. Using the fact that the function
(y-a)Z/y is increasing for y> a =>0, that n_->2 (by definition), and that t=<1/2 (by
assumption), we see that

P(Zk<t)<-_4t2exp[(k-1)(l+6)] + +exp
n(1-t) 2(1+3)

[ 62(k-1)]_-<6t2exp[(k-1)(l+6)]+exp
2(1+3)
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We obtain the first half of the lemma by setting t=exp[((k-1)/2)(l+26)]. The
condition t<=l/2 is fulfilled when (k -1)(1+ 28) -> 2, which is certainly the case
whenever k_-> 3.

Consider now the second half of the lemma. Assume that n is such that k->
2(Hn+- 1). Assume that tn _-> 1. From Lemmas $2, $3, and $4, we retain that

p(zk>t)<=p(Snu>t)+P(N>_k)<=e-,/4+exp[ (k 2(/-/+’ 1))2]2k

We now choose 8 (0, 1/2), and define

n [e(k/2)(-a)] 1.

This value of n is at least one if k(1 8) _-> 2. It is easy to verify that H.+- 1 _-< k(1 8)/2
so that the condition relating n and k is indeed satisfied. If we set y k/(2(H,+- 1))
(which, as we have seen, is at least equal to 1/(1- 8)), then the inequality reads

I [N e-’/4+exp -(Hn+l- 1)
1 6Y

e-m/4 + (2e) /(-) e-/,
where we noted that

n + 2 -a)/2) log (2e)
k(1 8)

Hn+l- --> log 1 -->log (ek( -log (2e).
2 2

For e-(k/2)-2), we have tn > ek/2--2, SO that the upper bound becomes

P(Zk > t) <- e/Z-(/4)ek/z-k-(2e)2/(1-) e-k2/2.

Also, the condition tn-> 1 is fulfilled if k8 >= 3.

3. A law of large numbers for quad trees. The purpose of this section is to prove
Theorem M 1.

THEOREM M1. D/log n tends in probability to 2/d as n- o. Also, ED,--. EA
(2/d) log n as n - o.

Recall the definition of T and Z from the Introduction. We have

P(D,,+, => k) P( Tk <= n) =<P( T, Tk_ < n).

Observe that Z 1-I i=l Z(i), where the Zk(i)’s are independently and identically
distributed random variables distributed as the uniform k-cut dealt with in Lemma
$5. We choose a small positive constant 8, and define q =exp (-(k- 1)(1-28)/2). Let
A be the event that max Z_(i)<-q. By an obvious left tail bound for the geometric
distribution and Lemma $5, we have

P(Dn+,>=k)<-_P(A, T- T_,<-_n)+P(A)

(1) <-- nq d + d x P(Zk-I(1 > q)

<= nqa + d(el/2-(1/4)e(’-’)a/2.q-(2e)82/(1-8) e(k-1)82/2)
if 8->3/(k-1) and k-1->2/(1-8). As k-oe, the upper bound is nq a +o(1). If we
now take

L 2 1k-l=
d(1-38)

logn
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then it is easy to verify that nqd =o(1) as well. Hence, P(Dn+ =>k)= o(1), proving
one half of the theorem (since 3 is arbitrary). In fact, P(Dn+ => k) O(log-R n) for
any positive constant R.

The second half is proved similarly. Because we obtained exponential inequalities
in the lemmas of the previous section, we can actually get away with a very crude
bounding technique. Let A be the event miniZk_(i)>=q where q=
exp (((k 2)/2)(1+ 23)), let k>-3, and assume that 3>0 is an arbitrary but small
constant. Then,

j=l

<-_k( qd(1--qa)-’+dxP(Z_(1)<q))
i>n/k

<-_ ( q")/- + cl x P(Z_() < q)

<=kexp[-(--l)qa]+o(1)
whenever k oe (by Lemma $5 and our choice of q). If we take

k-2= d(l+33)lgn
it is a simple exercise to verify that nqa/k-oe, which then shows that P(D,+ <k)

o(1), as required. This concludes the proof of the weak convergence of D,. This
trivially implies that

ED, 2
lim inf _->--.- log n d

Also, for small 3 > 0, and arbitrary M > 1,

ED P(Dn > t) dt

<-_ l +
d l 33

log n + M log n P D>I+ logn

+ nP(D > M log n)

2
1 + log n + o(1)+ nP(D,, > M log n)

d(1-36)

by the bounds obtained above. To conclude that ED,, (2/ d) log n, we need only
establish that P(Dn > M log n)= o(1/n) for some constant M. This follows by noting
that the bound (1) with q as chosen there and k= [M log nJ is o(1/n) whenever
M > max (2/3 2, 4/(d(1 -23))).

The statement about EA finally follows easily from the statement regarding
ED.



828 L. DEVROYE AND L. LAFOREST

4. Some recurrences related to quad trees. In this section, we only consider the
case d 2. As above, we let D, be the depth of the nth node in a tree of n nodes. We
also define

P,,t P(D. 1),
and note that by convention Pl,o 1, i.e., the root node is at depth zero. We begin with
the following recursion"

LEMMA R1. Let N, 1 <=j <- 4, be the cardinalities of the four subtrees of the root of
a random quad tree in the plane. Then

H. HP(N i)=, O<=i<=n-1,

when n >- 2. Also, for n >- 2,

4 n-1

P,,l o i(H, Hi)Pi,,-l,n(n- 1) =
where p,_ 0 for 0 ( l,

Proof ofLemma R1. We note that P(N1 + N2 i) 1/n for 0 _-< < n. Given N -t-

N2, N1 is again uniformly distributed on 0,..., N + N. Thus,

’ 1
P(N- i) P(N1 / N2-j)

1 1 1
(H Hi).

=i j--
For the second part of the lemma, we use the fact that given the N’s, the last node
ends up in the ith subtree with probability N/(n- 1). Thus,

4 n-1

P,%t-- 2 2 1
P(N i)pi,l-1,

j=l i=0

from which we deduce our result by symmetry.
The basic recurrence of Lemma R1 can now be used to obtain recurrences for the

generating function and the moments of D,. We define

c/),(t)-- E(e ’D.)

LEMMA R2.

and

and, for m > O,

4e n--1

b(t)- ,Yl i(H,-H)b(t),
n(n-1)

[’lLn’m n(n- 1) i=1 j=0 j

where tX..o 1.

Proof of Lemma R2. From Lemma R1,
n--1 n--1 4 n--1

b.(t)= pn,l etl-- etl i(H,,-Hi)p,.l_
1=1 /=1 n(n 1) i=l

4 n--1

Y H, Hi) e tlpi, t_
n(n- 1) i= /=1

4e’ "-
Y i(H. H)dpi(t).

n(n- 1) i=1
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This proves the first recurrence of the lemma.
.-1

i(H.-Hi)chi(t). We have

4e
4. (t)=f(t),

n(n-1)

Let us now take fn (t)

and thus

4e

n(n 1)j=o j

Thus,

(7)Ja. (m) i(H.-Hi)clJ)(o),
4 )(0) 4 .-1

n(n-1) j=o n(n-1)j=o j i=1

which concludes the proof of the lemma.
From Lemma R2, we can conclude, with a little work, the following lemmas:
LEMMA R3.

ix.., ix..j.(- "-l-J +
j=0 j

n-1

E i(H. Hg)ixi.,..
n(n- 1) i=1

In particular, Jbn,0 1,

4 n--1

ix... 1+ Y i(H. Hi)ixi,1,n(n- 1)

and

4 .--1

ix..2 2ix... 1 + ,E. H. Hg ixi.2.n(n- 1)

The recurrences in Lemma R3 are of the following general form:

n--I

(2) X a.+ Y i(H. Hi)xi, n >-_ 2,
n(n 1) i:l

where

(3) xl=0, x2--a2.

LEMMA R4. The general solution of recurrences (2) and (3) is

i(i
x. + 4

1)ai
j:3j2(j_l)Z(j_2),

Proof of Lemma R4. The proof is omitted.
Lemmas R3 and R4 can now be combined to obtain the moments of Dn. In

particular, we have
THEOREM R1. For n >- 2,

1 2

6 3n
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and

Also,

H. 4H. 7 77
1n,2-- H2,, + H(,,2) q -6 3n 9n 36

1
Var (D.) H(2)+ H. q

5 4 13

9n 9n2 6

Proof of Theorem R1. For/x..l, we note that a. 1, so that simply

i(i
/n,1 1 +4

1)
.i=3 j2--(] 1)2(j 2)

1 2

6 3n

Thus,

fii’n,2 2H.
4n+1 i-4 -2

bj
=3Y (Y- 1)2(y-2)

;-’ ( 4i+1)bj i2(i 1) 2Hi 3i=1

Z i( i2- 1)=2 (i-1)H-j2(j-1)HJ i=1
j(j-1)(j-2)

72
(12(3j- 1)H/- (33j + 29)).

/d,n,2 2H
4 n+l 1 12(3j-1)H-(33j+29
3 n 18j=3z" j(j-1)
4n+l 2 (3 2 ) 1 (62 29

}-- q--2Hn
3 n 3j=3 j-1 j7,=3

4n+l 2(. /-/+ _,+l/j]]/-1 ( 372)2-_ 2_ 33m-2H.
3 n 3 =3 j .i=3

1 11 19 2( 3 ’+ )m-
9n 3 = j 4 =2 j ;=3j(j-1)

1 53192
+---- (2m +2 + 26H 36 9n 3 .i= j =2J .i=3

1 101 19 4H. 2 4(6H" 36 9n 3n
H.+H. +.H.---1-H.+I+n

H.
77 7 4H.-q H.+__.

6 36 9n 3n

where

From this, we see that in the computation of/n,2, when we apply Lemma R4, a. can
be set equal to 2/z.,1-1 =2H.-(4/3)((n+ 1)/n). From Lemmas R3 and R4, we then
conclude that
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In this derivation, we needed the following identities, some of which can be found in
Knuth (1973, pp. 75-77):

Hi=(n+l)H.-n,
i=1

n(n+l) n(n-1)
i/-/ Hn-

i=1 2 4

i2Hi =n(n+l)(2n+l)Hn-n(n-1)(4n+l)
= 6 36

1"/2(I"/-i-1) 2 n(n2-1)(3n-2)
i3HL I-In_

= 4 48

/-/, 1 2

:,, =[ (Hn + H())"

Finally, Var (Dn) is obtained as/xn,2-/x n,l

From Theorem R1, we conclude that ED=logn+y--+o(1) and Var(Dn)=
5 log n + y/2+ ’2/6-+ o(1), where y is Euler’s constant. Chebyshev’s inequality
now implies that D/log n 1 in probability as n- ee. The resulting upper bound for
P(Dn/log n (1 e, 1 + e)) drops off as (1 + o(1))(2e 2 log n) -1. The exponential bound-
ing method for the previous section yields better tail bonds, however.
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BOUNDED QUERY CLASSES*

KLAUS W. WAGNERt

Abstract. Polynomial time machines having restricted access to an NP oracle are investigated. Restricted
access means that the number of queries to the oracle is restricted or the way in which the queries are made
is restricted (e.g., queries made during truth-table reductions). Very different kinds of such restrictions result
in the same or comparable complexity classes. In particular, the class prP[O(log n)] can be characterized
in very different ways. Furthermore, the Boolean hierarchy is generalized in such a way that it is possible
to characterize pNP and pNP[O(log n)] in terms of the generalization.

Key words, polynomial time oracle machines, number of oracle queries, truth-table reducibility, Boolean
hierarchy

AMS(MOS) subject classification. 68Q15

1. Introduction. The notion of an oracle machine is a basic tool in complexity
theory. Besides other purposes, complexity bounded machines using an oracle have
been used to define natural classes which characterize (in term of completeness) the
complexity of some interesting problems. In order to characterize the complexity of
problems in the area between NP and PSPACE Karp [Kar72] and Meyer and Stock-
meyer [MeSt72] (for more details see [Sto77]) introduced the polynomial-time
hierarchy using polynomial time machines having access to an NP oracle or to an
oracle already defined in such a way, i.e.: A E YI P, A+I PY, E+l NP,
1-I+ =co-Ef,+ for k=>0, and PH=UkeOE. In the sequel a lot of problems were
shown to be complete for the levels of the polynomial-time hierarchy.

Later it turned out that the levels of this hierarchy do not suffice to characterize
the complexity of some interesting problems in PH in terms of completeness. For
example, the problem ODD COLORABILITY, i.e., the problem of whether the chro-
matic number of a given graph is odd is in A and it is NP-hard but it could not be
proved that it is complete for Azp or that it is in NP. This is not very surprising because
it is co-NP-hard too and it can easily be solved by a A machine making only O(log n)
(rather than polynomially many) queries to an NP oracle. The class PNP[O(log n)] of
problems which can be solved in this manner was studied first by Papadimitriou and
Zachos [PaZa82] and Krentel [Kre86]. In [Wag86] it was proved that ODD COLORA-
BILITY and many other natural problems are complete for the class PNP[O(1og n)]
(which was defined there in another way).

In the present paper we investigate different ways to restrict the number of queries
to an NP oracle or to restrict the way in which these queries are made. Our main
message is" All these different approaches result in the same or strongly related
complexity classes. In particular, the class PNP[O(log n)] is characterized by very
different kinds of restricted access to the oracle. Moreover, PNP[O(log n)] coincides
with the class LNP of languages logspace Turing reducible to an NP set. All these
results remain valid if we replace NP with any level E ofthe polynomial-time hierarchy
(k=>2). This motivates us to define the classes (R) by (R)oP=P and (R)+=L=
P[O(log n)] (remember: A+I P and E+ NPY). We suggest to consider the
classes (R) to be constitutional parts of the polynomial-time hierarchy, and we extend

Received by the editors June 10, 1987; accepted for publication (in revised form) January 3, 1990. A
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the widely accepted conjecture that the polynomial-time hierarchy is proper to the
classes (R). In particular, we conjecture O A for all k_-> 2.

In 2 we make available the notions of oracle computation with adaptive and
parallel queries. The queries of a computation are said to be made in parallel if a list
of them is formed before any ofthem is made. Otherwise the queries are called adaptive.
In 3 we prove that, for logarithmically bounded constructible r, r(n) adaptive queries
to an NP oracle have exactly the same power as 2 r(n)- 1 parallel queries. In 4 we
study restrictions to the number of queries not only for one computation but for the
whole computation tree of an NP machine and for the whole oracle tree of an NP, P,
or L computation. In 5 we see that making r(n) parallel queries to an NP oracle is
closely related to making a truth-table reduction using r(n) instances of an NP set
and that different kinds of polynomial time truth-table reducibilities coincide. In 6
we extend the Boolean hierarchy (see [K6b85], [WeWa85], [Carte86], [K6ScWa87],
[CGHHSWW88]) in an obvious way, and we prove that the classes of the extended
Boolean hierarchy are closely related to the classes defined by parallel queries and
that pNP and PNP[O(Iog n)] can be characterized in this way. In 7 we present an

improved criterion for completeness in (R).
Finally we note that most of the results in 5 and 6 have been proved indepen-

dently by Buss and Hay [BuHa88].

2. Oracle computations. For a class C of languages let pC (Npc, Lc, respectively)
be the class of languages which can be accepted by deterministic polynomial time
(nondeterministic polynomial time, deterministic logspace, respectively) bounded Tur-
ing machines using an oracle from C. The classes (R), A, , and II defined by

Oop Ag =Z=HoP P,

O+I=LZ,A+=PZ,E+=NPz-, H+=co-E+ fork_->0,

build the polynomial-time hierarchy. Furthermore, PH k-O-E" It is not hard to see
that Op A1p P, P NP, FI

_
O+

_
A+I

_
+ fH+ for all k _-> 0 and PH

_
PSPACE. It is not known whether this inclusion is proper or whether the polynomial-
time hierarchy is proper (even NP PSPACE is not known). It is conjectured that the
above inclusions between the classes A, , and FI are proper, and we extend this
conjecture to include also the classes O.

In the definition of pC we did not make any restriction to the number of queries
allowed or to how the queries to the oracle are made. Now we will consider such
restrictions.

Let M be a nondeterministic Turing machine using oracle B. Following Book,
Long, and Selman [BoLoSe84] let Q(M, B, x, p) denote the set of all strings queried
during a computation p of M on input x when using oracle B. Following Krentel
[Kre86] we define for a bounding function r :N-N and a class C of languages:

NPc r] is the class of all languages accepted by some nondeterministic polynomial
time Turing machine M using an oracle B C such that, for all inputs x
and all computations p of M on x, 4Q(M, B, x, p)<= r(Ixl).

Using deterministic polynomial time (logspace, respectively) Turing machines, we
define analogously pC jr] (Lc It], respectively). Note that for logspace oracle Turing
machines the query tape is not subject to the space bound. Obviously, Lc r]

_
pC r]

_
NpC[r] for all bounding functions r. Instead of single bounding functions we also use
classes of bounding functions. In particular, we use the class Pol of all polynomials
and, for a bounding function r, the class O(r). The class PNP[r] is denoted by pNP[r]
in [PaZa82], by Q(r, SAT) and Q(r, NPC) in [Gas86] and [AmGa87], and by Q(r, SAT)
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in [Bei88]. It is evident that LNP[Pol]-- LNP, PNP[Pol]-- pNP, and NpNP[Pol] NPNP.
Note that in a NpC[ r] computation every query can depend on the oracle answers

to previous queries. We say that such queries are adaptive or made in series. The oracle
queries of a machine are said to be nonadaptive or made in parallel if a list of all
queries is formed before any of them is made. For a class C of languages and a
bounding function r:N-N we define:

NP is the class of all languages accepted by some nondeterministic polynomial
time Turing machine M using an oracle B C such that, for all inputs x
and all computations p of M on x, a list of all queries from Q(M, B, x, p)
is formed before any of them is made.

NPI r] is the class of all languages accepted by some nondeterministic polynomial
time Turing machine M using an oracle B C such that, for all inputs
x and all computations p of M on x, O(M, B, x, p)<= r(Ixl) and a list
of all queries from Q(M, B, x, p) is formed before any of them is made.

Using deterministic polynomial time (logspace) Turing machines we define analogously

P and P[r] (L and L[r], respectively). The case of parallel queries during a
logspace computation needs some explanation. We assume that a logspace Turing
machine writes the list of queries to the oracle on the query tape and the oracle answers
by a list of 0-1 answers to these queries. The machine can read these answers in a
one-way mode.

It is clear that the nonadaptive query classes are included in the adaptive query
classes with the same bounding function. Furthermore, LI PI - NPI and L[r]
P’[ r] c_ NP[r] for all bounding functions r. The class PIP[ r] is denoted by QIl(r, SAT)
in [Bei88]. It is evident that LP[Pol] LIp PIP[Pol] PIP and NPIP[Pol] NPNp

The characterization of NPNP by polynomially bounded quantifiers in [Sto77]
shows that for a nondeterministic polynomial time Turing machine all queries to an
NP oracle can be replaced by only one query to another NP oracle. Hence we have
Theorem 2.1.

THEOREM 2.1. NPP[1] NPP NpNP[ 1] NPNP.
Figure 1 shows the inclusional relationships between the most interesting classes

between Z’ NP and A2P. It looks rather involved, but in the following sections it will
turn out that all classes belonging to the same area (marked off by ,,-) in fact coincide.
That simplifies our view on the important classes between ZP and A2P considerably.

3. Adaptive versus nonadaptive queries. Now it is an interesting problem to discover
the exact relationships between the adaptive query classes and nonadaptive query
classes, i.e., to find out how many adaptive queries to an NP oracle are sufficient to
replace a given number of nonadaptive queries to an NP oracle and vice versa. Because
of Theorem 2.1 we must consider only the case of deterministic polynomial time and
logspace computations. Thus the problem can be formulated as: how to strengthen
the obvious inclusions PP[r]_ PNP[r] and LP[r]c_ LNP[r] and how to relate the
polynomial time classes with the logspace classes.

An answer for a constant number of queries was given in [Bei88]. It will appear
as a special case of a more general result given below. This result says that, for
logarithmically bounded constructible functions r, 2 r(n- parallel queries are exactly
as powerful as r(n) adaptive queries. For proving this we start with a simple observation
which states that every set A PIP[r] (LIP[r], respectively) is polynomial time (log-
space, respectively) truth-table reducible (see 5) to an NP set using at most r(n)
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NP[O(log

PNP[O(log n)]

n)]

?P[o(log n)]

PNP[o(1

LINIP[O(1
PP[o(1)]

FIG.

instances of this NP set for an input of length n. Let Ca be the characteristic function
of the set A.

LEMMA 3.1. Let r be polynomially bounded such that r(]x]) is polynomial time

computable. For every A PP[r] (LIP[r], respectively) there exist a B NP and a

polynomial time (logspace, respectively) computable function h such that CA(X)
hx(cB(xl), ", CB(Xrlxl))) for all x where h(x) (N, Xl, ", Xrll)) and N is a natural
encoding of a Boolean circuit computing the Boolean function h,.

Proof For an input x to a PP[r] machine M let Xl,’’’, Xrlxl) be the queries
made by M in parallel. Furthermore, let Nx be the description of a Boolean circuit
describing the computation of M on x in an obvious way where N has r(]x]) input
nodes corresponding to the answers of the oracle to the queries of M. If M is a LIP[ r]
machine, then (N, xl,..., xr(ll)) can be produced by a logspace machine. [3

The most important auxiliary result for the main result of this section and for
other results of this paper is the following theorem which might be of independent
interest. The idea to its proof rests on the mind change technique used by Beigel [Bei88]
to prove Theorem 3.4 for constant r. The mind change technique can be considered
as a refinement of the compute census and make one more query technique used by
Hemachandra [Hem87] and Kadin [Kad87] (see 4). For (a,. , ak), (bl," , bk)
{0, 1} k we write (a,..., ak)<--(b, bk) if and only if ai<-b for i= 1,..., k. The
k-ary Boolean function h changes its mind from a to b if and only if a_-<b and
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h(a) # h(b). Let mc(h) denote the maximum number of mind changes of h, i.e.,

me(h)- max {m: there exists ao, al," , a, {0, 1}k

such that ai-l<= ai and h(ai_l)# h(ai) for i= 1,..., m}.

Obviously, mc(h)_-< k for every k-ary Boolean function h.
THEOREM 3.2. (1) Let r N-->N be polynomially bounded such that r(Ixl) is poly-

nomial time computable. For every set A,

A PP[r]:) there exists a set B NP such that cB(x, + 1) --<_ cB(x, i) for all x and
and a O-1-valued polynomial time computable function f such that

CA(X)=-- (max {i: 1 <= <= r(Ixl) and (x, i) B}+f(x)) mod 2.

(2) Let r:N>N be polynomially bounded such that r(Ixl) is logspace computable.
For every set A,

A6LrP[r],.,there exists a set BNP such that c(x,i+l)<=c(x,i) for all x
and and a O-l-valued logspace computable function f such that
Ca(X)=-- (max {i: 1 _--< i_--< r([xl) and (x, i) B}+f(x)) mod 2.

Proof (1) For A PIP[r] there exists (by Lemma 3.1) an NP-set D and a 0-1-
valued polynomial time computable function h such that CA(X)
hx(co(xl)," ", eo(xr<lxl)) for all x where h(x) (N, xl," ", xrll) and N is a natural
encoding of a Boolean circuit computing the Boolean function h. Define mCD(X) as
the maximum number of mind changes of hx between (0,. .,0)
and (eo(xl),...,co(x<ll))). Obviously, mco(x)<-mc(hx)<-_r([x[) and ea(x)
(mCD(X) + h(0, ", 0)) mod 2. This way of computing CA(X) is just the basic idea of
the mind change technique. Defining

B {(x, i): there are at least mind changes of h
between (0,..., O) and (co(x,),"’, CD(Xr(IxI)))}

we obtain mCD(X) max {i: 1 _<-- _-< r([x[) and (x, i) 6 B} and cs(x, + 1) <- cs(x, i) for
all i. Defining f(x) h(0, , 0) it remains to prove that B is in NP. An NP machine
M to accept B can be constructed as follows. Given input (x, i), M computes
h(x) (N,, xl," , xr(ixl)). If i> r(lx[), then M rejects. Otherwise M guesses nondeter-
ministically ao, , a {0, 1} r(lxl) and checks whether ao _-< a <--" <

h(al) #’’" # hx(a). If this fails then M rejects. Otherwise, let ai=(bl,’’ ",

Now M checks by consecutive NP computations whether xj B for all j 1, ,
such that bj 1. If all these computations are accepting then M accepts, otherwise M
rejects.

The converse implication is obvious. The logspace case is treated in the same way
where we compute h(0,..., 0) by running an LrP[r] machine which accepts A on

input x with oracle answers 0,..., 0 (i.e., without using an oracle).
COROLLARY 3.3. Let r N-N be polynomially bounded such that r(Ixl) is polynomial

time computable. For every set A PP[ r] there exists a set B NP such that cB(x, + 1) <-_

cn(x, i) for all x and and

CA(X)=--max{i:l<=i<--r(lxJ)+l and (x,i)B}mod2.

Proof For A PIP[r] we obtain by Theorem 3.2(1) an NP-set D such that
co(x, i+ 1)_-< co(x, i) for all x and and a 0-1-valued polynomial time computable
function f such that

CA(X)=-- (max {i: 1 <--iN r(lxl) and (x, i) B}+f(x)) mod 2.
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The NP-set
B ={(x, 1):f(x)- 1}U {(x, i+f(x)): l<=i<=r(Ix[) and (x, i)eD}

has the desired property. [3

Now we can establish the main result of this section which has been proved for
constant r already in [Bei88].

THEOREM 3.4. Let r e O(log n).
(1) PNP[r(n)] PP[2r(n)- 1] for polynomial time computable r.
(2) LNP[r(n)] LP[2rn- 1] for logspace computable r.

Proof If we consider the computations of a pNP[r(n)] machine for all possible
oracles up to the r(n)th query we obtain at most 2 rn)- 1 different queries which can
be computed in polynomial time (remember: re O(logn)). Hence PNP[r(n)]_
PIP[2r"- 1]. For the converse inclusion we conclude from Theorem 3.2(1) that for
every A e PP[2r(n)- 1] there exist a set D e NP and a 0-1-valued function h e P such
that eD(x,i+ 1)_-< cD(x, i) for all and

CA(X)=-- (max {i: 1 --< i<=2 rl’l)- 1 and (x, i)e D}+ h(x)) mod 2.

Because of c(x, i+ 1)<-c(x, i) we can find out this maximum by a binary search
with r(Ixl) queries to D.

The logspace case is treated in the same manner because the binary search can
be carried out by a logspace machine.

Using Corollary 3.3 we can even convert a polynomial time computation with an
NP oracle into a logspace computation with an NP oracle at the price of one more
query to the oracle.

THEOREM 3.5. Let r(Ix]) be logspace computable.
1 PIP[ r(n)

_
LIP[ r( n + 1 for polynomially bounded r.

(2) PYP[r(n)]_ LNP[r(n)+ 1]for re O(log n).
COROLLARY 3.6. Let r(Ixl) be logspace computable.
(1) PIP[ r(n) + O(1)] LIP[ r(n) + O(1)] for polynomially bounded r.

(2) PYP[r(n)+ O(1)] LNP[r(n)+ O(1)] for re O(log n).
Note that it is an open problem whether Corollary 3.6(2) remains true for r

O(log n). We conjecture that it is not true in general since otherwise we would have
PNP[Po1] LNP[Pol] which contradicts our conjecture (R)P # A (see 2).

For our favorite bounding functionswe obtain from Theorem 3.4 and the preceding
corollary the following result.

COROLLARY 3.7.
(1) PNP[O(1og n)] LYP[O(log n)] PpP= LIP.
(2) PIP[O(Iog n)]= LP[O(log n)].
(3) PNP[o(1)] LNP[o(1)]-- PpP[o(1)] LP[o(1)].
Finally note that the class pNP[ O(1)] coincides with the union BH of the classes

of the Boolean hierarchy defined independently by KBbler, [KBb85], Wechsung, and
Wagner [WeWa85] and Cai and Hemachandra [Carte86]. For the coincidence of
PIP[o(1)], PNP[o(1)] and BH and other interesting properties of the Boolean
hierarchy see [KBScWa87], [Bei88], and [CGHHSWW88].

4. Restricting the number of queries in the computation tree and in the oracle tree. In
the preceding sections we have studied restrictions to the number of queries in every
single computation. For nondeterministic machines there may be several computations
for a given input which build the computation tree for this input. Book, Long, and
Selman [BoLoSe84] were the first to investigate restrictions on the number of queries
in the whole computation tree in order to establish positive relativizations of some open
problems in complexity theory.
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The set of all queries in the computation tree of a nondeterministic Turing machine
M using oracle B on input x is denoted by

Q(M, B, x) [J Q(M, B, x, p).
p computation

For a class C of languages and a bounding function r we define:

NPcCtree[ r] is the class of all languages which can be accepted by a nondeterministic
polynomial time Turing machine M using an oracle B e C such that
# Q(M, B, x) <_- r([xl) for all inputs x.

Note that NPNPctree[Po1] was denoted by NP.ALL.DEP(SAT) in [BoLoSe84] and by
NPB(NP) in [Lon85].

It is obvious that the computation tree of a nondeterministic polynomial time
oracle Turing machine cannot include more than 2v(n) queries to the oracle (for some
polynomial p). Hence NPcCtree[2Pl] NPc for all oracles C. In particular, we have
Proposition 4.1.

PROPOSITION 4.1 NP Poll NPNPtree[2 =NP
Can the class NPNPctree[r] be characterized also for subexponential bounding func-

tions ? The only answer we know was given by Book, Long, and Selman for NPNPctree[Po1].
THEOREM 4.2. NP NPNPctree[Pol] P
Proof. In Corollary 5.4B of [BoLoSe84] it is proved that NPctree[Pol]B P if and

only if B is NP-hard. Since SAT is NP-hard we obtain NPNPctree[Po1]-- MDSATl-Poll1,--ctreeL

pSAT= pNP. ]-]

Unfortunately the proof given in [BoLoSe84] does not work to yield any result
for subpolynomially bounding functions r. The problem of characterizing, for example,

NPNPctre[O(1og n)] remains unresolved.
In the remainder of this section we will derive some results on another mode of

restricting the number of oracle queries. When we restricted the number of queries in
Q(M, B, x) the oracle B was fixed. If we consider all possible oracles, then we also
obtain for a deterministic machine several computations for the same input which
build the oracle tree for that input. The set of all queries in the oracle tree of M on
input x is denoted by

Q(M, x) [_J Q(M, B, x).
B oracle

Restrictions on Q(M, x) were first investigated by Book, Long, and Selman in
[BoLoSe84]. For a class C of languages and a bounding function r we define:

cNPotree[ r] is the class of all languages which can be accepted by a nondeterministic
polynomial time Turing machine M using an oracle B C such that
: Q(M, x) <= r(lx[) for all inputs x.

Using deterministic polynomial time (logspace, respectively) machines, we define
Potree[r] (Lotree[r], respectively). Note that in [BoLoSe84] the classesanalogously c c

NP NPNPotree[Pol] and Potr[Pol] were denoted by NP.ALL(SAT) and P.ALL(SAT), respec-
tively.

Again, it is obvious that the oracle tree of a (non)deterministic polynomial time
oracle machine cannot include more than 2p(n) queries to the oracle (for some poly-

C Poll C Poll pC.nomial p) Hence, NPotree[2 NPc and Potree[2 Since the number of
possible oracle queries during an Lc computation cannot exceed the number of
configurations with an empty query tape (which is polynomially bounded) we have
Lotree[POl]C Lc. In particular, we have Proposition 4.3
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PROPOSITION 4.3. (1) NPotreeNP[2Pol] NpNp.
(2) NP Poll pNPPotree[2

INP [-,,) Pol NP(3) --,otreeL ]-- Lotree[PO1 LNP

It turns out that for polynomially bounded r all the otree classes defined above
are closely related to each other and to the class PIP[r]. The inclusions PIP[r]
NP NPPotree[ r] and LIP[ r] __C Lotree r] are obvious. On the other hand we even have Potree[NP r]

PIP[r] because the entire oracle tree can be searched in polynomial time. Hence we
have Proposition 4.4.

NPPROPOSITION 4.4. For all polynomially bounded r, Potree[r] PIP[r].
NP NPLotree[r coincide with PlP[r] if we takeHowever, the classes NPotree[r] and also

bounding functions O(r) rather than r.
THEOREM 4.5. For allpolynomially bounded r such that r(Ixl) is logspace computable,
NP NP NP P[NPotree[ O(r)]-" (rPotree[O )] (r) I O(r)].=Lotree[O P
Proof. Because of Corollary 3.6 we have PP[O(r)]_ LP[O(r)], and

NPLP[ O(r)
_

Lotree[ O(r) is obvious.
NPotr[r]- PP[ O(r)]. The main idea in this proof isThus it remains to prove NP

NPto precompute for an input x to an NPotre[r] machine the number of all relevant
elements in the NP oracle. This can be done with r(Ixl) parallel queries. Then, knowing
this number, the NPNPotre[ r] computation can be converted into an ordinary NP computa-
tion which takes one more adaptive query or, equivalently, which doubles the number
of parallel queries. This technique was first used by Hemachandra [Hem87] to prove
that PNP[O(1og n)] includes all sets which are polynomial time truth-table reducible
to an NP set, and by Kadin [Kad87] to prove NPt m__ pNP[O(1og n)] for every sparse

Potree[r] machine M using an NP oracleNP set B. Let the set A be accepted by an N NP

B. The set D={(x, z): z Bf’) Q(M,x)} is obviously in NP. Define cenD(x)
# {z: (x, z) 6 D}, that is, the number of those queries during the work of M on x which
belong to B. The value cenD(x) can be computed by the parallel queries (x, 1),
(x, 2),..., (x, r(Ixl)) to the set

D’= {(x, k): there exist at least k different z such that (x, z)6 D}
which is obviously in NP.

Now given (x, cenD(x)) an NP machine M’ can simulate the work of M on x as
follows. First M’ guesses nondeterministically the s %f cenD(x) strings zl," ", z, such
that (x, zi)6 D for 1,. ., s and verifies these guesses by consecutive NP computa-
tions. If all guesses are correct then M’ can simulate M step by step with the only
difference that M’ checks whether z {Zl, , zs} if M queries whether z is in B. Let
E be the set accepted by M’. Hence, xAc:(x, cenD(x)) E for all x.

Finally, a new PIP[2r + 1] machine M" can accept A as follows" On input x the
machine M" makes the parallel queries (x, 1), (x, 2),. ., (x, r(Ixl) to D’ and (x, 0),
(x, 1),..., (x, r(Ixl) to E. If s is the greatest natural number in [0, r(Ixl)] such that
(x, s) D’ (i.e., s=ceno(x)), then M" accepts if and only if (x, s) E. Hence, A
PIP[2r + 1]. I-I

COROLLARY 4.6. NPotree[PO1]YP Potree[PO1]NP Lotree[PO1]NP
--Potree[POl] has already been proved in [BoLoSe84].NPotree[Po1] NPThe equality NP

5. Truth-table reducibilities. In this section we will see that polynomial time
(logspace, respectively) truth-table reducibilities to NP sets are closely related to
polynomial time (logspace, respectively) computations making use of an NP oracle
by parallel queries.

Polynomial time and logspace truth table reducibility were introduced by Ladner,
Lynch, and Selman in [LaLySe75] and [LaLy76], respectively. Informally, A-<_ B
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(A =<lgtt B, respectively) if and only if there is a polynomial time (logspace, respectively)
Turing machine computing from x queries Xl,’", xs to B and a description of a
Boolean function h (depending on x) such that CA(X)= h(cB(xl),’’’, cB(xs)).

This description is informal because we have not specified how the Boolean
function h should be described. If it is described by Boolean circuits we really write
A =<tPt B and A =<lgtt B (following [LaLySe75] and [LaLy76]). If they are described by
Boolean formulas (full truth-tables, respectively) we write A-<,rB and A --bf<lg B
(A <P B and A <og

=rtt =rtt B, respectively; cf. [Wag86] and [K6ScWa87]). If, for a bounding
function r, the number s of queries to B is bounded by r(Ixl) then we write A --<Pr_tt B
(A =<lgr_tt B, A <Pr-br= B,’’" ). For every reducibility < defined above and every class C
of languages we denote by _-<(C) the class of all languages A which are -<-reducible
to a set from C. Obviously, tt(f)<f(f)Ptt(C and <log/ftt,C)<ofg(C)____
--<lg/c)tt the same holds true for the r-bounded classes. In fact, for C NP, some of
these classes coincide with the corresponding bounded parallel query classes.

THEOREM 5.1. Let r be polynomial!y bounded.
(1) =< lg[NP)r_tt\ "--<Pbf(NP)r_ --< rP_tt(Ne)-- PIP[?"] for polynomial ’time computable r.
(2) =<lgr_br/’NP)= LIP[r] for logspace computable r.

Proof (1) The inclusions =<lgtNP)Ur-tt =<rP_bf(NP) C_ <Pr_tt(NP)c=PP[r] are
obvious; the inclusions PP[r]c <rP_br(NP) and PlP[r]c r-tt," are consequences
of Theorem 3.2(1).

(2) The inclusion =<gr_brt/’NP)
_
LP[r] follows from the fact that Boolean formulas

can be evaluated in logspace [Lyn77] (whereas Boolean circuits can probably not
because the circuit value problem is P-complete [Lad75]). The inclusion LIP[r]G
<-lr_r(NP is a consequence of Theorem 3.2(2).

By this theorem, Corollary 3.7, and the well-known result by Ladner and Lynch
[LaLy76] that logspace Turing reducibility is identical with logspace truth-table reduci-
bility, we obtain Corollary 5.2.

logCOROLLARY 5.2. -<g(NP)= tt (NP)= <r(NP)= <tPt(NP)= LIP= PlP--- LNP--

O2.
The equalities LNP LIP LNP[ O(log n)] might be surprising. Remember that the

number of different oracle queries during a deterministic logspace bounded computa-
tion on input x cannot exceed the number of possible configurations with an empty
query tape. Thus cycling through all these polynomially many configurations (let p be
a suitable polynomial) we can precompute all possible oracle queries.

The inclusion =<tPt(NP)_ PNP[O(1og n)] was proved by Hemachandra [Hem87],
and the relationship --<g(NP)= --<’gfNP)tt -<-,r(NP)= =<IPI(NP) LNP[O(1og n)]
PNP[O(1og n)] was proved independently by Buss and Hay [BuHa88]. The equality
_-<r(NP) PNP[O(1og n)] can already be concluded from [Kre86] and [Wag86] in a
very unusual way: Krentel proved that the problem of whether a given graph has a
maximum clique size divisible by a given k is complete for pNp[ O(log n)]. In [Wag86]
the same was proved for the class _-< r(NP). Part of the motivation for this work comes
from the dissatisfaction with this proof that _-<r(NP)= PNP[O(Iog r/)]. We feel that
the results presented here give more insight into why these classes coincide.

Corollaries 3.7 and 5.2 show that the question of whether A2p (R) is identical with
the question of whether during a polynomial time computation logarithmically many
adaptive queries to an NP-oracle are as powerful as polynomially many adaptive
queries. Moreover, it is identical with the question of whether during a polynomial
time computation polynomially many parallel queries to an NP-oracle are as powerful
as polynomially many adaptive queries. This supports our conjecture A # (R)2p.

We conclude this section with a result on the classes --<tt(NP) and =<lg/ftt\NP). On
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the one side, a full truth-table of polynomial size describes a Boolean function with
O(log n) variables. Hence, ---rtt<lgNP)Ct =<tt(NP)c_ PIP[O(log n)]. On the other side,
from Corollary 3.3 we easily obtain PlP[O(log n)] c_. __< ’tg(Np). Consequently, we have
Theorem 5.3.

logTHEOREM 5.3. [K/ib87] -<-rtt (NP)= <tt(NP)--- PP[O(log n)].
Thus it does not seem to be very likely that =<tt(NP) and -<r(NP) coincide because

this means PlP[O(log n)]= PIP[Pol] which, by a result in [Wag87], implies the
collapse of the polynomial-time hierarchy to (R)3p.

6. The extended Boolean hierarchy. From the various definitions and equivalent
formulations of the classes NP(k) of the Boolean hierarchy given in [K6b85],
[WeWa85], [Carte86], [K/SScWa87], [Bei88], and [CGHHSWW88], we take the
following because it can easily be used to extend the Boolean hierarchy. For k=> 1
we define

AeNP(k)c=>there exists a set BeNP such that CB(x,i+I)<--CB(X,i) for all

and CA(X) max { i: 1 _--< _--< k and (x, i) B} mod 2

and BH=L.Jk>_ 1NP(k). Obviously, NP=NP(1), and it was proved that PIP[k]
PNP(t’)[1] and NP(k) U co-NP(k)

_
PP[k] NP(k+ 1) CI co-NP(k+ 1) (cf.

[K6ScWa87], [Bei88]).
Since we also want to have such interesting relationships for nonconstant bounding

functions r we extend the Boolean hierarchy defining

ANP(r)C:>there exists a set BNP such that cB(x,i+l)<-cn(x,i) for all
and CA(X) =-- max {i: 1 _--< <_-- r(Ixl) and (x, i) e B} mod 2.

From Theorem 3.2 and Corollary 3.3 we immediately obtain the following two
theorems.

THEOREM 6.1. Let r be polynomially bounded.
(1) elP[ r] eNP(r)[ 1] if r(Ixl) is polynomial time computable.
(2) tPEr] tP(r)[1] if r(Ixl) is logspace computable.
THEOREM 6.2. For every polynomially boundedfunction r such that r(Ixl) is logspace

computable,

NP(r) L.l co-NP(r) c__ LIP[ r] PIP[ r]
_
NP(r + 1) f-! co-NP( r + 1).

COROLLARY 6.3. For every polynomially bounded function r such that r(Ixl) is
polynomial time computable,

NP(r+ O(1))= P[r+ O(1)].

In particular, we have the following result, which has been proved independently
by Buss and Hay [BuHa88].

COROLLARY 6.4. NP(Pol) (R).
What about superpolynomially bounding functions? Here we know only a single

result for 2 Pl.
THEOREM 6.5. NP(2Pl) A.
Proof The inclusion NP(2 Pl)

___
pNP is proved by a binary search argument. For

the converse inclusion it suffices to prove that some pNP complete problem is in
NP(2P). We do so for the problem MAX SATODD ofwhether the maximum satisfying
assignment to the variables of a Boolean formula is odd (see [Kre86], [Wag86]). Let
F be a Boolean formula with n variables and let bin be the obvious correspondence
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between the integers of the interval [0, 2"-1] and the n-tuples of zeros and ones:

F MAX SAT ODDC:max {k: F(bin (k)) 1} is odd

,max {k: ::Im(m >- k and F(bin (m)) 1)} is odd

:max{k: 0-< k_-<2n-1 and (F,k)B} is odd
where B {(F, k): ::lm(m >-_ k and F(bin (m)) 1)}. Obviously, B e NP and

CB(X, k + 1) <-- ca(x, k).

It is an interesting consequence of Corollary 6.4 and Theorem 6.5 that the question
of whether (R) A2 is identical with the question NP(Pol)= NP(2P’).

Finally let us consider some modifications of NP(r). For an arbitrary class C, the
class C(r) is defined as NP(r) but replacing NP with C in the definition of NP(r).

THEOREM 6.6. (1) For every exponentially bounded polynomial time computable
function r, P(r) P.

(2) For every polynomially bounded logspaee computable function r, NL(r)= NL.
(3) For every polynomially bounded logspaee computable function r, L(r)= L.
Proof (1) For every A from P(2 P’) the property "xeA" can be tested by a

binary search with polynomially many queries to a P set. Hence, A is in P.
(2) For every A from NL(Pol) the property "x e A" can be tested by querying

(x, i) to an NL set for 1 1,..., p(lx I) (where p is a suitable polynomial). Hence, A
is in LNL. Because of the results of Szelepcs6nyi and Immerman [Sze87], [Imm88]
that NL is closed under complement the logspace oracle hierarchy collapses to NL.

(3) For every A from L(Pol) the property "x A" can be tested by querying (x, i)
to an L set for 1 1,..., P(IXl) (where p is a suitable polynomial). Hence, A is in
L.

Thus for superpolynomial functions r we only know NP(2P) Ap and P(2 P’) P.
We do not know characterizations for NL(2P’) and L(2P). The situation changes a

little if we modify the definition of C(r) in such a way that we do not require
cB(x, k + 1)_-< cB(x, k). Let C’(r) be the class defined in this way.

THEOREM 6.7. (1) For every exponentially boundedfunction r with polynomial time

computable r(Ixl), NP’(r) NP(r).
(2) For everypolynomially boundedpolynomial time computablefunction r, P’( r) P.
(3) For every polynomially bounded logspace computable function r, NL’(r)= NL.
(4) For every polynomially bounded logspace computable function r, L’(r)= L.
(5) NP’(2 P’) P’(2 P’) NL’(2 P’) L’(2 Pl) A2P.
Proof (1) Obviously, NP(r)c__ NP’(r). For an A from NP’(r) there exists an NP

set B such that CA(X) max {i: 1 <= <--_ r(Ixl) and (x, i) B} mod 2. Defining the NP set

B’= {(x, i): there exists a k such that =< k-< r(Ix]) and (x, k) e B}

we obtain ea(X)max{i:l<--i<--r(lxl) and (x,i)eB’}mod2 and e,(x,k+l) <-

cu,(x, k). Statements (3) and (4) can be proved as the corresponding statements in
Theorem 6.6. Statement (2) can be proved as statement (4).

(5) Because of NP’(2P’) NP(2P) A it remains to prove A2 c_ L’(2P). This
is done as in the proof of Theorem 6.5 but defining B {(F, k): F(bin (k)) =Jl} which
is in L (cf. [Lyn77]).

7. Complete problems for Q. It is a simple observation that, for every function
r, the class PIP[r(Pol)] is closed under polynomial time many-one reducibility. Thus
it is interesting to look for natural complete sets for these classes. The equality
PIP[r(Pol) + O(1)] NP(r(Pol) + O(1)) (Corollary 6.3) provides us with a useful tool
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to prove completeness results. We restrict ourselves to the case (R) NP(Pol); for other
bounds one can proceed analogously.

THEOREM 7.1. Let B be logspace many-one completefor NP and let A befrom (R).
If there exists a logspace computable function f such that

max { i" 1 --< _--< s and xi B} is odd f(xl, , Xs) A

for all (xl, , xs) such that CB(Xi+I) <= CB(Xi) for 1, , s- 1 then A is logspace
many-one complete for 0.

Proof. Let C be an arbitrary set from (R). Because of Corollary 6.4 there exist a
polynomial p and an NP set D such that co(x, k+ 1)-< co(x, k) for all x and and
Cc(X)=- max {i: 1 _-< i<-_p(Ixl) and (x, i)e D}. Furthermore, there exists a logspace com-
putable function g such that zDCg(z)B for all z. Hence cB(g(x,i+l)) <-
cB(g(x, i)) for all x and and

x e C max {i: 1 <- <- p(Ixl) and g(x, i) B}

:f(g(x, 1), , g(x, p(Ixl))) e A.

Obviously, h(x)=f(g(x, 1),’’ ", g(x, p(lx[))) is logspace computable. [3

In [Wag86] a similar theorem has been proved where "logspace" is replaced with
"polynomial time." Several optimization problems of the form "is the optimum
of... odd?" were proved there to be polynomial time many-one complete for O
(appearing there as PfP), for example, the problems ODD CLIQUE (see also [Kre86]),
ODD MAX 3SAT, ODD COLOUR, ODD INDEPENDENT SET, and ODD VERTEX
COVER. A close inspection ofthe proofs there yields that even the stronger assumptions
of Theorem 7.1 are fulfilled. Consequently, all the problems mentioned above are
logspace many-one complete for (R)2. For further complete sets for (R) see [Kre86],
[Wag86], [K6ScWa87], and [CGHHSWW88].

8. Conclusions. We have seen that very different ways to define restrictions to the
use of NP oracles during NP, P, or L computations result in the same or a closely
related classes. In particular, @ seems to be a very natural class in the interesting
area between NP and A2 because it can be characterized in very different ways. We
summarize the most interesting characterizations of (R).

THEOREM 8.1.

O2p= LNP= LNP[O(log n)]= PNP[O(log n)]= LIP= PIP= NP(Pol)
]rNP [,.) Pol] NP NPPotree[ NVotree[Vo1]--’otree L’-" Lotree[PO1] Pol] NP

=< g(NP)= ---tt<’gtNP), =< ,r(NP)= =< tPt(NP).
Furthermore, @ has very natural complete problems. The same (in particular,

Theorem 8.1) remains valid for all classes (R) (where NP is to replace with Z_I, the
proofs are essentially the same). Hence it seems to be natural to consider the classes
(R) to be constitutional parts of the polynomial-time hierarchy. We extend the widely
accepted conjecture that all classes of the polynomial-time hierarchy are different also
to the classes (R). However, while we know [Sto77] that E A, E II, or E A+
for k-> 1 imply the collapse of the polynomial-time hierarchy to that level we do not
know any interesting consequence of O A.

We conclude this section by mentioning further work on bounded query classes.
A survey on this topic can be found in [Wag88a]. Kadin proved in [Kad88] that
NP(k) co-NP(k) for some k ->_ 1 implies the collapse of the polynomial time hierarchy
to (R). This result has been improved and generalized in [Wag87] as follows. Let r be
a monotonic function such that r(n) -< n for some a < 1 and that r([x[) is polynomial
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time computable. If NP(r)= co-NP(r), then the polynomial time hierarchy collapses
to PII [O(r(Pl))] (for constant r this is the Boolean closure of ). By Theorem 6.2,
if PlP[r] PlP[r + 1] then the polynomial time hierarchy collapses to PI[ O(r(Pol))].
Thus one more query to an NP set gives a polynomial time computation more power
unless the polynomial time hierarchy collapses.
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ON THREE-DIMENSIONAL PACKING*

KEQIN LI? AYD KAM-HOI CHENG?

Abstract. The three-dimensional packing problem is discussed in this paper. The problem is a generaliz-
ation of the one- and two-dimensional packing problems. It is demonstrated that some basic packing
strategies such as NFDH and FFDH for two-dimensional packing have unbounded worst-case performance
ratios in the three-dimensional case. Let r(A) denote the asymptotic performance bound of an approximation
algorithm A. An approximation algorithm G is developed, and it is shown that 4.333 =< r( G) <= 4.571. The
algorithm is improved to algorithm C and it is proven that r(C) 3.25. For the special case when all boxes
have square bottoms, the two algorithms are adapted to algorithms G and C, respectively, with r(G) 4
and r(C) 2.6875. For the case when both sides of the bottom of a box are no larger then 1/m, two families
of algorithms, G*m(m >=3) and C*m(m >_-2), are presented. It is shown that r(G*.,)= m/(m-2) and r(C*m)
(rn+ 1)/(rn-1). Similarly, when these small bottom boxes have square bottoms, there exist two families of
algorithms, Gin(m>=2) and C.,(m =>2), such that r(G,)=(m/(m-1)) and r(Cm)=((rn+ 1)/m)2.

Key words, approximation algorithm, asymptotic performance bound, FFDH, NFDH, NP-hard, three-
dimensional packing

AMS(MOS) subject classification. 68Q25

1. Introduction. The three-dimensional packing (3D packing) problem is to pack
a set of rectangular boxes I {bl, b2," , bn} into a rectangular box B with a fixed
size bottom and unbounded height such that the height of the packing is minimized.
A box bi is specified as a triplet bi--(xi, y, z) in which x, y, and zi are referred to
as its width, depth, and height, respectively. We require that all boxes be packed into
B orthogonally and oriented in all three dimensions. For a rigorous definition, consult
Appendix A. The 3D packing problem is first introduced in [12] as a model of job
scheduling in partitionable mesh connected systems (PMCS). The bottom of the box
B represents a PMCS of size w and the infinite height stands for the time dimension.
Each box bi (xi, Yi, zi) in I is interpreted as a job which requires a submesh of size
xi Yi and z units of execution time. The 3D packing problem is then equivalent to
scheduling a set ofjobs on a PMCS nonpreemptively so that the finish time is minimized.
Readers are referred to [13] and [14] for more details about job scheduling in PMCS.
Without loss of generality (w.l.o.g.) we may assume that w 1 and x, y (0, 1],
1 _-< i_-< n. Therefore an instance of the 3D packing problem only consists of a set of
boxes I.

Clearly, the 3D packing problem is a natural generalization of the classical one-
and two-dimensional packing problems. The following problems are all special cases
of the 3D packing problem and all of them have been extensively studied [6].

Bin packing [10], [17]--if all rectangles in I have width 1 and the same
height z.

Multiprocessor scheduling [9], [16]--when all rectangles in I have width 1 and
the same depth y.

Two-dimensional bin packing [4]mif all rectangles in I have the same height z.
Rectangle packing [1]-[3], [5]--when all rectangles in I have depth 1.

All these problems are NP-hard, hence the 3D packing problem is also NP-hard for
obvious reasons. Thus it is unlikely that we can devise an algorithm which is always

* Received by the editors May 22, 1989; accepted for publication (in revised form) December 28, 1989.
This research is based in part on work supported by the Texas Advanced Research Program under grant
1028-ARP.

? Department of Computer Science, University of Houston, Houston, Texas 77204-3475.
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able to produce an optimal packing for a given set of boxes in polynomial time. An
important practical approach to deal with NP-hard optimization problems is to design
and analyze approximation algorithms of polynomial time complexity which generate
near-optimal solutions [8]. Suppose A is an approximation algorithm to solve the 3D
packing problem. Let A(I) denote the height of the packing produced by A for an
instance I and OPT (I) be the height of an optimal packing of L A commonly used
performance measure in packing problems is the asymptotic performance bound which
characterizes the behaviour of A when the ratio of OPT (I) to the maximum box height
goes to infinity [5]. If there exist constants c and/3 such that for all I in which no
box has height exceeding Z, A(I)<=c OPT(I)+flZ, then a is called an asymptotic
performance bound of algorithm A. Furthermore, if for any small e > 0 and any large
N>0, there exists an instance I such that A(I)> (ce- e) OPT (I) and OPT (I)> N,
then ce is tight and denoted as r(A)= c. If for any M > 1, there exists an instance I
such that A(I) > M. OPT (I), then we say that algorithm A has an unbounded worst-
case performance ratio which implies that A is a poor algorithm.

All algorithms discussed in this paper use a level-by-level layer-by-layer packing
scheme which is generalized from the strip (or shelf, level) packing scheme for rectangle
packing. Coffman et al. [5] first studied two level-oriented packing algorithms in two
dimensions, namely, Next-Fit-Decreasing-Height (NFDH) and First-Fit-Decreasing-
Height (FFDH). It is shown that r(NFDH)= 2 and r(FFDH)= 1.7. Baker, Brown,
and Katseff [2] investigated the best up-to-date strip packing algorithm for the rectangle
packing problem with asymptotic performance bound 1.25. The strip packing strategy
has also been used for the on-line rectangle packing problem [3]. The multidimensional
packing problem has been studied in the setting of vector packing [7], [17] where
pieces (i.e., rectangles or boxes) can only be packed in a corner-to-corner manner
across a bin diagonally and the objective is to minimize the number of bins used. Since
there is no geometric flavor, vector packing is different from bin packing in multi-
dimensions. Karp, Luby, and Marchetti-Spaccamela 11 have investigated both multi-
dimensional vector and bin packing problems from a probabilistic point of view.
However, th6re is still a lack of combinatorial analysis results. A comprehensive survey
on this active research area can be found in [6] where numerous solutions to all
problems mentioned above (except the 3D packing problem) are summarized and
compared.

The rest of the paper is organized as follows. In 2, we show that algorithms
NFDH and FFDH have unbounded worst-case performance ratios in three-dimensional
packing. In 3, algorithm G is developed and we show.that 4.333 _-< r( G) _-< 4.571. In

4, the algorithm is refined and the asymptotic performance bound ofthe new algorithm
is reduced to 3.25. Both algorithms are adapted for the case when all boxes have square
bottoms and in this special case, their asymptotic performance bounds are 4 and 2.6875,
respectively. All these algorithms are further refined to handle boxes with small bottoms.

2. Analysis of algorithms NFDH and FFDH. First we consider a simple packing
algorithm called level-by-level layer-by-layer (LLx) which is used by both algorithms
NFDH and FFDH. For a list of boxes L= (bl, be, , bn), algorithm LL packs boxes
of L in the given order. It starts to pack b from the lower-left hand corner on the
bottom of box B. Then it fills the first layer from left to right until a box, bi, cannot
be packed into the current layer. At that time it packs bi into the second layer. This
process repeats until there is a box bj such that it cannot be packed into the current
layer and that there is not enough space to create a new layer in the first level. At that
time algorithm LL starts to pack boxes in the first layer of the second level. A formal
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description of algorithm LL can be found in Appendix B. Clearly the LL packing
algorithm is simply a generalization of the level by level (or shelf) packing strategy in
two-dimensional packing [3], [5].

Now given an instance I of the 3D packing problem, both algorithms NFDH and
FFDH first sort I into a list L=(b,, b,..., b.) such that Zl>=Z>-...>-z,,. Then
NFDH applies the LL packing algorithm on L to generate a packing of I. Algorithm
FFDH employs a variation of LL’. When it packs a box bi, FFDH always examines
all layers one by one starting from the first layer of the first level. Whenever it finds a
layer in which bg can fit, b is put there. A new layer (and a new level if necessary) is
created if no previous layer can accommodete b.

THEOREM 1. For any integer M> 1, there exists an instance I of the three-
dimensional packing problem such that NFDH (I) > M. OPT (I).

Proof. Let I ={b, be,’", b2} where

1,,l-(i-1)e i=1,3,.’.,2k-1,

bi=

(-, 1, 1- (i- 1)e), i=2,4,. .,2k

and k is a large integer to be defined below. Clearly bi’s are already in decreasing
order of height. Therefore after sorting, L (bl, b2,’", b2k). It is easy to see that in
the packing generated by NFDH, each box occupies a whole level. Hence

2k

NFDH (I)= (1-(i- 1)e)=2k- k(2k- 1)e.
i-----1

Now consider another packing in which we have two levels. The first level contains
all bi’s where i= 1,3,... ,2k-1 and the second level contains all bi’s where i=

2, 4,. ., 2k. The height of this packing is 2-e. Thus we have

To ensure that

OPT (I) =< 2- e.

2k k(2k 1)eNFDH (I)
> >M,

OPT (I) 2- e

we just need to have k M+ 1 and e < 2/(2M +2M+ 1). [3

THEOREM 2. For any integer M> 1, there exists an instance I of the three-
dimensional packing problem such that FFDH (I) > M. OPT (I).

Proof Consider a set of boxes I {bl, b2, b2k} where

( 1 /-lt,l (/-1)e) /=1 3 2k-1l’k 2

,1-+-t3,1-(i-1)e i=2,4,...,2k

where 8 < 1/(k(k-1)), k is a large integer, and e is a small quantity to be defined.
In the packing produced by algorithm FFDH, there are k levels l, 12,’", lk where
l contains b2_1 and b2, 1_-< iN k (see Fig. l(a) where the bird’s-eye view of the k
levels are shown). Hence

k

FFDH (I)- (1-2(i-1)e)=k-k(k-1)e.
i=l
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b2

b2k-1

b 3

bl

b1

b4

b3

b2k

(a) The TDH packing

b 2 b4 b2k

2k-1

(b) A possible packing
FIG. 1. The example in the proof of Theorem 2.

However we can have the same two level packing (Fig. l(b)) as in the proof of Theorem
1, i.e.,

OPT (I) _-< 2 e.

Therefore to guarantee that

FFDH (I) k-k(k-1)e
OPT (I) 2- e

>M,

let k=2M+l and e<I/(4M2+M). []

Theorems 1 and 2 demonstrate that the performance of NFDH and FFDH is
severely affected by simply using the LL packing strategy without refinement. The
proofs of the two theorems are based on the following simple fact. Let (x, y) denote
a rectangle of size x in the x-dimension and y in the y-dimension. Then the fact is
that for any small e > 0, the condition Z i= xiyi <- e does not guarantee that the set of
rectangles {(Xl, y), (x2, y2),"" ", (xn, yn)} can be packed into a unit square. To see
this, consider two rectangles (e/4, 1) and (1, e/4). Clearly the sum of their areas is
e/2 < e, but they are not packable into a unit square.

A natural question to ask is, "would the performance of NFDH and FFDH be
better if we put some restrictions on I?" For example, the bottom of any box bi in I
may satisfy xi-> y or may even be a square, i.e., x y. We may also assume that the
bottom of boxes in I are very small. For this purpose, we define ,, (m => is an
integer) to be the set of instances I {b, b2, , b, } such that x Yi 1/m, <= <-_ n.
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Since the bottom shape is more regular and bottom sizes are small, it is hopeful that
the amount of occupied area (utilization) in each level will be increased. Unfortunately
this intuition is not correct.

THEOREM 3. For any integers M > 1 and m >= 1, there exists an instance I , such
that NFDH (I) > M. OPT (I) and FFDH (I) > M. OPT (I).

Proof We construct a set of boxes I={b, b2,’", bn} as follows. Let n=
k2(1 + (k 1)2). The bottom sizes are

(-, -) if mod (1 +(k- 1)2) 1,

(xi’Yi)--((1 1 )k 1)’ k(k 1)
otherwise.

These heights are designed such that Z’ > Z2 > > ;Z and, in particular,

zi-ln,+ 1 i6, 1 <- <- k

where nl=k(l+(k-1)2) and 3=2/(k(k+l)).
Now both NFDH and FFDH will produce the same packing in which there are

k levels. In each level there are k layers and in each layer there are 1 + (k-1)2 boxes.
There is only one box with bottom size (1/k, 1/k) in each layer at the left end. Note
that the utilization of each level is only

k +(k_ 1)2
1 ’

k(k- 1)

which can be arbitrarily small if k is large. Since the height of these k levels are
1- 3, 1-23,..., 1- k3, respectively, the height of the packing generated by either
algorithm is

k(k+ 1)
NFDH (I)= FFDH (I)=k-3 k- 1.

2

Consider another packing in which all k2 boxes with bottom size (1/k, 1/k) are
arranged in one level and all k2(k 1) boxes with bottom size (1/k(k- 1), 1/k(k- 1))
are arranged in another level. Clearly, the height of this packing is less than 2(1- 3).
Thus

To ensure that I ,, and

OPT (1)<2-23.

k-1 k-1
>>M,

2-23 2

let k > max (2M + 1, rn).
Note that layers may also be parallel to the y-dimension. Its corresponding

algorithm is referred to as LLy. Hence algorithm NFDH may invoke the LLy packing
procedure. In the sequel, we use NFDH and NFDHy to denote the NFDH algorithm
which calls LL and LLy, respectively. If the superscript x or y is omitted, then NFDH
stands for either NFDH or NFDHy. Notations FFDH, FFDHx, and FFDHy are
defined in a similar way. It is clear that Theorems 1, 2, and 3 are also valid for both
algorithms NFDHy and FFDHy.
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3. An algorithm and its analysis. The main problem for algorithms NFDH and
FFDH is that the utilization in each level cannot be guaranteed to be above a certain
percentage. However under certain conditions, we can construct packing strategies
which have guaranteed utilization. In this section, we develop an algorithm to solve
the 3D packing problem. Similar to algorithms NFDH and FFDH, our algorithm also
adopts the nonincreasing height heuristic in the z-dimension. Packings are also arranged
in the level-by-level layer-by-layer fashion. However the LL (LLy) packing strategy
is substantially refined.

First, let us consider a packing algorithm called Lx. Algorithm L is to pack a

given list of rectangles L=((x,yl), (a2, Y2),"" ", (xn, yn)) into a unit square. It first
picks out those rectangles in L with width larger than 5 and put each of them in one
layer. Then it packs the remaining rectangles in the given order layer by layer using
the next-fit strategy, i.e., whenever a rectangle cannot fit in the current layer, a new
layer is created and all previous layers are no longer used. Figure 2(a) illustrates an
L packing. Note that layers are parallel to the x-dimension, however, they may also
be parallel to the y-dimension. We call the corresponding packing algorithm Ly (see
Fig. 2(b)). Lemma proved in [15] gives a sufficient condition which guarantees the
packability of a list of rectangles by the L packing algorithm (similarly for LY).

LEMMA 1 [15]. A list of rectangles L= ((Xl, Yl), (X2, Y2)," ", (xn, yn)) can be
packed into a unit square by using the L packing algorithm iffor all i, 1 <- <-_ n" xi >- Yi,

Y > Y2 >" > Y,, and " xiy <
7__Z.

i=1 =16"

Algorithm L may fil to pack L into a unit square if one or more of the three
conditions in Lemma 1 is violated, i.e., all conditions are necessary to guarantee the
packability of L. To show that the shape of each rectangle in L is restricted to satisfy
xi >= y, consider a list L of two rectangles (e/4, 1) and (1, e/4) with e < . It satisfies
the last two conditions, but L is not packable by L because the first condition is not
met. To see that the list L should be in nonincreasing order of depth, consider L ((, e),
(1/2, e), (1/2,1/2), (1/2, e), (1/2, e), (1/2, ), (, e), (, e), (1/2, 1/2), (, e)) where 0 < e _-< -. Clearly,
each rectangle in L satisfies x >_-y. The sum of their area is e+ which is less than or
equal to 6. However L is not packable by using L because L is not in nonincreasing
order of y. Finally, to show that the cumulative area of all rectangles in L should be

1__no more than 6, consider L ((+ 6, 1/4 + 6), (1/2 + 6, + ), (1/2 + 6, + 6), (1/4 26, 23)).
It is easy to check that all rectangles in L satisfy x _>-y and that L is in nonincreasing
order of depth. The cumulative area of the four rectangles in L is 6+6 + 762. Thus
for any e > 0, we can always choose 6 > 0 such that 6 + 762 <_- e. However, L cannot
pack L into a unit square and this demonstrates that the bound 6 is tight.

Based on Lemma 1, we design the following algorithm called G to solve the 3D
packing problem. A preliminary version of this algorithm is reported in [13] where
the algorithm is designed with the assumption that for all i, 1 -<_ -< n" x->_ y. However
this restriction is removed here. Algorithm 1 shows a complete description of G. Given
an instance/, algorithm G first splits I into two subsets Ix and I according to whether
x-> y or not (Step 1). Then the packings of Ix and I are generated separately (Steps
2 and 3), and finally their packings are combined as a packing of I (Step 4). To pack
Ix, algorithm G also arranges boxes of Ix in nonincreasing order of height (Step 2.2)
and packs boxes level by level (Step 2.5). To avoid those situations in the proofs of
Theorems 1-3 to occur, algorithm G uses additional heuristics in the x- and y-
dimensions (Steps 1, 2.1, 2.3, and 2.4), which guarantee a minimum utilization () in
each level (except in the last level). Note that by Lemma 1, Steps 1, 2.3, and 2.4
guarantee that in Step 2.5, L can pack Li (1 -< i_-< v) layer by layer in only one level.
The packing of Iy is obtained in a similar way using Ly.
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(a) An L packing (b) An L’ packing

F,G. 2. Illustration of the L and the L-’ packings.

ALGORITHM G.
1. Divide I into two subsets Ix={bilxi>=yi} and Iy={bilyi>xi}. Without loss of

generality, let

Ix={bl,b2,’",b,} and Iy={b,,+,,b,,+2,...,b,}.
2. Generate the packing of Ix as follows"

2.1. Choose those bi’s in Ix with xiyi>2. Without loss of generality, let these bi’s
be bp+, bp+2,’", bm.

2.2. Sort the set {b, b2,’", bp} into a list L in nonincreasing order of height.
Assume that L= b b2 ", bp ).

2.3. Divide the list L into v sublists L, L2,’’ ", Lv where

Li (bk,_,+l, bki_,+2, bki), 1 <-- <-- V

and ko O, kv=p such that for all i, 1 <i <v-1 kv
i=kv_l+l xiYi <: 6 but

kv+2i=kv_,+l xiYi > --.
2.4. Sort Li (1 -< i-<_ v) in nonincreasing order of depth.
2.5. Construct the packing of Ix as follows. Pack bi (p + 1-<i_-< m) into a level by

itself. For each list Li (1-<_i -< v), apply L to produce a packing of Li in only
one level. Combine the above m-p + v levels to give a packing of

3. Generate the packing of Iy in a similar way as Step 2 except that Li is sorted in
nonincreasing order of width and its packing is produced by Ly.

4. Concatenate the packings of Ix and Iy to give a packing of L

ALGORITHM 1

THEOREM 4. For any instance I of the three-dimensional packing problem in which
no box has height exceeding Z, we have

G(I) < 4. OPT (I)+ 2Z.

Proof Consider the packing of Ix generated in Step 2.5. Let hi be the height of
the level for Li, l<-i<-v, i.e., hi=maxki_l+<_j<__ki(Zj). Since box bi (p+ l <- <- m) is
itself a level, the height of the packing of Ix is

(1) H(Ix)--(zp++" "q-Zm)q-(hq-h2q-. .+h).
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Let V(S) E(x,y,z)S xyz. Then V(I) V(/) + V(Iy). Consider V(Ix),

V(Ix) xiYiZi + V(Li)
i=p+l i=1

where V(Li)=jk’k,_,+l xy%. Because xiyi> for p+ 1 <-- i<_-- m (Step 2.1),

7
(2) 2 xiyz >- (Zp+l +’’" + zm).

i=p+l

In the level for L, 1 <- _<- v- 1, we observe that the occupied area is larger than , i.e.,
k

j=ki_l+l

otherwise box bki+l could be added to L in Step 2.3. Also note that each box in L
has a height no less than hi+l (Step 2.2), i.e., % >_-h+l, k_l + 1 <=j <= k. Hence

(3) V(L) > hi+l, 1 <= <- v 1.

Combining (2) and (3), we have

V(Ix)>(zp+l+"’+zm+h2+’"+ h),

which together with (1) implies that

(4) H(Ix) <V(Ix) + hi -V(Ix)+ Z.

Similarly for Step 3,

(5) H(Iy)<V(I)+Z
Thus from (4) and (5), the height of the packing of I generated by algorithm G (Step
4) is

G(I)= H(Ix)+ H(Iy)<-(V(Ix)+ V(Iy))+2Z.

Since OPT (I) -> V(I)= V(/) + V(Iy), the theorem follows.
Theorem 4 shows that 4 4.571 is an asymptotic performance bound of algorithm

G. However we are unable to show that it is tight nor prove another bound which is
less than 4. Next, we give a lower bound for r(G).

COROLLARY. There exists an instance I such that G(I)=4. OPT (I). Hence by
Theorem 4, we have 41/2 <-_ r( G) <-_ 4.

Proof Consider a set of boxes, I--11U 12, where 11 contains 4n boxes of size
(1,+ 6, 1), I2 contains n boxes of size (1, g- 46, 1), 6 <6 and n mod 3 0. In the
packing generated by algorithm G, each box in I1 occupies a level. Boxes in 12 are
divided into n/3 groups each having 3 boxes. Since each level has height 1, we have
G(I) =4n+ n/3=41/2n. In the optimal packing, there are n levels each containing four
boxes from 11 and one box from 12. Hence, OPT (I) n. The result then follows.

In Theorem 3, we demonstrate that algorithms NFDH and FFDH perform poorly
even for very restricted cases. In the following we show an opposite of Theorem 3.
First we have the following lemma where a square (x, x) is represented as x.

LEMMA 2. A list of squares L= (Xl, x2," ", x,) can be packed into a unit square
2 2 )2.by using the L procedure if xl>-x2>-...>-x, and =lx=xl+(1-x Hence if

xl <- 1/m where m is an integer and m >-2, then the condition

2< -I- 1-
i=1

xi -----
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guarantees that L can pack L into a unit square. Ifx 1, then the condition

Xi---
i=1 2

guarantees that L can pack L into a unit square. The bound 1/2 is tight.
Proof The proof of the first result can be found in [15]. Since xl --< 1/m (m _-> 1)

implies that

Xl+(1-xl) =2 Xl- +_> 2 1
2 + if m->2

we have the other consequences. To show the tightness of 1/2, consider two squares of
size 1/2 and 1/2+ 6. They cannot be packed into a unit square in any way but the sum of

2their areas is + 8 + 6 which can be arbitrarily close to as 8 0. ]

Since instances are restricted to be of a certain form, algorithm G can be simplified.
We define algorithm Gm (m >-1) as follows. Given an instance I 1, algorithm G
only performs Steps 2.1-2.5 of algorithm G and the quantities 2 and 6 in Steps 2.1
and 2.3 are changed to and 1/2, respectively (by Lemma 2). Given an instance I ,,
(m -> 2), algorithm G,, only does Steps 2.2-2.5 of algorithm G. The bound is changed
to 1/m2+(1- l/m)2 (by Lemma 2) and only v levels are generated in Step 2.5 (since
there is no Step 2.1).

THEOREM 5. For any I ,, m >-- 1) where no box has height exceeding Z, we have

G,,,(I) < c,. OPT (I)+Z

where

m-1 ifm>-2"

Furthermore, the bound a, is tight for all m >-1, i.e., r( G,) c,.
Proof The proof that a,, is an asymptotic performance bound of algorithm Gm

is similar to the proof of Theorem 4 and is left to the interested reader.
In the following, we will construct an instance Im to show that t is tight. Since

c1 a2, the instance I2 constructed below can also be used for a. Hence let m => 2.
Consider I,, ={bl, b2,’", b,} where n kZm2[l+(m- 1)], k=> m and

bi
(11 ),, 1-(i-1) if mod (1 /(m- 1)2 =0,

otherwise.

Additional requirements on the large integer k and the small positive quantity are
to be described below. Clearly, there are basically two kinds of boxes. For ease of
reference, we call those boxes with bottom (1/m, 1/m) as X-boxes and those with
bottom (1/k, 1/k) as Y-boxes.

Now let us consider the packing of I,, generated by algorithm G,,. After sorting
in nonincreasing order of height (Step 2.2), we get the list L which is exactly in the
order b, bz,. ., bn. In Step 2.3, G,, divides the iist L into v kZm groups and each
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group contains (m- 1)2 X-boxes and one Y-box as illustrated below:

g= +(m- 1) g- +(m- 1) g= +(m- 1)

v-- kZm groups

This is because the cumulative bottom area of g X-boxes and 1 Y-box exceeds the
bound 1/mg+(1-1/m) in Step 2.3. Thus there are v levels in the packing of Im
produced by Gm and the height of the ith level is z(i_)g+ 1 -(i- 1)g. Hence we have

v(v-1)
(6) Gin(Ira) z + zg+ + Zzg+, + z(_)g+ v

2
gs"

Let us consider another packing in which there are

v(m- 1) k2(m- 1)
m

levels each having m2 X-boxes, plus v/k2= m levels each having k Y-boxes. Since
the height of each level is less than one, we have

(7) OPT (Im) < k2(m- 1)2+ m2.

Combining (6) and (7) gives

Gm(Im) k2m2

lim
eo OPT(Ira) kZ(m -1)2+m2"

Clearly, the above ratio is less than am, but it can be made arbitrarily close to am as

Note that a a2> a3>’’’ > am and limm_ am 1, i.e., as m gets larger, the
performance of Gm becomes better and better and close to optimal. Obviously
algorithms Gm’s can be generalized to handle boxes with rectangular bottoms. Let *denote the set of instances of the 3D packing problem in which xi <- 1/tn and Yi --< 1/m
but xi need not be equal to yi, 1 _-< i_-< n. The generalization is based on the following
lemma which is proved in [13].

LEMMA 3. A list of rectangles L= ((x, y), (x, Y2)," ", (xn, yn)) can be packed
into a unit square by L iffor all 1 _-< -< n" Yi --< xi --< 1/m (m -> 3), y >- y_ >=. >-- y, and

i= xiyi<-(1-1/m)2.
Define algorithm G* (m >- 3) as follows. G* does each step in algorithm G except

Step 2.1. The bound 6 in Step 2.3 is changed to (1-1/m).
THEOREM 6. For any I m >- 3) where no box has height exceeding Z, we have

*(I) < t" oPv (I)+ 2z

where tim m/ (tn- 2) and tim is a tight bound.
Proof The proof for the inequality is similar to that of Theorems 4 and 5. To

show the tightness of/3m, we construct an instance I* similar to Im in the proof of
Theorem 5. Let I*m ={bl, b,’’’, bn} where n km2(tn 1)z, k-> m and

bi= ’’ -(i-1) if/mod(m-1)2=O,

k \
1 (i 1) otherwise.
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Then we can enforce I*m to be divided into k2m groups and each group contains
(m-1)2-1 X-boxes and 1 Y-box. We leave further verification to the interested
reader.

4. An improved algorithm. Theorems 5 and 6 show that algorithm G works quite
well when boxes have small bottoms. However in general, the asymptotic performance
bounds 4.571 and 4 are still too large. We observe that the upper bounds 6 and 1/2 are
only used to guarantee that each sublist can be packed into the unit square (Step 2.3).
They are sufficient but not necessary conditions, and thus severely affect the perform-
ance of G. However both 6 and cannot be increased if L is used.

In this section, we analyze an algorithm called C which also packs boxes level
by level like algorithm G but has more refined heuristics in the x- and y-dimensions.
It is based on the observation that when boxes have similar bottoms, even NFDH and
its variants can generate good packings. We have seen in 2 that algorithm NFDH is
not able to find good packings even for I *m where m can be very large. However,
if we put more restrictions on I to increase the similarity among boxes, then NFDH
(with slight modification) may yield good packings. For m _>-2, let

Xm= I={b,b2,.’. b}[I*andVl<=i<=n’<xi <
m+l

’rn--CY I {bl,b2, , b,}[Ie*,, andV1 < i<n= <yi<=-
m+l m

Given an instance I e m, we define algorithm NFDH as follows. Initially, NFDH
sorts I into a list L in nonincreasing order of height. Then it invokes the LLy (not
LL !) packing procedure to generate a packing of L Algorithm NFDHYm is defined in
a similar way with the differences that it accepts input from XSm

y and invokes LL’.
LEMMA 4. In the packing ofI , generated by algorithm NFDHm, the utilization

of each level except the last level is larger than m- 1)/(m + 1). The result is also true
in the packing of I generated by NFDHYm.

Proof Let I ,. Suppose there are v levels l, 12, , l in the NFDHXm packing.
Consider level li (1 =< -<_ v 1). Since 1/(rn + 1) < x <= 1/rn, there are exactly m layers
parallel to the y-dimension (see Fig. 3 for a bird’s-eye view of a level). Since no box
has a depth exceeding 1/m, the depth to which a layer is filled is larger than (1- l/m);
otherwise NFDH will pack another box in that layer. Because each box has a width
larger 1/(m + 1), we know that the utilization of level l is larger than

m.. 1--
m+l m+l

The proof for NFDHY,, is similar, lq

Note that algorithm NFDH, (NFDHY,,) should use LLy (LL). If NFDH, (or
NFDHY,,) uses LL (LLY), then we can easily construct counterexamples to demonstrate
that Lemma 4 is no longer valid. We leave this verification to the reader.

The main strategy of algorithm C is to separate boxes with different bottoms in
a way more refined than Step 2.1 of Algorithm G so that the utilization in each level
can be improved. If we view the bottom size of a box as a point (x, y) in the region
(0, 1] (0, 1], then Algorithm G distinguishes four cases according to bottom shape
and size (Fig. 4(a)). However, Algorithm C splits I into eight subsets (Fig. 4(b)), then
generates their packings individually, and finally combines the eight packings. A
complete description of C is given in Algorithm 2 which is self-explanatory.
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FIG. 3. A level in an NFDH packing.
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x

X

(a) Algorithm G (b) Algorithm C

FIG. 4. Partition of input in Algorithms G and C.

ALGORITHM C.
1. Partition the set I into eight subsets:

S1 { bi xi > 1/2 and Yi > 1/2};
$2 { bi xi > 1/2 and < Yi <-- 1/2};
S { b, [xi > 1/2 and Yi <- 1/2};
S { bi 1- < xi <- - and yi <-- x};
$5 { bj [xi <- 1/2 and yj _-< }

S { b, y, > 1/2 and 1/2 < x

S { bi [Yi > 1/2 and X

S= {bl< yg<--and xi < yg};
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2. Generate the packing of $1 such that each level contains one box only.
3. Generate the packing of S/d by applying NFDHa where i= 2, 3 and d x, y.
4. Generate the packing of Sa

4 by using NFDH2d for d x, y.
5. Generate the packing of $5 by using G3*.
6. Combine the eight packings obtained in Steps 2-5 to form a packing of L

ALGORITHM 2

THEOREM 7. For any instance I of the three-dimensional packing problem in which
no box has height exceeding Z, we have

C(I) =< 3.25 OPT (I) + 8Z.

Moreover, the bound 3.25 is tight.
Proof Consider the packing of I produced by Algorithm C. Let hi denote the

height of the packing of $1. According to Step 2,

h, E z.
bi =(xi,Yi,Zi)e Sl

Let h(i= 2, 3, 4, 5; d x, y) be the height of the packing of S minus the height of
the first level in that packing. (Note that Algorithm G* divides $5 into two subsets S
and S, and generates their packings separately.) If the height of any box is no more
than Z, then

(8) C(I)<=h,+H+8Z

where H=i:2 (hi a h yi). Let V(S) biS xiYiZi. Clearly,

V(Sl)>hl.

Now consider the packing of S generated in Step 3. Suppose there are g levels
11, l,. , le. Let hx denote the height of l and V be the total volume of all boxes

(note thatin l, 1 =< =< . Since the utilization of level l (1 =< =< - 1) is larger than
there are exactly two boxes in l) and the height of each box in l is at least h,2-_, we
have

V(S)> Vlq- V2q-’" "q-Ve-l>1/2(h2 q-h3 +’" q-h =5h2.
The above argument can also be applied to S. The reader may readily give similar

CXarguments for S, S (trivial), $4, S (by Lemma 4 since $4 2, S 2y) and Ss,
S (by Lemma 3). So we have

Therefore,

v(sdi)>hdi, :2, 3, 4, 5, d:x,y.

h H
OPT(l) -> V(I)= V(S,)+ ., (V(S’[)+ V(S’))>--+--.

i:2 4 3

Since we also have OPT (I) _>- h,

(9) OPT (I)_-> max hi,+
Now let us examine the ratio

hl+H(10) R
max (h ,4-h +H)"
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4If hi >--hl +H, i.e., hi-_>H, then

hl+H H 9
R 1 +--< 1 +-=4 3.25.

hi
If h h +sH, i.e., hi-<H, then

hl+HR-
h+H

In this case, it is easy to check that R is a strictly increasing function of hi. Hence
4when h H, R gets its maximum value which is 3.25. In a word, we always have

(11) R-< 3.25.

By combining (8)-(11), we know that for any instance I of the 3D packing problem
in which no box has height exceeding Z, we have

C(I) _-<3.25. OPT (I)+ 8Z,

which implies that 3.25 is an asymptotic performance bound of algorithm C.
To complete the proof of the theorem, we need to demonstrate that the bound

3.25 is tight. Consider a set of boxes I 11 t.J 12. There are 4n boxes of size (1/2+ 6, 1/2+ 6, 1)
in 11 and 90n boxes in I2, i.e., 12 {bl, b2,’", b9on} where k-> 3 and

,, 1-(i-1)sc ifi mod 10= 1,

b -,-, 1-(i- 1) ifi mod 10=2, 3,..., 9,

,-, 1-(i- 1) if/mod 10=0.

When Algorithm C is applied to I, $1 I1, S I2 and all the other subsets are empty.
It is easy to see that the height of the packing of I1 is 4n. Now let us consider the
packing of I2 generated by algorithm G3*. First it sorts I2 into a list L in nonincreasing
order of height. Clearly, L (b, b2," ", bg0n). Then G3* divides L into sublists such
that the cumulative bottom area of all boxes in each sublist does’ not exceed (cf.
Lemma 3). If

1 8

k-5- 6 + 862> 0,

then it is not hard to verify that there are 9n sublists L, L2," ", L9n each having 10
boxes, i.e.,

Li=(bloi-)+, boi-)+2, boi), l <=i<=9n.

Thus the height of the packing of I2 is

9n 9n

Z Z,oi-)+ 2 (1- 10(i- 1):)=9n-45n(9n- 1).
i=1 i=1

Therefore,

C(I) 13n- 45n(9n- 1).

Let us consider another packing in which there are 4n + 1 levels. Among them, 3n
levels are of the same type whose bird’s-eye view is illustrated in Fig. 5(a) and n levels
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(a) 3n levels of this type
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A

C

C

C C

C C

C C

(b) n levels of this type
FIG. 5. Illustration of a possible packing Theorem 7).

are of another type whose bird’s-eye view is illustrated in Fig. 5(b). Note that we can
always let k be sufficiently large such that all boxes with bottom (I/k, 1/k) are packed
into one level. When 6 0 and 0, this is actually an optimal packing. Hence

C(I) 13n
lim < 3.25.
,:-,o OPT (I) 4n + 1

The above ratio can be arbitrarily close to 3.25 as n
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When Algorithm C is applied to an instance I 1, i.e., all boxes in I have square
bottoms, there are at most three nonempty subsets obtained in Step 1, namely, $1, S,
and $5. Also note that the packing of $5 can be generated by using Algorithm G3
instead of G3*. Thus Algorithm C can be simplified to C as described in Algorithm
3 and we demonstrate in the next theorem that Algorithm C has better performance.

ALGORITHM C.
1. Partition the set I into three subsets:

S2 { bi Xi, Xi, Zi )[

s3 b, x,, x,, x, }.

2. Generate the packing of S with one box per level; generate the packing of S2 using
NFDH; generate the packing of $3 using G3.

3. Combine the packings of Si, 1, 2, 3 to give a packing of L

ALGORITHM 3

THEOREM 8. For any instance I in which no box has height exceeding Z, we have

C,(I) .6875. OPT (I) +2Z.

Furthermore, the bound 2.6875 is tight.
Proof The proof is similar to that of Theorem 7. We give an outline of the proof

as follows and leave detailed validation to the reader. Note that in the packing of Sz
(and S3 also), the utilization in each level except the last one is larger than . Hence
the ratio R is

h+H 11
<2=2.6875

max (hi, h +H) 16

To show the tightness of 2.6875, we construct a set of boxes I I U I2. There are 16n
boxes of size (+ 6, + 6, 1) in I and 378n boxes in I2, i.e., Iz= {b, b, , b7a} where

,, 1-(i- 1) if mod 14= 1,

b ,-, 1-(i-1) ifi mod 14=2, 3,. ., 13,

,, 1-(i- 1) if mod 14=0.

By properly choosing k and , we can enforce L (b, b, , b378n to be partitioned
into 27n sublists each having 14 boxes (cK Lemma 2). Therefore,

C(I) =43n 189n(27n 1).

On the other hand, there are 16n + levels in the optimal packing where 5n levels are
of the same type whose bird’s-eye view is illustrated in Fig. 6(a), l ln levels are of
another type whose bird’s-eye view is illustrated in Fig. 6(b), and one level for boxes
with bottom (1 / k, 1 / k).

The idea of algorithm C can also be used to handle boxes with small bottoms.
Define algorithm C (m 2) as follows. Given an instance I , C divides I into
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(b) 1 In levels of this type

FIG. 6. Illustration of a possible packing Theorem 8).

two subsets: S in which 1 / (m + 1) < X Yi <= 1 / rn and S2 in which X Yi <- / m + 1).
Then C,, produces the packings of S and $2 by using NFDHT, and Gin+l, respectively.
The two packings are finally combined to form a packing of L We also define algorithm
C*,, (m >-2) as follows. Given an instance !*, C*m divides I into three subsets" $1
in which 1 / (rn + 1 < xi =< 1 / rn and y _-< x S2 in which 1 / (rn + 1) < Yi --< 1 / rn and yi >
and $3 in which 0 < x, y _-< 1/(rn + 1). Then C*m produces the packings of S, $2, and
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S by using NFDHT,, NFDHYm and G*+, respectively. Finally, the three packings are
combined.

THEOREM 9. For any I ,, (m >= 2) where no box has height exceeding Z, we have

Cm(I) < c. OPT (I)+2Z

where a’,, ((m+ 1)/m)2. Furthermore, the bound ’ is tight.
Proof Note that in the packing of S, each level except the last one contains

exactly m boxes. Since the bottom area of each box is larger than (1/(m+ 1))2, the
utilization of each level except the last one is larger than (m/(m + 1))2. By Lemma 2,
this is also true in the packing of $2. Thus it is easy to verify the inequality in the
theorem. To show the tightness of a’ we can use the instance I,,+ constructed in
the proof of Theorem 5. [3

THEOREM 10. For any I *,,, (m >= 2) where no box has height exceeding Z, we have

C*.,(I) </3’,.. OPT (I)+ 3Z

where fl’ m + 1)/(m 1) which is a tight bound.
Proof By Lemmas 3 and 4, in the packing of Si (i 1, 2, 3), the utilization of each

level except the last one is larger than (m 1)/(m + 1). The instance I*m/ in the proof
of Theorem 6 can be used to show that /3’m is tight. [3

Note that a’ Om+l < Om, m > 2 and/3’,, </3,,, m > 3, i.e., the performance of C
(m -> 2) is better than Gm and the performance of C*,, (m => 3) is better than G*m. Table
1 summarizes the asymptotic performance bounds for all algorithms discussed in the
paper. Note that we let G* G and C* C, and there is no Algorithm G*.

5. Summary. We have studied the three-dimensional packing problem in this
paper. The problem is more complex than the one- and two-dimensional packing
problems. We demonstrate its difficulty by showing that Algorithms NFDH and FFDH
do not work because they do not have enough heuristics. Algorithm G is developed
based on the analysis of the two-dimensional packing strategy L (Ly) in [15]. It is
then refined to Algorithm C. Both algorithms are adapted for the cases when all boxes
have square bottoms (G1, C) and when all boxes have small bottoms (G,,, C,,, C*m
for m =>2 and G*m for m =>3). Algorithms in the C family are based on the good
performance of NFDH’, NFDHy, and their variants (NFDHm, NFDHYm for m _->2)
in certain cases (e.g., for instances in and Y,,,).

All algorithms discussed in this paper are based on the level-by-level layer-by-layer
packing scheme (LL, LLY). The heuristic in the z-dimension is basically nonincreasing

TABLE
Summary of results.

m G*,. C*., Gm C.

4.571 3.25 4 2.6875
2 3 4 2.25
3 3 2 2.25 1.778
4 2 1.667 1.778 1.5625
5 1.667 1.5 1.5625 1.44

m m m m
m

m-2 m-1

Tightness is unknown.
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height. However, sorting is done within each subset of I instead of the whole instance
I. Algorithms differ from each other in the way they divide I into subsets. Thus the
main attention is focused on how to increase the utilization in all levels except for a
constant number of levels.

Appendix A. Because of difficulties in drawing figures to illustrate three-
dimensional packings, and also to avoid confusion, we define some terms used
throughout this paper in a mathematical way. By using a three-dimensional coordinate
system, the box B can be regarded as a region

B=[0, w] x [0, 1] x [0, oo).

A packing of a set of boxes I ={b, b2,’", bn} into B is a mapping

such that

where

p bi + x,
_
w and pY b, + yi -1

(b,) (pX(b,), pY(b,), pZ(b,)), 1 n,

i.e., each box is entirely enclosed in the box B and the packing is orthogonal and
oriented. In addition, if R(bi) is defined as

g(bi) [p(bi), p(b,)+ xi) x [pY(bi), pY(bi)+ Yi) x [pZ(bi) pZ(bi)+

then

Vi, j, l<=ij<-_n: g(bi)g(bj)=,

i.e., no two boxes in L can overlap in a packing fo. The height of a packing o is

H(fO) max
lin

Hence the 3D packing problem can be formally defined as follows: "Given w, l, and
a set of boxes I ={b, b2,’", bn}, find a packing a of I into B such that H(a) is
minimized."

All algorithms developed in this paper divide a set of boxes I into two or more
disjoint subsets I1,12, , I, then generate their packings a, a2,...., separately
and finally combine these packings to give a packing of I. Suppose

i Ii-->B, 1 <= < v,

where

i(b) (p[(b), p/Y(b), p(b)), b

Define the concatenation (or combination) of the v packings al, a2,... a, denoted
as follfo211.. 11, be a packing fo such that

N I--B

where

Obviously,

fa(b)= p[(b),pY(b), E H(fa)+p(b) bIi,
j=l

l<_i<_v.

H(fo) H(gO,ll2ll...11) H(f01) + H(o2)+...q- H(fo).
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Appendix B. All algorithms discussed in this paper adopt a level-by-level layer-by-
layer (LL) packing scheme. An LL packing consists of a set of levels; each level consists
of a set of layers and each layer consists of a set of boxes. A level in a packing fo is
a region

B [0, w] x [0, l] x [Z,, Z)

in which there is a set S of boxes such that

Vb S" pZ(b)= Z and Z2-Z =max (z).
bS

A layer in a level is a region

B=[0, w] Y,, Y2) [Z1, Z2)

in which there is a set S of boxes such that

Vb S" pY (b) Y and p (b) Z and Y2 Y max (y) and Z Z max (z).
bS bS

Finally, a formal description of the LL packing algorithm is given in Algorithm
4 where (x, y, z) is the position for the next box, Yma is the maximum depth of all
boxes in the current layer and Zma is the maximum height of all boxes in the current
level. Note that Algorithm ELy can be defined accordingly if layers are parallel to the
y-dimension.

Procedure LLx.
(x,y,Z, Ymax, Zmax)’--(O,O,O,O,O)
for i-l to n do

if (x + X > W) or (y + Yi > 1) then
if y + Ymax -F Yi <= then

Y Y + Ymax
(x, Ymax) <-- (0, O)

else
Z -- Z -- Zma(x,y, Ymax, Zmax)--(O,O,O, O)

end if
end if
g( bi) - (x, y, z)
(x, Ymax, 2’max) - (X + Xi, max (Ymax, Yi), max (Zma, Zi))

end for
end LL

ALGORITHM 4
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POSTORDER DISJOINT SET UNION IS LINEAR*
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Abstract. Any instance of the disjoint set union problem of size n, using any union strategy, that does
one find per node in postorder has total cost O(n). This special case, when the finds are restricted to occur
in postorder, is related to the behavior of such self-adjusting data structures as the splay tree and the pairing
heap.
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1. Introduction. In this exposition we consider the special case of the disjoint set
union problem when the find operations are performed in a "unidirectional" manner.
In such an instance, the find operations are performed left to right. For any node x,
all finds from descendants of the leftmost child of x precede all finds from descendants
of the second leftmost child of x, etc. Equivalently, the finds are performed in postorder.

Hart and Sharir first considered the complexity of find operations which are
constrained to be performed in postorder. They studied the relationship between the
length of Davenport-Schinzel sequences and the cost of performing a generalized form
of path compressions in postorder. These sequences are related to the analysis of linear
differential equations and the complexity of many problems that arise in computational
geometry 1]. The special case of postorder finds is also connected to several interesting
open questions in the analysis of data structures. Postorder path halving is an important
component of the behavior of both splay trees [2], [3] and pairing heaps [4].

The disjoint set union problem consists of a universe of n elements, partitioned
into sets. Without loss of generality we can consider the initial sets to be singletons.
The only permitted operations are:

Union (A, B): combine the two sets A and B into one set.
Find (x): return the name of the set containing element x.
In the most popular data structure used to implement these operations each

element is represented by a node, and each set is represented by a rooted tree whose
nodes are the elements in that set. See Fig. 1. Each node has pointer to its parent in
the tree. The root of the tree serves as the name of the corresponding set. A union
operation is performed by taking the roots of two trees and making one root a child
of the other. The cost of this operation is O(1).

A Find (x) operation is performed by following parent pointers up from x to the
root of the tree. The path traversed by this operation is referred to as the find path. A
find operation is usually defined to include some extra work. The parent pointers of
nodes on the find path are changed with the goal of speeding up future find operations.
The following are two standard implementations of a find operation. Let Xo, xl, , Xk
be the nodes on the find path, i.e., Xo is the parameter of the find and Xk is the root.

(1) Path compression. For each node xi, 0 <-i < k, set the parent of xi to Xk,

i.e., all the nonroot nodes on the find path become children of the root.

(2) Path halving. For each node xi, 1 -<_ < k and odd, reset the parent of xi
to be xi+2 if this grandparent of xi exists, i.e., if + 2_-< k.

* Received by the editors October 3, 1988; accepted for publication (in revised form) January 12, 1990.
? Department of Computer Science, Hill Center, Rutgers University, New Brunswick, New Jersey 08903.

868



POSTORDER DISJOINT SET UNION IS LINEAR 869

Union(7, 10)

Find(l), using
path halving

FIG.

The cost of a find is the number of nodes on the find path whose parent has
changed. Note that the cost of a find, as defined here, differs from the standard
definition, which is either the number of edges or the number of nodes on the find
path, by only a constant factor.

In previous studies of variations of this problem [5]-[7], the trees representing
the sets are unordered trees; for these problems the left-to-right order in which the
children of a node appear is irrelevant. For our purposes this ordering is important.
We shall use the same data structure described above but we make the additional
assumption that the trees under consideration are ordered trees.

We shall use the following notation. For any node x in some tree T, we define
the subtree rooted at x, denoted T(x), to be the tree induced by deleting nodes that
are not descendants of x. We consider x to be an ancestor and descendant of itself.
Let T be an ordered tree with root r. Let the children of R be xl, x2,’’’, xl, l>-0,
where xi appears to the left of x if <j. Then we define the postorder sequence of T,
denoted POST (T), to be POST (T(xl)) POST (T(x2)) POST T(Xl))r. The postor-
der sequence of an ordered forest of trees T1, T2, , T/, where T appears to the left
of T if i<j, is simply POST (T1) POST(T:)... POST(T/).

We shall assume that initially the input consists of an ordered forest of n single
node trees. For each node we associate with it its position in the postorder sequence
of the initial forest. We do not distinguish between a node and its postorder position.
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We shall assume from this point on that any forest or tree under discussion is ordered.
We are interested in performing the disjoint set union operations so as to preserve

the postorder sequence of the forest.
Thus the union operation is now defined to take two tree roots rl and r2, rl < r2,

and make r the leftmost child of r2. Any tree of size n can be constructed by performing
n- 1 of these ordered unions.

The Find (x) operation in tree T is defined as before, i.e., the same parent pointer
updates are performed, but with the added restriction that the resulting tree is ordered
so that it has the same postorder sequence as T. Note that it is possible to implement
a path compression or halving operation in such a way as to preserve the postorder
sequence of the tree if and only if the following holds. For every node x., 0 <j < k,
on the find path, if some xi, <j, has its parent reset to some Xh, h >j, then x_ is the
leftmost child of x. In particular, if Xo is the least node in the tree in postorder, then
this find can be implemented so as to preserve the postorder.

Path halving has the advantage that it can be implemented using only one pass
over the find path, and not two as are needed for path compression. Another variant
of path compression that requires only one pass over the find path is path splitting.
In this case every node on the find path has its parent reset to its grandparent. We do
not consider this variant since it cannot be implemented so as to preserve the postorder
sequence of the tree, and indeed a sequence of n finds done in postorder with respect
to the initial tree can cost (n log n) [5].

We can define a very general reshaping of the find path as follows.

(3) Path shrinking. The parent pointer of any node xi, 0 <-i < k, can be reset
to any ancestor of x so long as the resulting tree has the same postorder
sequence as the inital tree. The cost of this operation is the number of
nodes on the find path whose parent is changed.

Note that path compression and path halving are special cases of path shrinking.
In 2 we show the main result: that the cost of postorder disjoint set union, using

standard find strategies, is linear. Section 3 discusses the results of some experimental
work regarding path compressions done in postorder that do not correspond to a
union-find problem. Section 4 considers the more general path shrinking strategies.
Section 5 discusses the relationship between these problems and open questions
concerning splay trees and pairing heaps.

2. Linearity of postorder path compression and halving. To simplify the analysis
of the cost of any sequence of union and find operations, we usually consider all the
unions as having been performed first. Then to simulate the find operations the definition
of the operation must be altered to that of a partial find. Precisely the same parent
pointer updates are performed for each operation but now the find path of Find (Xo)
need not be the path from Xo to the root of the tree containing x0, but it is the path
from Xo to some ancestor of Xo, which is referred to as the root of the find. All other
nodes on the find path are referred to as nonroot nodes of the find.

The following lemma describes when a sequence of partial finds corresponds to
a sequence of intermixed union and find operations.

LEMMA 1 (Rising Roots Condition). A sequence ofpartial finds corresponds to a
sequence of intermixed union and find operations if and only if, for any node x, if x
appears as a nonroot node on the find path of Find (u), then for any future find from y,
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y > U. If X is an ancestor ofy at that time, then x is a nonroot node on the find path of
FIND (y).

Proof The necessity of this condition is trivial. To prove its sufficiency, consider
a sequence E of partial finds performed on a tree whose edges can be either solid or
dashed. Suppose the sequence conforms to the following conditions:

(1) The dashed edges form a connected subtree containing the root of the tree.
(2) If the dashed edge from x to its parent is converted to a solid edge, then x

is a leaf in the dashed edge subtree.
(3) Every partial find contains only solid edges on the find path and the root of

the find is either the root of the tree or has a dashed edge to its parent.
Then clearly E corresponds to a sequence of intermixed union and find operations.

A node in this instance corresponds to a root in the union-find problem if it is the
root of the tree or has a dashed edge to its parent. The conversion of the edge (x, y)
to a solid edge corresponds to a union between the root nodes x and y.

Thus to prove the lemma it is sufficient to show that, given any sequence of partial
finds that obeys the condition of the lemma, the edges of the trees created by the
sequence can be divided into solid and dashed edges so that the three conditions above
hold.

The proof is by induction on the number of finds. The induction hypothesis will
be that all three conditions hold before the ith find and also that:

(4) An edge (x, parent (x)) is solid if and only if during some previous find x, or
an ancestor of x at that time, appeared as a nonroot node on that find path.

Note that once x has an ancestor that has appearedas a nonroot node on a find
path, then at all future times x has such an ancestor, though not necessarily the same
node.

Initially we let all the edges be dashed. Clearly the hypothesis holds before the
first find. Consider the ith find. Let the find path be Xo, xl, , xk. Then there is some
node xj, 0=<j-< k, such that all the edges on the find path below xj are solid and all
those above are dashed. The edge from xk to its parent (if it exists) cannot be solid,
since in that case x, or one of its current ancestors, has previously appeared as a
nonroot node, contradicting the claim that the sequence obeys the condition of the
lemma.

Before performing the find we convert to solid edges all the dashed edges in the
subtree rooted at x_l and the edge (x_, x). Clearly the dashed edges in the resulting
tree form a connected subtree containing the root and these conversions can be ordered
so that when the edge from x to its parent is converted, x is a leaf node in the dashed
edge subtree. Once these conversions are completed then the partial find is performed.
All the edges on this find path are solid, and the root node of the find is either the
root of the tree, or has a dashed edge to its parent. Also it is clear that condition (4)
holds after the conversions and the partial find. [3

We now assume that all the union operations are performed first, and without
loss of generality we may assume that unions create a single tree To. Let E be a
sequence of partial finds performed starting with To. Let T denote the tree created
by performing the first operations of E and then deleting all irrelevant nodes. A node
x is irrelevant if it cannot lie on any future find path, i.e., if no descendant of x is the
parameter of any future find.

For convenience we add to T another node, with label n + 1, that is the parent
of the node labeled n, i.e., the real root of the tree. This dummy root is never the root
of a find path. Without loss of generality we can assume that at least one find path
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has root n, since the root of the final find path can be changed to n, and this change
can only increase the cost of E.

The following is our main result.
THEOREM 1. Let To be any ordered tree containing n nodes labeled 1 to n in postorder.

Let E be any sequence of n partial finds that satisfies the rising roots condition, does one

findfor each node in postorder, and uses the path compression (respectively, path halving)
strategy. Then the total cost of E is O( n).

Note that we do not require the initial tree to be the result of weighted unions.
The result holds for any initial tree.

To prove the theorem we show how to divide the tree into disjoint subproblems.
The cost of the original problem instance P=(To, E) will equal the cost of the
subproblems plus some linear term. The subproblems induced will be of the same
form as the original problem with the added restriction that the roots of the partial
finds are fixed to be the root of the tree. Then to complete the theorem it will be
sufficient to establish the linear bound for the more restricted version.

LEMMA 2 (Path Compression with Fixed Root). Let To be any ordered tree
containing n nodes labeled 1 to n in postorder. Let E be any sequence of n finds, using
path compression, such that the root of each find is the root of the tree. Then the total
cost of E is 0(n).

Proof Each find of cost k increases the number of children of the root by k.
Thus the total cost is at most n- 1.

Note that this lemma does not require that the finds be done in postorder.
LEMMA 3 [8] (Path Halving with Fixed Root). Let To be any ordered tree containing

n nodes labeled 1 to n in postorder. Let E be any sequence of n finds, using path halving,
that does one find for each node in postorder such that the root of each find is the root

of the tree. Then the total cost of E is O(n).
Proof This problem is identical to the sequential access problem in splay trees.

In that problem the nodes of a binary tree are labeled from 1 to n in symmetric order.
A splay operation is then performed on each of the nodes in that order, after which
that node is deleted from the tree. This is precisely equivalent to an instance of postorder
path halving with a fixed root. The corresponding tree in the path halving problem is
derived from the binary tree by the natural correspondence, i.e., by setting the parent
of each node to be its nearest ancestor in the binary tree with a greater label. See Figs.
2 and 3. Since the parameter node of the find (node 1 in Figs. 2 and 3) never again
appears on any find path, we consider itas being deleted from the tree. Then by the
Sequential Access Lemma of [8], the cost of such a sequence is O(n).

Now to prove Theorem 1 we show how to define the subproblems.
First we note that if the root of the tree, node n, has more than one child, then

the subproblem consisting of n, some child x of n, and the subtree rooted at x is
disjoint from all the other operations. Thus without loss of generality we assume that
the root has only one child.

Let x be a child of y in To. If every partial find from a node that is a descendant
of x in To has a descendant of y as the root of its find path, then the problem can be
divided into two subproblems. The first subproblem has as its initial tree the subtree
of To induced by x, y, and the descendants of x, and includes the partial finds of x
and its descendants. The second subproblem has as its initial tree To with the subtree
rooted at x deleted, and includes the finds of all of these nodes. These problems are
disjoint with respect to the edges.

Thus to prove the theorem it is sufficient to show that the result holds when
satisfies the stronger condition that for every edge (x, y), y n, in To, at least one



POSTORDER DISJOINT SET UNION IS LINEAR 873

Splay at 1, then

FIG. 2

partial find from a descendant of x in To contains on its find path a node that is a
proper ancestor of y in To. Naturally this condition cannot hold for the one edge from
the root to its child. Without loss of generality we assume now that this interdependency
condition holds.

In the proof of Theorem 1 we shall make use of the following lemmas.
LEMMA 4. For any node u in T, if some ancestor of u in T has appeared as a

nonroot node on the find path of FIND h ), h <- i, then in every tree T, j >- i, u has some
ancestor in T that has appeared as a nonroot node on thefind path of Find l), for some
l<=j.

Proof. The proof is by induction. We show that if u has some ancestor v in T/
such that v has appeared as a nonroot node on the find path of some previous Find (h),
h-< i, then u has such an ancestor in T//.

Suppose the find path of Find (i+ 1) contains no proper descendant of v. Then v
is still an ancestor of u after Find (i+ 1) is performed, i.e., in Ti/, so the lemma holds.

Otherwise + 1 is a descendant of v in T/. Let + 1 Xo, x, , Xk, be the nodes
on the find path of Find (i+ 1). By the rising roots condition, v must apear on this
find path as a nonroot node. Let x be the nearest ancestor of u that lies on the find
path. Then x is a descendant of v, and so x must be a nonroot node of the find. But
x is an ancestor of x in T+ so the lemma is proved. [3
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Find(l), then delete 1
FIG. 3

LEMMA 5. For any node u in T, ifsome ancestor v ofu in T has appeared as a nonroot
node on the find path of Find h ), h <= i, the root of the find path of Find (u) is greater
than v.

Proof Clearly if v is an ancestor of u when Find (u) is performed, then the find
path must include v as a nonroot node. The root of Find (u)must be a proper ancestor
of v, and thus, by the postorder numbering, be greater than v.

Otherwise there exist nodes w and y such that w and y are ancestors of u in Ti,
u _-< w < v < y, and some find operation Find (1), < < u, updates the parent pointer
of w to be y. Choose the maximum such l, and given that value of l, choose the
minimum such w. Then w and y are ancestors of u in Tu-1, and w has appeared as a
nonroot node on a previous find path (Find (l)), therefore the find path of Find (u)
must contain y > v, and the lemma is proved. [3

To prove Theorem 1 we divide the original problem P (To, Z) into subproblems
P1 (r, Z), P2- (’2, Z2), ", Pk (rk, ’k)" We shall distinguish certain nodes 1
Zo< z < z2 <’" < Zk n + 1, the choice of which will depend on the nature of the
partial finds of . The subproblem Pi will contain the nodes x such that z_-<_ x <-z
and will perform one find for each node. The edges of the original tree are partitioned
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by the subproblems, though the nodes are not. Each subproblem Pi is an instance of
finds being performed in postorder where the root of each find must be the root of
the tree.

The initial tree for subproblem Pi, denoted -, is formed as follows. Take the tree
formed by performing the first zi-1-1 partial finds of Z on To (i.e., Tz,_l-), delete all
nodes that are not descendants of zi, and finally contract the edge from z to its leftmost
child, denoted y, and denote the resulting node r. This node is the root of -i. See
Fig. 4. In this figure a dotted line from a node y down to a node x denotes that x <-y
and that there is a path from y to x through current leftmost child edges. The number
of nodes on this path, including the endpoints, is greater than or equal to one. A node
x with an attached triangle denotes the subtree induced by all descendants of x that
are not descendants of the leftmost child of x.

The finds for each subproblem are defined by slightly modifying the partial finds
of E. Let Xo, Z_l =< Xo < z, be a node of the subproblem P. The partial find from Xo
in P is defined as follows. Consider the find path Xo, xl,’’ ", xh of Find (Xo) in the
original problem. Recall that a partial find operation consists of repeatedly performing

Z0 ///

zi-1

n+l C)
To

n+lT
zi. 1- 1

zi /,,Q)

zi. 1

, ri

z i-1 ,"

FIG. 4
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the following edge update operation: reassign a node’s parent pointer to some proper
ancestor of its parent, at a cost of 1 per update. Suppose the parent of xj is reset to
Xl, 0=<j</-1 <h.

If both xj and Xl are at most zi, then the parent of xj is updated as part of Find (Xo)
in the subproblem Pi. The parent of x is updated to Xl if Xl yi and xl zi, otherwise
it is updated to ri. If x < z < Xl, then as part of Find (Xo) in Pi the parent of xj is reset
to be r. These updates are called subproblem updates. Note that possibly xj+ y or

x+ z, in which case the updating of xj’s parent could be a null operation in the
subproblem. We call such an update an undercounted update. There can be at most
two such undercounted updates per find.

Finally, if both x and xl are at least z, then this update is not performed as part
of any of the subproblems, and is called a nonsubproblem update.

Clearly the operation Find (Xo) in subproblem Pi is well defined and is a path
compression (respectively, path halving) operation in the subproblem.

To complete the definitions of the subproblems P, we show how we identity the
nodes z. We define Zo to be the least node in the postorder of To, i.e., node 1, and z,
> 0, to be the parent of the root of the find path for Find (z_). That is, y is the root

of Find (z_). Note that zi_ z, and thus none of the subproblems are empty and
this procedure is guaranteed to produce a finite number of subproblems. Each find in
E has a corresponding find operation in one of the subproblems.

Clearly, z is a proper ancestor of z in To if i<j, since zj is a proper ancestor of
zj_ in Tzj__ and the ancestors of a node can only decrease as a set due to the find
operations.

We now observe that each subproblem P is an instance of postorder path
compressions (respectively, path halvings) such that the root of each find path is the
root of the tree.

Let x be some child of r in ’, i.e., the parent of x in Tz,__ is p(x) yi or p(x) z.
Let u be any descendant of x in zi. A node can only lose descendants due to find
operations, therefore u is a descendant of x in T for all j < z_l.

Suppose that x is not a child of p(x) in To. Then x is a nonroot node on the find
path of some Find (l), < z_. Then u is a descendant of x in TI. so by Lemma 5, the
root of Find(u) in E is greater than x, i.e., at least p(x). Therefore the corresponding
find in Pi roots at r.

Suppose that x is a child of p(x) in To, but is not the leftmost child. By the
interdependency condition there must be some node that is not a descendant of x
in To such that the operation Find (l) in E includes p(x) as a nonroot node on the
find path. Then u has an ancestor (p(x)) in T/that has appeared as a nonroot node
on a previous find path, so by Lemma 5 Find (u) in E must root at some node greater
than p(x). Therefore the corresponding find in P roots at ri.

Finally, suppose that x is the leftmost child of p(x) in To. Let l-< z_ be the
minimum value such that the find path of Find (l) has root node r > x. Then x is a
nonroot node on the find path of Find (l) and x is an ancestor of u in TI, so by Lemma
5 Find (u) in 5; must root at some node greater than x. Therefore the corresponding
find in P roots at r.

Thus each subproblem is an instance of postorder path compressions (respectively,
halvings) with a fixed root, and thus has total cost linear in the size of the subproblem.

Clearly the cost due to undercounted updates is O(n). It remains to be shown
that the total cost of the nonsubproblem updates is O(n).

We can account for these nonsubproblem updates using a simple amortized
analysis. We assign credits to nodes in T, where z__-< < Z for some i, as follows:
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each ancestor of zi has one credit. We use these credits to pay for the nonsubproblem
updates. The total cost of these updates is then bounded by the total number of credits
in To, i.e., by n.

Consider the partial find operation performed on Tt. Each nonsubproblem update
reduces the number of ancestors of zi by at least one, thus the credits freed by these
updates can be used to pay for these updates. If z 1, then after Find (1) the number
of credits changes from the number of ancestors of z in Tzi-1 to become the number
of ancestors of z+l in Tzi-. But Zi+ is an ancestor of z in Tz,_, by the definition of
the z nodes, therefore this crossing of the boundary between subproblems can only
free up credits.

Thus the total number ofnonsubproblem parent updates is bounded by the number
of ancestors of z in To, i.e., by n, and the theorem is proved.

It would be interesting to know whether the theorem holds when the rising roots
condition is removed, i.e., when the root of a partial Find (x) can be any ancestor of
x. Hart and Sharir posed this as an open problem in [1]. Such a conclusion holds for
the standard problem definition of the disjoint set union problem. In this problem the
postorder condition is dropped, but unions must be performed in a weighted manner.
In this case an upper bound of O(n(n)) on the total cost, using path compression
or path halving, has been proved [5] for any sequence of n partial finds, regardless
of whether they correspond to a sequence of intermixed union and find operations.

Hart and Sharir studied the following more general problem. Let To be any ordered
tree of n nodes. Let E be a sequence of partial finds, one per node, done in postorder.
The finds are implemented using the following special case of path shrinking. For
every node x on the find path, if the parent of x is updated, then it must be updated
to be the root of the find path.

Hart and Sharir proved a 19(na(n)) bound for the complexity of this problem. A
similar, but more general, treatment appears in [9]. In the conclusion of their work,
Hart and Sharir posed as an open problem determining the cost of a sequence of n
path compressions performed in postorder. In this paper we have shown a linear bound
on a special case of this open problem" the disjoint set union case.

In [10] and [11] Loebl and Nesetril have claimed a similar result. A theorem of
that work states that the cost of an instance of the Postorder Set Union Problem is
linear. No complete proof of this claim is given. Though the theorem is stated as a
special case of the open problem of Hart and Sharir, the proof sketch provided does
not make any reference to, nor any use of, the rising roots condition or any similar
condition.

In [12] Loebl and Nesetril define another special case of the Hart and Sharir
problem, the Postorder On-Line Set Union Problem, and provide a different argument
to establish a linear bound for this problem. This case differs in that the finds are only
constrained to appear in postorder with respect to the current tree, i.e., the union
operations are not performed before all the find operations. This case is a generalization
of the problem considered in this paper.

In the following section we explore the complexity of a sequence of postorder
path compressions when the root of each partial find is unrestricted.

3. Experimental results. One observation we can make is that when analyzing the
cost of sequences of unrestricted path compressions done in postorder we can assume
that the initial tree consists of a single path with leaves attached to it.

LEMMn 6. Let To be any ordered tree and let E be any sequence of n partial finds
using path compression done in the postorder. Then there exists a tree T’o of size <=2n



878 J.M. LUCAS

such that every node in T that is not a leaf lies on a single path, and there exists a

sequence ,’ of lT’o partial path compressions done in postorder starting from T such
that cost (;) _-< cost (’).

Proof. We show how to construct the tree T. Assume that the nodes in To are
labeled 1 to n in postorder. All of these nodes will appear on the single path in T
that contains all the nonleaf nodes. This path is augmented by adding leaves to it on
the left, i.e., all of the added leaves appear before the nodes 1 to n in the postorder
of T. The number of leaves attached to node < n equals the number of edges of the
path in To from node + 1 to the parent of i.

;’ will first do partial finds from all the attached leaves. When these finds are
completed the tree will be isomorphic to To. All remaining finds are identical to those
in . To duplicate the structure of To each partial find from an attached leaf contains
three edges on its find path. The effect of such a find from a leaf attached to node i,
to the subtree of the nodes 1 to n, is to reset the parent of to be its grandparent. See
Fig. 5.

TO’

finds from leaves
attached to nodes
greater than

/

FIG. 5

finds from leaves
attached to
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There is a one-to-one correspondence between the attached leaves in T and the
edges in To, therefore Tgl--< 2n. Clearly the cost of E’ is at least as great as E. [3

In attempting to determine the bound on the cost of path compressions done in
postorder, we performed the following experiment. Let the initial tree To consist of a
single path. From each of the nodes, in postorder, do a path compression of a fixed
distance d, i.e., there are d edges on each find path.

Lemma 6 indicates that this is a reasonable choice for the initial tree. Also previous
work indicates that doing compressions of a fixed distance can yield an expensive
sequence. In [6] and [13] the disjoint set union problem, with weighted unions but
without the postorder condition, was considered. Both derived nonlinear lower bounds
doing one find per node, at a fixed cost each. Fischer [7] gave an O(n log n) lower
bound for path compression in an unbalanced tree. In this construction a find of length
log n is done once for one half of the nodes. All of these proofs used sequences of
finds that do not respect the postorder of the tree.

In our experiment we did a find from each node in postorder of the fixed
compression length d, until we reached a node at depth <d, i.e., until it was not
possible to continue. We calculated the fraction of nodes from which a compression
was performed before this first failure occurred. After this first failure we continued
to examine the nodes in postorder. For any node x, if the depth of x was greater than
or equal to d then a compression of length d was performed. We also calculated the
total fraction of nodes from which a compression was performed.

This experiment was performed for many different values of n. Surprisingly, these
two fractions both appear to be constants, independent of n. Even more intriguing,
these two fractions both appear to be very close to 1/(d- 3).

A natural question to ask is whether these particular sequences of partial finds
violate the rising roots condition, and indeed they do.

Table 1 details the results of our experiments. The initial tree consisted of a single
path of 1,000,000 nodes. The first column gives the fixed compression distance d. The
second column indicates the number of nodes, as a fraction of 1,000,000, from which
finds were performed before the first failure. The third column gives the value of
1 ! (d -3). The fourth column indicates the fraction of nodes from which a compression
was performed.

TABLE

4 0.99983600 1.00000000 0.99988400
5 0.51121500 0.50000000 0.55258376
6 0.33597000 0.33333333 0.34979110
7 0.25056100 0.25000000 0.25457578
8 0.20016000 0.20000000 0.20156561
9 0.16681500 0.16666667 0.16723051
10 0.14287700 0.14285714 0.14312043
11 0.12500600 0.12500000 0.12514738
12 0.11110700 0.11111111 0.11115433
13 0.09999700 0.10000000 0.10001830
14 0.09090500 0.09090909 0.09092227
15 0.08333000 0.08333333 0.08334025

Fraction of
Fraction before successful

d first failure / (d 3) compressions
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In the following section we discuss why consideration of the generalized problem
of postorder path shrinking is not useful towards obtaining a proof of linearity of
arbitrary postorder path compression.

4. Postorder path shrinking. Path compression and path halving are special cases
of the general path shrinking operation. Any upper bound for path shrinking applies
to these operations as well.

THEOREM 2. Let To be any ordered tree containing n nodes labeled 1 to n in postorder.
Let be any sequence of n partial finds using path shrinking that does one findfor each
node in the postorder. Then the total cost of , is O( n log n).

Proof. We divide the original problem into subproblems P1 and P2, each of which
is an instance of postorder path shrinking. The first subproblem P1 contains the nodes
1 through [n/2J and consists of the finds of all of these nodes. P2 contains the nodes
[n/2] + 1 through n and consists of the finds of these nodes. The initial tree for P2 is
the tree that results from doing the first [n/2] finds.

As in the proof of Theorem 1, any edge update that assigns the parent of node
x-< [n/2J a value greater than In/2] is replaced by an edge update that sets the parent
of x to be the root of the tree. This could cause an undercount of the true cost of the
sequence by at most [n/2J- 1.

We must also account for edge updates that do not belong to either subproblem,
i.e., the update of the parent of x > [n/2J during the find of a node y <- [n/2J. Each
such update decreases the number of ancestors of the node [n/2J + 1 by at least one.
So there are at most [n/2J of these.

Therefore the total cost, C (n), of any sequence ofpath shrinkings done in postorder
is bounded by the recurrence relation C(n)_-<2C(n/2)+n. Thus C(n) is
O(n log n). F1

If no further restrictions are made on the nature of the path shrinking, then this
bound is tight. A sequence E with cost 12(n log n) can be constructed as follows.

Let x denote the node with label [n/2J. Let the initial tree be a simple path of n
nodes. Then the first [n/2J finds are defined to be the finds in the most expensive
sequence for a starting tree that consists of /n/2J nodes in a simple path, plus the
addition of the edge update of x, which reassigns its parent to be its grandparent, if
the grandparent exists. After the finds of the first ln/2J of the nodes, the tree has the
shape of a simple path of [n/2] nodes. The remaining finds are of the form of the
most expensive sequence of finds for a tree with [n/2] nodes.

Thus the total cost L(n) of the sequence is at least L([n/2J)+ L([n/2])+ In/2]
1, or l)(n log n).

5. Conclusions. Unfortunately the results of this paper do not immediately trans-
late into results concerning the splay tree and pairing heap data structures. Though
much of their behavior is that of postorder path halving, it is not true that the rising
roots condition holds.

We shall restrict our discussion to splay trees. The behavior of pairing heaps is
strongly related to that of splay trees. The pairing done by the heap is similar to the
pairing done by the splay tree during a sequence of zigzig rotations. What is now
known concerning pairing heaps was obtained by using the same proof technique
developed for the analysis of splay trees.

A splay operation on x rotates x to the root of the tree by repeatedly applying
the appropriate case, i.e., zigzig, zigzag, or zig rotations [2]. The zigzig case is the
crucial one, the case that separates splay trees from the many types of balanced trees
[14], [15].
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The sequential access problem is a special case of splaying in which every splay
consists entirely of zigzig rotations, except possibly a final zigzag or zig rotation. In
this problem the following operation is performed until the tree is empty. Splay on
the least node in the symmetric order of the tree, then delete it (Fig. 2). This is precisely
equivalent to doing postorder path halving in the general tree derived from T by the
natural correspondence.

Another special case of splaying is when the splay tree is used to simulate a double
ended queue, or deque [8]. That is, the only permitted operations are: splay on the
least node in symmetric order, then delete it, or splay on the greatest node in symmetric
order, then delete it.

The cost of such a sequence is domina,:ed by the cost of the following problem
[3]. Repeatedly do a partial splay on the least node in symmetric order, and then
delete that node. A partial splay operation on x is identical to performing a splay
operation on x that is allowed to terminate any time at or before the time when x
reaches the root of the tree. That is, x is rotated higher and higher in the tree, using
the appropriate zigzig or zigzag case, until you choose to terminate the operation, or
a zig operation is performed, or x reaches the root.

The binary tree used by the partial splaying problem is derived from the binary
tree in the original deque problem as follows. Rotate the edge between the root and
its right child until the root has no right child. Thus a splay from the least node in the
deque problem becomes a partial splay in the new problem.

This transformation of the tree changes the problem f’om doing complete splays
in symmetric order to doing partial splays in symmetric order. This is necessary because
in the original deque problem splays on the greatest node are allowed, and such a
splay can rotate the edge between the root and its right child.

Our derived problem, that of doing partial splays in symmetric order, is equivalent
to doing partial path halving in the postorder. Unfortunately the rising roots condition
need not hold for this sequence of partial path halvings. In the binary tree corresponding
to the deque problem, a splay from the least node can cause the left child of the root
to be rotated over the root, becoming the new root. Thus the next splay, and the
corresponding find, has as its root a node that is less than the previous root with
respect to the symmetric order of the binary tree or the postorder of the general tree.
This violates the rising roots condition.

Postorder path compression is also related to the study of dynamically optimal
binary search tree algorithms. Sleator and Tarjan have conjectured that the splay tree
algorithm is dynamically optimal [2]. In [16], we propose an off-line algorithm that
we conjecture is also dynamically optimal. The cost of this algorithm, for the special
case when the operations are only deque outputs, is dominated by the cost of postorder
path compression when the rising roots condition does not hold.

This leaves us with the following open questions. What is the bound for any
sequence of partial path compressions done in postorder? What is it for postorder
path halving? Currently the best bounds are O(nc(n)) as shown in [1] and [9]. What
can be said about other path shrinking strategies? Path shrinking is so general an
operation that the notion of the root of the find path is almost meaningless, and can
be considered the root of the tree for every find. Thus the distinction between sequences
that satisfy the rising roots condition and those that do not is not interesting here.

What condition must be imposed on the parent updating strategy to ensure that
the total cost is linear? We conjecture that some kind ofproximity condition is sufficient.
That is, a rule of the form: for some fixed constant c, every subset of e consecutive
nodes of the find path has at least one node whose parent pointer is updated.
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A SEMIRING ON CONVEX POLYGONS AND ZERO-SUM CYCLE
PROBLEMS*

KAZUO IWANOt AND KENNETH STEIGLITZ$

Abstract. Two natural operations on the set of convex polygons are shown to form a closed semiring;
the two operations are vector summation and convex hull of the union. Various properties of these operations
are investigated. Kleene’s algorithm applied to this closed semiring solves the problem of determining
whether a directed graph with two-dimensional labels has a zero-sum cycle or not. This algorithm is shown
to run in polynomial time in the special cases of graphs with one-dimensional labels, BTTSP (Backedged
Two-Terminal Series-Parallel) graphs, and graphs wita bounded labels. The undirected zero-sum cycle
problem and the zero-sum simple cycle problem are also investigated.

Key words, semiring, convex polygon, dynamic graph, algorithm, complexity
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1. Introduction. In this paper, we show that two natural operations on the set of
convex polygons form a closed semiring; the two operations are vector summation
and convex hull of the union. We then investigate the time complexity of each operation
and its effect on the number of edges of the polygons.

Kleene’s algorithm applied to various closed semirings leads to efficient algorithms
for a variety of problems; for example, finding the shortest ,aths for all pairs of nodes
[3], converting a finite automaton into a regular expression, and finding the most
reliable or largest-capacity path [5]. In this paper we use the above closed semiring
to solve the zero-sum cycle problem in doubly weighted directed graphs.

Doubly weighted graphs, which have a two-dimensional weight on each edge,
have been studied by Lawler [19], Dantzig, Blattner, and Kao [7-1, and Reiter [24].
The cost of a path is defined as the sum of weights of edges on the path. The doubly
weighted zero-sum cycle problem is to find a cycle whose cost in each dimension is 0.
In [12], [13], [14], [15], [17], we saw that certain problems in VLSI applications
involving a regular structure can be transformed to problems in two-dimensional infinite
graphs consisting of repeated finite graphs. Repeated use of a doubly weighted digraph,
called the static graph G, forms a dynamic graph G2. As shown in Fig. 1, each label
of the static graph GO indicates the differences between the x- and y-coordinates of
two connected vertices in G2. The absence of a zero-sum cycle in the specified static
graph is then necessary and sufficient for the acyclicity of the associated dynamic
graph. If a two-dimensional regular electrical circuit is associated with a dynamic
graph, acyclicity of the dynamic graph implies that the associated electrical circuit is
free of an electrical "short circuit" [12].

Since the cost of each path between any two vertices can be regarded as a point
in the two-dimensional Euclidean plane, we can associate a pair of vertices v and w
with a convex polygon Cevw as follows" %w is the convex hull of all points associated
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A static graph G

The dynamic graph G

FIG. 1. A static graph G shows how to connect nodes in G2. The shaded area shows a basic cell.

with costs of paths from v to w. We apply the two operations above to the set of these
convex hulls, and use the closed semiring defined by these two operations to solve the
doubly weighted zero-sum cycle problem. We show that this algorithm runs in poly-
nomial time in the special cases ofbounded label graphs, BTTSP graphs (the Backedged
Two-Terminal Series-Parallel graphs), and graphs with one-dimensional labels. The
1-bounded graphs, whose labels are 0, 1, or -1, arise in VLSI applications where the
interconnections between regular basic cells are made locally. The BTTSP graphs are
an extension of the class of Two-Terminal Series-Parallel [1], [8], [26], [27]. When the
extended abstract of the present paper appeared in [16], the question of whether the
zero-sum cycle problem for general graphs is in P remained open. Kosaraju and
Sullivan [ 18] subsequently showed that the zero-sum cycle problem for any dimension
can be formulated in terms of linear programming and is thus solvable in polynomial-
time. Recently Cohen and Megiddo [6] proved that the zero-sum cycle problem for
any fixed dimension belongs to the class NC, and can be solved in the two-dimensional
case in serial time O(nm), the best result to date. We hope the present paper retains
independent interest as a new connection between convex polygons and semirings,
and as a novel application of Kleene’s closure algorithm.

Finally, we discuss variations of the zero-sum cycle problem, the undirected case,
and the zero-sum simple cycle problem.

2. Two operations and a semiring. We define our closed semiring [21] as follows:
Let S be the set of all convex polygons whose vertices have integer coordinates. That
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is, S={au[a2zz}, where a U indicates the convex hull of a. Notice that this
definition allows polytopes with an infinite number of edges, unbounded area, or zero
area, but does not allow curves. Thus our usage of the term convex polygon is more
general than the conventional one. We conventionally denote an element in S by a
lowercase Greek letter. We regard a point or a line segment as an element of S.

For any two sets a,/3 S, we define the new set called a vector sum of a and fl
as follows: a fl ={(x, y)]there exist elements (ax, ay)G a and (bx, by)eft such that
x- ax-b bx, y- ay-b by}. See [11] for details of this operation. Let 0= {(0, 0)} S and

be the empty set.
We define the operation as the convex lull of the union of two convex polygons

in S; that is, a fl (a fl) for any a, S. In this paper, we call the operation
union-sum. We can naturally define a union-sum of a countable number of convex
polygons as follows: Let I be a countable (finite or infinite) index set and ai S for
all I. Then we define union-sum il Ol’i by O (U il Ogi) bJ. Since U gel Ogi exists
and is unique, its convex hull [ a exists and is unique. Note that ai is the convex
hull of some set in 2ZZ, and thus every vertex of i ai is in 2Zz. Hence t a S,
and thus the union-sum above is well defined.

We now define the + operation as the convex hull of the vector summation of
two convex polygons in S; that is, a + fl (a */3) . By convention, we define a +
+ a . Note as we show later (Corollary 3.4, 3), that a. fl is itself a convex
polygon when a and/3 are convex polygons. Therefore a +/3 (a * fl)= a */3 for
any a,/3 S. Therefore, we identify + with ,, and call the + operation vector-sum.
From the definitions, the vector-sum operation is commutative. Fig. 2 shows an example
of the vector-sum of two convex polygons.

We now have the following theorem.
THEOREM 2.1. The system (S, [, +, , 0) is a closed semiring.

]..:

i !/’ .."

r.:.., z

i..%/..
o

FIG. 2. a + fl is bounded by edges that are aligned with the edges in a or . Aligned edges have the same
numbers.



886 K. IWANO AND K. STEIGLITZ

Before proving this theorem, we need the following lemma.
LEMMA 2.2. Let ! be a countable index set. Let i 2zz for all L Then we have

(u,, ,,) (u ,, ,).
Proof Let A be the left-hand side of the above equation and B the right-hand

side. Since ai c A for all /, we have U i ci c A. Since A is a convex hull, we have
(U ai) B A.

Note that aB and thus cB for all iL Therefore UI (a/)B, and
moreover, since B is a convex polygon, A (U a) U c B. D

Now we prove Theorem 2.1.

Proof of Theorem 2.1. We show that the system (S, , +, , 0) satisfies the six
properties of a closed semiring.

(1) S, t, ) is a commutative monoid. This is immediate from the definition and
Lemma 2.2.

(2) (S, +, 0) is a monoid. From the definition, this is trivial.
(3) + distributes over (. Let a, /3, 7 S be convex polygons. Since c + (/3 7)

is convex and contains (a +/3) and (a + 7), we have (a +/3) (a + 7) c a + (/3 7)-
For the opposite direction, let x be a point in a + (/3 k 3’). Then x can be expressed

as a+Ab+(1-A)c, where A[0,1]. Then we have x=a+Ab+(1-A)c=
A (a + b) + (1 A )(a + c) (a +/3) (a + 3’). Therefore, + distributes over . Note that
we can also prove that + distributes over finite union-sums by induction.

Since a Lg a (a U a) U a a, + is idempotent.
(4) Let I {i, i2, , ik} be a finite nonempty index set. Let a S for all I.

Then we can prove Lg i a ai, a b_J b_J a by induction on k and Lemma 2.2.
For the empty index set I , we have ai .

(5) The result of union-sum does not depend on the ordering of the factors. The
proof is straightforward from the definition of bJ and Lemma 2.2.

(6) In addition to (3), + distributes over countably infinite union-sums Lg. Let/3 S
and a6S for I={1,2,...}. Then we prove that /3+ita=b_J(ai+/3). Let
Z a and Z+t bJ i (a+fl). We first prove that +Z Z+. Letp=b+x
be an arbitrary point in fl +Z with b 6 fl and x Z. If there exists a finite set of
indexes J such that x[gja, then from (3), p=b+xfl+bJjaj
Lgj (/3 + %)c Z+. If x is not in the union-sum of a finite number of a’s, then x
can be represented as the limit point of a sequence of points, each of which is in some
ai; that is, there exists a countably infinite set of indexes J {j, j2," ",j," ", } such
that x limi_c Xji where x, %,. Then

p b + x b + lim x., lim (b + xj, lim (fl + %,

t (fl +) L (fl + ,,)= z+,.
jJ iI

Therefore fl +Z Z+t.
The converse can be proved similarly, and thus multiplication distributes over

infinite sums. F!
Having established that the structure (S, , +, , 0) is a closed semiring, we can

apply Kleene’s algorithm to solve certain problems related to paths in a graph [2],
[21]. With this goal in mind we next investigate the basic properties of the operations
+ and .

3. Some properties of the + and operations. Before stating some properties, we
need some definitions. For a convex polygon a in S, we denote its edge set by az and
its vertex set by av. Let be an edge of a or a line that does not intersect a. Then we
regard as an oriented line with respect to a and define its direction, denoted by
O(a), in the range 0_-< 0e <27r such that a lies on the right-hand side of when we
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traverse in its positive direction. Unless specified, 0 means 0e(d) for an edge e
We regard e 6 de as a vector e with the direction of 0e(d). Let dector {el e de}. By
convention, we define the following special cases: When d is either a point or the
entire plane, we regard d as a special symbol and define dector {d}. When d is a
line segment e, we define dector {e,--e}.

Let A= {di}il be a set of convex polygons. We define IAI- ILl i, (di)eaorl, that
is, [A[ is the number of distinct vectors in U,A (d,)ector- We also write IA[ Idl when
A has the single element d. We say that two edges e de andf fie are aligned when

Now we have the following lemma aboul the relationship between two consecutive
edges of a convex polygon and their directi ns.

LEMMA 3.1. Let e andfbe two consecutive edges ofa convex polygon d in clockwise
order. Then Of < Oe or Oe + r <

Proof From the definition, f lies in the right-half plane of e.
COROLLARY 3.2. Let de {e, e2," e,,} be the edges of a convex polygon d in

clockwise order. Let Oe, be the maximum of { Oe,}. Then Oe, > Oe >" > Oe,,,. The set
is called the edge sequence when the elements of de are ordered as above.

Proof The proof is clear from Lemma 3.1.
To analyze how the + operation affects the number of distinct vectors, we will

use the following well-known theorem.
TIJEOREM 3.3 ([11]). Let d, fl be two convex polygons in S. Then for every e

de fie, there exists an edge f(a+ fl)e that is aligned with e; that is, Of= Oe. This
enables us to define afunctionf q (e) from de U fie to (d + )e. Moreover, thefunction
q is onto. Figure 2 illustrates this theorem.

COROLLARY 3.4. Let d, fl be convex polygons. Then + fl a fl fl * t
Proof For the proof see [11], [20], [28].
COROLLARY 3.5. Let d and fl be convex polygons in S such that both have a finite

number of edges and n d + ill. Then the edge sequence of d + fl can be computed in
O(n) steps from two edge sequences de and fie.

Proof From Theorem 3.3, every edge e in d +/3 has an associated edge f in
de U fie such that 0f= 0e. Thus the edge sequence of (d +fl)e can be obtained by
merging the two sets { 0 e de } and { 0e e fie }.

COROLLARY 3.6. Let d, az, and d, be convex polygons in S. Then we have
an onto function q from (d,)e (dz)e ’’" U (d,)e to (d + d2+’" "+ d,)e such that
Oq(e) 0 for any e e (a,)e U (a2)e U" U

Proof The proof is by induction on n and Theorem 3.3.
TI-IEORE 3.7. For any d., S, we have Id+fl[__--<l{d, fl}l--<ldl+lfl I.
Proof The proof is straightforward from Theorem 3.3.
Next we analyze the effect of the operation on the number of distinct vectors.

First we have the following theorem.
THEOREM 3.8. Let d and be bounded convex polygons in S. Then la U ill <-

Before proving Theorem 3.8, we need the following lemma.
LEMMA 3.9. Let d S and Pl, P2," ", P, be points. Then

u p, u u u p.I I 1+ n.

Proof This can be proved by induction on n. Suppose n 1. If d contains p,
then ]d U Pl[ I1. Otherwise, d N p contains at least one edge of d, and thus Id U PI -<

I1 / 1, Suppose the lemma holds for numbers less then n. Let /3
d Pl U p2 N p. Then from the induction hypothesis, It3_,l-< Il/(n-1), and
thus I/3.-ll + 1 _-< + n.
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Proof of Theorem 3.8. Note that a /3 is a U pl p2 p, where /3v
{Pl,P2,’",Pn}. Thus from Lemma 3.9, [a /3[_-<[a[+n =[a]+[/3[.

Theorem 3.11 covers the case when a or/3 is an unbounded convex polygon a*,
which is defined as follows" For a convex polygon a and a nonnegative integer n, we
define a convex polygon a as follows" (1) a=0 and (2) a n= a + a n- for n > 1.
Since a system (S, , +, , 0) is a closed semiring, we can define the convex polygon
ce* by a a U 7-o a i. As shown in Fig. 2, a* is U pc h :>0 hp). Thus a* is
essentially a cone emanating from the origin. As a special case, a* may be the entire
plane, a half plane, a line, a half line, or the origin itself. Now we analyze the effect
of the * operation on the number of di:’tinct vectors.

LEMMA 3.10. For tWO convex polyg ms a and % we have [a + y*[ <_-]a] + 1.

Proof. If 3’* is either the entire plane, a half plane, a line, a half line, or the origin
itself, the proof is straightforward. Otherwise y* is a cone emanating from the origin
and has two edges g and g. Let g (respectively, g) be the support lines at v
(respectively, w) of the convex polygon a such that Og,(a)=Og(y*) and Og2(a)=
Og(y*). If v= w, then [a+ y*[ [y*[_-<2. If v w, then as shown in Fig. 3, there must
be at least one edge of a which is inside a + y*. Thus the lemma is proved.

g2

g .*

FIG. 3. a + 3/* _--< I1 + and a ( + 3’*) (a t ) + 3’*.

The above lemma shows that replacement of a by a + y* does not increase the
number of edges by more than one. Moreover, we have a stronger result in the following
theorem, which shows the same result for any number of such replacements in a series
of U operations. We will use this theorem in 5 and 6.

THEOREM 3.11. Let fli, Yi S for 1, 2, , n. Then we have

I(/, + ’,*) u (/ + v*) u u (/. + ,.*)l--< I, u/ u u/.1 + 1.

Before proving Theorem 3.11, we need some lemmas.
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LEMMA 3.12. Let ’)/i E S for i= 1, 2,..., n. Then

,),,*+ *+... +,),,* (.,,,, u , u u .)*.

Proof We prove this by induction on n, using k for the index of induction. The
lemma trivially holds for k 1. When k 2, we prove that y* + y2* (y U y2)*. Since
y*, 7* c (, y2)*, we have 7* + y2* C (7 U 72)*. We next prove the opposite direc-
tion. Since 0E y*l+y*2 we have from the distributive law y U y2 (y U "yz)-k-
(’YI* + ’’2*) (’Y1 + 3/1* + "Y2*) U (71 + Y2 + ’Y2*) C Yl* + "Y2*. Thus the lemma holds for k 2.

Assume that the lemma holds for k<n, then y*+yz*+’"+y,*=
(y U y2 U U y,_)*+y,* (y U y U U y,)*. Note that we used the case k=
n- 1 for the first transformation and k 2 for the latter. [3

LEMMA 3.13. Let a, fl, and ), be convex polygons. Then

u (t+*)=( u t)+ *.
Proof For the proof see Fig. 3. Since a c a + y*, we have

u (+*) (+*) u (+*)=( u )+ *.
We now prove the opposite direction; that is, (a U/3)+y*c a U (/3 +y*). Since
/3 + y* c a U (/3 + y*), we only have to prove that a + y* c a U (/3 + y*). Let p a + g
be a point in a + y* with a 6 a and g 6 y*. Let b be an arbitrary point in/3. Let p, be
a point obtained by the following equation when we regard Pn, a, b, and g as points
in the x-y plane: pn=(1-1/n)a+(1/n)(b+ng). Then Pn is on the line segment
a, (b+gn),andthuspna U (fl + y*). Note thatp= limn_pn is also in a U (fl + y*)
and p a + g p. Therefore a + y* a U (/3 + y*).

LEMMA 3.14. Let ai, Yi S for 1, 2, , n. Then

(o, + *,) u (+ *) u u (,, + *,)

=(a, U O U U ln)"" ’/ll-’)/2- ""- ’/o
Proof Denote the left-hand side of the above equation by An, and the right-hand

side by Bn. We prove this by induction on n and use k for the index of induction.
The lemma holds trivially for k=l. When k=2, from Lemma 3.13, Az=
((a -- yl) U a2) -- "f2 (a U a2) t_ yl _- .)/2 B2" Assume that the lemma holds for
k<n. From the induction hypothesis for k= n-l, An Bn-1 U (an+y’n). We then
obtain An =((a, U a U U an-)+(y U y2 U U yn-)*) U (an+y*,) by
applying Lemma 3.12 to Bn_. From the basis of the induction (k=2),

)*+ y,* From Lemma 3.12, we geta (a, U a2 U" U an)+(’)/, U ’)12 U U ")/n--,

An Bn. [’]

We can now prove Theorem 3.11.

Proof of Theorem 3.11. From Lemma 3.12 and 3.14, we have

(/, + v,*) (+ v*) (t. + v.*)

=(/, / t.)+ v,*+ v*+’’ "+Vn*
=(/, t: tn)+(V V- V.)*.

Let A (respectively B) be the left- (respectively right-)hand side of the equation in the
theorem. From Lemma 3.10, IAI_-< I/ U/2 /)1+ 1-IBI+

THEOREM 3.15. Let Il/ltl-n. The operations +, U, and can all be done in

O( n steps.
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Proof. We assume that two edge sequences (a)E and (/3)z are available. From
Corollary 3.5, we know that the + operation takes O(n) time. Given the edge-sequences
of two convex polygons, the convex hull can be found in O(n) time. There is also an

algorithm in [4] that computes f)a in O(log ([a[)) steps where is a line segment
and a is a convex hull Therefore the * operation takes O(log ([a[)) time. lq

4. Application of the closed semiring. In this section, we define the doubly weighted
zero-sum cycle problem and solve it by using the closed semiring defined in 2.

Our instance is a doubly weighted digraph G (V, E, T) where V is its vertex
set, E is its edge set, and T is a two-dimensional labeling such that T(e)= (ex, ey)
Z x Z for every e E. We use n (respectively, m) to denote the number of vertices
(respectively, edges) in a graph. We also use 0 to denote (0, 0). A path P in G is a
sequence of vertices P Vo, Vl," , Vk where ei (vi-1, vi) E and vi V. If all vertices
Vo, vl," , Vk-1 are distinct, a path P is simple. A path P such that Vo vk is called a
cycle. Given a path P= Vo, Vl,"’, vk, we define the cost of the path T(P) by the
component-wise summation of edge-labels on that path; that is, T(P)=k T(ei)--

k k
i=

(i:1 ei., i=1 ei:.). A cycle W with T(W) =0 is called a zero-sum cycle. We can now
define the doubly weighted zero-sum cycle problem as follows:

Problem ZSC. Doubly Weighted Zero-sum Cycle Problem.
Instance: A doubly weighted digraph G (V, E, T) where T is a two-dimensional

labeling such that T(e) (ex, ey) Z Z for every e E.
Question: Does G have a zero-sum cycle? In other words, is there a cycle W such

that T(W) 0?
By using the fact that the two operations defined on convex polygons form a

closed semiring, we can answer this question with the Floyd-Warshall algorithm [2],
[3], [10], [23].

Algorithm ZSC.
Input: A doubly weighted graph G with V {vl, v2," ", v,}.
Output: This algorithm answers "Yes" if the digraph G has a zero-sum cycle;

otherwise the algorithm answers "No."
Method: Let PATH(vi, v, k) denote the set of all paths from vi to v such that

all vertices on the path, except possibly the endpoints, are in the set
k for 1 < i, j < n and 0 < k < n, which is the convex hullWe compute the convex hull a i

of costs of all paths in PATH(vi, vj, k).

procedure zero-sum cycle
begin

o {{T((v,w))}for l_-<i,j_-<n do ai=

for k 1 to n

3.
4.
5.

6.

if (v,w)E
otherwise.

do
for l_--<i,j--<n do

u )* +Oi ij O ij "Jr" O/.

if=lie{1 2,... n}s.t. 0ea k
ii

then exit ("Yes");
od

exit ("No");
end

THEOREM 4.1. Algorithm ZSC works correctly.
Before proving Theorem 4.1, we need the following lemmas.
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LEMMA 4.2. Ifthere is a zero-sum cycle W, there must be a vertex vi such that 0 a ii.
Proof Let vi be a vertex that is on the cycle W. Since the convex hull a i’ includes

all costs of paths from V to vi, we have 0 (i" [3

LEMMA 4.3. If 0 a i’, there must be a zero-sum cycle W, and the vertex vi is on
the cycle W.

Proof Suppose that 0 a/. Let (a)v {sl, s2, , sl} such that s Z x Z. Since
is a convex polygon, any point z in :Ei can be represented as z ,jc(’l,v ks suchO ii

that k _-> 0. Let C./be a cycle corresponding to s such that T(C/)=s and vi is on the
cycle C. Note that since every s has integral coordinates, k can be chosen rational,
if z Z x Z. Thus there are rational numbers k such that O= jc(,,, )v ks. There is
an integer K such that all K. k are integers. Thus K. 0=0= 2sj(olTi) (K kj)sjo Then
the desired cycle W consists of K. k copies of C for s (ai)v.

Now we prove Theorem 4.1.

Proofof Theorem 4.1. From Lemma 4.2 and 4.3, in order to find a zero-sum cycle,
we only have to check whether or not there exists some such that 06 a’. We can
prove that a k is correctly computed by the algorithm by induction on k (as in [2])6

THEOREM 4.4. Algorithm ZSC uses O(n3) L, +, and operations from the closed
semiring defined above, where n is the number of vertices in G.

Proof Line 4 is executed n times in total.

5. Special cases of the zero-sum cycle problem. In this section, we discuss the
special cases of the zero-sum cycle problem where (1) the graphs have one-dimensional
labels, (2) the graphs are undirected, (3) the graphs have labels with magnitude at
most M, and (4) we are looking for a simple cycle with zero-sum. The first three cases
have low order polynomial algorithms, whereas the fourth is NP-complete.

(1) The one-dimensional zero-sum cycle problem. We can solve the problem
efficiently in the one-dimensional case as follows.

THEOREM 5.1. The-dimensional zero-sum cycle problem can be solved in O( n3) time,
where n is the number of vertices. (This result is implicit in Odin [22].)

Proof. We can apply our algorithm ZSC by ignoring the second labels. Note that
in the one-dimensional case every a k has at most two vertices, since it is either a
point, a line segment, or a line on the x-axis. Thus /I --< 2. From Theorem 3.15, each
operation , +, or takes constant time. Hence from Theorem 4.4, the algorithm ZSC
takes O(n3) time.

(2) The two-dimensional undirected zero-sum cycle problem. We assume that G
is connected. We will show that the undirected version of the zero-sum cycle problem
can be solved in O(m log m) time, where m is the number of edges. In the undirected
case, a path can traverse an edge in either direction.

An instance of the undirected problem is as follows:
Instance: A connected undirected graph G V, E) with V {v, v2, , vn} and

E--{el, e2,"" ", era}. A two-dimensional labeling T from E to ZZ with T(e)=
(e, ey) for every e E.

Now we have the following lemma:
LEMMA 5.2. Let G and T be defined above. Let H be the convex hull of { T( e) e

E }. A necessary and sufficient conditionfor the existence ofa zero-sum cycle is that exactly
one of the following two conditions holds:

(1) The convex polygon H properly contains the origin.
(2) The origin is on an edge h of the convex polygon Hc. Let Y= {e E T(e) is

on h}. Then there exists an edge e Ysuch that T(e)=0, or there are two edges e, e2 Y
such that el and e are adjacent in G and the origin is on the line segment T(e), T(e2).
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Before proving Lemma 5.2, we need some definitions. Let X {Cele e E} such that
Ce is the cycle vw v where e=(v, w). Then T(Ce)=2T(e).

We call a set of cycles A { li I} nullable if there exists a set of nonnegative
integers Az {hi e Z+ I,.J {0}li I} such that the ni are not all 0 and 2iI niT(Wi) --0.
If (U il Wi) is connected, we say that A is connected.

Note that we can construct a zero-sum cycle from a connected nullable set. Now
we have the following lemmas.

LEMMA 5.3. Let G, T, and X be defined as above. Let A { I/Vili e I} be a nullable
set of cycles. Then we can find a connected nullable set B.

Proof. Since A is nullable, there exists a set of nonnegative integers Az
{hi e Z+ I.J {0}li e I} such that the ni are not all 0 and 2iI niT(Wi) --0. If A is connected,
A is the desired set. Suppose A is not connected. Let vi be an arbitrary point on W
for every e L Since G is connected, there is a cycle Pi that passes through vl and v
for every e I-{1}. Let k be a large positive integer. Let Q be a cycle consisting of
k copies of W and one copy of Pi for every e I-{1}. Let Q1 W. Then

kT(W1) for i= 1,
T(Q,)

kT(Wi)+ T(Pi) for ie I-{1}.

Since the convex hull of {T(W)Iie I} contains 0, the convex hull of {T(Qi)lie I}
contains 0 for some large k. Therefore B {Q/lie I} is nullable for large k. Since
V e il Qi, B is connected. Thus B is the desired set. [3

Now we prove Lemma 5.2.
Proof of Lemma 5.2. Suppose (1) holds. Note that T(Ce)=2T(e), where Ce is

the cycle for every ee E defined as above. Since A={2T(e)lee E} is a nullable set,
we can find a connected nullable set, by Lemma 5.3. Thus there is a zero-sum cycle
in G. When (2) holds, it is obvious that there is a zero-sum cycle in G.

Conversely, suppose there exists a zero-sum cycle W. From the definition, there
exist positive integers ne for e e W such that 2eW neT(e)=0. This means that the
convex hull of {T(e)lee E}, denoted by He, contains the origin. If He contains the
origin properly, (1) holds. Otherwise, there must be an edge e e E such that T(e)=0,
or the origin must be on an edge h of He. Now we assume that T(e) 0 for every
e e E. Let Y {e e E IT(e) is on the edge h}. Since W is nullable, every edge in W is
in Y. Let be an edge in Y. Then for every edge e e Y, there exists ke and T(e) keT(6).
Let W/= {ee W[ T(e)= keT(6), ke > 0}, and let W_= {ee WI T(e)=-keT(Y), ke > 0}.
From the definition of {he}, we have 2eW neT( e) (e w+ neke-eew_ neke)T(-) =0.
Note that W/ and W_ . Since W= W/ U W_ is connected, there must be
connected edges el e W+ and e2e W_. Thus (2) holds, l-]

THEOREM 5.4. The two-dimensional undirected zero-sum cycleproblem can be solved
in O(m log m) time, where m is the number of edges.

Proof We only have to check condition (1) and (2) in Lemma 5.2, which can be
done in O(rn log rn) time. [3

(3) Graphs with bounded labels. A doubly weighted digraph G=(V, E, T) is
called an M-bounded graph if each dimension of every label is an integer in I-M, M].

In many VLSI applications, the communication between regular cells is made
locally: that is, interconnections are made only to neighbors. For example, n n
multipliers can be constructed from arrays of one-bit full adders with carry and sum
signal connections to the neighbors of each cell [12], [13], [14], [15]. Parallel adders
can also be constructed from one-bit full adders with carry connections to the neighbor
of each cell [13]. Many systolic arrays are also implemented with interconnections to
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neighbors. In such VLSI applications, the associated static digraphs of the regular
structures are all 1-bounded graphs [12].

We have the following lemma about the number of edges of a convex polygon
included in a bounded region.

LEMMA 5.5. Let R be a rectangle of width w and height h. Let H be an arbitrary
convex polygon included in R. Then H] --< 2 max (w, h) + 2.

Proof Without loss of generality, we can assume that max (w, h)= w. Let Hu be
the set of edges in H from its highest leftmost vertex to its highest rightmost vertex
in clockwise order. When we traverse an edge in Hu, we move at least one unit in the
x-direction. Thus the number of edges in H, is at most w. There are at most two
vertical edges in H. Thus HI _-< 2 max (w, h)+ 2.

LEMMA 5.6. Let G be an M-bounded graph with n vertices, then we have
4nM+3.

Proof Let fl k be the convex hull of the costs of all simple paths in PATH(vi, v, k)ij

(see the previous section for the definition). Note that the length of a simple path is
at most nM in each dimension. Thus fig is bounded by the rectangle [-nM, nM] xij

kI-riM, riM]. Therefore, from Lemma 5.5, I/3i] <-- 2 (2nM)+2 4nM+2. From
Theorem 3.11, lal<-lfll+l<-_4nM+3.

THEOREM 5.7. The algorithm ZSC takes O(n4M) timefor M-bounded graphs with
n vertices.

Proof From Theorem 4.4 and Lemma 5.6, the algorithm ZSC takes O(n nM)=
O(n4M) time.

(4) The zero-sum simple cycle problem.
THEOREM 5.8. The zero-sum simple cycle problem (ZSSC) is NP-complete.
Proof Here we use a variant of the reduction from the subset sum to the directed

path problem in the one-dimensional dynamic graphs discussed in [22]. It is obvious
that ZSSC is in NP. We use reduction from the subset sum problem SS to ZSSC, where
the problem SS is defined as follows:

Input: {aeZ+lie I} where I={1, 2, , n} and B Z+.
Question: Is there a subset J of I such that Y.j aj B?
Given an instance Iss of SS, we construct an instance Izssc of the zero-sum simple

cycle problem as follows: A directed graph G (V, E) is shown in Fig. 4 where

V {Vl, v2, Vn, W1, W2, Wn},

E ={e, (v,_,, vi)l i= 1, 2,..., n}

U {f (vi_,, w,)li- 1,2,’"’, n}

U {gi (wi, vi)l 1, 2,..., n}

U {Co (v,,

Let T be a two-dimensional labeling from E to Z Z as follows:

T(ei) T(gi) (0, O)
T(f) (ai, O)

for i= 1, 2,..., n,
for i=l,2,...,n.

Suppose Iss has a solution J such that Yjj aj B. Then Izssc has a solution of
a simple cycle consisting of Co, f and gj for j e J, and e for J.
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Wl w2 w

(-B.O)

fi =( ai,)
vi-1

e =(o,o

wi

g= (o.o)

FIG. 4. The graph above has a zero-sum cycle if and only if there exists a set J I 1, 2, , n} such
that jj a B.

Conversely, suppose that Izssc has a solution; that is, there exists a simple cycle
W such that T(W) 0. Note that W must use el. Let J {j If E W}. Then jcJ aj B.
Thus Iss has the solution J. [3

6. Backedged two-terminal series-parallel multidigraphs. Two-Terminal Series-
Parallel (TTSP) graphs have been well studied: the undirected version in [1], [8], [25],
[27] because of its relationship to electrical networks and the directed version in [26]
because it provides an algorithm to recognize general series-parallel digraphs.

A digraph is called a rnultidigraph if we allow multiple edges between the same
two vertices. The definition of the class of TTSP multidigraphs appears in [26] as
follows:

(1) A digraph consisting of two vertices joined by a single edge is in TTSP.
(2) If G1 and G2 are TTSP multidigraphs, so too is the multidigraph obtained by

either of the following operations:
(a) Two terminal parallel composition: identify the source of G1 with the

source of G2 and the sink of G with the sink of G2.
(b) Two terminal series composition: identify the sink of G with the source

of G2.
Let TTSP (m) be the class of TTSP multidigraphs that have m edges.

From this definition, a TTSP multidigraph has a single source, denoted by s, and
a single sink, denoted by t. Let G be a TTSP graph. A multidigraph, obtained by
adding any number of baekedges to a TTSP graph G, is called a BTTSP (Backedg,ed
Two-Terminal Series-Parallel) multidigraph. An edge (x, y) is called a backedge if there
is a path from y to x in G. The graph G is called the underlying TTSP graph of GB.
Let BTTSP (m) be the class of BTTSP multidigraphs that have m edges. Fig. 5(a)
shows an example of a BTTSP graph GB that consists of a backedge indicated by
dotted lines and the underlying TTSP graph G.

Let G (V, E, T) be a doubly weighted multidigraph with V= {vl, v2," ", v,}.
Then for all v;, v. in V and k E {1, 2,..., n}, we define the convex polygon c(T) in
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FIG. 5(a). A BTTSP multidigraph GB" a backedge is indicated by the dotted line.
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FIG. 5(b). A binary decomposition tree BDT G). The wide solid line corresponds to the path from v to
w in Fig. 5(a).

FIG. 5(c). ast(L3) <=3.
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aAb

Tv Tw
FIG. 5(d). aAb aSh and c d. Every path from v to x : T passes through c. Every path from x Tw to

w passes through d c.

/

Bvf

el

Wl

FIG. 5(e). An edge ef is the last backedge from which there is a path to w. Then we apply the induction
hypothesis to the path PsvfBv/,t.

the same way as in the previous section" that is, c(T) is the convex hull of all costs
of paths in PATH(vi, vj, k). In particular, we call a 7(T) the convex polygon of vi-vj
paths and denote it by ceo(T). For any multidigraph G, let A(G)=max,,k,T I/(T)I
and similarly for a class of graphs we write A({G}). That is, A(G) is the maximum
number of edges in a(T) when i, j, k, and T are arbitrary and G is fixed. We then
have the following theorem.

THEOREM 6.1. Let G be a doubly weighted multidigraph defined as above. For any
i, j, k, and T, there exists a two-dimensional labeling T’ such that a ko(T) o( T’).
Therefore, A((7) maxi,j,T Ioij( T)I.

Proof In order to prove the first part of the theorem, we only have to define T’(e)
as follows: (1) if e is on a path in PATH(v, vj, k), then define T’(e) T(e), and (2)
otherwise define T’(e) . We then have Ic (T)I [c0(T’)J.

The second part of the theorem is immediate from the first part. [3

From this result we can restrict attention to c0(T) instead of a k0(T) in what
follows. We now have the following theorem:

THEOREM 6.2. A(TTSP (m)) m.
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Before proving the theorem, we need some lemmas. Let L,, be the TTSP multidi-
graph consisting of two vertices s and t, and m edges from s to t. (See Fig. 5c.)

LEMMA 6.3. A(L,,)-- m.

Proof Let ei for i= 1, 2,.’., m be the edges of L,, and let T(ei)= vie Z x Z.
Then ast is the convex hull of {vi}, which can clearly have m sides, and no more than
m sides. V]

LEMMA 6.4. Let G be in TTSP (m) with source s and sink t, and let T be a
two-dimensional labeling of G. Let x, y be arbitrary vertices in G such that (x, y) (s, t).
Then there exists a two-dimensional labeling T’ such that laxy( T)I <-_ la.t( T’) I.

Before proving Lemma 6.4, we define the graph Gxy (Vy, Ey) for x, y V by
the following operations on a TTSP graph G (V, E): (1) First, we delete all incoming
edges to x and all outgoing edges from y. (2) We then delete all useless vertices and
their adjacent edges. A vertex v is called useless when there is no v x path or y v path.

Proof of Lemma 6.4. If there is no x-y path in G, we have axy(T)= . Thus
laxy(T)l 0_-< I,(T)I. Choose T as T’.

Otherwise there exists an x-y path in G. Since there exists an s-x path and a
y-t path, let Ps(Py,) be an arbitrary s-x path (y-t path). Let GI=(V1, El) be the
graph consisting of P, Gxy, and Py,. We define a two-dimensional labeling T’ as
follows:

if e E E
T’(e)= 0 if eP,Pyt

T(e) ifeEy.

Then la,y(T)l laL.(T’)I. [3

We can now prove Theorem 6.2.
Proof of Theorem 6.2. We first prove A(TTSP (m))=< m by induction on m. It is

clear that A(TTSP(1)) 1. Assume that the induction hypothesis is true for k < m. Let
G (V, E) be in TTSP (m) with source s and sink t. From Lemma 6.4, we only have
to show la.,(T)[ _<-m for any T. From the definition of TTSP, G must be constructed
either in series or in parallel from Gl 6 TTSP (m) and GTTSP (mz) such that
m m + m2 and ml, m2 > 0. Then we have A(G) =< A(G) + A(G2) -<- ml + m m. Note
that the first inequality uses Theorems 3.7 and 3.8, while the second uses the induction
hypothesis. Thus A(TTSP (m)) _-< m. Since Lm TTSP (m), from Lemma 6.3, A(L,,,)
m, which shows this bound is achievable. [3

We will show the same result for the class of BTTSP multidigraphs. The following
lemma says that every backedge in an s- path in a BTTSP graph lies on a cycle that
lies on the s- path.

LEMMA 6.5. Let GB be a BTTSP graph with source s and sink t, and let P be a path
from s to possibly using some backedges in GB. Then P can be represented as follows:
P P1 cr’p2c PkCk where P1P2" Pk is apathfrom source to sink in the underlying
TTSP graph G, the Ci’s are cycles in GB, and r _-> 0 for _-< _-< k.

Proof For the proof see 7. [3
Ti-izOgZM 6.6. A(BTTSP (m)) m.
Proof Since TTSP m BTTSP m ), we have m A(TTSP (m)) -<_

A(BTTSP (m)). We now prove that for an arbitrary graph G BTTSP (m) with at
least one backedge, A(G) <- m. Let G= (V, El) be the underlying TTSP graph of
G, and let T be a two-dimensional labeling of Gn. Let PB(s, t) be the set of s-t
paths in Gn, and let P(s, t) be the set of s-t paths in G. Let P be an arbitrary path
in Ps(s, t). Then from Lemma 6.5, P can be expressed as P= P1C,PzC... PkCrkk,



898 K. IWANO AND K. STEIGLITZ

where PP2"" Pk is a path from source to sink in the underlying TTSP graph G, the
Ci’s are cycles in G, and ri _>- 0 for 1 -< -< k. Let p T(PP2" Pk) and yp, T(C)

rlfor l<=i<k. Then T(P)=flp+3/p,+3/pz+’’’+’}/pk. Let P*=
{PC’’r’pzC2r2... PkC,krk[P=PC’P2C PkCkPB(s, t), and niZ+{O} for
1 -< i- k}. Let T(P*) be defined as T(P*) U Qp. T(Q). Since P* c PB(s, t), we have

T(P*) flp+(yp, U yp U U ypk)* + U T(P).
PPB(s,t)

Note that T(P)c T(P*). Therefore ee(.,,,) T(P)= ee(,,,) T(P*). Thus we now
have

I,(T)I-- U T(P) T(P*)
Pe P(s,t) P PB(s,t)

U 13,,+(,,,, U /,, U... U /,,)*
P PB(S,t)

+1 (using Theorem 3.11)

U T(P)
P PB(S,t)

+1

<-last(G)[ + 1 (from the definition)

--< A(TTSP (IE, I)) + 1

lEvi+ 1 (using Theorem 6.2)

because IEI_-<m-1 by the assumption that G has a backedge. Thus
A(BTTSP (m)) <__ m.

COROLLARY 6.7. For BTTSP, the algorithm ZSC runs in O(n3m) time where n is
the number of vertices and m is the number of edges.

Proof The proof is clear from Theorems 4.4 and 6.6.

7. Proof of Lemma 6.5. Let G V, E) be a TTSP multidigraph with source s and
sink t. A binary decomposition tree for G, denoted by BDT (G), which was discussed
in [26], represents the construction process of G by a binary tree. A binary tree
BDT (G) can be created by following the sequence of series and parallel compositions
that construct G. Initially we have a set of singletons {ele E}. Suppose we apply a
two terminal parallel (respectively, series) composition to two TTSP graphs Gy and
G and obtain the new TTSP graph Gb where x, u; a are sources and y, v, b are
sinks. Then we create BDT (Gb) by creating the root Pb (respectively, ,Sb) and make
BDT (Gy) a left subtree and BDT (G,) a right subtree. Thus in BDT (G), every leaf
represents an edge in G and each internal node Pb (respectively, ash) represents a
parallel (respectively, series) composition. Fig. 5(b) shows an example. Note that every
path in G has a corresponding route in BDT (G). For example, the path

P=v-3-b-5-c-7-d-8-e-9-w,
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shown in bold lines in Fig. 5(a), has the following corresponding route in BDT (G)"

PBD: (V, b) 3 P S S P S S sSt dSt

=(e,w).

Note that the vertices shown in bold face in the path PBDT, (b, c, d, and e), appear in
P in this order.

Let Tw be the smallest subtree in BDT (G) that includes vertices v and w. (Find
the nearest common ancestor and include the appropriate subtree.) Let T (respectively,
Tw) be the subtree of Tw in which v (respectively, w) exists as shown in Fig. 5(d).
We use aAb for representing either ash or aPb. Let Ab, Ae, and dAb be the root of
the subtrees Tw, T, and Tw, respectively. Then we have the following lemma:

LEMMA 7.1. Suppose Ay appears in PBDT" If Ay appears in T, then y is in P. If
Ay appears in Tw, then x is in P.

Proof Suppose Ay appears in T. The vertex v is in the TTSP graph with source
x and sink y. Thus every path from v to a vertex that is not in T must pass through
y. We can prove the other case in the same way.

COROIARY 7.2. Suppose there is a v w path in G and T, T, and T are defined
as above. Let Ab, Ae, and aAb be the roots of the subtrees T, T, and T, respectively.
Then we have the following"

(1) aAb Sb; that is, the root of Tw corresponds to a series composition, and c d.
(2) Every path from v to passes through the vertex c.
(3) Every path from s to w passes through the vertex c.
(4) Any v- path and any s-w path intersect at some vertex.

Proof. (1) If the root of T corresponds to a parallel composition, there is no
path from v to w. Thus Ab --Sb. And the series composition identifies the sink of C
and the source of aAb, thus c- d.

(2) Since there is a w-t path, t T. Therefore, from the proof of the above
lemma, every path from v to passes through the vertex c.

(3) We can prove this in the same way as (2).
(4) This is obvious from (2) and (3). l-I

ProofofLemma 6.5. Let k be the number of backedges in P. Let Bxy (Pxy) denote
an x-y path in G (G). We prove the lemma by induction on k.

Suppose k 1 and let e (w, v) be the backedge in P. Note that there must be a
v-w path in the underlying TTSP graph G. P can be represented as P PweP,. Pw
and P, are paths in G, since k 1, so that from Corollary 7.2, they pass through the
same vertex c. Therefore, we can express P as P PcPwePP,. Thus we obtain the
cycle C P,.weP.

Suppose the lemma holds for numbers less than k. Let E {el, e2,"" ", e} be
the backedges that appear in P in this order. Let e (wi, v) for 1 -< -</. Let ey (w.r, vy)
be the last backedge in En such that there is a path from vy to w in G. Assume that
ey el. (When ey e, we can easily modify the following proof.) Then as shown in
Fig. 5(e), P can be represented as P P,weB,w.resBj.,. Let P,. be an arbitrary s-vs
path in G, and let P1 Psj.B.,. Then P has backedges where <-k-1, because e
is not on P. From the induction hypothesis, P can be formed from an s-t path Ps,
and cycles {C ]j J}. Note that Ps. is part of P,; that is, there exists a vy-t path
such that P., PI.P.,. Suppose not. Let e--(x, y) be the first edge in P.. such that
y P,. Then there exists a backedge (z, x) in B.., and a cycle C such that (z, x) C.
Since there exists an x-v.r path and a vj.-w path in G, there exists an x-w path
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in G. This contradicts the definition of vf, since the backedge (z, x) is in Br, and thus
appears after ef in EB.

Thus Ps, Ps.rPr,, and the path P consists of PwlelB,w.l.ef, PI.,, and cycles
{CIjJ}. Let Pz=Pw, elB,w.efPs,. Since there is a Vr-wl path in G, from
Corollar.y 7.2, Pw, and Ps, intersect at some vertex e. Thus P2 can be expressed as

P2 PcCPc, where C PcwlelB,w.reyPl.. Therefore the path P consists of the path
PscPct, cycle C, and cycles {C [j J}. [-]

8. Conclusion. We showed that the two operations of vector summation (+) and
convex hull of union ([) defined on the set of convex polygons form a closed semiring.
We then investigated some properties of these operations. For example, the + operation
can be done in O(rn) time, where rn is the number of edges involved in the operation.

We then obtained the algorithm ZSC by using Kleene’s closure algorithm on the
above closed semiring. The algorithm ZSC solves the two-dimensional zero-sum cycle
problem, which has a close relationship to the problem of acyclicity in two-dimensional
regular electrical circuits. The complexities of our algorithm ZSC in some special cases
are O(n3) time for the one-dimensional labeling case, O(n4M) time for M-bounded
graphs, and O(n3m) time for BTTSP graphs, where n is the number of vertices and
m is the number of edges. We also showed that the undirected version of the zero-sum
cycle problem can be solved in O(m log m) time and that the zero-sum simple cycle
problem is NP-complete.

We make the following conjecture about the number of edges of the convex
polygons that appear in the algorithm ZSC:

CONJECTURE. Let G, T, and Ogij (T) be defined in the same way as in the text. Then

A(G) max Ioij( T)I :< m,
i,j,T

where rn is the number of edges in G.
If this conjecture is true, then algorithm ZSC runs in O(n3m) time on general

graphs.
After the extended abstract of this paper appeared in 16], Kosaraju and Sullivan

[18] showed that the zero-sum cycle problem for any dimension can be formulated in
terms of linear programming, and thus is solvable in polynomial-time; Cohen and
Megiddo [6] proved that the zero-sum cycle problem for any fixed dimension belongs
to the class NC and can be solved in the two-dimensional case in serial time O(nm).
As mentioned in the Introduction, we hope the results in the present paper are of
interest as a new connection between convex polygons and semirings, and as a novel
application of Kleene’s closure algorithm, even though faster algorithms are now
available for the zero-sum cycle problem.
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paper and valuable comments that improved the quality of the paper. In particular,
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ON THE COMPLEXITY OF A GAME RELATED TO THE DICTIONARY
PROBLEM*

K. MEHLHORN’, ST. NHER?, AND M. RAUCH’

Abstract. A game on trees that is related to the dictionary problem is considered. There are two players,
A and B, which take turns. Player A models the user ofthe dictionary and player B models the implementation
of it. At his turn, player A modifies the tree by adding new leaves and player B modifies the tree by replacing
subtrees. The cost of an insertion is the depth of the new leaf, and the cost of an update is the size of the
subtree replaced. The goal of player A is to maximize cost and the goal of B is to minimize it. It is shown
that there is a strategy for player A, which forces a cost of l-l(n log log n) for an n-game, i.e., a game in
which each player takes n turns, and that there is a strategy for player B, which keeps the cost within
O(n log log n).

Key words, dictionary problem, lower bound, hashing, search tree

AMS(MOS) subject classification. 68

1. Introduction. We consider a two-person game on trees, which is related to the
dictionary problem. The two players A and B take turns. Player A models the user of
the dictionary and player B models the implementation of it. At his turn, player A
modifies the tree by replacing a leaf by a tree consisting of a single node with two
children, cf. Fig. 1. This is called an insertion. The cost of an insertion is the depth of
the leaf replaced. At his turn, player B performs zero or more updates. An update
replaces a subtree by another subtree with the same number of leaves. A precise
definition is as follows.

FIG. 1. An insertion. The cost of an insertion is the depth of the new node v.

Let T be a rooted tree and v a node of T. A subtree rooted at v is a connected
subgraph of T with the following two properties:

(1) It contains v but no ancestor of v.
(2) If a node w v belongs to the subgraph, then all siblings of w also belong

to the subgraph.
A subtree T’ is complete if for every node w in T’ all children of w also belong

to the subtree. The complete subtree rooted at v is denoted by Tv.
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An update of a tree T is specified by a subtree T’ of T rooted at some node v of
T and a tree T" having the same number of leaves as T’. The result of the update is
a tree T, which can be obtained as follows"

(1) Delete all interior nodes of T’ from T.
(2) Make the root of T" a child of parent(v).
(3) Identify the ith leaf of T’ with the ith leaf of T" for 1 =< i_-< m, where m is the

number of leaves of T’.
The cost ofan update is the number of leaves of tree T’. Figure 2 gives an example

for an update of cost 6. The trees T’ and T" are shown bold. The leaves of T’ and T"
are numbered from 1 to 6.

FIG. 2

An n-game starts with a trivial tree consisting of a single node, and ends after
each player takes n turns. We will prove the following results:

THEOREM 1. There is a strategy for player A such that the cost of any n-game is

f(n log log n).
THEOREM 2. There is a strategy for player B such that the cost of any n-game is

O(n log log n).
Theorems 1 and 2 are proven in 2 and 3, respectively. Our game on trees models

all solutions to the dictionary problem where a search is performed by repeated splitting
of the dictionary until a dictionary of size one results. Special cases are multilevel
hashing and search trees.

In (multilevel) hashing schemes a hash function is used for the splitting process,
i.e., in each node of the tree a hash function h is stored, and the ith subtree of a node
is a dictionary for all keys that are mapped to by function h. Hashing with chaining
as well as the perfect hashing schemes of Fredman, Koml6s, and Szemeredi [FKS],
Aho and Lee [AL], and Dietzfelbinger et al. [DKMMRT] are examples of multilevel
hashing schemes. In these examples our definition of insertion cost fairly reflects the
cost of an insertion, but our definition of update cost underestimates the true cost
since it only measures the amount of structural change in the tree but ignores the cost
of finding appropriate hash functions.

In search trees, e.g., AVL-trees or (2, 3)-trees, comparisons between keys are used
for the splitting process. The updates correspond to small structural changes of the
search tree; e.g., Fig. 2 shows how a node of degree 4 is split into 2 nodes of degree
2 in a (2, 3)-tree. In these examples our definition of update cost fairly reflects the true
cost, but our definition of insertion cost underestimates the true cost because the
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amount of work needed to identify the successor of a node cn the search path depends
on the degree of the node.

Together, these examples show that many solutions for the dictionary problem
are within our model, and hence the lower bound given in Theorem 1 applies to them.
The examples also indicate that the upper bound given in Theorem 2 does not imply
a solution to the dictionary problem with the same performance, in fact, no such
solution is known.

The work reported here extends work of Dietzfelbinger et ai. [DKMMRT], who
showed that player A can force a cost 12(n log n) in an n-game provided that player
B always has to replace complete subtrees. This is a severe restriction and excludes
balanced search trees. Note that Dietzfelbinger et al. [DKMMRT] have shown that
in their model there is always a single turn (of either A or B), that has cost l)(v/-ff) in
any n-game. However, balanced search trees keep the cost of any turn in O(log n)
and hence are excluded by their model. They are included in our model.

2. The lower bound. Player A follows a very simple strategy called the "insert-into-
heaviest-child-strategy" (IHS). Let the weight w(v) of a node v be the number of
leaves of the complete subtree rooted at v. Then the path of insertion Vo, vl,"’, Vl is
defined as follows: Vo is the root of the current tree, vi+l is a heaviest child of vi, and
Vl is a leaf.

THEOREM 1. Ifplayer A plays according to the "insert-into-heaviest-child-strategy,"
then the cost of an n-game is l-l( n log log n).

Proof Consider any n-game where A plays IHS. We may assume without loss of
generality that n=>4 3 7. Let K=max{kJ; k2k-1)<=n/4}. Then K =O(loglog n).
We now distinguish cases. Assume first that there are at least n/2 insertions that have
cost at least K + 1 each. Then the total (insertion) Cost is clearly l-l(n log log n).

Assume next that there are at least n/2 insertions with cost K or less. Let
D=(n/4) /2:-). Then D>-_K>-_3 by the definition of If. For a node v of tree T we
use depth (v, T) to denote the depth of node v in T and deg (v, T) to denote the degree
o" node v in T; the depth of the root is 0. Nodes are created and destroyed by updates
and insertions. Consider an update where subtree T’ is replaced by subtree T". Then
T’ and T" have the same number of leaves and the update identifies the ith leaf of T’
with the ith leaf of T". We therefore say that the update destroys the interior nodes
of T’ and creates the interior nodes of T". The leaves of T’ are identified with the
leaves of T" and hence are said to exist before and after the update. In the example
of Fig. 2 the update destroys two nodes and creates three nodes. An insertion creates
a leaf and a node of degree 2. With this definition, the degree of a node never changes
during its existence. We may therefore write deg (v) instead of deg (v, T). The depth
of a node v, however, can change over time. For the ith update we use V to denote
the set of nodes of degree 2 or more created by the update. Also, V i"= V is the
set of nodes that are created by updates and have degree two or more.

LEMMA 1. Consider an update of cost C. Let V’ be the set of nodes of degree at
least 2 that are created by the update. Then 2C>- v, deg (v).

Proof This follows from the simple observation that v, deg (v) is at most twice
the number of lea,es of the new subtree T". [3

We call a node v of T big (with respect to T) if depth (v, T)< K and deg (v)_->
D2"-deptho’T-l. Note that an update may change the status of a node from big to nonbig
and vice versa by changing the depth of the node. Since D => 3, only nodes created by
updates can ever be big.
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LEMMA 2. Every insertion of cost at most K, except the first n/4, goes thrmtgh a
big node, i.e., the path of insertion contains a node which is big with respect to the current
tree.

Proof Let Vo, vl, ", v with l-< K be the path of insertion. Let d be the degree
of node v and let w be the weight of node v, 0-<j =< 1. Then W 1, since V is a leaf,
Wl-l<--d-i "Wl since a plays IHS, and Wo >- n/4. Thus n/a<-_ I-I-__lo dj and hence dj
D2:-j-’ for some j.

Since there are n/2 insertions of cost K or less, we conclude that there are n/4
insertions that go through a big node. For every such insertion I let v(I) be the big
node of largest depth on the path of insertion; we say that I is assigned to v. For every
node v let n(v) be the number of insertions assigned to v. Note that n(v)>0 implies
v V and Zv n(v) >= n/4.

LEMMA 3. n(v)=<deg (v)/D for every vertex v V.
Proof Consider any vertex v. Let be the minimal integer such that deg (v)-_>

D2K-’-’. Consider any insertion I that is assigned to v. As in the proof of Lemma 2,
let Vo, vl,. ., v with l_-< K be the path of insertion, let d be the degree of node v,
and let w be the weight of node vj, 1 -<j _-</. Since v v(I) we have v Vi+p for some
p>-0. Also, the nodes Vi+p+l, Vi+p+2, ", Vl-1 are not big at depths i+p+ 1,. ., l-l,
respectively, and hence di+p+l o2l’:-(i+p+l)-, dl-1
12I-’- D’-’- D2<- D-’-’-’- <_-deg (v)/ D.

It is now easy to complete the proof of Theorem 1. We have by Lemmas i-3

total update cost>= deg (v)/2
i=1 vV

>- , n(v). D/2
vV

>=n. D/8
f(n log log n).

3. The upper bound. Player B maintains a (balanced) tree where
(1) all leaves have the same depth, and
(2) the nodes of height (leaves have height 0) have degree at most 2.22-’) and

at least degree 2’-’, except for the root which has degree at least 2.
Clearly, if such a tree has depth K then it has at least 2’- leaves and hence

any insertion in an n-game has cost O(log log n).
Player B updates the tree as follows. He first restores property (1) by incorporating

the new subtree into its parent (see Fig. 3).
This has cost at most 5 and may create a node of degree 5. Player B then walks

back to the root. When it encounters a node of degree 2 22’-+ 1 at height i, it then
splits the node into two nodes of degree 22’-’ and 22’-’+ 1, respectively, and increases
the degree of the parent node. This has cost 0(22’). If the root is split a new root of
degree 2 is created. In this way property (2) is maintained.

We next compute the total update cost. Let s be the number of times a node of
height is split. Then Sl -< n, clearly, and Si<=Si_l/22’-’, since a split at height i-1
increases the degree of a node at height by one, nodes at height start with degree
at most 22’-’+ 1, and split when their degree reaches 2 22i-1-F 1. Thus s <- n/22i-2. The
total update cost is

0 n + Y si" 22’ O(n log log n).
iO(loglogn)

This proves Theorem 2.
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FIG. 3. B’s first move after an insertion.

4. Conclusion. We studied the complexity of a game on trees. The game encom-
passes many solutions to the dictionary problem, in particular all balanced tree and
multilevel hashing schemes. We have shown that in our model the amortized cost of
maintaining a dictionary of size n is O(log log n).

[AL]

[DKMMRT]

[FKS]

REFERENCES

H. V. AHO AND D. LEE, Storing a dynamic sparse table, 27th IEEE Symposium on
Foundations of Computer Science, 1986, pp. 55-60.

M. DIETZFELBINGER, A. KARLIN, K. MEHLHORN, F. MEYER AUF DER HEIDE, H.
ROHNERT, AND R. TARJAN, Upper and lower bounds for the dictionary problem, in
Proc. 29th IEEE Symposium on Foundations of Computer Science, 1988.

M. L. FREDMAN, J. KOMLt3S, AND E. SZEMERIDI, Storing a sparse table with 0(1) worst

case access time, J. Assoc. Comput. Mach., 31 (1984), pp. 538-544.



SIAM J. COMPUT.
Vol. 19, No. 5, pp. 907-911, October 1990

(C) 1990 Society for Industrial and Applied Mathematics

010

LINEAR-TIME TEST FOR SMALL FACE COVERS IN ANY FIXED
SURFACE*

D. BIENSTOCK?

Abstract. For any fixed surface S and fixed integer k _-> 0, a linear-time algorithm is presented that tests
whether selected vertices of a graph drawn on S can be covered with k or fewer faces.

Key words, graph algorithms, polynomial time
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1. Introduction. Consider the following computational problem, called FACE
COVER or DISK DIMENSION (refer to [BM], [FL], [FLS], or [J] for background).
Given a graph G, drawn on a surface S, a subset X

_
V(G), and an integer k _-> 0, can

the elements of X be covered with at most k faces? This problem has two variants:
(i) G is given with a fixed embedding in S,
(ii) We must optimize over all possible embeddings of G in S.
This problem has applications in various algorithmic settings. In particular, we

mention the recent work of Schrijver on homotopic routings, where a polynomial-time
algorithm for (i) is needed (see IS] for the planar graph case, later extended to arbitrary
surfaces).

In [BM] it was shown that if S is the sphere (the planar case) then (i) and (ii)
are NP-complete, but that for each fixed k both (i) and (ii) can be solved in linear
time. More precisely, the complexity of the algorithm is at most 2kn, where n is the
number of vertices and c is a fixed constant.

The purpose of this paper is to show that for any fixed surface S and fixed k_-> 0,
there is a linear-time algorithm for (i). The algorithm described here will use the one
given in [BM] as a subroutine, but otherwise this paper is self-contained: any linear-time
algorithm for the planar case of (i) could be used instead. We remark that, when
dealing with a problem in topological graph theory, it is often desirable to reduce the
problem on an arbitrary surface to a similar problem in a simpler surface, in particular
to a similar problem concerning planar graphs. This reduction is not always an easy
task. This paper shows that, for the face cover problem, the reduction can indeed be
easily carried out, and in fact the complexity of the overall algorithm remains linear
in the size of the original problem.

We will need some facts and definitions. We refer the reader to [M] for topological
background. Some of our definitions are similar to those in [RS1]. A surface is a
compact connected two-dimensional manifold with boundary. We denote by E(a, b, c)
the surface obtained by adding to a sphere a handles and b crosscaps, and cutting
out c pairwise disjoint open disks. Every surface is homeomorphic to some E(a, b, c).

If S is homeomorphic to E(a, b, c), the Euler characteristic of S, x(S), equals
2-(2a + b + c), and its number of boundary components, y(S), is c. Given S, an O-arc
in S is a homeomorphic image of the unit circle {(x, y) R2: x2+y2= 1}. An I-arc is

Received by the editors February 3, 1989; accepted for publication (in revised form) February 13,
1990. This research was carried out while the author was at Bell Communications Research, Morristown,
New Jersey 07960.

? Department of Industrial Engineering and Operational Research, Columbia University, New York,
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a homeomorphic image of the unit interval {0-< x-< 1}; the images of 0 and 1 are the
ends of the/-arc.

For convenience, we will use the same terminology to refer to a graph and a given
drawing of it on a surface. Thus if G is drawn on S, V(G) corresponds to a finite
subset of S, each edge is an/-arc with corresponding ends, and different edges may
meet only at their ends. We wil.1 assume that any drawing of a graph is such that all
intersections with the boundary of the surface occur at vertices. The subset of a surface
given by the drawing of a graph G is denoted by D(G). If D(G) is removed from
the surface, the resulting pieces of the surface are called faces. The dual graph of G
is the (combinatorial) graph whose vertices are the faces of G, and such that two faces
are adjacent if they are incident to a common edge of G.

Given G, drawn in S, and O- or/-arc F is called G-standard if
(i) r V(G) ,
(ii) F f’l D(G) is finite and each intersection point is a crossing, and
(iii) F crosses each face of G at most once.

2. The algorithm. Before describing the algorithm we need some observations.
Let us first show how to extend a linear-time algorithm for the planar case of problem
(i) to handle graphs withforbiddenfaces (that is, faces that cannot be used for covering).
(We remark that this feature is easily built into the algorithm of IBM] without worsening
the linear-time performance.)

Suppose we want to forbid a face f Then subdivide each edge in the boundary
off once, add a new vertex drawn in f, and join this vertex to all vertices in the closure
of f (including the new ones). It is seen that, without loss of generality, none of the
new faces will be used towards a cover.

The second observation is that we can transform our covering problem to one of
covering distinguished faces. As above, let X V(G) be the set of vertices to be
covered. Then we expand each x X into a small polygon p(x), such that each vertex
of p(x) is adjacent to a distinct neighbor of x, with p(x) drawn in S in the obvious
way. We denote by Go the resulting graph and by Xo the set of polygons resulting
from X. The problem instance is denoted by (Go, Xo). We write z(Go, Xo) for the
covering number, i.e., the minimum cardinality of a set of faces Z of Go, none of
them in Xo, such that every element of Xo is adjacent to an element of Z in the dual
graph Go* of Go

We need some preliminary results.

(2.1) We may assume that every face of Go is in Xo or is adjacent to an element
of Xo.

Proof If not, we can remove an edge and obtain an equivalent problem.
In what follows we will assume (2.1) holds. The following result is found in IBM],

for the planar case, and its proof is not different here, but we include it for completeness.

(2.2) If z(Go, Xo)--< k then the diameter of Go* is at most 8k + 7.

Proof Let Z be a cover of Xo, [Z[-< k. Then the maximum distance in (Go*) from
any face f to Z is at most one iff is in X0, and at most two, otherwise, by (2.1). The
conclusion follows by considering every fourth face in a diameter of Go*.

Remark 1. The computation of the precise diameter of Go* may require more than
linear time. However, the main implication of (2.2) is that the diameter may be assumed
to be a. most O(k). This can be tested in linear time by computing the distance from
a fixed face to all others. If true, then we can construct a path of length at most 16k + 14
between any two faces.
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An O-arc F is called critical if
(i) F is Go-standard and disjoint from the boundary of S.
(ii) F is non-null-homotopic in the surface obtained from S by pasting a disk

onto each boundary component.
Remark 2. A critical O-arc F may be orientation reversing, that is traveling once

around F will "reverse" the local orientation on S. In this case a narrow band of S
cut along F will be homeomorphic to a M/Sbius strip. If F is not orientation reversing,
then it essentially loops around a handle of S.

A Go-standard O-arc is called short if it intersects at most 32k + 29 faces.
The main result that drives our algorithm is the following.

(2.3) Suppose 2 x(S) 3’(S) > 0 and -(Go, Xo) --< k.
Then S contains a short critical O-arc.

Proof Since 2 x(S) y(S) > O, there is a critical O-arc F1. Suppose F1 is not
short; let fl, f2 be two faces intersected by F, at distance 16k+ 15 along F. Let Pi,

1, 2, be points in f contained in F1. Then F is the union of two/-arcs J, J’, with
ends p, P2 (say J intersects 16k + 16 faces). There is a path in Go* between f and f2
of length at most 16k+ 14 (see Remark 1); this gives rise to a Go-standard /-arc L
with ends Pl, P2 which intersects at most 16k + 15 faces. Then at least one of J t.J .L,
J’t.J L includes a critical O-arc. In the first case we obtain a short critical O-arc; in
the second, a new critical O-arc that intersects fewer faces than F1 is obtained.
Proceeding inductively, we obtain the desired result.

Using (2.3), we can now obtain a linear-time algorithm.

Step 1. Reduction to the planar case. Let F be a short critical O-arc, and let S1
be the surface obtained from S by cutting along F. It may be verified that x(SI) x(S),
but that S has one more boundary component than S. Thus 2-x(S)-3"(S)<
2-x(S)- 3’(S); in other words, S is a simpler surface than S. Each intersection point
ofF with D(Go) gives rise to two points located in the additional boundary component
of S; we draw new vertices at all such points of S to obtain a graph G on S1. Since
F is Go-standard, cutting along F splits some faces of Go into pairs of faces of G.
We call these faces of Go split faces. Each face of Go that is not split gives rise to a
unique face of G1. Let X1 be the set of faces of G1 resulting from Xo (split or otherwise).

It is not difficult to see that if it is the case that -(Go, Xo)--< k, then one also has
’(G1, X1) --< O(k). Thus we can repeat the same basic procedure: test.for short distance
between all faces of G1, and if verified, cut S along a (properly defined) short critical
O-arc. Proceeding inductively, we will either at some point conclude that -(Go, Xo) > k,
or after m-1 2-x(S)-y(S) steps, we will arrive at a triple Sin_l, Gm-1, Xm-l,
where 2-X(S,,_)-y(S,_)=0. In other words, S,_ is homeomorphic to a sphere
with 3’(S,-1) holes.

Next, we transform S,,_ into a surface S, homeomorphic to a sphere by pasting
a disk onto each boundary component. Also, we transform G,_ into a graph G, by
joining any two consecutive vertices along a boundary component with an edge, drawn
as the corresponding segment of boundary component. Thus Gm contains some new
special faces that we call boundary faces, each corresponding to a hole in Sm-, and
there is a bijection between the remaining faces of G, and the faces of G,_I. Let X,
correspond to Xm-.

Step 2. Computing -(G,, X,). For the final step, we would like to use any
linear-time algorithm for the face cover problem in the plane, which tests for small
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r(G,, X,), with the boundary faces forbidden. But before we can do this, we have
to take care of the fact that some faces of Go have been split. If a face f of Go, not
in X0, was split, then we must use either none or all of its "descendants" in G, towards
a cover of X,. Furthermore, in the latter case, we must charge the use of all the
descendants (to the value of the face cover) as costing only one unit. Finally, iffe Xo
is split, then we only have to cover at least one descendant of f, not necessarily all of
them.

This task is simple, however, because the total number of split faces of Go is
small: at most O(k. 2(2-x(s)-r(s))), because all the cuts are short. The total number of
descendants of any split face in Xo is also small, at most 2(2-x(s)-v(s)). This allows us
to try all possible choices of descendants. Let Jo denote the set of split faces of Go
that are not in Xo.

In short, for each split face in Xo we choose a "representative" descendant in
X,, which defines a set X 1, c_ X, to be covered. We also select a subset Fo c_ Jo, all
of whose members are to be forbidden towards a cover (their descendants in G, will
all be forbidden). The remaining set Ao of faces in Jo are all to be used; we remove
from X1. any faces covered by descendants of elements of Ao. This defines a set
X X

Our task is then to check whether r(G,, X) -< k -IAol, where all the descendants
of faces in Fo, as well as the boundary faces, are forbidden. For this test we can now
use any linear-time algorithm for testing small face covers in the plane, extended to
handle forbidden faces as described before. This concludes the description of the
algorithm.

To analyze the complexity of the overall algorithm, we note that the total number
of choices in Step 2 is bounded, it is at most O(k. 22-xs)-s)). Hence the algorithm
runs in time O(n), as desired, pending some simple technical issues concerning the
algorithmic handling of surfaces, which are described below. We point out that if we
use the algorithm of [BM] as the subroutine for solving planar face cover problems,
then the constant in the O() will be singly exponential in k and in 2-x(S)-T(S).
Whether this can be improved is an open problem.

In the discussion above we did not mention how the surface S is to be represented,
and how the drawing of G on S is given, because these issues are not really relevant
to the algorithm, and it is easy to pass from one representation to the other. It is
particularly simple to use a polygon representation of S. Here S is given by a polygon
P, some of whose sides are to be identified in pairs, with prescribed orientations. Any
surface can be obtained in this manner (see [M]). A graph drawn in S has essentially
a planar representation in P. The polygon representation makes it an easy task to find
a critical O-arc in linear time, and given such an O-arc, (2.3) yields a linear-time
procedure that produces a short critical O-arc. Other tasks, such as constructing du"
graphs, are also easily seen to require linear time.

3. Concluding remarks. It would be interesting to obtain linear-time algorithms
for the nonfixed embedding version (ii) of the face cover problem (it is known that
there are polynomial-time algorithms for this problem, see [RS2]). One reason that
makes this task difficult is the following. For planar graphs there is a structure theorem
that explains when a graph has a unique plane embedding (precisely when the graph
is 3-connected), and how to generate all embeddings, otherwise. This result is used
explicitly in the linear-time algorithm of IBM] for version (ii), as well as used implicitly
in most planarity testing algorithms. However, for higher surfaces (even simple ones)
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the known theorems are not as strong. See [N] for the projective plane case. This
remains an interesting open area of research.

It should be added that the Robertson-Seymour results on graph minors yield
that there exist O(//3) algorithms for (ii). Unfortunately, these results are nonconstruc-
tive in the sense that one knows that such algorithms exist, without explicitly having
the algorithms. Recently, Fellows and Langston have been able to improve some of
the results arising from the Robertson-Seymour constructions, and for case (ii) the
improvements may yield an explicit O(//3 log//) algorithm (personal communication).

The face cover problem is also interesting from a nonalgorithmic point of view.
Notice that the face cover problem is a special case of the set cover problem. Con-
sequently, the related packing problem should be of interest. In the language of this
paper, the packing problem arises as follows. Given an instance of the face cover
problem with graph G and distinguished subset X, an obvious lower bound to ’(G, X)
is the maximum cardinality of a subset of X, with the property that no two elements
of the subset lie on a common face of G. Let us denote this parameter v(G, X). What
is the relationship between -(G, X) and v(G, X)? In [BD] it is shown that for any
fixed surface S there is a constant c c(S), so that for any G and X, ’(G, X) - cv(G, X).
In other words, ’(G, X) and v(G, X) are always of the same order of magnitude.
Therefore, in particular, there is a polynomial-time approximation algorithm for
computing r(G, X), based on linear programming, with bounded ratio in any fixed
surface. We stress here that these results apply to a//y G and X, not just the "fixed k"
cases.
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OPTIMAL SIZE INTEGER DIVISION CIRCUITS*

JOHN H. REIFt AND STEPHEN R. TATEr

Abstract. Division is a fundamental problem for arithmetic and algebraic computation. This
paper describes Boolean circuits (of bounded fan-in) for integer division (finding reciprocals) that
have size O(M(n)) and depth O(lognloglogn), where M(n) is the size complexity of O(logn)
depth integer multiplication circuits. Currently, M(n) is known to be O(n log n log log n), but any
improvement in this bound that preserves circuit depth will be reflected by a similar improvement
in the size complexity of our division algorithm. Previously, no one has been able to derive a
division circuit with size O(nlog n) for any c, and simultaneous depth less than (log n). The
circuit families described in this paper are logspace uniform; that is, they can be constructed by a
deterministic Turing machine in space O(log n).

The results match the best-known depth bounds for logspace uniform circuits, and are optimal
in size.

The general method of high-order iterative formulas is of independent interest as a way of ef-
ficiently using parallel processors to solve algebraic problems. In particular, this algorithm implies
that any rational function can be evaluated in these complexity bounds.

As an introduction to high-order iterative methods a circuit is first presented for finding polyno-
mial reciprocals (where the coefficients come from an arbitrary ring, and ring operations are unit cost
in the circuit) in size O(PM(n)) and depth O(lognloglogn), where PM(n) is the size complexity
of optimal depth polynomial multiplication.

Key words, algebraic computation, integer division, circuit complexity, powering

AMS(MOS) subject classiflcatiom. 68Q25, 68Q40

1. Introduction. in arithmetic and algebraic computation, the basic operations
are addition, subtraction, multiplication, and division. It is a fundamental problem
to find efficient algorithms for division, as it seems to be the most difficult of these
basic operations. Problems are studied with both sequential models (Turing machines
or bit-operation RAMs) and parallel models (circuits and bit-operation PRAMs);
the model that we use in this paper is the circuit. A circuit is an acyclic directed
graph with a set of nodes designated as input nodes (with zero fan-in), a set of
nodes designated as output nodes (with zero fan-out), and a function basis with the
elements labeling all noninput nodes. The value at any node is computed by applying
the function labeling that node to the values of its predecessors, which are found in
the same way this goes on recursively until the input nodes are reached. Assigning
a vector of values to the input nodes and computing the value of each output node, a
circuit can be viewed as computing a function over vectors in the value domain. All
circuits discussed in this paper have the additional restriction that every node must
have fan-in bounded by some constant (without loss of generality, we can assume
that every node has no more than two predecessors). The size of a circuit is the
number of nodes in the circuit, and the depth of the circuit is the length of the longest
path from an input node to an output node. The circuits used in most of this paper
have function basis made up of the Boolean functions AND, OR, and NOT; these
are called bounded fan-in Boolean circuits and are the standard model for arithmetic
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computation. In 3 (dealing with polynomial reciprocals) we use a circuit model with
operations in an arbitrary ring as the basis.

Optimal algorithms have been known for quite some time for addition and sub-
traction, and good algorithms exist for multiplication. If we let SM(n) be the sequen-
tial time complexity of multiplication and M(n) be the size complexity of O(log n)
depth multiplication using the circuit model, then the best known results are due to
SchSnhage and Strassen [11] who give an algorithm based on discrete Fourier trans-
forms with SM(n) O(n log n log log n) and M(n) O(n log n log log n).

The problem of integer division was examined by Cook in his Ph.D. thesis [5],
and it was shown by using second-order Newton approximations that the sequential
time complexity of taking reciprocals is asymptotically the same as that of multipli-
cation. Unfortunately, this method does not carry over to the circuit model for
size O(M(n)) division circuits, we require depth t(log2 n) from a direct translation
of Cook’s method of Newton iteration. In addition, no one has been able to derive
a new method for integer division with size O(M(n)) and depth less than ft(log2 n)
until now.

A long-standing open question has been to match the optimal depth bounds ob-
tained for addition, subtraction, and multiplication with a division circuit of polyno-
mial size. Until 1983, no one had presented a circuit for finding reciprocals with poly-
nomial size and depth better than t(log2 n), then Reif presented a logspace uniform
circuit based on wrapped convolutions with depth O(logn(loglogn)2) and slightly
more than polynomial size [8]. A year later Beame, Cook, and Hoover presented a
polynomial time uniform circuit based on Chinese remaindering with polynomial size
and depth O(logn) [3]. A revised paper by Reif reduced the depth bounds on the
logspace uniform circuit to O(log n log log n) while simultaneously achieving polyno-
mial size [9]. For giving deterministic space bounds, logspace uniform circuits are
vital as explained by Borodin [4]; in addition, the polynomial time uniform circuits
that have been given use polynomial size tables of precomputed values, which a purist
might find objectionable.

The size bounds for the above circuits are at least quadratic, and further work has
been done to decrease the size bounds while keeping the depth the same. Shankar and
Ramachandran [12] make a significant step in this direction by using discrete Fourier
transforms to reduce the problems in size. They then apply either Reif’s circuit (to
give a logspace uniform circuit), or the Beame, Cook, and Hoover circuit (to give a
polynomial time uniform circuit). The best depth bounds for each type of circuit are
matched, and the size of both circuits is O(nl+/e4), for any sufficiently small e > 0.
Independent work on a polynomial time uniform circuit by Hastad and Leighton [6]
resulted in an efficient circuit for Chinese remaindering which gave a division circuit
of size O(n+) and depth O((1/e2) log n), for e > 0.

Until 1988, no one had given a circuit with depth less than 9.(log2 n), and si-
multaneous size O(n logc n) for any c. A preliminary version of this paper [10] gave
logspace uniform circuits that have size O(M(n)) and depth O(log n(log log n)2). Now
we improve these results and present logspace uniform circuits that have size O(M(n))
and depth O(log n log log n). Newton approximations of high degree are used to gain
as many bits as possible in the early stages, and thus reduce the overall number of
stages required. An important property of the new algorithm is that the size bound
of our circuit is asymptotically tight (within a constant factor) with the optimal size
bound of multiplication, so further improvements in multiplication would be mirrored
by improvements in integer division. Furthermore, by a classic result given in Aho,
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Hopcroft, and Ullman [1], multiplication can be done with a constant number of recip-
rocals, so our circuit has optimal size, while matching the best known depth bounds
for logspace uniform circuits. A result of Alt [2] immediately applies to our results to
give as a corollary that any rational function can be evaluated in O(M(n)) size and
O(log n log log n) depth.

We will first show how to compute reciprocals of polynomials in size O(PM(n))
and depth O(log n log log n) where PM(n) is the size complexity of O(logn) depth
polynomial multiplication. The polynomial problem provides a good introduction to
high-order iterative methods. High-order iterative methods date back to Euler; a
general discussion of high-order iteration formulas can be found in Traub [13]. The
method of using high-order Newton approximations is of independent interest as a
way of efficiently using processors in a parallel system.

2. Algorithm overview. In Cook’s reduction of division to multiplication, he
used second-order Newton approximations with each successive stage dealing with
twice the number of bits as its predecessor. The sequential complexity of a single
stage of second-order Newton iteration is O(SM(n)). Since SM(n) must be at least
linear, the geometric progression of approximation lengths makes the sum over all
stages no more than O(SM(n)). However, the circuit model of multiplication has size
M(n) and depth O(log n), and both size and depth must be summed over all stages.
The same effect is noticed with the geometrically decreasing sizes, and the overall
size of Cook’s division algorithm is O(M(n)). Unfortunately, since the depth is only
logarithmic, the fact that n is geometrically decreasing is not enough to keep the total
depth from increasing to 2(log2 n) in the summation.

Our key observation was that since the size and depth of the first stages in Cook’s
algorithm are so small, considerably more work can be done than a simple second-order
approximation. Our algorithm consists of two parts: part A uses high-order Newton
approximations, and part B extends this result to n bits using O(loglogn) second-
order approximations. We present a formula for calculating the kth order Newton
iteration for the reciprocal problem which increases the accuracy of an approximation
(in bits) by a factor of k. In the early stages, k can be made large, so much more
work can be done on each stage than simply doubling the number of bits as done by
Cook.

The value of k for a particular stage is selected by making the size of every
stage meet the same bound. The result is that the number of approximation stages
required drops from 2(log n) to O(log log n) for both integer reciprocals and polyno-
mial reciprocals. The required number of iterations is heavily influenced by the size
complexity of taking large powers, and for integer powering we present a new, size
efficient powering algorithm.

3. High-order iterations for polynomial inverse. Let R {D, +, ., 0,1}
be an arbitrary ring; we define a polynomial p(x) of degree n- 1 in R[X] to be
p(x) ’- xi=0 ai In this section we will often define a new polynomial of degree k- 1
by using the coefficients of the k highest degree terms of a higher-degree polynomial.
The degree k- 1 polynomial derived in this way from p(x) is denoted by pk(x)

k-1 x In problems dealing with polynomials we use the bounded fan-ini’-O an-k+i
circuit model, but allow each node to compute either addition, multiplication, or
reciprocation in the ring R in unit size and unit depth. Note that since reciprocation
is allowed, some computations may be undefined.

The polynomial reciprocal problem as defined in Aho, Hopcroft, and Ullman [1]
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is to calculate a polynomial q(x) from a (n- 1)st degree polynomial p(x) E R[X] such
that

(1) q(x) RECIPROCAL(p(x))=
k p(x) J"

It is easy to see that q(x) must have degree n- 1.
As previously mentioned, high-order iterative methods take an estimate of length

d, and produce a new estimate of length kd. In the case of polynomials, we use
RECIPROCAL(pd(x)) as the length d "estimate" note that RECIPROCAL(p(.x))
can be written as RECIPROCAL(pn(x)). To produce the estimate of length kd, first
calculate the intermediate polynomial

k-1

j=O

where s(x)- RECIPROCAL(pd(x)). Now let

(3) q(x)= X(k_l)(kd_2)

LEMMA 3.1. Given s(x) RECIPROCAL(pal(x)), the polynomial q(x) computed
from (3) is exactly RECIPROCAL(Pkd(X)); furthermore, q(x) can be computed in
O(k3dlog(kd)) size and O(log(kd)) depth,

Proof. First we prove the correctness of the iteration formula (3). The lemma can
be stated in a different (but equivalent) way; that is, that (3) produces a polynomial
q(x) such that q(x)Pkd(X) x2kd-2 + t(x) where t(x) is some polynomial of degree
les than kd- 1. The polynomial s(x) satisfies pd(x)s(x) x2d-2 + tl(x), where
degree[tl(x)] < d- 1.

Since Pkd(X) pd(x)x(k-i)d + p’(x) (where degree[p’(x)] < d(k- 1)- 1), mul-
tiplying by s(x) gives pkd(X)S(x) x(k+)d-2 + x(k-)dt(x) + s(x)p’(x). For sim-
plicity of notation, let f(x) x(k+l)d-2 and g(x) --(x(k-1)dtl(X) -f- s(x)p’(x)), so
Pkd(X)S(X) f(x)- g(x). Using this, notation the iteration formula gives

k-1

pkd(x)r(x) If(x) g(x)] E[f(x)]k-J-l[g(x)]J
j=0

k-1 k

j=0

If(x)] k -[g(x)]k

X(k+l)kd-2k [--(X(k-1)dtl(X)-- S(x)p’(x))] k

Now doing the division by x(k-)(kd-2) (which is actually just a shift of coeffi-
cients) and discarding the remainder, we get

pkd(X)q(x) x2kd-2 [ [-(x(k-1)dtl(x) A- 8(x)p’(x))]k ]x(k_l)(kd_2)

The floor function for the division of polynomials is analogous to the floor function applied to
integers. In other words, in (1), q(x) is the unique polynomial such that x2n-2 q(x)p(x) + r(x),
where r(x) is the remainder and satisfies degree[r(x)] < degree[p(x)].
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To simplify notation, let

(x))] ]
so x + t(x).

Examining the degrees of the components of t(x) we see that the numerator is
just g(x) which, on closer examination, satisfies degree[g(x)]

_
kd- 2. After the

powering of g(x) we see that degree[g(x)]k <_ k2d- 2k. The division gives t(x) with
degree[t(x)] _< kd- 2, and the correctness of our formula is proved.

To determine the complexity of the iteration formula, first note that a polynomial
of degree kd- 1 can be raised to the kth power in size O(k2dlog(kd)) and depth
O(log(kd)) by using discrete Fourier transforms (see, for example, [9]). There are k
different powers to take and add up, and this cost dominates the entire calculation.
The total size is O(k3dlog(kd)), and the total depth is O(log(kd)).

We repeatedly apply the iteration formula of (3) to get the complete polynomial
reciprocal algorithm. The details are described in the proof of the following theorem.

THEOREM 3.2. The reciprocal of an (n- 1)st degree polynomial p(x) as defined
above can be computed in O(PM(n)) size and O(logn log log n) depth, where PM(n)
is the size complexity of O(log n) depth polynomial multiplication.

Proof. Without loss of generality, we can assume that n is a power of two as
explained in Aho, Hopcroft, and Ullman [1]; in particular, we let n 2m for some
integer m. Let f(i) [m(1 (2/3)-1); now we can define a sequence of values
by d 2f(). Note that dl 1. Letting p(x) anXn-1 + p(x), then a is the
reciprocal of the degree 0 polynomial that serves as the base of our algorithm.

The order of the iteration formula that we use at stage is ki 2f(i+l)-I(i),
and it is easy to show that f(i + 1)- f(i) <_ (m/3)(2/3)- + 1. Substituting actual
values for di and ks in the complexity bounds, stage takes size O(n log n) and depth
O(log n). The number of iterations is O(log log n) (this is easy to see it can be
verified by solving m(1 (2/3)i-) m- 1), so the total size of all stages of this
algorithm is O(n log n log log n), and the total depth is O(log n log log n).

However, the algorithm that was just described is not quite what we use. If we
take the first n/log2n coefficients of p(x) and find the reciprocal of the polynomial
defined by these coefficients, then letting n n/log2n the previously mentioned
algorithm takes size O(n’ log n’ log log n’) O(n) and depth O(log n log log n). This
is part A of our polynomial reciprocal algorithm.

Part B is a series of second-order iterations (using the result of part A as an
initial estimate), and the required number of stages is O(loglog n). Part B is easily
seen to have size O(PM(n)) and depth O(logn log logn). The total complexity of our
polynomial reciprocation algorithm is the sum of parts A and B, so the total size is
O(PM(n)), and the total depth is O(logn log logn).

4. Calculating integer powers. At the heart of our circuit for integer recipro-
cals is an improved modular powering algorithm based on previous results of Reif [9],
and Shankar and Ramachandran [12]. Both previous algorithms use divide and con-
quer (by Discrete Fourier Transform) to work on powering problems with smaller
numbers in parallel. For our division circuit, we need a circuit for mth order New-
ton iteration of an n bit number that has size. O(nm(1)(logn)()). Unfortunately,
the powering algorithm in Reif [9], has size that is quadratic in n, and the circuit of
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Shankar and Ramachandran [12], though it improves the size bounds, also has size
that grows too fast in n for our intended application.

The divide-and-conquer approach of Shankar and Ramachandran [12], reduces
the number of bits at each stage, but the power remains the same throughout. In
our algorithm, we reduce both the number of bits and the power at each stage. Note
that to raise an n bit number- x to the mth power, where m is a perfect square, we
can first raise x to the x/th power, and then raise this result to the v/’th power.
Unfortunately, m is often not a perfect square, so let the first power be
Next, see if pl (p / 1) <_ m, and if it is, the second power we take will be P2 P / 1;
if p (Pl / 1) > m, then the second power will be just P2 P. The number x is first
raised to the pith power, and this result is then raised to the p2th power; the final
result is xPlP2o Now since piP2 will usually not be m, we need to calculate an error
term e = m- pip2. If we take xe and multiply by the preceding result, the result is
the desired answer of xm. A simple calculation shows that e < r, so the original
powering problem has been reduced to three smaller powerings, each of size v/.
Note that the calculation of xplp2 can happen in parallel with the calculation of x
so the depth is only that of two smaller powerings (not three).

By reducing powers in this way and reducing the number of bits of each subprob-
lem with discrete Fourier transforms, the size of the problem is reduced very quickly.
For the depth bounds to work out as we needed, it was discovered that the number
of bits should decrease faster than the powers. To achieve this, the power is reduced
only half as often as the number of bits. We will consider a stage of reducing both
power and bits followed by a second stage of reducing only the number of bits as
single level in our circuit. Notice that the stage of reducing only the number of bits
is exactly the circuit of Shankar and Ramachandran.

The powering algorithm can be found in pseudocode in Fig. 1. The recursive call
to MODPOWERsR actually does a stage of the Shankar and Ramachandran circuit
before recursively calling MODPOWER.

As shown in Reif [9], (also see Shankar and aamachandran [12]), there will be no
error with this algorithm as long as 2m(l/ 1+log k) _< k-l, which is satisfied whenever
m >_ 32 and n > m2. A simple check shows that at all levels of our algorithm, these
inequalities hold.

THEOREM 4.1. The circuit that calculates MODPOWER(., m, n) with the con-
straint m <_ v/-d has size O(nm4 log n log log n), and depth O(log n / log m log log m);
furthermore, the circuit is logspace constructible.

Proof. We will use the notation S(n,m) and T(n,m) to denote the size and
depth, respectively, of taking the mth power of an n bit number modulo 2’ / 1 using
our MODPOWER algorithm. The MODPOWER algorithm deals only with integer
values, and consequently, floors and ceilings are often taken. These are analyzed by
repeatedly applying the following inequality when bounding a product such as
[m [n, note that

(4) (1)[m][n] <(m+l)(n+l)<mn 1+ 1__+ 1 +g

If there is a constant lower bound for m and n, then [m [n can be bounded by
[m] [n] < cmn for some constant c (in many cases below, we actually bound the
constant c).

We first derive a recurrence equation for the size of the MODPOWER circuit. In
the pseudocode, lines marked with an asterisk (*) take no size or depth in the circuit
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MODPOWER(x, m, n) /* Calculate xm mod 2n / 1 */
if m<32 then

(1) Calculate using Schhnhage-Strassen multiplication algorithm.
else

(*)
(*) L-/
(*) p Lv"-J
(*) ifpl(pl+l) <_ m then
(*) p2 p + 1
(*) else
(*) P2 Pl
(*)
(*) e -- m PP2

In parallel do partl, part2
partl:

(2) t - MPMACRO(x, e)
part2:

(3) y MPMACRO(x, Pl)
(4) z MPMACRO(y, p2)

od
(5) MODPOWER zt mod 2n + 1

y’ MPMACRO(x’, m’)

(1)

(2)
(3)

(4)

/* Uses k, I, and n from above */
y x

k-1

Divide y into k blocks of bits each, such that y E yi2it and
i--0

for alli, 0_<yi<2
(Y0, Yl, Y2,’", Yk-) - (Y0, 2Y, 22y2, 2k-Yk-) mod 2k + 1
(Yo, Y,Y2,’",Yk-) - DFTk(Yo, yl,y2,’",yk-) mod 2k+l
In parallel for 0, 1,..., k 1 do

Yi *-- MODPOWER sR(yi,m’, k) /* Uses ([12]) */
od
(yo, y, Y2,’", Yk-) -- DFT-(Y0, Yl, Y2,’", Yk-) mod 2k + 1
(Yo, Yl,Y2,’",Yk-) (yo,2-yl,2-2y2,’’’,2-(k-)Yk-) mod 2k + 1

Y *-- Y0 + Y12 + y222/- -b Yk-12(k-1)l mod 2n + 1

FIG. 1. Pseudocode :for MODPOWER.

they are calculated when the circuit is constructed. Ignoring the case of line (1)
for now, we see that all lines other than those calling MPMACRO take total size
O(M(n)) and total depth O(logn).

Deriving the size of MPMACRO can be done as follows. Assuming that m > 32
(so there is at least one level of recursion), let kl nx/-] be the k from MOD-
POWER, and let k2 [2v/km’l be the k from the application of the Shankar and
Ramachandran circuit. All steps except line (4) are easily done in size O(k2 log k).
Line (4) includes a stage of the Shankar and Ramachandran circuit as described in
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the text preceding the theorem. For each i, the size of this reduction is bounded by
k2S(k2, m) / ck22 log k2 for some constant c. As there are kl different values of for
line (4), the total size of MPMACRO is bounded by klk2S(k2, m’) / ckk log k2.

Noting that m

_
[m/2] and that MPMACRO is called three times, we get the

following recurrence equation for the size of MODPOWER:

S(n, ln) (ciM(n) if m<32,
/ / c3M(n) otherwise.

The claim is that for some constant c, S(n, m) <_ cnm4 log n log log n satisfies this
for all m _< v/. For m _< 32, this is obviously true.

For m > 32 but _< 32, the recursive cost is given by the top line of the
recurrence equation. Therefore, the total size is bounded by 3kcIM(k)+c2k log k/
c3M(n). But k < n and 3clk < c4mn for some constant c4, so this is bounded by
(c / c3)M(n) + c2n log n and it follows that the size claim holds.

For > 32, we need to look more closely at kl and k2. Expanding k2, we see

that k2 [2 (r Using the technique above for bounding products

of ceilings, we bound k2 < [2.04nl/’m/21 Using the same method, we see that

kk2 < 2.05n3/4m. Using these facts, if > 32, then

S(n,m)

_
6.15n314mS(p2.04n’14ml12] [m’12])-t-chnm3121ogn +c3M(n).

Using our claim on the right-hand side and repeatedly using the bound from equa-
tion (4) for bounding products of ceilings, the size claim can be proved.

The depth of MPMACRO is even easier to compute than the size. The depth
of all nonrecursion lines is O(log k), and there is a single recursion for a total depth
bound of T(k2, m) + c log k.

Noting that MPMACRO gets called twice sequentially (lines (4) and (5)), the
total depth of MODPOWER is bounded by 2T(k2, m) + c log n. Using the bounding
equations calculated above, the recurrence equations for the depth are

cllogn ifm_32,T(n, m) 2T(r2.04,/ml/], + log n otherwise.

Our claim is that for some constant c, T(n, m)

_
c(log n+log m log log m) satisfies

the above equation. Again, if m _< 32, there is nothing to prove.
If m > 32 but vf _< 32, then there is just the one recursive call as in the

size analysis. Since log k2 ( log n, the recurrence equation for the depth becomes
T(n,m) <_ (2 +c2)logn- therefore, setting c 2 /c2 is sufficient to prove the claim.

If v/ > 32, it is important to note the following two inequalities:

I 1 1 1
log 2.04n14m/2 < log n + logm + 1.2,

log m1/2 log log m1/2 < log m log log m / 0.06 log log m 0.48 log m 0.05.

Using these values to put the claim in the right-hand side of the recurrence equations
results in a proof that the claim holds for c 5c2.

As for the circuit being logspace constructible, it should be noted that all calcu-
lations made in the construction of the circuit (the .lines marked with (*) in Fig. 1)
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deal with numbers that are O(log n) bits long. In other words, these calculations only
need to be done in space linear in the length of the numbers used this is, of course,
easily done. D

COItOLLAItY 4.2. MODPOWER can compute xm, where x is an n bit number
and m < vf, in size O(nm5 log n log log n), and depth O(log n + log m log log m).
This circuit is also logspace constructible.

Proof. Simply use the modular powering algorithm of Theorem 4.1 to calculate
xm mod 2nrn -b 1. This ring is large enough to hold the exact answer, so the modular
result will be the same as the exact result. [:l

5. High-order iteration for integer division. The following definition is use-
ful when describing the amount of error present in an approximation.

DEFINITION. An approximation to a value x is said to be accurate to c bits if

Ix- <
Note that this definition is the intuitive definition of "accurate to c bits in the

fractional part." The reciprocal problem is that given a value x, we need to find
the value y 1Ix to within a certain error bound. We will scale the input so that- < x < 1, which has no effect on the problem- the result will simply be scaled2
back at the end. The complexity is also not affected since the scaling can be done by
powers of two (which can be done by bit shifting). If the scaled value of x is accurate
to n bits, then we want y accurate to n bits.

Newton iteration is a general method of refining a guess to the exact answer of
a problem of the form "find x such that f(x) 0" for some given function f. The
second-order Newton iteration formula for finding reciprocals has been known and
used for quite some time (see, for example, [5]). What we use in this paper are
Newton iterations of higher degree. In general, a kth order Newton iteration for the
reciprocal problem is given by

k-1

Yi+ Yi Z(1 xyi

j=0

where the values yi are the approximations to y.
In the following error analysis, let ey,i be the difference between y and the ap-

proximation yi at step i, so yi y- ey,i.
THEOREM 5.1. If the error at step is ey,i, then after applying a kth order

Newton iteration, the error at step + 1 satisfies the inequality ley,i+ll g Iey,ilk.
Proof. Rewriting yi as y- ey,i, the Newton sum can be rewritten:

k-1 k-1

j=0 j=0

since xy 1. Further simplifications give
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[kSince x <_ 1, this implies that [ey,i+ll <_ ley,i
In our algorithm we will use only iterations of even degree because of the nice

ordering properties of even degree approximations. The following obvious corollary
shows the relationship between yi+l and y.

COROLLARY 5.2. If k is even, then after applying a kth degree Newton iteration
at step i, yi+

_
y.

In the discussion above, we assumed that calculations were performed with all the
bits of x (i.e., x has infinite precision). A natural question to ask is how many bits
of x we really need to consider to achieve the desired error bound of [ey,i+ _< [ey,i[ k.
We answer this question in the remainder of this section.

First, let us introduce some more notation. We will be taking only the most
significant bits of x and throwing away the least significant bits. The truncated value
is called 5:, and l/i:. It is trivial to see that 5: _< x, so >_ y. Let e x- 5:, and
e=l-y.

LEMMA 5.3. /f ]ey,il

_
c

_
1/4 for some value c, and can insure that e

_
ck, then

performing the kth order iteration (k even) using 1 will result in [ey,i+[

_
ck.

Proof. It is important to note that we are doing the exact Newton iteration for. There are three cases to consider, one for each possible ordering of y, , and yi.

Case 1. y <_ 1 < Yi. As we noted in the preceding corollary, after performing
[k < ck it follows thatthe iteration yi+ _< . Since l-y <_ ck and )-yi+l _< [e,i

lY Y+[ - ck.
Case 2. y <_ yi <_ fl. After the Newton iteration the order must be y <_ yi+ <_ ,

and since 1-y <_ ck, then [y- yi+[ _< ck.
Case 3. yi < y <_ 1. After the Newton iteration either y <_ yi+ <_ (and

[y-yi+l[ _< ck as in Case 2), or yi+ < y _</). Considering the latter ordering, -yi
ey, + e9, so fl y+.<_ (%, + eg)k and y y+

_
(e, + e9)k eft. Furthermore,

(k)
_

e9 = j ege,i -e9
j=O

j--1
y,i

Now look at the sum

-1

This implies that y- yi+ < ek < ck and [y- yi+l[ < ck

The following theorem sums up the point of the entire section.
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THEOREM 5.4. If yi is accurate to p bits with p >_ 2, then applying a kth order
Newton iteration (where k is even) using the first kp + 2 bits of x results in yi+l

accurate to kp bits.

Proof. yi is accurate to p >_ 2 bits means that ley,il _< 2-p

_
1/4. Let c 2-p and

note that e

_
2-(kp+2) 1/4ck. Now look at e.

1 1 x- & x- (x- e) e
x x x xx 5cx

Since x > & > , we know that e _< 4e _< ck. Now Lemma 5.3 directly applies to
give ley,i+l

_
ck 2-kp, so Yi+l is accurate to kp bits. [:1

6. The complexity of each step. In this section we derive size and depth
bounds for refining a p bit approximation to pk bits. As seen in the previous section,
a kth degree Newton iteration (assume k is even from here on) on a p bit approximation
yields a new approximation of at least pk bits when the first pk / 2 bits of x are used.
Therefore we first determine the complexity of a kth order Newton iteration, using
pk bits, then see what happens when two more bits are used.

To calculate the required approximations, we use the new method of powering
introduced in 4 to obtain the following results.

THEOREM 6.1. The kth order Newton iteration of a p bit number (using pk bit
calculations and giving a pk bit result) can be computed by a logspace uniform circuit
family of size O(pk7 logpk log logpk), and depth O(logp + log k log log k).

Proof. Looking at the Newton iteration formula of 5, we first need to calculate
u 1- xy. This can easily be done in O(M(pk)) size and O(logpk) depth. Next,
we need to calculate u for 0 _< < k, which is done by the circuit of 4. The powers
of u are then all added together with size O(pk2) and depth O(logpk), and the final
multiplication by yi is performed. Clearly, the cost of performing the k powerings
dominates the entire circuit, so the total size is O(pk7 logpk log logpk), and the depth
is O(logpk + log kloglog k) O(logp + log kloglog k).

It is important to note that the summation in the Newton iteration formula is a
simple truncated power series and can be factored in exactly the same manner as the
reciprocal power series in Melhorn and Preparata [7] and Shankar and Ramachan-
dran [12]. After such a factoring, the largest power that needs to be taken is k
for some constant e > 0, and the resulting circuit has size O(pk+6 logpk log logpk)
while the depth remains essentially unchanged. Setting e , we get the following
corollary.

COROLLARY 6.2. The kth order Newton iteration of a p bit number (using
pk bit calculations) can be calculated by a logspace uniform circuit family of size
O(pk2 logpk log logpk) and depth O(logp + log k log log k).

The calculations that follow do not guarantee that k is an integer. In such a case,
we perform an order [k Newton iteration, which will produce an approximation
accurate to at least pk bits. Adding one or two to k, if needed to take the ceiling
and make it even, obviously does not affect the asymptotic bounds. Similarly, doing
calculations with pk + 2 bits does not affect the asymptotic bounds. From these facts,
Corollary 6.2 and Theorem 5.4, we get the following corollary.

COROLLARY 6.3. An approximation accurate to pk bits can be obtained from a
p bit approximation by a logspace uniform circuit of size O(pk2 logpk log logpk) and
depth O(logp + log k log log k).
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7. The integer reciprocal algorithm. In this section, we get to the heart of
the reciprocal algorithm. As mentioned in the overview of the algorithm, in part A
of our algorithm we choose the highest degree Newton approximation possible, while
staying within given size bounds. Let p denote the number of bits of accuracy at
stage i, and define a sequence of accuracies by p nl-(1/2); note that p0 1 (only
one bit needs to be known initially).

THEOREM 7.1. Part A of the reciprocal algorithm calculates the reciprocal of x
accurate to n/ (log n)2 bits in O(n) size and O(log n log log n) depth.

Proof. From the formulas for p and P+I, we can easily solve to see what degree
Newton iteration is needed at stage call this k:

P+I n1-(1/2)+1-(1-(1/2)) n(/2)+1
Pi

Now we can derive the size complexity of step to be bounded by

cpik logpiki log logpiki

_
cn-(/2)n(/2) log n log log n

<_ cn log n log log n.

nIf we let r log log n, then we see that Pr y, so we know half of the bits. A single
second-order Newton iteration extends this result to the full answer. Therefore, the
total.size for all r stages is O(n log n(log log n)2).

Again (as in the polynomial reciprocal problem), we simply do not use all n bits
for part A. If we let N n/(log n)2, then performing the above algorithm on an N bit
number produces a result accurate to N bits in size O(N log N(log log N)2) O(n).

The depth calculation is slightly more subtle. Looking at stage i, the depth of
this stage is bounded by

+

Summing over all r stages, and noting that (1/2) is bounded by a constant (it
is bounded by 2, to be exact), the total depth is O(log n log log n). For the depth,
decreasing the number of bits to N has no substantial effect, so the total depth is the
same.

Now we look at part B of the reciprocal algorithm, namely, using second-order
Newton iterations to extend the approximation of part A to n bits.

THEOREM 7.2. Part B of the reciprocal algorithm produces the reciprocal accurate
to n bits from the result of part A in size O(M(n)) and depth O(log n log log n).

Proof. If n bits are known initially, then after applying m second-order Newton
iterations, the approximation is extended to n2 n2m bits. Using the number of
bits produced by part A (Theorem 7.1) as nl, letting n2 n, and solving for m, we
get m 2 log log n.

The size of second-order Newton iteration on n bits is less than cM(n) for some
constant c. The number of bits in the last stage is n, and for simplicity of notat;__-’n we
number the stages from the end with no n and n n_1/2 n/2. The size of stage

is then less than cM(n/2), which is less than (c/2i)M(n) since M(n) must be at
least linear. The sum over all stages is now easily evaluated as cM(ni) <_ 2cM(n),
so the total size of part B is O(M(n)). The depth of each stage is O(logn), so the
total depth of part B is O(log n log log n).

Now we are ready to put both parts together and state size and depth bounds for
the entire reciprocal circuit.
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THEOREM 7.3. The reciprocal of an n bit number can be calculated to n-bit
precision by a logspace uniform circuit in size O(M(n)) and depth O(lognloglogn).

Theorem 7.3 is immediately applicable to other problems whose complexity is
dominated by that of division. A rational function f is any function that can be
written in the form f(x) p(x)/q(x), where p and q are fixed degree polynomials with
coefficients that can be represented in fixed-point binary with O(n) bits. In a recent
paper, Alt [2] shows how multiplication is simultaneous size and depth equivalent to
the evaluation of polynomials; therefore, in particular, the evaluation of p(x) and q(x)
above can be reduced to multiplication. These results can be combined with a single
division to produce f(x), which gives rise to the following corollary.

COROLLARY 7.4. Any rational function can be evaluated in O(log n log log n)
depth and O(M(n)) size.

8. Conclusion and open problems. The important contribution of this paper
is that the size bounds for multiplication are matched by a division circuit with depth
less than (log2 n); in fact, we match the best known depth bounds for logspace
uniform reciprocal circuits while obtaining optimal size. Note that if the size of
multiplication (call this M(n)) is reduced, then using the new multiplication circuit
in part B of our algorithm reduces the size of our division circuit to O(M(n)) also.

There are still interesting questions regarding the use of high-order Newton it-
erations. We know that all rational functions can be evaluated in identical bounds
(by Corollary 7.4). This gives strong evidence that other algebraic problems can be
solved using this technique.

An open question remaining in integer division is reducing the depth of the
logspace uniform circuits. This seems to be a very hard problem requiring a different
approach entirely.
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SORTING POINTS ALONG AN ALGEBRAIC CURVE*

JOHN K. JOHNSTONEf AND CHANDERJIT L. BAJAJ$

Abstract. An operation that is frequently needed during the creation and manipulation of

geometric models is the sorting of points along an algebraic curve. Given a segment AB of an

algebraic curve, a set of points on the curve is sorted from A to B along AB by putting them

into the order that they would be encountered in traveling continuously from A to B along AB.
A new method for sorting points along a plane or space algebraic curve is presented. Key steps
in this method are the decomposition of a plane algebraic curve into convex segments and point
location in this decomposition. This new method can sort points on an arbitrary algebraic curve
(including points spread over several connected components) and it is particularly efficient because
of its preprocessing, both of which make it superior to conventional methods. The complexity of the
new method is analyzed, and execution times of various sorting methods on a number of algebraic
curves are presented. The theory developed for sorting can also be used to locate points on an
arbitrary segment of an algebraic curve and to decide whether two points lie on the same connected
component.

Key words, sorting, decomposition, point location, convexity, algebraic curves, geometric
modeling, solid modeling

AMS(MOS) subject classifications. 68U05, 68Q25, 68P10, 14H99

1. Introduction. The sorting of numbers into increasing order or words into
alphabetical order is one of the basic problems of computer science. The purpose of
this paper is t( establish that the sorting of points along a curve is a basic problem
in geometric modeling and computational geometry, and to present a universal and
efficient method for this sorting. This method relies upon the solution of two problems
that are very useful in their own right: convex decomposition of a curve and point
location on a segment.

To sort a set of points from A to B along the curve segment AB means to put
the points into the order that they would be encountered in traveling continuously

from A to B along AB (Fig. 1). Points that do not lie on AB are never encountered
and are thus ignored. A tangent vector at A is provided to indicate the direction in
which the sort is to proceed from A. This vector is especially important when the
curve is closed, since there are then two segments between A and B from which to
choose. All of the points, including A and B, are assumed to be nonsingular, since
otherwise their order might be ambiguous.

Our treatment shall be of irreducible algebraic plane curves (a curve that lies in
a plane and is described by an irreducible polynomial f(x, y) = 0); in the rest of this
paper, all curves are assumed to be of this type and nonlinear. An extension of the
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The coefficient domain of the polynomial can be the integers, rationals, algebraic real numbers,
or any other set of numbers that has a finite representation.
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FIG. 1. The sorted order from A to B is III, II, IV.

methods to algebraic space curves is possible using a suitable projection of the space
curve to a plane curve, as described in [18].

The next section establishes that sorting is a fundamental operation of geometric
modeling. After discussing previous sorting methods in 3, we introduce our new
sorting method in 4. Convex decomposition of a curve and point location on a
convex segment are discussed in 5 and 6. Complexity issues and execution times
of the various sorting methods are presented in 7 and 8, and 9 provides some
conclusions. The paper ends with an Appendix.

2. The importance of sorting. The sorting of points along a curve has many
applications in geometric modeling. The following problem is the most natural appli-
cation.

Restriction.

INSTANCE" A set S of points on a curve C and a segment E1E2 of C.

QUESTION: Which points of S lie on EIE2?
SOLUTION:

One solution is to sort S U {endpoints E, E2} along the curve and
discard the points that do not lie between E and E2. However, a

more efficient solution is simply to sort S along EE2, starting at E.
The output of this sort is the set of points on E1E2 (in sorted order).
During this sort, the points of S that do not lie on EE2 are either
not encountered or they are encountered but eventually discarded.
(This will be easier to understand after a description of the sorting
algorithm.)

Since an edge of a solid model is often defined by a curve and a pair of endpoints,
restriction is a very basic problem in geometric modeling. For example, the following
edge intersection and bounding box problems are two important problems that can
be solved with restriction.

Edge intersection.
INSTANCE: Edges E and F on curves C and D, respectively.
QUESTION: What is E N F?



SORTING POINTS ALONG AN ALGEBRAIC CURVE 927

SOLUTION:
Compute C f3 D by well-known methods and restrict to the edges.
That is, restrict C 3 D to E and then restrict this C n D E to F.

Bounding box.
INSTANCE: Edge E on curve C with endpoints E1 and E2.
QUESTION: Find the smallest rectangle with sides parallel to the coordinate

axes that contains E.
SOLUTION:

Compute the local extrema of the curve and restrict to the edge,
yielding S. Find the minimum x-value (Xmin) in S U {El,E2}, and
so on. The desired box is defined by the lines x Xmin, x Xmax,

Y Ymin, and y Ymax.

The bounding box (see [22, p. 372]) is useful for interference detection: the
expensive intersection of edges can be reserved for those situations when the edges
are close enough that their bounding boxes interfere. Bounding regions are also useful
for problems such as the restriction problem, because they allow points that clearly
do not satisfy a condition to be discarded quickly.

Another fundamental use of sorting2 is to introduce an even-odd parity to a set
of points, as illustrated by the following problem.

Solid model intersection.
INSTANCE: Two solid models M and N.
QUESTION: What is the intersection of M and N?
SOLUTION:

An important step of this computation is to find the segments of
an edge of one model that lie in the intersection. This is done by
finding and sorting the points of intersection of this edge with a face
of the other model. The segments of the edge between the ith and
(i + 1)st intersections, for odd, are contained in the intersection of
the models.

Another application of even-odd parity is to decide whether a point lies within a
piecewise-algebraic plane patch (or a piecewise-algebraic convex surface patch). This
problem, which is fundamental to the display of a geometric model, is fully discussed
in [18]. Having established the importance of sorting, in the next section we proceed
to a discussion of methods for sorting.

3. Previous work on sorting. There is no serious study of sorting in the lit-
erature. This can be explained by the fact that nontrivial sorting problems arise only
with curves of degree three or more, and until recently, almost all of the curves in
solid models were linear or quadratic. However, as the science of geometric modeling
matures and grows more ambitious, curves of degree three and higher are becoming
common. For example, the introduction of blending surfaces [17] into a model creates
curves and surfaces of high degree.

2 In this paper, "sorting" will always refer to the sorting of points along a curve, not the conven-
tional sorting of numbers or words.
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The lack of a study of sorting can also be explained by the presence of an obvious
method for sorting points, which teads to obviate a search for any other method. This
obvious method uses a rational parameterization of the curve (i.e., a parameterization
(x(t), y(t)) such that both x(t) and y(t) can be expressed as the quotient of two

polynomials in t), sorting a set of points S along AB as follows.

The Parameterization Method of Sorting
[Preprocessing]

1. Parameterize the curve.
[Solve]

2. Find the parameter values of A and B, say t and
3. Find the parameter value of each point in S.

[Sort numbers]
4. Sort the parameter values of 5’ from t to t2, discarding those outside this

interval.

We insist upon a rational parameterization because a nonrational parameteriza-
tion is difficult to represent and difficult to solve. With a nonrational parameterization
(such as x(t) v/ or x(t) = sin(t)), two different points may have the same parame-
ter value, which complicates sorting. Finally, there is no algorithm for the automatic
parameterization of a curve that does not have a rational parameterization, whereas
there is such an algorithm for rational curves [2].

There are many reasons to be dissatisfied with the parameterization method. It is
not a universal method, since not all algebraic curves have a rational parameterization.
Indeed, a plane algebraic curve has a rational parameterization if and only if its
genus is zero, if and only if it has the maximum number of singularities allowable
for a curve of its degree [28]. Second, even for those curves that do have rational
parameterizations, the parameterization method will be slow if the degree of the
parameterization is high, since the computation of the parameter values of the points
will be expensive. Other weaknesses of the parameterization method will become
clear as we compare it with the new method, such as its difficulty with sorting points
that are spread over several connected components of a curve ( 6.3).

There is also a brute-force sorting method, which uses techniques for tracing along
a curve [8]. The order of the points is the order in which they are encountered during
a trace of the segment. This method is not satisfactory, because its implementation,
although robust, is inherently very slow. Moreover, its complexity depeads upon the
length of the segment that is being sorted rather than upon the number of points in
the sort, which is undesirable.

The weaknesses of the parameterization and tracing methods of sorting suggest
that another method is necessary: one that will perform more efficiently on a wider
election of algebraic curves. The next section presents such a method. This method
works with the implicit representation f(x,y) 0 of a curve (as opposed to the
parametric representation), thus allowing the use of tools from algebraic geometry.

4. The convex segment method of sorting. The observation that motivates
the new method is that a convex segment can be sorted easily. Since every curve is a
collection of convex segments, this suggests a divide-and-conquer strategy. A segment
of a plane algebraic curve is convex if no line has more than two distinct intersections
with it. Alternatively, a planar segment is convex if it lies entirely on one side of the
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closed halfplane determined by the tangent line at any point of the segment [14]. The
following theorem shows that sorting a convex segment is simple.

THEOREM 4.1. Let Pl,’",Pn be points on a convex segment AB, and let H be
the convex hull of A, B, Pl,’",Pn (Fig. 2). The order (from A to B) ofpl,’" ,pn is
simply the order (from A to B) of the vertices on the boundary of H.

Proof. See p. 19 of [18] for the proof.

A

B

A Pl

FIG, 2. The sorting of a convex segment.

Suppose that a curve can be decomposed into convex segments. Also suppose
that the convex segments in this decomposition can be ordered so that it is simple
to determine the predecessor and successor (if any) of each convex segment. Finally,
suppose that, given a query point, we can identify the convex segment that contains
the query point (point location in a convex decomposition). These key problems will
be discussed in 5 and 6. The following algorithm shows how to sort a set of points

S along the segment AB.

The Convex Segment Method of Sorting
[Preprocessing]

1. Decompose the curve into convex segments (say S, $2,.. ", Sk).
[Locate first convex segment]

2. Find the convex segment that contains A (say S WW2).
3. Decide whether AB leaves A along AWl or AW2 (say AWl).3

4. PresentConvSeg AWl SortedSet := FoundB ’= false.
[Sort one convex segment at a time]

5. Repeat until FoundB
(a) Find the points of S hat lie on PresentConvSeg.

If B is one of these points, then FoundB :-- true.
(b) Sort these points along PresentConvSeg, using Theorem 4.1.

3 If V is the vector at A that is given as part of the input, then AB leaves A along AWl if and

only if V points to the halfplane defined by AWl that contains AW.
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(C) If not FoundB,
then SortedSet := Append(SortedSet,{sorted points on PresentConvSeg})
else SortedSet := Append(SortedSet,{sorted points on PresentConvSeg
before B})

(d) PresentConvSeg := appropriate neighboring segment of PresentConvSeg
[Output]

6. Return SortedSet.

The expense of this method is concentrated in the preprocessing phase, which is
done once off-line. The run-time operations (locating a point on a convex segment
and sorting a set of points along a convex segment) are usually simple. Therefore,
the efficiency of this method is very competitive. The coverage of the convex segment
method is the entire set of algebraic curves, since it works directly from the implicit
representation of the curve.

FIG. 3. Sorting a curve by convex segments.

Example 4.1. Consider the sorting of points P1,’", P6 along the segment AB of
Fig. 3. The curve is decomposed into convex segments by the dotted lines ( 5). A
lies on W1Ws and the vector at A identifies that AWl is the first convex segment.
There are no points on AW, so we move on. The next convex segment is WW2.
Only P lies on WW2 and it becomes the first element of the sorted list. We jump

to the next convex segment W2W3 and sort the two points P2 and P3 by creating the
convex hull of W2, W3, P2, and P3. P2 and P3 are added to the global sort. We move

on to the next convex segment W3W4, and then W4Wb. The presence of B indicates
that this is the last convex segment. Upon sorting B and P4, P4 is discarded because
it comes after B. The final sorted list is P1, P2, P3.

It remains to discuss how a ct:ve can be decomposed into convex segments and
how a point can be located in this convex decomposition. These two problems, which
are at the heart of the convex segment method of sorting, are solved in the following
two sections.
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5. Convex decomposition of a curve. The decomposition of an object into
simple objects is an important theme in computational geometry. Decomposition
proves to be particularly useful in divide-and-conquer algorithms, since simple objects
are easily conquered. There has been a good deal of work on the decomposition of
(silnple, multiply connected, or rectilinear) polygons into simple components (e.g.,
triangles [12], [15], [16], [26], quadrilaterals [25], trapezoids [5], convex polygons [11],
[27], and star-shaped polygons [6]), sometimes with added criteria (e.g., minimum
decomposition [11], [19], minimum covering [23], no Steiner points [19]). However,
all of this work has been in the polygonal (or at best polyhedral) domain. The
decomposition of a plane algebraic curve of arbitrary degree into convex segments is
an extension of decomposition to the curved world.

A version of Bezout’s theorem states that two irreducible plane algebraic curves
of degree m and n have exactly mn intersections (properly counted), unless the curves
are identical [28]. Therefore, all plane algebraic curves of degree one (lines) and two
(conics) are already convex. For the convex decomposition of curves of degree three
and higher, the singularities and points of inflection are instrumental. A singularity
of the curve f(x, y) 0 is a point P of the curve such that f(P) fy(P) 0 (where
f is the derivative of f with respect to x). it is a point where the curve crosses itself
or changes direction sharply. A nonsingular point is also called a simple point. A
point of inflection is a simple point P of the curve whose tangent has three or more
intersections with the curve at P. (It is also a point of zero curvature.) We restrict
our attention to points of inflection P such that P’s tangent has an odd number
of intersections with the curve at P, which we call flexes for short. Fundamental
in algebraic and differential geometry, singularities and flexes form a skeleton of the
curve and can be used in many useful ways. (For example, singularities can be used
to parameterize a plane algebraic curve [2].) Their use in convex decomposition
underlines their importance to computational geometry of higher degrees.

FIG. 4. Convex segmentation o] limacon o] Pascal.

The tangents at the singularities and flexes of a curve form an arrangement of lines
that subdivide the plane of the curve into several regions (Figs. 3 and 4). The regions,
which are closed and two-dimensional, are called cells, and the entire collection of cells
is called a cell partition of the plane. For example, the cell partition defined by the
curve of Fig. 4 consists of four unbounded cells. The line segments that bound a cell
are called (cell) walls and are part of the cell.

The tangents also split the curve into several segments. The following theorem
establishes that each of these segments is convex.
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THEOREM 5.1. The tangents of the singularities and flexes of a plane algebraic

curve slice the curve into convex segments. That is, if PQ is a nonconvex segment,
then some tangent of a singularity or flex will intersect pQ.4

Proof. Let PQ be a nonconvex segment of an algebraic curve. Assume without

loss of generality that PQ does not contain a singularity or a flex. it can be shown

that there exists a line L that crosses PQ at three (or more) distinct points [18,
p. 117]. 5 Let xl, x2, and x3 be three of these points, such that x2 E x13 and

xx3 L {x,x2,x3}. xx3 does not change its direction of curvature, since there

is no singularity or flex on PQ. xx3 is not a line segment; otherwise Bezout’s theorem
would imply that the algebraic curve that contains x3 is a line, which it cannot be
since it contains a nonconvex segment. Therefore, it can be assumed without loss
of generality that x3 looks like Fig. 5(a). Let R be the region bounded by x-3
and. We will show that R contains a singularity or a flex. This will complete

the proof, since the tangent of a point inside R must intersect xx3 C PQ at least
once. (The tangent must cross the boundary of R twice, and at most one of these
intersections can be with xx.) The curve lies inside of R as it leaves x13 from

xl and outside of R as it leaves x-3 from x3. Therefore, the curve must cross the
boundary of R after it leaves xx3 from x, either because it must join with x3 (if the
curve is bounded) or because an infinite segment of an algebraic curve cannot remain
within a bounded region (if the curve is unbounded) [18, p. 116]. The curve cannot

intersect the x3 boundary of R, since xx3 C PQ is nonsingular by assumption.
Therefore, the curve must cross XlX3 after it leaves x3 from x.

(o) (b)

FIG. 5. (a)xlx3 and R. (b) Traveling from xl to xx3.

SAs the curve leaves xxa from xl it lies on the opposite side of x tangent from
xlx3. Therefore, after the curve leaves x13 from x and before it leaves R, the curve

Smust cross x tangent inside of R, in order to reach x---i-. In order to cross over x’s
4 The simple points at which a singularity/flex tangent touches, but does not cross, the curve are

redundant and should not be treated as convex segment endpoints in the decomposition.

Already, by the definition of convexity, there must exist a line that intersects PQ three (or
more) times.
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tangent, the curve must cross itself or change its curvature inside of R (Fig. 5(b)),
otherwise it will spiral around inside R forever. Therefore, R contains a singularity
or a flex.

We include here a word about robustness. Consider the accuracy required in
the computation of the singularities, flexes, and their tangents in order to guarantee
a true division into convex segments. Suppose that, in the proof of Theorem 5.1,
the tangent of a singularity/flex inside the region R is used to split a nonconvex
segment. Any line through a point in the interior of R would work equally well in
splitting the nonconvex segment. Thus, in this case the method is robust under slight
errors in tangents, singularities, and flexes. The other case is if a nonconvex segment
S is split into convex segments by a singularity or flex lying on S. The computed
convex segment will differ from the actual convex segment by the same amount as the
computed flex (say) differs from the actual flex. The only points that might be treated
improperly are those that lie on the segment between the computed and actual flex.
In other words, points that are within (some function of) machine precision of each
other cannot be distinguished by the method and must be considered equivalent. This
equivalence of points within machine precision is inherent to any sorting algorithm.

Theorem 5.1 does not solve the convex decomposition problem, because it yields
a confused collection of endpoints of convex segments, not a collection of convex
segments. The more challenging step of pairing up the endpoints remains, where two
endpoints are partners if they define a convex segment of the decomposition. This
pairing problem will be attacked in 5.3 and 5.4, but first the collection of convex
segments must be refined.

5.1. Refinement of convex segments I: Singularities. Many of the end-
points of the convex segments created by Theorem 5.1 are singularities. However,
singular endpoints cause problems in pairing.6 Consider a convex segment whose two
endpoints are the same point, which might occur around a singularity (Fig. 4). This
situation is to be avoided, since pairing will turn out to be easier if the two endpoints
of a convex segment are different. It is also possible for a singularity to have more
than two partners and, in particular, two partners in the same cell (e.g., singularity
A in Fig. 7). This situation is also to be avoided, since it is easier to find the part-
ner of an endpoint in a cell if this partner is unique. A third problem with singular
endpoints is that the ordering of points about a singularity can be ambiguous. Does
P2 or P3 follow A in Fig. 6? What is the order of the points on the loop of Fig. 6:
S, P1, P2, P3, S or S, P3, P2, P1, S?

As a result of these problems, all convex segments with singular endpoints will
be replaced by shorter segments with nonsingular endpoints. This is only a renaming

procedure" although a segment AB may be replaced by a segment AB CAB, AB
still represents the convex segment AB. This is best seen in the next phase, point
location, where singular endpoints pose the same problems as they do in pairing

endpoints. Although we work with AB C AB, if a point x lies on AB \ AB (a
segment of the curve that one might wrongly worry has been cut out of the curve), it

is still located on the convex segment named AB.
6 Unless otherwise noted, in the rest of the paper the term endpoint will be synonymous with

"an endpoint of one of the convex segments created by the cell partition of a curve." Once we have
discussed how to refine convex segments, we shall assume that all convex segments are refined and
subsequently the term endpoint will refer to "an endpoint of one of the refined convex segments,"
while original endpoint will refer to an endpoint of a convex segment before refinement.
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FIG. 6. Ambiguity about a singularity.

The endpoint A that replaces A is called a refined endpoint, while A is called
an original endpoint. A link is maintained between A and A. Before refinement, a
convex segment is called an original convex segment. After refinement (both of any
singular endpoints and of any infinite parts as discussed in the next section), a convex
segment is called a refined convex segment. Note that many segments will not require
refinement, so their refined segments will be identical to their original segments.

The process of replacing convex segments with singular endpoints by convex seg-
ments with nonsingular endpoints is achieved by replacing singularities by nonsingular
points. For each branch of the curve that passes through a singularity, a pair of non-
singular points are found: one on either side of (and usually close to) the singularity.
As we shall see, the exact position of the nonsingular point is not important and is
quite flexible.

Example 5.1. The original convex segments PA, AQ, RA, and AS of Fig. 7 are

replaced by the refined convex segments PV1, V2Q, RWI, and W2S. This is done by
refining the singularity A into four points: V and V2 from one branch, and W and
W2 from the other. A link is maintained between V and V2 (as well as between W
and W2), so that it is clear that PV1 is followed by V2Q. Note that this refinement
makes it clear that Q (not S) must follow P.

Consider the problem of finding two points on each branch of a singularity, one on
either side of the singularity. We would like to do this by tracing [8] a small distance
along the branch in both directions from the singularity. However, there is no reliable
way of tracing along a branch as it passes through a singularity, because the other
branches create too much confusion. Therefore, each branch of the singularity must
be isolated so that it can be traced robustly. This isolation is accomplished by blowing
up the curve at the singularity by a series of quadratic transformations [8], [28], [1],
as follows. (Section 5.5, on the computation of singularities and flexes, is relevant to
this discussion.)

The first step in blowing up a singularity is to translate it to the origin.7 Let the

7 Since the quadratic transformation does not map the line x 0 properly, the curve should also
be rotated if necessary so that it is not tangent to x 0 at the origin (see [18]).
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FIG. 7. The refinement o.f a singularity.

new equation of the curve be f(x, y) 0. A quadratic transformation is now applied
to the curve. The (aflfine) quadratic transformation x xl, y xly [1] has three
important properties:

It maps the origin to the entire y-axis and the rest of the y-axis to infinity:
y y/x so (0, b) maps to (0, b/O), which is a point at infinity unless b 0.
It is one-to-one for all points (x, y) with x 0.
y mx, a line through the origin, is mapped to the horizontal line y m:
y mx Xlyl mxl yl m.

(b)

FIG. 8. (a) Node. (b) Its quadratic transformation.

Thus, a quadratic transformation maps distinct tangent directions of the various
branches of f at the origin to different points on the exceptional line x O. The
intersections of the transformed branches with the exceptional line correspond to the
transformed points of the origin (Fig. 8). If a point of f(x,xy) on the exceptional
line is singular, then the procedure is applied recursively (Fig. 9). The following
lemma establishes that the various branches of the curve in the neighborhood of the



936 J. K. JOHNSTONE AND C. L. BAJAJ

singularity eventually get transformed to separate branches.
LEMMA 5.2 [1], [2], [28]. A singularity can be reduced to a number of simple

points by a finite number of applications of the quadratic transformation. An ordinary
singularity can be reduced to simple points by a single quadratic transformation, where
a singularity of multiplicity r is ordinary if its r tangents are all distinct.

{b)

(c)

FIG. 9. () The original singularity. (b) After one quadratic transformation. (c) After a second
transformation: the original singularity successfully transformed into two simple points.

To summarize, each singularity is translated to the origin and transformed into
a set of nonsingular points through the application of a series of quadratic transfor-
mations. Each branch of the transformed curve intersects the exceptional line in a
simple point, so this image branch can be traced from the image singularity without
confusion. Therefore, upon each image branch, two points are found by tracing a
short distance in either direction from the image singularity. Fi.nally, these points
are mapped back to the original curve to become refined endpoints, replacing the
singularity. These new endpoints clarify the branch connectivity at the singularity
and simplify the job of pairing.
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The renaming of singularities has only two purposes" to clarify branch connectiv-
ity at the singularity and to simplify pairing. Since neither of these purposes depends
on the exact position of the refined endpoints, the position of refined endpoints is
quite flexible. In particular, we must only ensure that no convex segment is refined

away. Thus, during the refinement of a convex segment AB through the refinement

of the singularity A, we must ensure that A is replaced by A’ E AB. Suppose A B.

Certainly A’ e AB if the trace to A’ remains inside the circle of radius I[A BIll2
centered at A. Therefore (not yet knowing B), we restrict the trace to the circle of
radius ]]A-Eli centered at A, where E - A is the closest endpoint to A that is not
a refined endpoint associated with A.s Note that traces can be reversed and made

arbitrarily short. Now suppose A B (i.e., AB is a loop), in this case, A and B are
associated with different images of the singularity on the image curve, say and i2,

respectively, and the image of AB on the image curve is li2. Certainly A’ AB if

the image of A is on ii2. Therefore, we restrict the trace on the image curve to the
inside of the circle of radius [[i ij[[/2 centered at i, where ij i is the closest
image of the singularity to l.

5.2. Refinement of convex segments II: Infinite segments. Convex seg-
ments with singular endpoints are not the only ones that must be refined" infinite
convex segments are also problematic. The pairing process is simplified if each convex
segment has two endpoints, but an infinite convex segment has only one endpoint.
Therefore, a second endpoint is added to each infinite segment, as follows. Once again,
this is only a renaming procedure.

FIG. 10. PQ and QR are artificial walls.

We shall artificially bound each unbounded cell by a collection of line segments,
called artificial (cell) walls (Fig. 10). These artificial walls are chosen carefully so

s The consideration of refined endpoints associated with A forces A artificially close to A. Note

that B is not a refined endpoint associated with A, since AB existed before the refinement of A
began.
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that they only intersect infinite convex segments (if any) in the cell, and each of these
exactly once (unless the infinite segment does not touch the original cell boundary
at all and thus proceeds to infinity at both ends, in which case two intersections are
allowed). The walls should also be chosen so that the resulting artificially bounded cell
is a convex polygon. The creation of artificial walls that satisfy all of these properties
is discussed in the Appendix ( 10.1).

After every unbounded cell has been artificially bounded, a second endpoint is
added to each infinite convex segment by making an (artificial) endpoint at its point
of intersection with an artificial wall (Fig. 18). Subsequently, each infinite convex
segment is represented by a finite convex segment with two endpoints. Once convex
segments have been identified by pairing endpoints, a pair that contains an artificial
endpoint will be recognized as an infinite convex segment.9

After refining both singularities and infinite segments, there are three types of
endpoint: (a) endpoints defined by the original cell decomposition, called original
endpoints: those that are nonsingular are still endpoints of refined segments; (b)
endpoints refined from singularities, called refined endpoints, and (c) endpoints added
to infinite segments, called artificial endpoints. From now on, when we speak of
all of the endpoints of the decomposition, we are referring only to the collection
of nonsingular original, refined, and artificial endpoints, unless otherwise stipulated.
Singularities are no longer considered to be endpoints. After refinement, endpoints
and cells assume the following normal form:

(i) Every endpoint has exactly two partners,
(ii) Every cell is a bounded polygon.

Refinement will not only make the pairing of endpoints easier. It will also create a
cleaner set of convex segments that better reflects the curve. In particular, due to
the endpoint normal form, the pairing of endpoints will create a collection of convex
segments that can be ordered very easily.

5.3. Pairing of endpoints I Properties of the partner. We are now ready
to show how to pair the endpoints of convex segments. Consider a convex segment in
cell C and an endpoint E of this segment. E’s partner in C must obviously be another
endpoint in C. Therefore, the determination of partners in all single-segment cells is
trivial. Corollary 5.4 will present other conditions that E’s partner must satisfy and
Theorem 5.5 will show how to isolate the partner if several endpoints satisfy all of
these conditions. In preparation, some terminology must be introduced and a crucial
lemma proved.

Definition. Let P be a point on a curve F, and let C be the cell (or one of the
cells) of F’s cell partition that contains P (Figs. 11 and 12). If P is a singularity or
flex, then the inside of P’s tangent with respect to (w.r.t.) C is the halfplane bounded
by P’s tangent that contains C (which is unambiguous, because P’s tangent defines
a wall of C). If P is neither a singularity nor a flex, the inside of P’s tangent is the
halfplane bounded by P’s tangent that contains all of the curve in the immediate
neighborhood of p.10 The inside includes the tangent, while the strict inside does
not.

Let P be a flex that lies on the wall W of cell C, and let Pe be a point of the

"A pair that contains two artificial endpoints will be recognized as an entire connected component
that does not cross any of the singularity/flex tangents. See the discussion of nude components in
6..

10 The inside of P’s tangent can be determined by traing from P. The trae is restricted to C to
guarantee that it stays on the same side of the tangent.
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FIG. 11. The inside of P’s tangent.

FIG. 12. P faces both Q1 and Q2 with respect to C.

curve inside C at distance e > 0 from P. (Pc may be found by tracing the curve into
C from P.) The outside wallpoint of W w.r.t. C is the endpoint of W that lies outside
of Pe’s tangent, for e small (E in Fig. 12).

Let P and Q be points on a curve. If P is not a flex, then P faces Q if Q lies
on the inside of P’s tangent (Fig. 11). If P is a flex lying on a wall of cell C, then P
faces Q w.r.t. C if (1) Q lies on the strict inside of P’s tangent w.r.t. C or (2) Q lies
on P’s tangent and on the opposite side of P from the outside wallpoint of P’s wall
w.r.t. C (Fig. 12).

Notation. #{S} is the number of elements in the set S and yy is the line seg-
ment strictly between x and y. It is important to note that yy does not include its
endpoints x and y.

The following lemma captures the fact that, if- is a line segment satisfying
some simple properties, the intersections of the curve with XY must pair up into
couples that face each other.

LEMMA 5.3. Consider the cell partition of a curve F. Let X and Y be two
nonsingular points of a convex segment in the cell C. Then

(1) The curve crosses11 at an even number of points, ignoring singularities.
(2) #{P E X--CF P faces X w.r.t. C} #{P X-’-CF P faces Y w.r.t. C}.
(3) For all X-",

#{P X’-’CF P faces X w.r.t. C} ..<_ #{P X--’NF P faces Y w.r.t. C}.

1 If P is a point of intersection of the curve with ’, then the curve crosses at P if it lies
on both sides of XY in any neighborhood of P; otherwise it only touches XY .t P.
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Example 5.2. Fig. 13 is a hypothetical example for Lemma 5.3. The curve F
crosses XY an even number of times. {P E XYNF" P faces X } (P2, Pb, P6} is of
the same size as {P E -NF P faces Y } {P1, P3, P4}. Moreover, {P X-’-NF"
P faces X} {P2} is smaller than {P ’F P faces Y} {PI,P3,P4}.

FIG. 13. An illustration of Lemma 5.3.

Condition (3) of Lemma 5.3 may look ominous, but it is not difficult to test. It is
only shorthand for the fact that the number of intersections that face Y must always
dominate the number that face X. In other words, we need only calculate information
at the points of intersection P XY F, not at an infinite number of a XY.

Proof of Lemma 5.3. Consider the closed region Rxy bounded by XY and XY.
Since XY lies in the cell C and C is a convex polygon, XY must also lie in C.
Therefore, again by convexity, Rxy must lie in C. Since X and Y are nonsingular

and the rest of XY lies in the interior of the cell, XY does not contain a singularity.
Therefore, the curve can only cross into Rxy through "XY. If the curve enters Rxy,
then it must also leave, since an infinite segment cannot remain within a bounded
region and an algebraic curve of finite length is closed (viz., the curve cannot stop
short in the middle of Rxy). We claim that the point of departure D must be distinct

from the point of entry E, unless all of the tangents at D E are XY, as in Fig. 14.

In particular, if D E and some tangent at D is not XY, then at least one of the
tangents of the singularity D will cross into Rxy and form a wall of the cell partition
which will split Rxy in two, contradicting the fact that all of RxY lies in the same
cell. Therefore, with the exception of the special singularities of Fig. 14, the crossings
of XY by the curve occur in pairs, called couples. This establishes condition (1) of
the lemma.

Consider condition (2). The special singularities of Fig. 14 (as well as the points
where the curve only touches XY) can be ignored during the consideration of con-
ditions (2) and (3), since they face both X and Y and contribute the same amount
to the left- and right-hand sides of the expressions of conditions (2) and (3). There-
fore, we can concentrate on the remaining crossings of XY: the distinct couples. Let
A, B E X--- be a couple and assume, without loss of generality, that A lies closer to

X than B does. AB is a convex segment since it lies within a cell of the cell parti-
tion. Therefore, A and B face each other (w.r.t. cell C). Since A faces B, A faces Y.
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FIG. 14. The only type of singularity that can lie on XY.

Similarly, since B faces A, B faces X. Therefore, one member of each couple faces X
and the other faces Y, yielding condition (2). Moreover, the point of a couple that
faces Y (A) is closer to X than the point that faces X (B), yielding condition (3). El

COROLLARY 5.4. Let W1 be an endpoint of a convex segment that lies in the cell
C of the cell partition of a curve F. WI’s partner W2 in C must satisfy the following
properties:

(1) W1 and W2 face each other (w.r.t. C).
(2) #{P e WW2 N F P nonsingular, F crosses WIW2 at P} 2k, k E Z.
(3) #{P E WW2 F: P faces W (w.r.t. C)}

#{P WW2 F: P faces W2 (w.r.t. C)}.
(4) For all WIW2

#{P e Wa F P faces W } < #{P WF P faces W2 }.

FIG. 15. W2 must be W1 ’s partner.

The conditions of Corollary 5.4 will often isolate the partner.
Example 5.3. Consider the cell partition of Fig. 15 and the cell containing the

convex segments WW2 and W3W4. Suppose that we wish to find the partner of
W1. W3 violates condition (1) and W4 violates condition (2), so W2 must be Wl’S
partner.

We add two practical notes to Corollary 5.4. In the sequel, there will be many
situations in which the conditions of Corollary 5.4 must be checked. During this com-
putation, it is useful to keep in mind that the exact location of the refined endpoints
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is not important (as discussed in the last paragraph of 5.1). This can be used to
improve the ease or robustness of pathological computations. For example, if many
refined endpoints are clustered close together about a singularity, it may be useful to
spread these endpoints out.

The second note also concerns the checking of conditions in Corollary 5.4. Con-
ditions (3) and (4) remain true if #{P E W1W2 f F <cond>} is replaced by
#{P WIW2nF" <cond>, P nonsingular, P is a crossing}. Moreover, the restric-
tion to nonsingular crossings does not change any of the proofs that use this corollary.
For conciseness, we do not use the restriction. However, for practical reasons it is
advisable to use it, because of the large potential for error in computing the direction
that singularities on WW, as well as points that touch WW2, face. (In theory, these
singularities and touching points face both W and W2.)

FIG. 16. Sending refined points to the boundary.

5.4. Pairing of endpoints II: Distinguishing between candidates. The
remaining question in endpoint-pairing is how to find the partner of an endpoint W
in C if several endpoints in C satisfy all of the conditions of Corollary 5.4. This will be
done by sorting the candidates about the cell boundary (Theorem 5.5). Unfortunately,
the refinement of singularities moved some of the endpoints of convex segments into
the interior of cells. Therefore, in order to allow sorting about the boundary, we must
associate a point W on the cell boundary with each refined endpoint W, as follows
(Fig. 16). If W : W, then W is the intersection of the ray WW with the cell
boundary. If W W1, then W is one of the two intersections of W’s tangent with
the cell boundary: the one that lies on a tangent of the singularity from which W
was derived. For notational consistency, W W if W is not a refined endpoint.

The following theorem shows how to find the partner of W when Corollary 5.4
cannot.
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x

FIG. 17. Partitioning the boundary in two halves.

THEOREM 5.5. Let Wz be an endpoint in cell C of the cell partition of a curve
F, R(Wz) the set of endpoints in C that satisfy the conditions of Corollary 5.4, and
S(W) the set of endpoints in R(W) that lie strictly inside of W1 ’s tangent. There
are two cases to consider in finding the partner of W.

(a) Suppose that S(W) . Let S’(Wz) "= { W" W E S(Wz) } and, if W1
is not a flex, let X W’ be the other intersection of W1 ’s tangent with the cell
boundary, otherwise let X be the outside wallpoint of Wz’s wall w.r.t. C (Fig. 17).
W’ and X split the cell boundary into two halves. Since every endpoint in S’(W)
will lie on the same half of the boundary, a sort of S’(W) from W’ to X is well
defined. Let S’ S S’p be the result of this sort(i.e. S is encountered before S’i+1
in a traversal of the cell boundary from Wz’ to X). The partner of W in C is Sp
(the endpoint associated with S’p).

(b) Suppose that S(W) , and let T(W) be the set of endpoints in R(W) that
lie on the same wall as W. The partner ofW in C is the element of T(Wz that is
closest to W.

Example 5.4. Consider the computation of Wz’s partner in Fig. 18, where W
is the endpoint of an infinite convex segment. R(W) S(W) {W2, W3, Wa} and
S’(W1)-- {W2, W3, W}. The sorted order of S’(Wz) along the boundary from Wz’
to X is W3, W, W2, so W2 is the partner of W. Since W2 is an artificial endpoint,
W must be the endpoint of an infinite convex segment.

Consider the computation of the partner of W in Fig. 19, where S(Wz) . Vz,
V2 and V are ruled out by condition (1) of R(W), while V3 and V6 are ruled out by
condition (2). Therefore, T(W) (Vh, W2}. W2 is the closest element of T(W) to
W, so it is W’s partner.

Proof of Theorem 5.5. A key lemma in this proof (as well as others) is Lemma 10.2
of the Appendix. The reader is urged to refer to this lemma and its proof when it is
used below.

(a) Suppose that S(W) . Let W2 be W’s partner, and let WzW2 be the
boundary of the cell from W to W, such that X . WW2 (Fig. 20). It is sufficient
to show that (i) W2’ e S’(W) and (ii) S’(W) C W’2. Indeed, suppose that

W2’ S’(Wz) C W"2 and consider a traversal of the cell boundary from W’ to
X. Since W’ and W2’ are extreme points of Wz"2 and X W"2 (by definition of
W"2), W2’ is the last element of S’(W) that is met during this traversal. In other
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FIG. 18. The partner of W1 is W2.

FIG. 19. The partner of W1 is again W2.

W2 x

FIG. 20. WIW2 is dotted.
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words, W S (W2 Sp) as desired. (There is no ambiguity in choosing the last
member of S’(W1) or in associating S with Si, since it can be shown that S Sj.
whenever - j [18, p. 75].)

We will first show that (ii) S’(W1) C WIWa. Let s E S(W). By Lemma 10.2

of the Appendix, l/ls does not cross WW2 \ {W2}. In particular, Ws’ does not

cross WW2 \ {W2}. Therefore, s must either lie outside of Wl’s tangent or on WIW2
(Fig. 20). Since s, as a member of S(W), lies on the strict inside of W’s tangent, so

must s. Therefore, s WW2 and S(W) C WIW2, as desired.
We now show that W2 S(WI) (which implies (i) W2’ S’(W1)). W2 R(W)

by Corollary 5.4, so it suffices to show that W2 lies strictly inside of W’s tangent.
Since WW2 is a convex segment, W2 lies on the inside of W’s tangent, and we must
only show that W2 does not lie on Wl’S tangent. Suppose that W2 lies G: Wl’s
tangent. Since WIW2 is a subsegment of W’s tangent, S(W) gl WW2 t. Since
S(W1) is found by following rays from W through elements of S(W1), we also have
S(WI) N WW2 . Finally, since WW2 is part of a cell wall (Lemma 10.4 of
the Appendix), we have WIW2 WW2. The combination of S’(W)
.and S’(W) C WIW2 WIW2 forces S’(W) O, which contradicts our initial
assumption. Thus, W2 does not lie on W’s tangent and W2 S(W).

(b) The statement of the theorem has been verified if S(W1) . Now suppose
that S(W1) . We first show that T(WI) is well defined and contains W2. If W1
does not lie on a cell wall, then We S(W)" W2 R(W1) (as W’s partner); W2
does not lie on W’s tangent (Lemma 10.4); and We lies inside Wl’S tangent (because
WW2 is convex). Thus, W1 must lie on a cell wall and T(W) is well defined. If
W2 lies strictly inside Wl’S wall (w.r.t. C), it also lies strictly inside W’s tangent
(Lemma 10.4). That is, if W2 T(W), then W2 S(W). Therefore, W2 T(W1).

Suppose that W2 is not the closest member of T(WI) to W, and let U 7 W2 be
the closest. Since W faces U, U must lie on WW2. Using a familiar argument from
Lemma 5.3, the nonsingular points of entry and departure of the curve into the closed

region bounded by WIW2 and WIW2 must pair up along WW2, such that each pair
defines a convex segment. In particular, each nonsingular point of the curve on W1U
that faces W must pair with a nonsingular point on WU that faces We. But, since
U R(W), the number of nonsingular points on WU that face W2 is exactly equal
to the number of nonsingular points on WIU that face W1 (Corollary 5.4). Thus,
each nonsingular point on WU that faces W2 is paired with some nonsingular point
on WIU. In particular, no nonsingular point on WU that faces W2 is paired with a
point on {U}I,.JUW2. But this leads to a contradiction: U is nonsingular (since it is an
endpoint after the refinement stage) and it faces W (since U E R(W)), so it should
pair with a nonsingular point of the curve on W1U that faces W2. We conclude that
W’s partner W2 must be the closest element of T(W) to W, completing the proof
of this pairing theorem.

A plane algebraic curve can now be properly decomposed into convex segments,
since the endpoints of the convex segments can be properly paired together. Note that
it is now simple to sort the convex segments. The endpoints form a doubly linked list
that defines the order of the convex segments and makes it easy to traverse the curve,
convex segment by convex segment.

5.5. Computation of singularities and flexes. The above convex decompo-
sition of an algebraic curve requires the singularities and flexes of the curve, as well
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as their tangents. The singularities of a curve f(x, y) 0 are the solution set of the
system {fx 0, fy 0, f 0}, while the points of inflection are the nonsingular
intersections of the curve with its Hessian (the determinant of the matrix of dou-
ble derivatives of the curve’s equation) [28]. These systems of polynomial equations
can be solved efficiently for all of their point solutions by using U-resultant schemes
[10]. Furthermore, using bounds on the minimum gap between roots of a polynomial,
and bounds on the size of the coefficients and degree of the original curve, we can
straightforwardly estimate the bits of accuracy required in computing the solution to
ensure that the error in the value of the curve’s derivatives is within the gap. This
in turn ensures the correctness of the quadratic transformations applied to the curve
and centered at the singularity.

The restriction of points of inflection to flexes (see the second paragraph of 5)
is straightforward [18, p. 44]. The tangents of a singularity of the curve f 0 can be
found by translating the singularity to the origin. The equations of the tangents are
the factors of the translated f’s order form (the polynomial consisting of the terms of
lowest degree) [28]. Finally, after the curve has been translated to projective space by
homogenizing its equation to f(x, y, z) 0 (where z is the homogenizing variable),
the tangent of a flex P is fx(P)x + fy(P)y + fz(P)z 0 [28]. This completes our
description of the convex decomposition of an algebraic curve.

6. Point location. The second key problem in the convex segment method of
sorting is point location in a convex decomposition: given a point, we must identify
the convex segment that contains it. This is an extension to the curved domain of
the well-known problem of point location in a planar subdivision. We will show how
to locate a point on a convex segment ( 6.1), a general curve segment ( 6.2), and a
connected component of a curve ( 6.3).

6.1. Point location I: On a convex segment. A decomposition is not very
useful unless it is possible to locate points in it. In the case of sorting, point location
is necessary in order to partition a set of points into convex segments. Since a convex
segment is identified by its endpoints, finding the convex segment that contains a point
is equivalent to finding the endpoints that bound this convex segment. This problem
is analogous to finding the partners of a given endpoint ( 5.4), since both problems
are instances of the more general question: "What are the two endpoints associated
with a given point?" We continue to use refined segments for point location, because
it is important for an endpoint in a cell C to uniquely identify a convex segment in
C. However, recall that points that do not lie on any refined segment are still located

on a convex segment" if x E AB \ AtBt, where APB is the refined segment associated

with the original segment AB, then x is located on AB.
It is easy to locate a point in the proper cell, using well-known algorithms for

point location in a planar subdivision [20], [24]. Artificial walls are ignored during
this step: a point is considered to lie in an artificially bounded cell C as long as it lies
in the unbounded cell associated with C. If, as is often the case, a point lies in a cell
with only one convex segment, then it is obvious to which convex segment it belongs.
Otherwise, Theorem 6.1 and L.emma 6.2 can be used to locate a point on the proper
convex segment. Lemma 6.2 shows how to locate points on a special type of convex
egment, a nude component. Theorem 6.1 shows how to locate points on other convex
segments. Before we get to these results, we must define a nude component and the
type of a convex segment.

Definition. A connected component of a curve is a maximal subset of the curve
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such that there exists a continuous path on the curve between any two points of the
subset.

For example, a hyperbola has two connected components. A connected com-
ponent that lies entirely inside of a cell, intersecting none of the walls (including
artificial walls) of the cell partition, is called a nude component (Fig. 21). It is nude
because, unlike other connected components, it does not contain any endpoints of con-
vex segments. This lack of endpoints makes nude components a special case for point
location. A nude component is convex, since it does not contain any singularities or
flexes.

FIG. 21. x lies on a nude component.

Definition. Let Pc be an infinite convex segment before refinement, x E Pc. x’s
tangent defines two directions: the finite (respectively, infinite) direction from x is the
direction along x’s tangent that the curve leaves x in traveling to the endpoint P (re-
spectively, to infinity). Let R be the ray along x’s tangent in the infini’e direction from
x. The type of an infinite convex segment is clockwise-convex or counterclockwise-

convex. P is clockwise-convex if and only if R enters the halfplane defined by the
inside of x’s tangent as it rotates clockwise (Fig. 22). (Since the clockwise direction
of rotation depends on one’s perspective, a perspective from a fixed side of the plane
containing the curve must be maintained for all type computations.)

The type of an infinite convex segment is well defined, because it is independent
of x. The computation of this type is straightforward. The only nontrivial step is the
computation of the infinite direction from a point, which is discussed in Lemma 10.5
of the Appendix.

We are finally ready to show how to locate a point on the proper convex segment.
There are three main cases to this point location: (i) the point lies inside the bounded
cell and on a refined segment, (ii) the point lies inside the bounded cell and not on a
refined segment, and (iii) the point lies outside the bounded cell.

THEOREM 6.1. Let x be a point of curve F that lies in cell C. 12 If x is an
endpoint, it is located on the refined segment in C associated with this endpoint. If
x is a singularity, it is located on one and only one of the refined segments in C
associated with this singularity.

12 Recall that, if C is an artificially bounded cell, a point is considered to lie in C as long as it lies
in the unbounded cell associated with C.
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inside

FIG. 22. A clockwise-convex segment.

Otherwise, let S(x) {endpoints W in C
(1) x lies on the strict inside of W’s tangent,
(2) W lies on the strict inside of x’s tangent,
(3) #{P E x- 3 F" P faces x} #{P xW A F P faces W},
(4) For all a x-W, #{P AF P faces x} #{P eF P faces W}},

and let S"(x) { W" W S(x) }, where W" is the intersection of xW with the
boundary of C. (S(x) should be computed by the method described in 6.1.1.) If
S(x) O, then x lies on a nude connected component and Lemma 6.2 is used to locate
x on the correct nude component.

(i) Suppose that x lies inside the bounded cell C. Let x and x2 be the two points
of intersection of x’s tangent with the boundary of C, and let S’, S, S be the
result of a sort of S’(x) from x to x2 along the cell boundary, x either lies on S ’s
or Sp’s convex segment, and there are three cases to consider: (a) if Si and Sp are

partners,3 x lies on SiSp; (b) otherwise, if S is a refined endpoint and Sp is not, x
lies on S ’s convex segment; (c) if both S and Sp are refined, x lies on S ’s convex
segment if and only if S’ is one of the extreme points of the sort of {S’, S’, Ti, Tp}
from xi to x2, where T and Tp are the singularities associated with S and Sp.

(ii) Suppose that x lies outside of C. Let A(x) {W S(x) W is an artificial
endpoint} and let Q A(x) be the unique endpoint in A(x) whose convex segment is

of the same type as x’s segment. Then x lies on Q’s convex segment.
Example 6.1. In Fig. 21, S(x) 0 and x lies on a nude component.

Consider the cell of Fig. 15 that contains the convex segments WW2 and W3W4.
W does not satisfy condition (2) of S(x) and W2 does not satisfy condition (3). Thus,

S(x) {W3, W4} and x must lie on W3W4
Consider the cell prtition of Fig. 3. S(P) {W, W2, W, W6}, which does not

resolve the question of P’s convex segment. Let x and x2 be the two points of
intersection of P’s tangent with the cell boundary. Since the sort of S’(P) from x
to x2 is (W, W6, W, W), and W and W are partners, P must lie on WW2.

,W"In Fig. 23, the sort of S"(x) from x to x2 is (W" W2 W3 4 , W and W4
are not partners, and both of them are refined. Since the sort of W", W’, T, and
% f om to T,}, conc ud that x lies on W ’s s gment.

13 We will see that $1 and Sp are partners whenever x lies on a refined segment.
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In Fig. 24, x lies outside of the bounded cell and A(x) {W1, W3}. x’s and Wl’s
segment are clockwise-convex, but W3’s segment is counterclockwise-convex. Thus, x
must lie on W’s segment.

W W2

TI =TI

FIG. 23. x lies on W1 ’s convex segment.

Wl W3

W2

FIG. 24. x lies on WI’s convex segment.

Proof of Theorem 6.1. Consider the decomposition of the curve into convex seg-
ments before refinement of singularities and infinite segments. In particular, consider
the convex segment SEG in this decomposition that contains x. After refinement of

the convex segments, SEG is represented by a refined segment WW2 C SEG. When

x E WW2, the proof is very similar to that of Theorem 5.5. (Note that it will usually
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be the case that x E W1W2. Indeed, in many cases W1W2 SEG.) However, new

ideas are required when x E SEG \ WW2, in which case x either lies on a segment of
the curve that was removed while refining a singularity, or it lies on a segment that
was removed while refining an infinite convex segment. In the former case, assume

without loss of generality that x WsingW1, where Wsing is the singularity that was
refined to make W. In the latter case, assume without loss of generality that W is

the artificial endpoint of x’s infinite segment and x Wlc.
We first notice that WI, W2 S(x)"
(1)-(2) x, W, and W2 lie on the same convex segment and x W1, W2.
(3)-(4) Lemma 5.3 (X x, Y W or W2).

Thus, if S(x) , then x must lie on a nude component containing no endpoints.
Suppose S(x) : . Notice that a sort of S’(x) from x to x2 along the cell boundary
is well defined, since all of S (x) lies on the same side of x’s tangent (condition (2) of

(i) Suppose that x lies inside C. Thus, x WW2 or x E WsingW1. In either
case, W is either the first or last element of the sort of S(x) from x to x2, by
Corollary 10.3 of the Appendix. That is, W S or S; or W $1 or Sp, since
S’ S’ if and only if Si Sj [18, p. 75]. We conclude that x lies on S’s convex
segment or Sp’s convex segment. We must decide which one.

If S and Sp are partners, then S’s convex segment is the same as Sp’s convex

segment, and the decision is easy. Notice that this is the case whenever x W1W2.
Indeed, if x WW2, Corollary 10.3 can be applied to W2 just as it was to W,
yielding W2"= S or S. That is, (W, W2} (St, Sp}, and S and Sp are partners.

Assume that S and Sp are not partners. Thus, x e WsingW (x WW2) and
W1 is a refined endpoint (i.e., an endpoint derived from a singularity). If S is refined
and Sp is not, then it is clear that W S and that x lies on S’s convex segment.

Thus, further assume that both S and Sp are refined and x lies on Sl’s segment,

ST. We shall establish that S is, while S is not, an extreme point in the sort of
(S, S, T, Tp} from x to x2. This will complete the proof of case (i). First note
that S is not an extreme point in this sort" S is closer to x’s tangent than S,
because x’ does not cross xS \ (S} for any s e S(x) (Lemma 10.2); similarly, on the

other side, T1 is closer to x’s tangent than S, because x’ does not cross xT \ (T }
for any s S(x) (Lemma 10.2). Finally, note that S is an extreme point in the
sort (Fig. 25). T clearly does not lie between S and x’s tangent. Suppose, for the
sake of contradiction, that Tp lies between S and x’s tangent. The original convex
segment that contains x divides the cell into two regions: let Rout be the region that

contains the outside of x’s tangent. The entire segment STp must lie in Rout, because

T does and SpTp cannot cross x’s segment without making a singularity. However,
Sp Rout implies that Sp lies outside x’s tangent or x’s segment crosses x--’, both of
which contradict Sp S(x) (using condition 2 of S(x) and Lemma 10.1, respectively).
Therefore, we conclude that S, T, and Tp do not lie between S and x’s tangent,
forcing S to be an extreme point in the sort of (S, S, T, Tp }.

(ii) Suppose that x lies outside of C. That is, x lies on the infinite segment W1,
according to the assumptions at the beginning of the proof. We wish to show that we
can locate x on W’s convex segment by finding an artificial endpoint in A(x) whose
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FIG. 25. An illegal position

convex segment is of the same type as x’s segment. That is, we wish to show that
{a E A(x)" a’s convex segment is of the same type as x’s} {W1 }. One direction is
simple: WI A(x) since we have shown that W S(x), and W’s convex segment
is certainly of the same type as x’s, because it is the same segment. For the other
direction, let a A(x) such that a’s convex segment is of the same type as x’s. The
idea of the proof is to show that a’s convex segment enters a bounded region and
cannot legally leave except through x. This will prove x a, implying a W as
desired.

The first step of the proof is to find a region that contains x and a, where
xe (respectively, a) is the part of x’s (respectively, a’s) segment starting at x
(respectively, a) and proceeding to infinity. Note that x and a lie outside of the
artificially bounded cell. We shall show that a containing region for xe and a is
Ra, the intersection of the inside of x’s tangent and the inside of a’s tangent (Fig. 26).
Ra is nonempty because x and a A(x) C S(x) face each other. We shall only show
xo C Ra, since the proof of oe C Ra is entirely analogous, x cannot leave Ra
through x’s tangent, by the convexity of x. Suppose that x leaves Rxa through
y on a’s tangent (Fig. 27). We shall establish a contradiction, thus proving that
is restricted to Ra. Let Rya be the region bounded by x--, x, and a’s tangent.
a’s segment cannot pass through ’ (it would cause a singularity inside the cell),
a’s tangent (by the convexity of a’s segment), or Z (Lemma 10.1), and it cannot
double back through a (this would cause a singularity inside the cell again). Thus,
when a’s segment e.ters Rya, it cannot leave. This leads to a contradiction. If a
enters Rya, we get the contradiction that an infinite, unbounded segment lies in the
finite, bounded regin Rxya. If the other half of a’s segment enters Rxya, we get the
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(b)

FIG. 26. A region that contains xc and ax.

contradiction that this segment cannot reach the boundary of the cell C (Rxya lies in
the interior of C by the convexity of C), although all convex segments originally start
on a cell boundary.

We now try to restrict xx and ax to even smaller regions. Rxa is split into
two subregions by the line segment ’-: let R (respectively, Ra) be the subregion
that contains the infinite direction from x (respectively, a), as shown in Fig. 26(b).
xx is restricted to R" it starts out in R, it cannot intersect (Lemma 10.1),
it cannot pass through x again (since this would cause a singularity inside the cell),
and it cannot intersect a (since the unique intersection of x’s convex segment with
the artificial boundary occurs before x). By the same proof, ac is restricted from
passing out of Ra, with one exception: it can escape through x. Thus, a C Ra
unless x E ac.

We shall finish the proof by showing that Ra is a finite, bounded region. This
will establish that a C Ra is impossible (since ac is an infinite segment) and
imply x E ax as desired. To show that Ra is bounded, it is sufficient to show
that R = Ra" only one of the two subregions of Rxa is unbounded (the two lines
bounding Ra are not parallel, since x could not stay both convex and infinite
while remaining entirely between x’s tangent and another parallel .line) and R is

FIG. 27. xc cannot intersect a’s tangent.
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certainly unbounded (since it contains the infinite segment xo). Let V1 (respectively,
V2) be the tangent ray from x (respectively, a) in the infinite direction, and assume
without loss of generality that x’s and a’s convex segments (which are of the same
type) are counterclockwise-convex. Thus, as V1 and V2 rotate counterclockwise, they
both enter Rxa. If V1 and V2 point to the same side of ", then as they both rotate
counterclockwise, one of them will leave Rxa. (Refer to Fig. 26(a).) Therefore, V
and V2 must point to opposite sides of, implying Rx Ra.

In conclusion, since Ra - R and only one of the two subregions of Rxa is

unbounded, Ra must be bounded and ao must escape from it through x, implying
a W. Therefore, {a E A(x) a’s convex segment is of the same type as x’s}

If there is only one nude component in a cell, then Theorem 6.1 can successfully
locate a point on this convex segment. However, if there is more than one nude
component in the cell, then the following lemma must be used to locate points on
these nude components.

LEMMA 6.2. Let P and Q be points that lie on nude components in the same cell.
P and Q lie on the same nude component if and only if Q lies in S(P), where S() is
as in Theorem 6.1.

Proof. Let P and Q lie on nude components M and N, respectively. If M N,
then P and Q lie on the same convex segment, so Q S(P) by Lemma 5.3. Suppose
that M : N. Nude components do not intersect, since they do not contain any
singularities. Therefore, there are only three cases to consider: M lies inside N, N
lies inside M, and neither lies inside the other. In all three cases, it is straightforward
to show that Q violates one of the conditions of S(P). D

6.1.1. Speeding up point location. Point location can be made faster if the
set S(x) of Theorem 6.1 can be computed more quickly. Indeed, this is the only com-
putation in the theorem that could be expensive. Since the expense is concentrated in
testing conditions (3) and (4) (which involve line-curve intersections, whereas condi-
tions (1) and (2) are simple to test), we must avoid testing conditions (3) and (4). The
idea is to eliminate as many endpoints as possible from S(x) without using conditions
(3) and (4). First, eliminate any endpoints in the cell that do not satisfy conditions

(1) and (2) of S(x). Next observe that if x is located on WW2 (whether on the
refined segment or not), then W, W2 S(x). (Refer to the proof of Theorem 6.1.)
Thus, if W . S(x), we can eliminate W’s partner from S(x) as well, since x cannot
lie on W’s segment. As many endpoints as possible should be eliminated using this
observation. If only two endpoints (say V and W) remain after these two rounds
of elimination, we can immediately conclude that x lies on V’s segment. If more
than two endpoints remain, we are forced to use conditions (3) and (4) to test their
membership in S(x). However, we have avoided testing these conditions on many
endpoints. As above, whenever an endpoint fails condition (3) or (4), its partner
should also be immediately eliminated from S(x).

This completes our description of techniques that are needed for sorting by the
convex segment method. We digress for a moment to show how the theory that we
have developed can be used to solve two important problems (although they are not
needed for sorting): locating a point on an arbitrary segment and deciding whether
two points lie on the same connected component.

6.2. Point location II: On an arbitrary segment. Once it is known how to
locate a point on a convex segment of a curve’s convex decomposition, it is straight-
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forward to solve the more general problem of locating a point on an arbitrary segment
of the curve. Consider a segment AB of curve C and a point P on C. To decide if P
lies on AB, we decompose C into an ordered set of convex segments and compute the
convex segments that contain P, A, and B (say Cp, CA, and CB, respectively). If

Cp, CA, and CB are distinct, P lies on AB if and only if Cp lies in between CA and
CB. Degenerate cases occur if Cp, CA, and CB are not distinct, and require more

subtlety. For example, if Cp EF CA CB, then the decision is made by sorting

P, A, E, and F along EF, using Theorem 4.1: P E AB if and only if the order is E,
P, A, F (respectively, E, A, P, F) and AB leaves A towards E (respectively, F). (A
method for deciding whether AB leaves A towards E or F is described in footnote 3.)
Other cases are similar. In short, point location on an arbitrary segment is easily
reducible to point location on a convex segment.

6.3. Curves with many connected components. It should now be clear that
the convex segment method can sort points on any algebraic curve. In particular, it
can sort points that are strewn over several connected components of a curve, with no
more difficulty than sorting points on a single component. This is another advantage
of the convex segment method over the parameterization method, because it is not
clear how the latter method could deal with points on several components, even if
we allow nonrational parameterizations. Would each connected component have a
separate parameterization? If so, how would the single equation of a curve produce
several independent parameterizations? If not, how would we determine the range of
parameter values that is associated with each connected component?

A very useful test for a curve with several components is whether two points lie
on the same connected component. For example, with this capability it is reasonable
to define an edge of a solid model as a particular connected component of a multi-
component curve, since the test allows us to restrict intersections with the curve to
this connected component. The following lemma shows that our decomposition of the
curve into convex segments makes it simple to decide whether two points lie on the
same connected component.

LEMMA 6.3. Let P and Q be two points of a curve. If both P and Q lie on nude

components, use Lemma 6.2. Otherwise, let P and Q lie on convex segments AB and

CD, respectively. Define v w if w is a convex segment or v and w are linked

refined endpoints (such as V1 and V2 in Example 5.1), and extend this relation into
an equivalence relation on endpoints by taking its reflexive, symmetric, and transitive
closure. Then P and Q lie on the same connected component if and only if A =_ C.

Two other decompositions of an algebraic curve, Collins’ cylindrical algebraic
decomposition [13], [4] and Canny’s stratification [10], can also be used to separate a
curve into connected components and thus decide whether two points lie on the same
connected component.

6.4. Broad comparison of methods. Let us compare the convex segment
method of sorting with the tracing and parameterization methods. The convex seg-
ment method leaps along the curve (by convex segments) like the brute-force tracing
method. However, its jumps are large while the tracing method’s jumps must be very
small. Moreover, once the convex segments have been computed (which can be done
once and for all in a preprocessing step), each jump of the convex segment method
can be done very quickly, whereas the tracing method must grope for some time (by
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applying Newton’s method) to find the destination of each jump. In short, the con-
vex segment method makes large, bold jumps while the tracing method makes small,
timid ones.

The convex segment method is similar to the parameterization method because
they both reduce the sorting problem to an easier one. The parameterization method
observes that the sorting of points on a line is simple and tries to unwind the curve
into a line by parameterizing it. Rather than trying to reduce the entire problem,
the convex segment method divides the problem up into many smaller ones (viz., the
sorting of points on a convex segment). We shall see that the many small reductions of
the convex segment method can be done more quickly than the single, large reduction
of the parameterization method.

The convex segment method incorporates preprocessing, since the convex decom-
position of a curve can be precomputed. As a, result, the actual sorting is usually
very efficient. We might consider the parameterization of a curve to be preprocessing,
but the subsequent runtime steps (solving for the parameter value of each point) are
usually more expensive than those for the convex segment method (following pointers
and locating points).

7. Complexity. In this section, we analyze the complexity of the convex seg-
ment method of sorting. We base our complexity analysis on the RAM model, where
basic arithmetic operations are of unit cost [3].

It must be emphasized that the n of the following analysis is the degree of the
curve. This makes the analysis fundamentally different from those that we are familiar
with, such as O(n log n) for sorting numbers (where n is the number of points) or
O(n log log n) for triangulating a simple polygon (where n is the number of edges of the
polygon). For example, in the following analysis, n is the constant 1 for all polygons.
As a result, the complexity of an operation such as the convex decomposition of an
algebraic curve can be misleading, since it is very easy (although wrong) to compare
it with familiar complexities of discrete (rather-than continuous) algorithms such as
number sorting or polygon manipulation.

It should also be noted that the following analysis is pessimistic. The worst-case
time will be reached only by the most pathological curves: the time to decompose
and sort points on curves that arise in practice in geometric modeling is much more
reasonable. This is a major reason why complexity analyses of solid modeling al-
gorithms are rare and more valuable for their insight into the algorithm than their
reflection of its performance. For example, a typical endpoint will lie on the boundary
of a single-segment cell and its partner will be computed in O(1), not O(k[n]), time
(see below). In particular, the O(n6[n]) term in Theorem 7.1 will often be closer
to n3 than n6/[n] in reality. This observation has been borne out in practice, with
the testing of the algorithms on various curves (see 8). The efficiency will be even
further improved by the fact that the singularities and flexes of the curve, which are
important to other geometric algorithms, may already be available in many cases.

7.1. Complexity of convex decomposition.
THEOREM 7.1. A curve of degree n (a curve whose defining polynomial is degree

n) can be decomposed into convex segments in O(/[n2] + n2/[MAX, n] + n6/[n])
time, where/[n] is the time required to find the real roots of a univariate polynomial
equation of degree n, and MAX is the maximum number of quadratic transformations
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that are necessary to decompose any singularity of the curve into simple points. 14

Proof. Computation of singularities, flexes. Consider the curve f(xy) 0 of
degree n. Its singularities are found by solving the simultaneous system of equa-
tions {fx- O, fy- 0, f- 0}. One method is to use resultants [28]. The resultant
of two polynomials with respect to the variable Xn is a polynomial whose roots are
the projection, onto the hyperplane xn 0 of the intersections of the two polyno-
mials. Let X (respectively, Y) be the real roots of the resultant of fx and fy with
respect to y (respectively, x), which is a univariate polynomial in x (respectively, y)
of degree O(n2). 15 X (respectively, Y) is the collection of abscissae (respectively,
ordinates) of the solution set of {f --0, fy--0}. X (and Y) can be computed in
O(n4 log3n + [n2]) time, since the resultant of a pair of polynomials of degree at
most n in r variables can be computed in O(n2r log3 n) time [9]. The singularities
of the curve are { (x, y) x e X, y e Y and f(x, y) fx(x, y) fy(x, y) 0 }. This
pairwise substitution takes O(n6) time, since X and Y are each of size O(n2) and the
evaluation of an equation of degree n requires O(n2) time. Hence, all singularities of
the curve can be computed in O([n2] / n6) time. With similar techniques, the flexes
can also be computed in O([n2] + n6) time.

Computation of their tangents. Recall from 5.5 that the tangents at a singularity
(a, b) are computed by translating the singularity to the origin and factoring the
polynomial consisting of the terms of lowest degree of the translated f(x, y) into
linear factors. (For example, the lines y- x 0 and y + x 0 are the tangents of the
curve y2 + x3 x2 0 at the origin.) A translation is simply a linear substitution

xt x-a, yt y-b, which takes O(n4) time for a bivariate equation of degree n. The
factorization of a homogeneous bivariate polynomial is equivalent to the solution of
a univariate polynomial. Therefore, the computation of the tangents at a singularity
requires O(n4 + [n]) time. A curve of degree n has at most O(n2) singularities [28],
so all of the tangents at singularities can be computed in O(n6 + n2[n]) time. The
computation of the tangent at a flex is easier, only involving the O(n2) operation of
bivariate (or homogeneous trivariate) polynomial evaluation ( 5.5). A curve of degree
n also has at most O(n2) flexes [28], so all of the tangents at flexes can be computed
in O(n4) time.

Computation of intersections of singularity/flex tangents with curve. The inter-
sections of the singularity/flex tangents with the curve are needed to create the convex
decomposition. Consider the number of tangents. There are at most O(n2) tangents
at flexes. A curve of order n has at most (n- 1)(n- 2)/2 double points, where a
singularity of multiplicity t counts as t(t- 1)/2 double points and has O(t) tangents
[28]. Consequently, there are t/t(t- 1)/2 < 2 tangents per double point, or at most
O(n2) singularity tangents. The intersection of a tangent with the curve involves a
linear substitution and a solution of the resulting polynomial, thus O(n4 + [n]) time
or O(n6 + n2[n]) for all tangents. Note that the O(n2) tangents generate O(n3)
endpoints on the curve, since each tangent intersects the curve in at most n points
(Bezout’s theorem).

14 MAX is 1 if each singularity has distinct tangents, and MAX will usually be 1 or 2 in geometric
modeling applications.

15 Since singularities at infinity are not of interest, those roots in X (respectively, Y) that cause the
terms of highest degree of {fx 0, fy 0} to simultaneously vanish are not of interest. (The terms of
highest degree of a polynomial are intimately related to its solutions at infinity, since they dominate
the polynomial as solutions get large.) Therefore, before computing the roots of the resultant, the
greatest common denominator of the leading term polynomials of fx and fy is computed and divided
out of the resultant, all in O(n log n) time [3].
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Refinement of singularities and infinite segments. A singularity of multiplicity
t is refined into O(2t) endpoints, meaning 2t/(t(t- 1)/2) _< 4 refined endpoints per
double point, or a total of O(n2) refined endpoints at singularities. Thus, the number
of endpoints of convex segments (and thus the number of convex segments) remains
O(n3) after refinement. Consider the time that is required to refine the singularities.
Each singularity is translated to the origin and subjected to quadratic transforma-
tions (perhaps translating the singularity back to the origin after certain quadratic
transformations). O(n2) quadratic transformations are sufficient to reduce all of the
singularities to simple points, since the singularities of a curve of degree n account in
total for O(n2) double points and the application of each quadratic transformation
removes at least one double point, in a global amortized counting [2]. We have seen
that the translation of a curve requires O(n4) time, amounting to a total of O(n6)
translation time. Each quadratic substitution x xl, y xly takes O(n2) time
(there are O(n2) terms in the original equation of the curve). Therefore, all of the
quadratic transformations take O(n4) time.

During the reduction of a singularity to simple points, each quadratic transforma-
tion can increase the degree of the curve’s equation, since xiyj becomes xi(xJ-dyj)
xi+j-dyj, where d is the multiplicity of the singularity.6 In other words, the degree of
the polynomial can increase by O(j), where j is the highest degree of y in any term of
the polynomial undergoing quadratic transformation. Since j n for the polynomial
of the original curve and the y-degree of every term remains invariant under quadratic
transformation (and does not increase under translation of the curve either), the de-
gree of the polynomial can only increase by O(n) with each quadratic transformation.
Therefore, by the end of the reduction of a singularity to simple points, the curve’s
equation can be at nost degree O(MAX n).

Finally, after a quadratic transformation where the multiplicity of the singularity
drops, we compute the intersections of the new curve of degree with the y-axis,
which takes/[i] time. Again, since this is computed after at most O(n2) quadratic
transformations, the total time taken by all of the intersection computations is at
most O(n2[MAX n]) time. We conclude that a bound on the time for refining the
convex segment endpoints at singularities is O(n6 / n2/[MAX hi). The refinement
of infinite segments is simple compared to the refinement of singularities.

Pairing endpoints. Consider the time required to compute the partners of the
O(n3) endpoints. The dominating expense is the computation of the set R(W) of
Theorem 5.5 for each endpoint W. It takes O(k[n]) time to compute R(W1) for
an endpoint in a cell with k endpoints, O(k2[n]) time to compute R(W1) for every
endpoint in a cell with k endpoints, and O(- k[n]) time to compute R(WI) for
every endpoint in every cell, where ki is the number of endpoints in cell Ci and the
sum is over all cells Ci. Since k O(n3), O( k[n]) O(n6[n]). Therefore,
partner computation takes O(n6[n]) time. [:1

7.2. Complexity of sorting. We now consider the complexity of sorting points
along a curve after its convex decomposition is available. This sorting is usually very
efficient, because the traversal of a curve by convex segments has been reduced to
the traversal of a doubly linked list, and it is usually simple to find the points on
each convex segment. Once again, the following worst-case analysis is unrealistically

16 It might appear that xy should become xi(xJyJ). However, redundant factors must be removed
from the polynomial. For example, x -y3 0 becomes 1- xy3 O, not x -x3y3 O. The
equation of a curve with a singularity of multiplicity d at the origin has no terms of degree less than
d, so a factor of xd can always be removed.
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pessimistic for geometric modeling applications.
THEOREM 7.2. After the curve has been decomposed into convex segments, m

points on a plane algebraic curve of degree n can be sorted by the convex segment
method in O(mn3[n] / m log m) time.

Proof. The dominating expense of sorting is to locate every point on a convex
segment, since the convex segments are already implicitly sorted (by endpoint pairing)
and the sorting of points along a convex segment is simple (by Theorem 4.1, it is
equivalent to the O(k log k) operation of finding and sorting a set of angles). A point
can easily be located in the proper cell of the cell partition, as follows. A vector of
size O(n2) is associated with each of the m points and each cell: this vector specifies
the side (inside or outside) of each singularity/flex tangent that the point or cell lies
on. A point lies in a cell if and only if their two vectors match. 17 Therefore, the only
potentially challenging step is locating the convex segment that contains the point.

In the worst case, it requires O(k[n]) time to compute the set S(x) of The-
orem 6.1 for a point in a cell with k endpoints, since the intersection of line seg-
ments with the curve is required. There are O(n3) endpoints, so point location re-
quires O(n3[n]) time per point and O(mn3[n]) time for all points, is After adding
O(m log m) time for sorting the points along the convex segments, the convex segment
method requires worst-case O(mn3[n] /m log m) time to sort m points by traversing
O(n3) convex segments. [:]

8. Execution times. This section presents execution times for the sorting of
some representative curves by the convex segment and parameterization methods.
These empirical results are a good complement to the complexity analysis of 7,
since they capture the expected case, rather than the worst-case, behavior of the
methods. The source code was written in Common Lisp and execution times are in
seconds on a Symbolics Lisp Machine, not including time for disk faults and garbage
collection. Times for the convex segment method are the average of 12 trials, while
times for the parameterization method are the average of three trials. Preprocessing
time is the time required to create the cell partition and find the partners of all of
the endpoints. Five curves are examined: two rational cubics and three nonrational
quartics.

We do not consider the time required to find a parameterization of the curve
or to find the flexes and singularities of the curve. Each of these computations is a
preprocessing step that is entirely independent of sorting, and often the parameter-
ization, singularities, and flexes of a curve will already be available. Moreover, the
computation of a curve’s parameterization is of approximately the same complexity
as the computation of a curve’s singularities and flexes, so our comparison of sorting
methods should not be biased.

The first example illustrates the superiority of the convex segment method: even
when the preprocessing time is added to the sorting time, it is more efficient. Also
notice that the rate of growth of the convex segment method is much smaller. The

17 The vector of a cell need not, and will not, be complete. Only the entries for the cell’s walls are
necessary.

is Observe the worst-case pessimism of this analysis, which assumes that each point is located in
a cell with O(n3) endpoints. It is unlikely that there are O(n3) real endpoints, since many of the n
intersections of a singularity/flex tangent with the curve will be complex. Moreover, it is extremely
unlikely that O(n3) of these endpoints lie in the same cell and that all points to be sorted lie in such
a cell. Finally, it is very unlikely that each point location in this cell will require the more expensive
conditions of S(x) to test the membership of all O(n3) endpoints in S(x).
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inferiority of the tracing method (see the end of 3) is obvious from this example,
and we do not consider it further.

Example 8.1. A semi-cubical parabola.
Equation of the curve" 27y 2x3 0.
Preprocessing time: 0.27 seconds.
Parameterization: {x(t)= 6t2, y(t)= 4t3 t ( (-c,

TABLE 1
Semi-cubical parabola.

Number of sortpoints
Convex segment
Convex segment + preprocessing
Parameterization
Tracing

1 2 6

.01 ’03 .03

.28 .30 .30

.47 .63 1.04
3.14 2.89 4.77

The second example illustrates the tradeoff between a very fast sort that requires
preprocessing (convex segment method) and a moderately fast sort that does not
require preprocessing (parameterization method).

Example 8.2. Folium of Descartes.
Equation of the curve: x3 + y3 15xy O.
Preprocessing time: 2.81 seconds.
Parameterization: {x(t) 15t y(t) 15t2 t ( (-oo, -]-oo)}

TABLE 2
Folium of Descartes.

Number ofsortpoints 1 2 5 9
Convex segment 0.01 0.01 0.05- 0.04
Convex segment + preprocessing 2.82 2.82 2.85 2.85
Parameterization 1.01 1.07 1.76 3.17

The remaining three curves are nonrational, so they are only sorted with the
convex segment method.

Example 8.3. Devil’s curve (with several connected components).
Equation of the curve: y4 4y2 x4 ._ 9X2 0.
Preprocessing time: 2.20 seconds.

TABLE 3
Devil’s curve.

Number of sortpoints

Convex segment
Convex segment + preprocessing

1 4 7
0.0, 0.0, 0.10
e.29 2.29 2.30

Example 8.4. Limacon.
Equation of the curve: x4 + y4 + 2x2y2 12x3 12xy2 + 27x2 9y2 0.
Preprocessing time: 4.62 seconds.
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TABLE 4
Limacon.

Number of sortpoints

Convex segment
Convex segment / preprocessing

Example 8.5. Cassinian oval.
Equation of the curve: x4 + y4 + 2x2y2 + 50y2 50x2 671 0.
Preprocessing time" 5.36 seconds.

TABLE 5
Cassinian oval,

Number of sortpoints

Convex segment
Convex segment + preprocessing

We finish this section by considering the relative merits of the parameterization
and convex segment methods of sorting. Certain curves cannot, or should not, be
sorted by the parameterization method: curves that do not possess a rational pa-
rameterization and curves for which a rational parameterization cannot be efficiently
obtained. Therefore, the convex segment method is often the only viable way to sort
points along an algebraic curve.

For those curves that can be sorted in either way, the convex segment method is
generally far more efficient than the parameterization method at the actual sorting of
the points. Hc.wever, the parameterization method does not have the expense of pre-
processing that the convex segment method does. Therefore, when only a few points
need to be sorted (over the entire lifetime of the curve) and the sorting of these points
must be done soon after the definition of the (rational) curve, the parameterization
method will usually be the method of choice. (However, we have seen an example
where the convex segment method is superior to parameterization even when we in-
clude preprocessing time.) The expense of preprocessing will be warranted whenever
sorting time is a valuable resource, as in a real-time application, or when the num-
ber of points that will be sorted is large. The convex segment method will also be
preferable when the curve is defined long before it is ever sorted (as with a complex
solid model that requires several days, weeks, or even months to develop), since the
preprocessing can be done at any time that processing time becomes available before
the sort. We conclude that the convex segment method is an effective new method
for sorting points along an algebraic curve, and that in many situations it is either
the only or the best method.

9. Conclusions. We have developed a new method of sorting points along an
algebraic curve that is superior to the conventional methods of sorting. Many curves
that could not be sorted, or that could only be sorted slowly, can now be sorted
efficiently. The development of our new method has also illustrated how an algebraic
curve can be decomposed into convex segments, how to locate points on segments of
algebraic curves, and how to decide whether two points lie on the same connected
component of an algebraic curve. These results are of interest in a more general
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context than sorting.
This work is one of the first solutions of a computational geometry problem

that is applicable to curves of arbitrary degree. Methods are usually restricted to
curves/surfaces of some specific or bounded degree, such as polygons/polyhedra or
quadrics. The creation and manipulation of curves and surfaces is of major impor-
tance to geometric modeling. A sophisticated geometric modeling system should offer
a rich collection of tools to aid this manipulation. This paper has been an exami-
nation of one of these tools. The progress of geometric modeling depends upon the
development of more tools and upon the extension of more computational geometry
algorithms from polygons to curves and surfaces of higher degree.

10. Appendix.

10.1. Constructing artificial walls. Section 5.2 defined the artificial walls of
an unbounded cell, and discussed the properties that these walls must satisfy. We
now give an algorithm for constructing the artificial walls of an unbounded cell C.
Recall that artificial walls must be chosen so that (i) they intersect any infinite convex
segment in C exactly once, (ii) they do not intersect any finite convex segments, and
(iii) the resulting artificially bounded cell is convex. Let P and Q be two extremal
points on the boundary of C, such that all original endpoints on C’s cell boundary lie
between P and Q (Fig. 28). The artificial boundary that we construct shall consist
of two or three walls: a wall touching P, a wall touching Q, and occasionally a wall
joining these two walls. We call these added walls Wp, WQ, and WpQ, respectively.
We must show how to create Wp, We2, and WpQ,.

Consider the set of tangents from points of the curve inside C. Let T be the finite
subset consisting of tangents that intersect P and make a larger angle than PQ with
P’s wall (measuring from the side of P’s wall that contains endpoints). (A method
for finding these tangents is discussed below.) If T ) and P and Q lie on different
walls, Wp can be PQ (Fig. 28(b)), because if a curve segment crosses :PQ twice, then
the tangent of some point outside of PQ intersects P and Q. If T ) and P and
Q lie on the same wall, then Wp can be the normal to P’s wall. If T = ), Wp will
be the tangent in T that makes the largest angle with P’s wall, but rotated about P
so that it makes an even larger angle with P’s wall, thus avoiding the creation of a
redundant new endpoint at the point of tangency with the curve (Fig. 28(a)). W is
created in an entirely analogous way. The only wall remaining to define is WPc2, the
wall joining Wp and WQ. If Wp and Wq intersect inside the cell C, then no WPc2
is needed. Otherwise, let V be the tangents (from points of the curve inside C) that
are parallel to P--. If V ), let WPc2 be an arbitrary line segment connecting Wp
and Wq. If V ), WpQ will be a segment of the tangent in V that lies furthest from
PQ, translated some distance away from PQ (Fig. 28(c)).

As part of the above construction, it is necessary to compute the tangents of
nonsingular points that intersect a given point, as well as those that are parallel to a
given line. The tangent at the nonsingular point c of the plane curve f(x, y, w) 0
(where w is the homogeneous coordinate, placing the curve in projective space) is

’i3__1 fx(o)xi, where xl x, x2 y, x3 W, and fx is the derivative of f with re-
spect to x [28]. Thus, the nonsingular points a (a, a2, 1) of a curve f(x, y, w) 0
whose tangents intersect an arbitrary point P (p,p2,p3) (p,p2, 1) of the plane

3can be computed by solving the pair of equations {f(a) O,= fx (a)p 0} for
a and a2, and eliminating singularities. For the second problem, note that the slope
of the tangent at a is -f(a)/fy(a), unless the line is vertical in which case fy(a) O.
Thus, the nonsingular points a (al, a2, 1) of a curve f(x, y, w) 0 whose tangents



962 J, K., JOHNSTONE AND C, L, BAJAJ

(o)

(b) (c)

FIG. 28. Constructing artificial walls.

are parallel to the vector (a, b) can be computed by solving the pair of equations
{f(a) O, afx(a) + bfy(a) 0} for al and a2 and eliminating singularities.

10.2. Three key lemmas. We present three important lemmas in this section.
The first lemma is used in the proof of the point location theorem (Theorem 6.1),
as well as the proof of the second lemma below. The second lemma is crucial in the
proofs of both of the main theorems (Theorems 5.5 and 6.1). The third lemma is used
in Theorem 5.5.
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LEMMA 10.1. Let x be any nonsingular point of the curve F in cell C, and let
S x { endpoints W in C

(1) #{P E xW N F" P faces x} #{P xW F P faces W},
(2) For all a xW,. #{P -’-dF P faces x} g #{P ’--dF P faces W}}.

(Note that ,(x) is a superset of the S(x) of Theorems 5.5 and 6.1.) If s e $(x), then
neither s’s convex segment nor x’s convex segment can cross "2.

Proof. Suppose that s’s convex segment crosses s- at y (Fig. 29). Then, us-
ing Lemma 5.3, #{P E yyDF Pfacess} #{P yyOF Pfacesy}
#{P y N F P faces x}. Since y faces s and y yy, if we choose a such that
y--5 does not contain any intersections with the curve, #{P D F" P faces s} >
#{P e DF Pfacesx}. Since s e $(x), we know that #{P e nF
P faces s} #{P e D F P faces x}. Therefore, the above inequality becomes
#{P -2F P faces s} < #{P E --NF P faces x}, which contradicts s $(x)
(condition (2)).

FIG. 29. s’s segment cannot cross "E-.

The proof for x’s convex segment is similar. Suppose that x’s segment crosses
s-2 at y. Then #{P 6 yyF Pfacesx} #{P 6 yyF Pfacesy}
#{P 6 --yF: P faces s}. Since y fces x, if we choose a E 0 such that
does not contain any intersections with the curve, #{P 6 N F P faces x} >
#{P 6 -5 F: P faces s}, in contradiction of s 6 S(x). FI

LEMMA 10.2. Let x be any nonsingular point of the curve F in cell C, and let
z be any point such that z lies on x’s convex segment and z does not contain any
endpoints in its interior (Fig. 30). Let S(x) { endpoints W in C

(1) W aces ,
(2) #{P x-" F" P faces x} #{P x-" g P faces W},
(3) For all a xW, #{P -dnF P faces x} <_ #{P --hnF P faces W}}.

(Note that S(x) is a superset of the S(x) of Theorems 5.5 and 6.1.) Then x does not
cros z \ {z} or an s e (x).
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FIG. 30. x does not cross xz.

Proof. Let s E S(x). Suppose, for the sake of contradiction, that xs crosses

x\{z} at y. There are three cases to consider: y e ’, y s, and y (i.e.,
s yy). y - contradicts Lemma 10.1. y s is also contradictory, since does
not contain any endpoints in its interior, s yy is the only nontrivial case (Fig. 31).
Recall an argument used at the beginning of Lemma 5.3: since y is part of a convex
segment lying in a cell and x and y are nonsingular points, the points of entry and
departure of the curve into the closed region bounded by x-- and y must be along
x-- and must pair up into couples. In particular, s must pair with another point, say
t yy. We shall use t to develop a contradiction of Lemma 5.3 for the convex segment
xy. Since st is convex, s faces t; and since s S(x), s also faces x. Therefore, t -.
Since s S(x),

#{PVIF" Pfacesx}=#{PAF" Pfacess}.

Noting that - x-7 U U {t} and t faces s, this becomes

#{PEx-AF" Pfacesx}+#{PF- Pfacesx}+0
#{P-TVIF" gfacess}+#{PF. Pfacess}+l.

Moreover, by Lemma 5.3,

#{PglF" Pfacess} =#{PEt--AF" Pfacest}
=#{PIF" Pfacesx}.

Upon cancelling terms in the above equation, we conclude that

#{P-F" Pfacesx} >#{P’NF" Pfacess}
=#{P-F" Pfacesy}.

But this contradicts condition (3) of Lemma 5.3 (X x, Y y). These contradictions
lead us to conclude that xs does not cross
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x

FIG. 31. s 6 -’y.

COROLLARY 10.3. Let x, z, C and S(x) be as in the previous lemma. Let z be
the intersection of xz with the boundary of C, let S’(x) {s’:s’ is the intersection

of xs with the boundary of C, s E S(x)}, and let xl,x2 be the intersections of x’s
tangent with the cell boundary (Fig. 30). /f S’(x) is sorted along the boundary of C
from x to x2, then z is either the first or the last element.

LEMMA 10.4 [18, p. 119]. Let W and W2 be partners. If W2 lies on W ’s
tangent, then W must be a flex. In other words, if W2 lies on W1 ’s tangent, then W
and W2 lie on the same cell wall.

10.3. Computing the infinite direction from a point. In order to compute
the type of an infinite convex segment ( 6.1), it is necessary to compute the infinite
direction from a point of that infinite segment. As seen in Theorem 6.1, for our
purposes the point will either be an artificial endpoint or a point outside the bounded
cell. The following lemma shows how to perform this computation.

LEMMA 10.5. Let x be a point that lies on an infinite convex segment, and let Tx+
and T- be the two rays from x along its tangent. Let C be the unbounded cell (before
refinement) that contains x, and let C c C be the associated artificially bounded cell
(after refinement).

(i) If x is an artificial endpoint, then T+ is the infinite direction from x if Tx+
points into C.

(ii) If x lies outside C’, then T+ is the infinite direction from x if and only if
(a) T+ does not intersect the boundary of C, or

(b) Both Tx+ and T intersect the boundary of C, but T+ does not enter C’.
Proof. Part (i) is clear, so assume that x lies outside C. It is simple to show

that at least one of the rays must intersect the boundary of C, and we leave this as
an exercise for the reader.

(a) Suppose that Tx+ does not intersect the boundary of C and T- does. If T+ is
the finite direction, then the convex segment must travel to a cell wall after leaving
x along Tx+ (Fig. 32). But, in so doing, it will block the other half of the convex
segment (leaving x along T-) from traveling to infinity. Therefore, T+ must be the
infinite direction.

(b) Suppose that both T+ and T- intersect the boundary of C. Let Tx be the
entire tangent at x, which divides C into a bounded and an unbounded half. Let
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Pc be x’s infinite convex segment before refinement. Since Pc must lie entirely on

one side of x’s tangent (by convexity) and in an unbounded region (because P is
infinite), it must lie on the unbounded hall In particular, the unbounded half must
contain the original endpoint P, which lies in C’ on an original wall. Thus, T must
enter C’. If both T+ and T" enter C’, then all of T (and in particular x) must lie
in C’, by the convexity of C’. Thus, since x C’, exactly one of T+ and T- enters
C’. The unique ray that enters C’ must be the finite direction; otherwise the segment
leaving x in the infinite direction will be blocked, just as in (a). [-1

FIG. 32. Tx+ cannot be the finite direction.
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Abstract. The string editing problem for input strings x and y consists of transforming x into
y by performing a series of weighted edit operations on x of overall minimum cost. An edit operation
on x can be the deletion of a symbol from x, the insertion of a symbol in x or the substitution of a
symbol of x with another symbol. This problem has a well-known O(Ixllyl) time-sequential solution.
Efficient PRAM parallel algorithms for the string editing problem are given. If m min(Ixl, lY[)
and n- max([xl, lYl), then the CREW bound is O(logm log n) time with O(mn/logm) processors.
The CRCW bound is O(log n(log log m)2) time with O(mn/log log m) processors. In all algorithms,
space is O(mn).

Key words, string-to-strirlg correction, edit distances, approximate string searching, spelling
correction, longest common subsequence, shortest paths, grid graphs, analysis of algorithms, parallel
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1. Introduction. One of the major goals of parallel algorithm design for PRAM
models is to come up with parallel algorithms that are both fast and efficient, i.e.,
that run in polylog time while the product of their time and processor complexities
is within a polylog factor of the time complexity of the best sequential algorithm for
the problem they solve. This goal has been elusive for many simple problems that
are trivially in the class NC (recall that NC is the class of problems that are solvable
in O(log(1) n) parallel time by a PRAM using a polynomial number of processors).
For example, topological sorting of a DAG and finding a breadth-first search tree of
a graph are problems that are trivially in NC, and yet it is not known whether either
of them can be solved in polylog time with n2 processors.

This paper gives parallel algorithms for the string editing problem that are both
fast and efficient in the above sense. We give a CREW-PRAM algorithm that
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runs in O(logmlogn) time with O(mn/logm) processors, where m (respectively,
n) is the length of the shorter (respectively, longer) of the two input strings. We
also give a CRCW-PRAM algorithm that runs in O(logn(loglogm)2) time with
O(mn/log log m) processors. In both algorithms, space is O(mn).

In related work, Ranka and Sahni [17] have designed a hypercube algorithm
for m n that runs in O(v/n’logn) time with n2 processors, and have considered
time/processor tradeoffs. In independent work, Mathies [15] has obtained a CRCW-
PRAM algorithm for the edit distance that runs in O(log n log m) time with O(mn)
processors if the weight of every edit operation is smaller than a given constant integer.
Also independently, Aggarwal and Park have, in [3] and [4], given an O(log m log n)
time, O(mn/log m) processor CREW-PRAM algorithm, and an O((log log m)2 log n)
time, O(mn/(log log m)2) processor CRCW-PRAM algorithm. The basic structure of
their algorithms is similar to ours, but they use different methods for the "conquer"
stage (in particular, they do not use the cascading divide-and-conquer scheme). In
the terminology of [3] and [4], the "conquer" stage corresponds to the problem of
computing the "tube maxima of a totally monotone n n n matrix." Within the
"conquer" stage, the computation of a single row (as in 6.1) corresponds in [3] and
[4] to the problem of "computing the row maxima of a totally monotone n n matrix."
We refer the reader to [2]-[4] for the myriad other applications of the "tube maxima"
and "row maxima" problems.

Recall that the CREW-PRAM model of parallel computation is the synchronous
shared-memory model where concurrent reads are allowed but no two processors can
simultaneously attempt to write in the same memory location (even if they are trying
to write the same thing). The CRCW-PRAM differs from the CREW-PRAM in that
it allows many processors to write simultaneously in the same memory location: in
any such common-write contest, only one processor succeeds, but it is not known in
advance which one.

The rest of this Introduction reviews the problem, its importance, and how it can
be viewed as a shortest-paths problem on a special type of graph.

Let x be a string of Ixl symbols on some alphabet I. We consider three edit
operations on x, namely, deletion of a symbol from x, insertion of a new symbol in x
and substitution of one of the symbols of x with another symbol from I. We assume
that each edit operation has an associated nonnegative real number representing the
cost of that operation. More precisely, the cost of deleting from x an occurrence
of symbol a is denoted by D(a), the cost of inserting some symbol a between any
two consecutive positions of x is denoted by I(a), and the cost of substituting some
occurrence of a in x with an occurrence of b is denoted by S(a, b). An edit script on
x is any consistent (i.e., all edit operations are viable) sequence a of edit operations
on x, and the cost of a is the sum of all costs of the edit operations in a.

Now, let x and y be two strings of respective lengths Ixl and lYl. The string editing
problem for input strings x and y consists of finding an edit script a of minimum cost
that transforms x into y. The cost of a is the edit distance from x to y. In various ways
and forms, the string editing problem arises in many applications, notably, in text
editing, speech recognition, machine vision and, last but not least, molecular sequence
comparison. For this reason, this problem has been studied rather extensively in the
past, and forms the object of several papers (e.g., [13], [14], [16], [18]-[20], [23], to list a
few). The problem is solved by a serial algorithm in O(Ixllyl) time and space, through
dynamic programming (cf., for example, [23]). Such a performance represents a lower
bound when the queries on symbols of the string are restricted to tests of equality [1],
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FIG. 1.1. Example of a 5 x 10 grid DAG.

[24]. Many important problems are special cases of string editing, including the longest
common subsequence problem and the problem of approximate matching between a
pattern string and text string (see [12], [21], and [22] for the notion of approximate
pattern matching and its connection to the string editing problem). Needless to say,
our solution to the general string editing problem implies similar bounds for all these
special cases.

The criterion that subtends the computation of edit distances by dynamic pro-
gramming is readily stated. For this, let C(i,j), (0 <_ <_ Ixl, 0 <_ j <_ lYl) be the
minimum cost of transforming the prefix of x of length into the prefix of y of length
j. Let sk denote the kth symbol of string s. Then C(0, 0) 0, and

C(i,j) min(C(i- 1,j 1)/ S(xi,yj), C(i- 1,j)/ D(xi), C(i,j 1)+ I(yj)}

for all i,j, (1 _< _< Ixl;1 _< j _< lYl). Hence C(i,j) can be evaluated row by
row or column by column in )(Ixllyl) time [23]. Observe that, of all entries of the
C-matrix, only the three entries C(i- 1,j- 1), C(i- 1,j), and C(i,j- 1) are
involved in the computation of the final value of C(i, j). As was observed in [10], such
interdependencies among the entries of the C-matrix induce an (Ixl / 1) (lYl / 1)
grid-directed acyclic graph (grid DAG for short) associated with the string editing
problem.

DEFINITION 1. An 11 12 grid DAG is a directed acyclic graph whose vertices are
the l12 points of an l 12 grid, and such that the only edges from grid point (i, j)
are to grid points (i,j / 1), (i + 1,j), and (i / 1,j / 1).

Figure 1.1 shows an example of a grid DAG and also illustrates our convention
of drawing the points such that point (i, j) is at the ith row from the top and jth
column from the left. Note that the top-left point is (0, 0) and has no edge entering it

i.e., is a source), and that the bottom-right point is (m, n) and has no edge leaving
it (i.e., is a sink).

We now review the correspondence between edit scripts and grid graphs that was
observed in [10]. We associate an (Ix + 1) (lYl / 1) grid DAG G with the string
editing problem in the natural way: the (Ixl/ 1)(lyl/ 1) vertices of G are in one-to-one
correspondence with the (Ixl / 1)(ly + 1) entries of the C-matrix, and the cost of an
edge from vertex (k, 1) to vertex (i,j) is equal to I(yj) if k and j- 1; to
D(xi) if k- i-landl-j; and to S(xi,yj) if k--i-1 andl-j-1. We can
restrict our attention to edit scripts which are not wasteful in the sense that they do
no obviously inefficient moves such as: inserting then deleting the same symbol, or
changing a symbol into a new symbol which they then delete, etc. More formally,
the only edit scripts considered are those that apply at most one edit operation to a
given symbol occurrence. Such edit scripts that transform x into y or vice versa are
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in one-to-one correspondence to the weighted paths in G that originate at the source
(which corresponds to C(0, 0)) and end on the sink (which corresponds to
Thus, in order to establish the complexity bounds claimed in this paper, we need only
establish them for the problem of finding a shortest i.e., least-cost) source-to-sink
path in an m x n grid DAG G.

Throughout, the left boundary of G is the set of points in its leftmost column.
The right, top, and bottom boundaries are analogously defined. The boundary of G
is the union of its left, right, top, and bottom boundaries.

The rest of the paper is organized as follows. Section 2 gives a preliminary CREW-
PRAM algorithm for computing the length of a shortest source-to-sink path, assuming
m n. Section 3 gives an algorithm that uses a factor of log m fewer processors than
the previous one and that will be needed later in our best CREW algorithm (given
in 6). Section 4 sketches how to extend the previous algorithm to the case m _< n.
Section 5 considers computing the path itself rather than just its length. Section 6
gives our best CREW-PRAM algorithm, which is the main technical result of this
paper. Section 7 gives the CRCW-PRAM algorithm. Section 8 concludes the paper.

2. A preliminary algorithm. Throughout this section, m n, i.e., G is an
m x m grid DAG. Let DISTG be a (2m) x (2m) matrix containing the lengths of all
shortest paths that begin at the top or left boundary of G, and end at the right or
bottom boundary of G. In this section we establish that the matrix DISTG can be
computed in O(log3 m) time, O(m2) space, and with O(m2/logm) processors by a
CREW-PRAM. The preliminary algorithm that achieves this is intended as a "warm-
up" for the better algorithms that follow in later sections. The preliminary algorithm
works as follows: divide the m m grid into four (m/2) (m/2) grids A, B, C, D, as
shown in Fig. 2.1. In parallel, recursively solve the problem for each of the four grids
A,B, C,D, obtaining the four distance matrices DISTA, DISTB, DISTc, DISTD.
Then obtain from these four matrices the desired matrix DIST. The main problem
we face, and the main contribution of this paper, is how to perform the "conquer"
step efficiently, in parallel.

FIG. 2.1. Illustrating how the problem is partitioned.

The performance bounds we claimed for this preliminary algorithm would imme-
diately follow if we can show that (i) DISTv can be obtained from DISTA, DISTB,
DISTc, DISTD in parallel in time O((q+log m) log m) and with O(m2/q) processors,
where q _< m is an integer of our choice, and (ii) the whole problem can be solved
sequentially in O(m2 log m) time. This is because the time and processor complexities
of the overall algorithm would then obey the following recurrences:

T(m) <_ T(m/2) + cl (q + log m) log m,

P(m) <_ max(4P(m/2), c2m2/q),
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with boundary conditions T(v/’) cq log q and P(x/-) 1, where Cl, c2, c3 are

constants. The solutions are T(m) O((q -+-logm)log2 m) and P(m) O(m2/q).
Choosing q log m would then establish the desired result.

A sequential O(m2 log m) time bound follows from the parallel algorithm we give
in 3: it does that much work and hence also translates into a sequential algorithm
with this time bound (there is no circularity in the logic: 3 is self-contained). There-
fore in the rest of this section, we merely concern ourselves with establishing (i), that
is, showing that DISTv can be obtained from DISTA, DISTB, DISTc, DISTD in
time O((q + logm)logm) and with O(m2/q) processors.

Let DISTAuB be the (3m/2) x (3m/2) matrix containing the lengths of shortest
paths that begin on the top or left boundary of A U B and end on its right or bottom
boundary. Let DISTcuD be analogously defined for C t2 D. The procedure for
obtaining DISTv performs the following steps:

1) Use DISTA and DISTB to obtain DISTAuB.
2) Use DISTc and DISTD to obtain DISTcuD.
3) Use DISTAB and DISTcD to obtain DISTa.
We only show how step 1) is done, since the procedures for steps 2) and 3) are very

similar. First, note that the entries of DISTAB that correspond to shortest paths
that begin and end on the boundary of A (respectively, B) are already available in
DISTA (respectively, DISTB), and can therefore be obtained in O(q) time. Therefore
we need only worry about the entries of DISTAB that correspond to paths that begin
on the top or left boundary of A and end on the right or bottom boundary of B. Assign
to every point v on the top or left boundary of A a group of m/q processors. The task
of the group of m/q processors assigned to v is to compute the lengths of all shortest
paths that begin at v and end on the right or bottom boundary of B. It suffices to
show that it can indeed do this in time O((q + logm)log m). Observe that:

(1) DISTAB(V, w) min{DistA(v,p) + DistB(p, w)

p lies on the boundary common to A and B}.
Using (1) to compute DISTAuB(V,W) for a given v, w pair is trivial to do in time
O(q + log(m/q)) by using O(m/q) processors for each such pair, but that would
require an unacceptable O(m3/q) processor. We have only m/q processors assigned
to v for computing DISTAB(V, w) for all w on the bottom or right boundary of B.
These m/q processors are enough for doing the job in time O((q + log(m/q))log m).
The procedure is given below.

DEFINITION 2. Let v be any point on the left or top boundary of A, and let w be
any point on the bottom or right boundary of B. Let 0(v, w) denote the leftmost p
which minimizes the right-hand side of (1). Equivalently, 0(v, w) is the leftmost point
of the common boundary of A and B such that a shortest v-to-w path goes through
it.

Define a linear ordering <B on the m points at the bottom and right boundaries
of B, such that they are encountered in increasing order of <B by a walk that starts
at the leftmost point of the lower boundary of B and ends at the top of the right
boundary of B. Let LB be the list of m points on the lower and right boundaries of
B, sorted by increasing order according to the <B relationship. For any w, W2 LB,
we have the following:

If wl <B W2 then 0(v, wl) is not to the right of O(v, w2).
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FIG. 2.2. Illustrating the procedure for computing the function

A similar property was proved in [9], and in fact Aggarwal and Park [3] have traced
this simple observation back to Monge, in 1781. It helps the comprehension of this
paper to review the proof of property (2). But before doing so, we sketch how property
(2) is used to obtain an O((q+log(m/q))logm) time and O(m/q) processor algorithm
for computing DISTAuB(V, w) for all w E LB. We henceforth use 0(w) as a shorthand
for 0(v, w), with v being understood. It suffices to compute 0(w) for all w LB. The
procedure for doing this is recursive, and takes as input:

A particular range of r contiguous values in LB, say a range that begins at
point a and ends at point c, a <S c,
The points O(a) and 0(c),
A number of processors equal to max{l, (p+ r)/q} where p is the number of
points between O(a) and O(c) on the boundary common to A and B. (See
Fig. 2.2.)

The procedure returns O(w) for every a <B w <B C. If r 1 then there is only
one such w and there are enough processors to compute O(w) in time O(q + log(p/q)).
If r > 1 then all of the max{l, (p + r)/q} processors get assigned to the median of
the a-to-c range and compute, for that median (call it point b), the value O(b) in time
O(q + log(p/q)). Because of (2), it is now enough for the procedure to recursively call
itself on the a-to-b range and (in parallel) the b-to-c range. The first (respectively,
the second) of these recursive calls gets assigned max{l, (p + r/2)/q} (respectively,
max{l, (p2 + r/2)/q}) processors, where p (respectively, P2) is the number of points
between O(a) and O(b) (respectively, between O(b) and O(c)). Because p + p p,
there are enough processors available for the two recursive calls. (See Fig. 2.2.) In
the initial call to the procedure, it is given (i) the whole list LB, (ii) the 0 of the first
and last point of LB, and (iii) 3m/2q processors. The depth of the recursion is log m,
at each level of which the time taken is no more than O(q + log(m/q)). Therefore the
procedure takes time O((q + log(m/q))log m) with O(m/q) processors. We conclude
that the preliminary solution follows from (2).

We now review the proof of property (2). It is by contradiction: Suppose that,
for some w,w LB, we have wl <B w2 and O(wi) is to the right of 0(w2), as shown
in Fig. 2.3. By definition of the function 0 there is a shortest path from v to w going
through O(w) (call this path a), and one from v to w2 going through 0(w2) (call it
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FIG. 2.3. Illustrating the proof of property (2).

). Since wl <B W2 and O(wl) is to the right of 0(w2), the two paths a and 3 must
cross at least once somewhere in B: let z be such an intersection point. See Fig. 2.3.
Let prefix(a) (respectively, prefix()) be the portion of a (respectively,/) that goes
from v to z. We obtain a contradiction in each of two possible cases:

Case 1. The length of prefix(a) differs from that of prefix(). Without loss
of generality, assume it is the length of prefix(3) that is the smaller of the two.
But then, the v-to-w path obtained from a by replacing prefix(a) by prefix() is
shorter than a, a contradiction.

Case 2. The length of prefix(a) is same as that of prefix(). In a, replacing
prefix(a) by prefix(3) yields another shortest path between v and w, one that
crosses the boundary common to A and B at a point to the left of O(w), contradicting
the definition of the function 0.

This completes the review of the proof of (2).
3. Using fewer processors. This section gives an algorithm that has the same

time complexity as that of the previous section, but whose processor complexity is
a factor of log m better. This is more than a mere "warm-up" for our best CREW
algorithm of 6: the algorithm of 6 will actually use the technical result, given in
this section, that DISTAuB can be obtained from DISTA and DISTB with O(m2)
total work.

We establish the following lemma.
LEMMA 1. Let G be an m x m grid DAG. Let DIST be a (2m) x (2m) matrix

containing the lengths of all shortest paths that begin at the top or left boundary of G,
and end at the right or bottom boundary of G. The matrix DIST can be computed
in O(log3 m) time, O(m2) space, and with O(m2/log2 m) processors by a CREW-
PRAM.

We prove the above lemma by giving an algorithm whose processor complexity
is a log m factor better than that of the preliminary solution of 2. We illustrate
the method by showing how DISTAuB can be obtained from DISTA and DISTB in
O(log2 m) time and O(m2/log2 m) processors. The preliminary procedure for com-
puting DISTAuB can be seen to do a total amount of work which is O(m2 log m).
Our strategy will be to first give a procedure which has the same time and processor
complexities as the preliminary one, but which does a total amount of work which
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is only O(m2). Our claimed bounds for the computation of DISTAuB from DISTA
and DISTB will then follow from this improved procedure and from Brent’s theorem
[7] as follows.

THEOREM 1 (Brent). Any synchronous parallel algorithm taking time T that
consists of a total of W operations can be simulated by P processors in time
O((W/P) + T).

Proof. See [7] for the proof. 8
There are actually two qualifications to Brent’s theorem before we can apply it

to a PRAM: (i) at the beginning of the ith parallel step, we must be able to compute
the amount of work Wi done by that step, in time O(Wi/P) and with P processors,
and (it) we must know how to assign each processor to its task. Both (i) and (it) will
trivially hold in our framework.

Let LA and <A be defined analogously to LB and <B, respectively. In other
words, LA is a list of the m points on the left and top boundaries of A, sorted in the
order in which they are encountered by a walk that starts at the lowest point of the
left boundary of A and ends at the rightmost point of the top boundary of A (i.e.,
sorted by increasing order according to the <A relationship). A symmetric version
of (2) holds, i.e., for any w E LB and any two points vl and v2 of LA, we have the
following:

(3) If vl <A v2 then 0(v, w) is not to the right of O(v, w).

The proof of (3) is identical to that of (2) and is therefore omitted.
Let P be the m (m/2) submatrix of DISTA containing the lengths of the

shortest paths that begin at the top or left boundary of A, and end at its bottom
boundary. Let Q be the (m/2) m submatrix of DISTB containing the lengths of the
shortest paths that begin at the top boundary of B, and end at its bottom or right
boundary. By definition, the rows of P are indexed by the entries of LA, the columns
of Q are indexed by the entries of LB, and the columns of P (hence the rows of Q) are
indexed by the m/2 points at the common boundary of A and B, sorted from left to
right. The problem we face is that of "multiplying" the rn (m/2) matrix P and the
(m/2) m matrix Q in the closed semiring (min, +). In matrix terminology, (v, w)
is the smallest index k, 1 <_ k <_ m/2, such that PQ(v, w) P(v, k)+ Q(k, w). We
give the procedure below for the (more general) case where P is an / h matrix, and
Q is an h l matrix, l _< 2h. The only structure of these matrices that our algorithm
uses is the following property (4), which is merely a restatement of properties (2) and
(3) using matrix terminology:

(4) V(l_<v <v2_<l,l_<w_<l), t?(v,w)_<O(v2, w), and O(w,v)_<0(w, v2).

To compute the product of P and Q in the closed semiring (min, +), it suffices to
compute O(v, w) for all 1 _< v, w _< 1. To compute the product PQ (i.e., the function
), we use the following procedure which runs in O(log l log h) time, O(h/logh)
processors, and O(lh) total work:

1) Recursively solve the problem for the product PQ where P (respectively,
Q’) is the (g/2) h (respectively, h (g/2)) matrix consisting of the odd
rows (respectively, odd columns) of P (respectively, Q). This gives O(v, w)
for all pairs (v, w) whose respective parities are (odd, odd). If Work(g, h)
and T(g, h) denote the total work and time for this procedure, then this step
does Work(g/2, h) work in T(g/2, h) time.
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2) Compute O(v, w) for all pairs (v, w) of parities (even, odd). This is done
as follows. In parallel for each odd w, assign h log h processors to w, with
the task of computing 0(v, w) for all even v. The fact that we already know
0(v, w) for all odd v, together with property (4), implies that these h log h
processors are enough to do the job in O(log h) time. The work done is then
O(h) for each such w, for a total of O(lh) work for this step.

3) Compute 0(v, w) for all pairs (v, w) of parities (odd, even). The method used
is identical to that of the previous step and is therefore omitted.

4) Compute (v, w) for all pairs (v, w) of parities (even, even). The method is
very similar to that of the previous two steps and is therefore omitted.

The time, processor, and work complexities of the above method satisfy the recur-
rences:

T(/, h) <_ T(i/2, h) + c log h,

P(/, h) _< max{P(//2, h), th/log h},

Work(l, h) <_ Work(i h) + c2ih,

where Cl and c2 are constants. These recurrences imply that T(/, h) O(log i log h),
P(i,h) O(lh/logh), and Work(,h) O(h). This, together with Theorem 1
(Brent’s theorem) in which T log i log h, P th/q, and W lh, implies that the
above algorithm can be simulated by Ih/q processors in O(q + log i log h) time. In
our case, :.re have l m and h m/2, implying that PQ (and hence DISTAvB) can
be obtained from P and q in O(q + log2 m) time with O(m2/q) processors.

The above method enables us to obtain DISTa from DISTA, DISTB, DISTc,
DISTD in O(q + log2 m) time and O(m2/q) processors. This implies that the over-
all divide-and-conquer algorithm runs in O((q + log2 m)logm) time with O(m2/q)
processors. Choosing q log2 m establishes Lemma 1.

4. The case m _< n. This section generalizes the algorithm for the case m _< n.
The main result is the following.

THEOREM 2. Let G be an m x n grid bAG, m <_ n. The length of a shortest
source-to-sink path in G can be computed by a CREW.-PRAM in O(log n log m) time,
O(mn) space, and with O(mn/log2 m)processors.

Note that, if G is m x n with m <: n, then using the same idea as in 3 would result
in an unacceptable (m + n)(m + n)/log2(m + n’ processor complexity, the DISTa
matrix we are computing now being (m + n) x (m + n). In order to prove our claimed
bounds, we shall abandon the goal of computing such a matrix DISTa and settle for
computing a Da matrix that contains less information than DISTa, but enough to
obtain the desired quantity: the length of a shortest source-to-sink path in G.

DEFINITION 3. For any m x n grid bAG G, m _< n, let Da be the m x m matrix
containing the lengths of all the shortest paths that begin at the left boundary of G,
and end at the right boundary of G.

Note that Da is a submatrix of DISTa.
The following lemma is another ingredient that we need.
LEMMA 2. Let G be an m x m grid bAG that is partitioned by a vertical line into

G1 and G2. (See Fig. 4.1.) Then, given Da and Da, the matrix Da can be com-
puted by a CREW-PRAM in O(log2 m) tim, O(m2) space, and with O(m2/ log2 m)
processors.
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G G

FIG. 4.1. Illustrating Lemma 2.

G G
2 etc m

FIG. 4.2. Illustrating the partitioning of G.

Proof. The algorithm proving the above lemma is similar to the procedure we
used in 3 to obtain DISTAuB from DISTA and DISTB, and is omitted.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Without loss of generality, assume that m divides n (if
not then G can always be "padded" with extra vertices and zero-cost edges so as
to make it m n where m divides n and n- n _< m). Partition G by vertical
lines into n/m grid DAGs G1,’",Gn/m, where each Gi is m m (see Fig. 4.2).
In parallel for each E {1,... ,n/m}, use Lemma 1 to obtain the DISTc matrices.
This takes O(logam) time with a total of O((m2/log2 m)(n/m)) O(mn/log2 m)
processors. From each DISTG matrix, extract its submatrix Dc. We are now left
with the task of combining the Da’s into a single DG. In parallel, we recursively
obtain the D-matrix of the union of the leftmost n/2m Gi’s, and similarly the D-
matrix of the union of the rightmost n/2m Gi’s. We then combine these two D
matrices into DG by using Lemma 2. This recursive combining procedure takes a
total of O(log2 m log(n/m)) time with O(mn/log2 m) processors. The overall time
complexity is therefore O(log3 m / log2 m log(n/m)) O(log n log2 m).

In view of the remarks made in 1, the following is an immediate consequence of
the above theorem.

COROLLARY 1. Let x and y be two strings over an alphabet I. Let m
min(Ixl, lYl), n max(Ixl, lYl). For edit operations of arbitrary nonnegative costs,
the edit distance from x to y can be computed by a CREW-PRAM in O(log n log2 m)
time, O(mn) space, and with O(mn/ log2 m) processors.

5. Computing the actual path. In this section we sketch a modification of
the algorithm given in the previous sections which enables us to compute an actual
shortest source-to-sink path in G within the same time, space, and processor bounds
as in the length computation.

THEOREM 3. Let G be an m n grid DAG, m

_
n. A shortest source-to-sink

path in G can be computed by a CREW-PRAM in O(log n log2 m) time, O(mn) space,
and with O(mn/ log2 m) processors.

The rest of this section proves the above theorem.
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HCUTG(S,t)

VCUTG(S,t)

FIG. 5.1. Illustrating the computation of the actual path.

We begin with the case m n, i.e., an m x m grid DAG. We cannot afford to
let the matrix DISTG of 3 be a matrix of paths instead of lengths, because that
would take m3 space, killing any hope of a polylog time algorithm that does not use
an almost cubic number of processors. Instead, we modify the algorithm of 3 so that
it also has the "side effect" of computing two (2m) (2m) matrices HCUTG and
VCUTa (mnemonics for "horizontal cut" and "vertical cut," respectively) having the
same index domain as DISTG. These two matrices are global in the sense that they
remain even after the recursive call returns, and their significance is as follows. Let
H be the horizontal boundary between A LJ C and B LJ D, and let V be the vertical
boundary between A U B and C U D (see Fig. 5.1). Let PATH(x, y) be the lowest
x-to-y path of cost DISTG(x, y); i.e., no other x-to-y path of length DIST,(x, y)
goes through any vertex that is below a vertex of PATH(x, y). It is easy to prove
that there is a unique such path PATH(x,y) (the proof is straightforward and is
omitted). Then HCUTa(x, y) is the leftmost intersection of PATH(x, y) with H,
and VCUTa(x, y) is the lowest intersection of PATH(x, y) with V. If the intersection
of PATH(x, y) with g (respectively, V) is empty, then HCUTG(x, y) (respectively,
VCUTv(x, y)) is undefined. Because these additional matrices are global, after the
algorithm terminates it leaves behind N(m) of them where

N(m) 4N(m/2) + 2 O(m2).

Fortunately, even though there are O(m2) such HCUT and VCUT matrices that
remain, the total storage space they take is S(m) where

S(m) 4S(m/2) -4- am2 O(m2 log m).

Before showing how S(m) is decreased to O(m2), we show how the matrices HCUT
and VCUT are used to retrieve the shortest source-to-sink path in G. It suffices to
output the points on this path as a set (i.e., in arbitrary order), since a postprocessing
sorting step puts them in the right order in O(logm) time and O(m) processors [8].
Let s and t denote the source and sink of G, respectively. We first print HCUTa(s, t)
and VCUTG(s,t), and then we recursively print the three portions of the shortest
s-to-t path determined by its two intersections with H and V (this involves three
(m/2) x (m/2) grid DAGs; see Fig. 5.1). The procedure can be implemented to run
in O(h 4- log m) time and 2m/h processors, where h _< m is an integer of our choice,
by maintaining the property that each recursive call of size m’ _> h gets assigned
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2m/h processors (the bottom of the recursion is when problem size m becomes _< h,
at which time a single processor finishes the job sequentially, in O(m’) time). (We
would, of course, choose h log m.)

We bring the space complexity S(m) down by storing each row (say, row p) of
the HCUT (or VCUT) matrix in an O(m)-bit vector ROW(p) that is "packed" in
O(m/logm) registers of size log m bits each. (The assumption that word size is a
logarithmic function of problem size is a standard one [5].) Let us immediately point
out that a consequence of this encoding scheme is that we now have S(m) O(m2).
To see this, let BITS(m) be the total number of bits used by the encoding scheme,
and note that S(m) O(BITS(m)/ log m), since each register contains log m bits.
Thus it suffices to show that BITS(m) O(m2 log m). But this trivially follows from
the fact that BITS(m) 4BITS(m/2)+ O(m).

We now describe the encoding scheme used for storing row p of (e.g.) HCUT in
the O(m)-bit vector ROW(p). We exploit the fact that the contents of row p happen
to be sorted by the left-to-right linear ordering of the points on H. More precisely,
if the points of H are denoted by 1,..., m in left-to-right order, then row p contains
a nondecreasing sequence of O(m) integers between 1 and m. Instead of storing the
entries of row p, we therefore store the sequence of differences between the consecutive
entries of row p. This sequence of differences is stored in unary in the O(m)-bit vector
ROW(p), with as many consecutive l’s as needed to encode a particular difference,
and using a 0 as a separator between consecutive nonzero entries. For example, if row p
contains the sequence (3, 3, 5, 7, 9, 11) then the sequence of differences is (3, 0, 2, 2, 2, 2)
and ROW(p) (11100110110110110). We can actually obtain ROW(p) without
going through the intermediate step of computing the sequence of differences: simply
observe that if the ith entry of row p is k then the (i + k)th entry of ROW(p) is a
0 (in our example, the fourth entry is 7 and hence the eleventh entry of ROW(p)
is a 0). This observation implies that we can obtain ROW(p) in O(q + log m) time
with O(m/q) processors by first initializing all the entries of ROW(p) to 1, and then
changing some of these into O’s according to the observation. Reading the kth entry
of row p is now done by computing the sum of all the entries of ROW(p) that precede
its kth leftmost zero; i.e. it requires a parallel prefix computation [11] on ROW(p)
and hence O(log m) time, so that extracting the s-to-t path now takes O(log2 m) time
rather than the previous O(log m). This fact is of no consequence, however, since the
bottleneck in the time complexity comes from the computation of the DISTa matrix.

This completes the proof of Theorem 3 for the case m n.
It is not hard to see that, so long as rn n, the above procedure actually works

when s and t are arbitrary points on the boundary of G. This observation implies that,
for the case m

_
n, it suffices to find for every E {1,..., (n/m) 1} the lowest point

(call it CROSS(i)) at which a shortest path from s to t crosses the boundary between
Gi and Gi+l. Once we have these CROSS(i)’s, we can use the procedure of the
previous paragraph to obtain the actual path joining each CROSS(i) to CROSS(i+I)
in time O(log3 m), space O(m2n/m) O(mn), and with O((m2/log2 m)(n/m))
O(mn/log2 m) processors. We obtain the CROSS(i)’s as follows. Refer to 4, the
proof of Theorem 2: We modify that procedure so that, as the procedure computes
the D-matrix, it now also produces as a side effect a global m m matrix CUTa.
The significance of this matrix is that CUTa(x, y) is the lowest point of intersection
of any shortest x-to-y path with the boundary separating the two recursive calls. The
total number of such CUT matrices is O(n/m), and their total storage is O(mn). We
use these CUT matrices to output the CROSS(i)’s as a set (i.e., unordered) by first
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printing CUTa(s,t), and then recursively printing the CROSS(i)’s that are to the
left of CUT((s, t), and simultaneously (i.e., in parallel) those to its right. It is easily
seen that the CROSS(i)’s are produced in time O(log(n/m)), and that there are
enough processors to carry out the procedure. A post-processing sorting step orders
the CROSS(i)’s. This completes the proof of Theorem 3. El

An immediate consequence of Theorem 3 is the following.
COROLLARY 2. Let x and y be two strings over an alphabet I. Let rn

min(Ixl, lYl), n max(Ixl, lYl). For edit operations of arbitrary nonnegative costs, an
optimal edit script from x to y can be computed by a CREW-PRAM in O(log n log2 m)
time, O(mn) space, and with O(mn/ log2 m) processors.

6. A faster CREW-PRAM algorithm. This section gives a CREW algo-
rithm that is faster by a log m factor and uses O(mn/logm) processors. More pre-
cisely, we establish the following.

THEOREM 4. Let G be an m n grid DAG, m <_ n. A shortest source-to-sink
path in G can be computed by a CREW-PRAM in O(log n log m) time, O(mn) space,
and with O(mn/ log m) processors.

COROLLARY 3. Let x and y be two strings over an alphabet I. Let m
min(Ixl, lYl), n max(Ixl, lYl). For edit operations of arbitrary nonnegative costs, an
optimal edit script from x to y can be computed by a CREW-PRAM in O(log n log m)
time, O(mn) space, and with O(mn/ logm) processors.

From the developments of 2-5, it should be clear that in order to establish the
above theorem, it suffices to show that"

1) The matrix DISTAwB can be obtained from DISTA and DIST in O(log m)
time, O(m2) space, and with O(m2/log m) processors, and

2) The matrix Da can be obtained from Dv and Da (see Definition 3 and
Fig. 4.1)in O(log m) time, O(m2) space, and with O(m2/ log m) processors.

Since the proofs of 1) and 2) are very similar, we only give that for 1). Thus the
rest of this section deals with how to obtain DISTAB from DISTA and DISTB in
O(log m) time, O(m2) space, and with O(m2/log m) processors.

6.1. Obtaining one row of DISTAB. This section gives an O(logm) time,
O(m log m) space, and O(m log m) processor algorithm for obtaining one particular
row of DISTAB, i.e., computing 0(v, w) for a fixed v LA and all w L. The fixed
vertex v is implicit in the rest of this section, so that whenever we refer to a "path
to w" it is understood that this path originates at v. To simplify the exposition, we
assume that m is a power of 2 (the procedure can easily be modified for the general
case).

We refer to the vertices on the boundary common to A and B (denoted A B
for short) as crossing vertices and number them c, c2,..., Cm/2, where the numbering
is from left to right along the common boundary. We refer to the vertices in L as
destination vertices and denote them w, w2, "", win, numbered according to <s,
their order in LB.

DEFINITION 4. A crossing interval is a nonempty set of contiguous crossing
vertices {c,c+,... ,c}. We say that crossing interval I is to the left of crossing
interval J, and J is to the right of I, if the rightmost vertex of I is to the left of the
leftmost vertex of J.

DEFINITION 5. Let F C_ AB and w LB, i.e., F is a set of crossing vertices (not
necessarily an interval) and w is a destination vertex. Let OF(W) denote the leftmost
crossing vertex in F incident to a (v, w) path that is shortest among all (v, w) paths
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constrained to pass through F. (If there is no such (v, w) path, then this is denoted
by OF(W) .)

Note that Of(w) may differ from O(v, w), but that 0AnS(W) 0(v, w).
The following lemma is the analogue, for constrained paths, to property (2) of 2.
LEMMA 3. Let F C_ A N B and Wl, w2 E LB. Ifw <B w2, then 0f(Wl) is not to

the right of OF(W2).
Proof. The proof is identical to that of property (2).
We now give an informal description of the algorithm.
If U is any set of destination vertices and I is any crossing interval, then we will

define 0x(U) to be a data structure that contains enough information to determine
OI(W) for all w E U. The details of that data structure will be explained later.

It is useful to think of the computation as progressing through the nodes of a tree
T which we now proceed to define.

We define a crossing interval to be diadic if it is either A N B (i.e., it consists of
all crossing vertices), or if it is the the left or right half of a diadic crossing interval.
Note that there are exactly m- 1 diadic crossing intervals, which form a complete
binary tree T rooted at A N B, and whose m/2 leaves are the m/2 crossing vertices
(the ith leaf of T containing ci, the ith leftmost crossing vertex). Thus the diadic
crossing interval at an interior node of T is simply the union of the diadic crossing
intervals of its two children in T. We can talk about the height and the children of a
diadic crossing interval (= its height and children in T).

Since the. m- 1 diadic crossing intervals are the only crossing intervals we shall
be interested in, from now on we simply say "interval" as a shorthand for "diadic
crossing interval." Thus whenever we refer to an interval I we are implicitly assuming
that I T, i.e., that I is one of the m- 1 diadic crossing intervals. We use III to
denote the size of the interval, i.e., the number of crossing vertices in it. Observe
that EIeT III O(mlogm). Thus we have enough processors to associate III of
them with each interval I (i.e., node I) of T. Similarly, we can afford to use
space per interval I. The computation proceeds in 2 log m- 1 stages, each of which
takes constant time. The ultimate goal is for every interval I to compute 0I(LB).
The structure of the algorithm is reminiscent of the cascading divide-and-conquer
technique [8], [6]" each I T will compute 0I(U) for progressively larger subsets U
of LB, subsets U that double in size from one stage to the next of the computation.
We now proceed to state precisely what these subsets are.

DEFINITION 6. A k-sample of LB is obtained by choosing every kth element of
LB (i.e., every element whose rank in LB is a multiple of k). For example, a 4-sample
of LB is (w4, ws,"’,Wm). For k e {0, 1,...,logm}, let Uk denote an (m/2k)-sample
of LB.

For example:

Ulogm {w, w2, wm}

Note that
At the tth stage of the algorithm, an interval I of height h in T will use its

processors to compute, in constant time, Oi(U,-h) if h < t < h+logm. It does so with
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the help of information from 8I(U-l-h), LeftChild(I)(Vt-h), and RightChild(I)(Vt_h),
all of which are available from the previous stage t 1. If h > t or t > h -t- log m
then interval I does nothing during stage t. Thus before stage h the interval I lies
"dormant," then at stage t h it first "wakes up" and computes 8l(Uo), then at the
next stage t h / 1 it computes 8I(UI), etc. At step t h -t- log m it computes
8I(Ulogm), after which it is done. The details of what information I stores and how
it uses its III processors to perform stage t in constant time are given below. First,
we observe the following.

LEMMA 4. The algorithm terminates after 2 log m- 1 stages.
Proof. After stage h-t-logm every interval I of height h is done, i.e., it has

computed I(LB). The root interval has height logm- 1 and thus is done after stage
2 log m 1.

Thus to establish the main claim of this section, it suffices to prove the following
lemma.

LEMMA 5. With III processors and O(lII) space assigned to each interval I E T,
every stage of the algorithm can be completed in constant time.

The rest of this section proves the above lemma.
We begin by describing the way in which an interval I at height h in T stores

Ol(U-h) using only III space. Rather than directly storing the values 8i(w) for all
w U-h (which would require lUg_hi space), we store instead the inverse mapping,
which turns out to have a compact O(lII) space encoding because of the monotonicity
property guaranteed by Lemma 3. In other words, for each c e I, let

t) e

Then Lemma 3 implies that the elements of ri(c, t) are contiguous in the list Vt-h.
More specifically, the sets rx(c, t), c I, form a partition of the set Ut-h into [I[ sub-
sets each of which is either empty or contains contiguous elements in Ut-h. Therefore
I does not need to store the elements of ri(c, t) explicitly, but rather by just re-
membering where they begin and end in Ut-h, i.e., O(1) space for each c I. Of
course Ut-h is itself not stored explicitly by I, since the height h and stage number t
implicitly determine it. Thus O([I[) space is enough for storing ri(c, t) for all c I.

Interval I stores the sets ri(c,t), c I, in an array RANGEI, with entries
RANGEI(c) (wi, wj) such that wi (respectively, wj) is the first (respectively, last)
element of Ut-h that belongs to ri(c, t). If ri(c, t) is empty then RANGEI(c) equals
q}. At stage t of the algorithm, I must update the RANGEI array so that it changes
from being a description of the ri(c, t- 1)’s to being a description of the ri(c, t)’s. The
rest of this section needs only to show how such an update is done in constant time
by the III processors assigned to I. Of course, since we are ultimately interested in
ACB(W) for every w LB, at the end of the algorithm we must run a postprocessing
procedure which recovers this information from the RANGEAnB array available at the
root ofT, i.e., it explicitly obtains 0An(w) for all w Ulogm. But this postprocessing
is trivial to perform in O(log m) time with O(m) processors, and we shall not concern
ourselves with it anymore.

In the rest of this section, intervals L and R are the left and (respectively) right
children of I in T. Observe that, for any destination w, Oi(w) is one of OL(W) or
On(w). Furthermore, if Ox(w) OL(W) then OI(W’) e L for every w’ smaller than w
(in the <s ordering). Similarly, if Oi(w) On(w) then Oi(w’) e R for any w’ larger
than w. (These observations follow from Lemma 3.)

The RANGEI array alone is not enough to enable I to perform the updating
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required at stage t. In addition, at each stage t, I must compute in a register called
CRITICALI an entry CriticaIi(t) defined as follows.

DEFINITION 7. At each stage t, let the critical destination for I, denoted
Criticali(t), be the largest w E U-h such that Ox(w) OL(W). If there is no such w
(i.e., if Ox(w) O(w) for all w U-h), then Criticali(t) .

Note that Lemma 3 ensures that Criticali(t) is well defined. We shall later
show how storing and maintaining this critical destination enables I to update the
RANGEI array in constant time. Of course it also places on I the burden of updating
its CRITICALI register so that after stage t it contains Criticali(t) rather than
Criticali(t- 1). We shall later show that updating the CRITICALI register can be
done in constant time as well.

We now complete this section by explaining how I performs stage t, i.e., how it
obtains Criticali(t) and the i(c, t)’s using the 7rL(C t- 1)’s, the r(c, t- 1)’s, and
its previous critical index Criticali(t- 1). The fact that the III processors can do
this in constant time is based on the following three observations:

(5) Criticall(t) is either the same as Criticali(t- 1), or it is the successor of
Criticali(t- 1) in U-h.

(6) If c L then 7rI(C, t) 7rL(C,t- 1) {the elements of 7rL(C t- 1) that are
larger than Criticali(t) in the < ordering}.

(7) If c R then 7I(C t) 7rR(C t- 1) {the elements of rn(c, t- 1) that are
less than or equal to Criticali(t) in the <s ordering}.

Correctness of (5)-(7) follows from the definitions. Their algorithmic implications are
discussed next.

Updating the CRITICALI register. Relationship (5) implies that in order to
update CRITICALI (i.e., compute Criticali(t)) all i has to do is determine which of
Criticali(t-1) or its successor in Ut-h is the correct value of Criticali(t). This is done
as follows. If Criticali(t- 1) has no successor in Ut-h then Criticali(t- 1) Wm
and hence Criticali(t) Criticali(t- 1). Otherwise the updating is done in the
following two steps. For shorthand, let r denote Critical(t- 1), and let s denote the
successor of r in Ut-h.

The first step is to compute OL(S) and O(s) in constant time. This involves
a search in L (respectively, R) for the crossover c in L (respectively, R) whose
rL(C, t- 1) (respectively, r(c, t- 1)) contains s. These two searches in L
and R are done in constant time with the III processors available. We explain
how the search in L is done (that in R is similar and omitted). I assigns a
processor to each c L, and that processor tests whether s is in rL(C, t- 1);
the answer is "yes" for exactly one of those ILl processors and thus can be
collected in constant time. Thus I can determine OL(S) and 0(s) in constant
time.
The next step consists of comparing which of the following two paths to s is
better: the one through OL(S), or the one through O(s). If the path through
O(s) is better, then Criticali(t) is the same as Criticali(t- 1) and the
CRITICAL register stays the same (containing r). Otherwise Criticali(t)
is s, and we set CRITICALI equal to s. This comparison of the two paths
and resulting update are done in constant time (by one processor, in fact).

We next show how the just computed Criticali(t) value is used to compute the
ri(c, t)’s in constant time.

Updating the RANGE array. Relationship (6) implies the following for each
cL:
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1) If rL(c, t-- 1) is to the leftof Criticali(t) then ri(c, t) rL(C, t-- 1).
2) If rL(c,t- 1) is to the right of Criticali(t) then ri(c,t) O.
3) If rL(C, t-- 1) contains Criticali(t) then it consists of the portion of rL(C, t-- 1)

up to (and including) Criticalx(t).
The above facts 1)-3) immediately imply that O(1) time is enough for ILl of the
processors assigned to I to compute ri(c, t) for all c E L, by adjusting the RANGEI(c)
value according to rules 1)-3) above (recall that the rL(c, t- 1)’s are available in L
from the previous stage t- 1, and Criticali(t) has already been computed and is in
the CRITICALI register).

A similar argument shows that relationship (7) implies that [R[ processors are
enough for computing r(c, t) for all c E R. Thus I can update its RANGE array
in constant time with [I[ processors. This completes the proof of Lemma 5.

The result of this section is easily seen to provide an O(log rn) time, O(rn log
processor CREW-PRAM solution to the problem commonly called [2], [3] "computing
the row maxima of an m x rn totally monotone matrix" (we refer the reader to [2]
and [3] for some of the many applications of this problem, for which a linear-time
sequential solution is known [2]).

6.2. Obtaining all rows of DISTAuB. This section shows that O(m2/log m)
processors and O(m2) space suffice for computing in O(logm) time all the 0(v, w)’s
(hence for computing the DISTAuB matrix). Let LA and LB be as in previous
sections. Our task is to compute 0(v, w) for all v LA and all w LB. We use
S(L, k) to denote the k-sample of a list L.

In the first stage of the computation, we assign m log m processors to each v
S(LA, log2 m)..Then, in parallel for all v S(LA, log2 m), we use the method of the
previous section to obtain 0(v, w) for all w LB. This first stage of the computation
takes O(logm) time, O(m2) space, and O(m2/logm) processors, and obtains 0(v, w)
for all v S(LA, log2 m) and w LB.

In the second stage, of the computation, we assign 2m processors to each w
S(LB, log rn), with the task of computing 0(v, w) for all v LA. These 2m processors
perform this computation for their particular w in O(log m) time, as follows. The set of

m log2 m values {0(v, w) v e S(LA, log2 m)} partitions the common boundary of A
and B into m/log2 m pieces J1,J2,"" (see Fig. 6.1). Let I,I2,... be the m/log2 m
pieces (of size log2m each) into which S(LA,log2 m) partitions LA (see Fig. 6.1).
Partition the group of 2m processors assigned to w into m/log2 rn subgroups, where
the ith subgroup contains log2 m + IJl processors whose task is to compute, for all
v e/, which element of J equals O(v, w). This subgroup of log2 rn + IJl processors
does this as follows:

1) It gives each of the logm elements of S(I,logm) (say, to element v) 1 +
IJl/log rn processors that v uses to find out, in O(log m) time, which element
of J equals O(v,w). The set of log m values {O(v,w) v S(I,logm)}
partitions Ji into log rn pieces Ji,, Ji,2,"’. Let Ii,,Ii,2,... be the log rn
pieces (of size log m each) into which S(Ii, log rn) partitions Ii.

2) It partitions its log2 rn + [Ji[ processors into log rn subsubgroups, where the
kth subsubgroup contains log rn + [Ji,k[ processors whose task is to compute,
for all v e Ii,k, which element of Ji,k equals O(v, w). This subsubgroup of
log rn + [Ji,k[ processors does this in O(log rn) time by giving to each of the
log rn elements of Ii,k (say, to element v) 1 + [Ji,kl/log rn processors that v
uses to find out, in O(log rn) time, which element of Ji, equals O(v, w).
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FIG. 6.1. Illustrating the second stage of the computation.

In the third stage of the computation, we assign 2m/x/’10g m processors to each
v E S(LA, v/logm), with the task of computing O(v,w) for all w E LB. These
2m/v/logm processors perform ,this computation for their particular v in O(logm)
time, as follows. The set of m/log m values {O(v, w) w S(LB, log m)} partitions
the common boundary of A and B into m/logm pieces J1, J2,’" ". Let I,I2,... be the
m/logm pieces (of size log m each) into which S(LB,logm) partitions LB. Partition
the group of 2m/v/log m processors assigned to v into m/log m subgroups, where the
ith subgroup contains x/log m + IJl/v/log m processors whose task is to compute, for
all w Is, which element of Ji equals O(v, w). This subgroup of x/log m + Ijl/v/log m
processors does this as follows:

1) It gives each of the v/log m elements of S(I, v/log m) (say, to element w) 1 +
IJl/log m processors that w uses to find out, in O(log m) time, which element
of Ji equals O(v,w). The set of v/logm values {0(v, w)[w e S(Ii, v/logm)}
partitions Ji into x/10g m pieces Ji,, Ji,2,"" ". Let Ii,, Ii,2,’." be the
x/log m pieces (of size x/log m each) into which S(/, v/log m) partitions/.

2) It partitions its v/logm + [Ji[/x/’logm processors into v/log m subsubgroups.
The kth subsubgroup contains 1 + IJ,kl/x/’logm processors whose task is
to compute, for all w ,Ii,k, which element of Ji,k equals O(v, w). This
subsubgroup of 1 / IJi,k[/v/logm processors does this in O(logm) time as
follows:
(a) If [Ji,k[ >_ log m, by giving to each of the v/log m elements of Ii,k (say, to

element w)IJi,t:l/logm processors that w uses to find out, in O(logm)
time, which element of Ji,k equals O(v, w).

(b) If [Ji,k[ < log m, by partitioning Ii,k into 1 + [Ji,k[/v/logm equal pieces
Ii,k,,Ii,k,2,’’" (each of size at most log m/[Ji,k[) and giving each//,k,t
one processor. This processor sequentially finds O(v, w) for all w Ii,k,t
in O(logm) time, since [Ii,k,t[IJi,kl O(logm).

The fourth stage of the computation "fills in the blanks" by actually computing
O(v, w) for all v LA and w LB. It does so with only m2/logm processors by ex-
ploiting what was computed in the previous stages. Partition LA into m/v/log m con-
tiguous blocks X, X2,’" of size v/log m each. Similarly, partition LB into m/v/log m
contiguous blocks Y, Y2, of size v/log m each. Let Zij be the interval on the bound-
ary common to A and B that is defined by the set of 0(v, w) such that v Xi and
w Yj. Of course we already know the beginning and end of each such interval
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Zj (from the third stage of the computation). Furthermore, we have the following
lemma.

LEMMA 6 z..,i= z.,j= IZijI O(m2/v/logm)
First, observe that Zij and Zi+,j+ are adjacent intervals that are disjoint except

for one possible common endpoint (the rightmost point in Zij and the leftmost point
in Zi+,j+ may coincide). This observation implies that for any given integer 6 (0 _<
I1 <_ m/v/10g m), we have (it is understood that IZI- 0 if j < 1 or j > m/x/log m)"

m/v/log m
O(m).

i--1

The lemma follows from the above simply by rewriting the summation in the lemma’s
statement"

m/v/log m m/v/log m

i=l

The above lemma implies that with a total of m2 / log m processors, we can afford
to assign a group of 1 + Zij i/v/log m processors to each pair Xi, Y. The task of this
group is to compute O(v, w) for all v E Xi and w E Y (of course each such O(v, w) is in
Zij). It suffices to show how such a group performs this computation in O(log in) time.
If IZil _< v/16gm then a single processor can solve the problem in O((/logm)2)
O(logm) time, by the quadratic work method of 3. If IZ] > v/logm then we
partition Zi6 into IZi]/v/log m pieces J, J2,... of size /log m each. We assign to each
Jk one processor which solves sequentially the subproblem defined by Xi, Jk, Y’, i.e.,
it computes for each v Xi and w Y the leftmost point of J} through which passes
a path that is shortest among the ts-to-w paths that are constrained to go through
J}. This sequential computation takes O(log m) time (again, using the method of 3).
It is done in parallel for all the J’s. Now we must, for each pair v, w with is Xi
and w Y, select the best crossing point for it among the ]Z:il/v"logm possibilities
returned by each of the above-mentioned sequential computations. This involves
a total (i.e., for all such v,w pairs) of O(IXiliYliZi:sllv/logm) O(IZilvllogm)
comparisons, which can be done in O(logm) time by the IZi:silvllogra processors
available (Brent’s theorem).

7. CRCW-PRAM algorithm. This section briefly sketches how the partition-
ing schemes of 6.2 translate into a CRCW-PRAM algorithm of time complexity
O(log n(log log m)) and processor complexity O(mnl log log m). Again, it suffices to
show how DISTAcJB can be obtained from DISTA and DISTB in O((loglogm)2)
time and with m2/log log in processors.

We first describe a preliminary procedure that has the right time complexity but
does too much work: O(m2 log m) work. The procedure is reeursive, and we describe
it for the more general ease when DISTA is g x h and DISTB is h x g (that is,
ILA] ILBI g and the common boundary has size h). It suees to show that we
can, in O(loglog h log log g) time and gh log g work, compute 0(is, w) for all is c= LA
and w

_
LB.

The first stage of the preliminary algorithm partitions LA into v/ contiguous
blocks X1,X2,... of size vr each. Similarly, LB is partitioned into / contiguous
blocks Y1, Y2,... of size V/ each. In parallel for each pair is, w such that is is an
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endpoint of an Xi and w is an endpoint of a Y, we compute, in O(log log h) time and
O(h) work, the point O(v, w). Thus, if we let Zij denote the interval on the boundary
common to A and B that is defined by the set O(v, w) such that v E Xi and w
then after this stage of the computation we know the beginning and end of each such
interval Zij.

The second stage of the computation "fills in the blanks" by doing, in parallel,
recursive calls, one for each Xi, Yj pair. The call for pair Xi, Yj returns O(v, w) for all
v Xi and w Y (of course each such O(v, w) is in Zij).

The time and work complexities of the above method satisfy the recurrences:

T(g, h) <_ T(vQ, h) + cl log log h,

W(.,h) <_max{c2t.h, EW(V,lZijl)},,..
where cl and c2 are constants. The time recurrence implies that T(l,h)
O(log log h log log l). That the processor recurrence implies W(t., h) O(ih log )
becomes apparent once we observe that , IZjl _< 2hx/. The proof of this last fact

is similar to that of Lemma 6" ’i,j IZiJl is rewritten as i, IZi,i+[ <_ h <_ 2hvQ.
This completes the proof of the preliminary CRCW-PRAM bound.

To decrease the work done from O(m2 log m) down to O(m2 log logm) (which
would imply the bound we claimed in the abstract of this paper), we use a parti-
tioning scheme similar to the ones we used in the CREW-PRAM method, in 6.2.
We partition the common boundary into log m contiguous blocks J,..., Jlog m of size
m/log rn each, then we create log rn subproblems where the ith one consists of com-
puting t?j(v,w) for all v S(LA, logm) and w S(LB,logm). We solve in parallel
all such subproblems using the preliminary scheme of the previous paragraph, then
we "collect answers"" for each v S(LA,logm) and w S(LB,logm) we compute
the correct O(v, w) from among Oj (v, w),..., {Jlog (V, W). As in 6.2, the O(v, w)’s so
computed define a partition of the common boundary into Zi’s, whose corresponding
subproblems we solve as in the schemes of 6.2: if a Zij is "small" (i.e., _< log m)
then we solve it using the preliminary algorithm; otherwise we partition it into small
pieces, solve each of them using the preliminary algorithm; and then collect answers.
An analysis like those of 6.2 reveals that the work done is O(m2 log log m), while the
time complexity remains O((loglogm)2).

Of course the same algorithm as above yields different complexity bounds when
we use in it other CRCW-PRAM methods for computing the min of h objects.

8. Conclusion. We gave a number of PRAM algorithms for the string editing
problem. The algorithms were fast and efficient, but the best time x processors bound
still did not match the time complexity of the best serial algorithm for the problem
[14], [23].
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Abstract. Given a text string, a pattern string, and an integer k, a new algorithm for finding
all occurrences of the pattern string in the text string with at most k differences is presented. Both
its theoretical and practical variants improve upon the known algorithms.
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1. Introduction. The edit distance between a text string x XlX2""Xn and a
pattern string y YlY2""Ym over an alphabet is the minimum number of differences
between them such that a correction of the differences converts one string into the
other. A difference is one of the following:

(1) A character of the pattern corresponds to a different character of the text.
(2) A character of the text corresponds to no character in the pattern.
(3) A character of the pattern corresponds to no character in the text.
Example 1. Let x abcdefg, and y ahcef+/-g. The edit distance between x

and y is three, as shown in Fig. 1. The matched characters are indicated by vertical
lines. The character b in x corresponds to h in y (a difference of type (1)), d in x to no
character in y (a difference of type (2)), and +/- in y to no character in x (a difference
of type (3)).

x" a b c d e f g

y" a h c e f i g

FIG. 1. The edit distance between x and y.

An edit operation is an operation which corrects a difference. Change, deletion,
and insertion are the edit operations corresponding to the three types of differences.
The edit sequence between the text and the pattern is the sequence of edit operations
for converting one string into the other which realizes the edit distance. Algorithms
for finding the edit distance and the edit sequence were given in [9] and [8].

In this paper we are interested in a more general problem; that is, to find all
occurrences of the pattern in the text with at most k differences (k <_ m _< n), which
is called the string matching with k differences. Closely related is the string matching
with k mismatches, in which only the difference of type (1) is allowed. Together these
two problems are called approximate string matching.
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For the problem of string matching with k differences Landau and Vishkin pro-
vided two algorithms [4] and [5]. Their first algorithm consists of text processing of
time bound O(k2n) and preprocessing of the pattern which has a practical variant
and a theoretical variant, depending on the use of a suffix tree and the lowest com-
mon ancestor algorithm. Their second algorithm consists of text processing of time
bound O(kn) and preprocessing of both text and pattern by using a suffix tree and
the lowest common ancestor algorithm, which made it less suitable for practical use.
The two algorithms are incomparable for general alphabets. We present a new algo-
rithm whose practical and theoretical variants improve upon both [4] and [5]. Our
algorithm consists of text processing of time bound O(kn) and preprocessing of the
pattern which has practical and theoretical variants, as does the first algorithm of
Landau and Vishkin. The time bounds of the algorithms are summarized in Table 1,
where fit is the minimum of rn and the size of the alphabet. See [2] for a survey of
approximate string matching.

TABLE 1

The time bounds of the algorithms.

Algorithm Practical Theoretical

O(kn + rn)

O(kn + m:)

O(k2n + rn log fit)
O(kn + n log fit)
O(kn + rn log fit)

2. O(mn) algorithms. The ith character of a string x is denoted by xi. A
substring of x frotn the ith through the jth characters is denoted by xi...xj. If the
minimum number of differences between the pattern y and any substring of the text
x ending at xj is less than k, we say that y occurs at position j of x with at most k
differences. The problem of string matching with k differences is defined as follows:
given a text x of length n, a pattern y of length m, and an integer k (k _< rn <_ n),
find all positions of x where y occurs with at most k differences. Variations of [9] and
[8] solve the string matching with k differences in time O(mn) as follows. (See also
[4], [5].)

Let D(i,j), 0 <_ <_ rn and 0 _< j _< n, be the minimum number of differences
between yl’"yi and any substring of x ending at xj. For 1 _< _< rn and 1 <_ j <_ n,
the differences between y’"yi and Xh’"xj for some h, 1 _< h <_ j are either

(i) differences between y...yi_ and Xh’"xj- + the difference between yi

and xj, or

(ii) differences between y...y and Xh’"xj- + a difference of type (2) at xj,
or

(iii) differences between y...y_ and Xh’"xj + a difference of type (3) at y.
Thus, D(i,j) is determined by the three entries D(i- 1,j), D(i,j 1), and D(i- 1,
j-i)"

D(i,j) min(D(i 1,j 1) + ij,D(i,j 1) + 1,D(i 1,j) + 1),

where ij 0 if xj yi; it is 1 otherwise. D(i, O) for 0 <_ <_ rn because yl’"yi

differs from the empty text by differences of type (3). D(O,j) 0 for 0 <_ j _< n
because the empty pattern occurs at any position of the text. D(m, j) <_ k if and only
if the pattern occurs at position j of the text with at most k differences. Figure 2
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Algorithm MN1

fori0tom do D(i, 0) end for
for j 0 to n do D(0,j) - 0 end for

forjl tondo
for i-i torn do

row - D(i- l, j) + 1
col - D(i,j 1) + 1
if xj yi then diag - D(i- 1,j 1)
elsediag-D(i-l,j-1)/l end if
D(i, j) -- min(row, col, diag)

end for
end for

FIG. 2. The algorithm MN1.

shows the dynamic programming algorithm MN1, which is a variation of Wagner and
Fischer’s algorithm [9]. It computes the D table column by column. Since there are
O(mn) entries and each entry takes constant time to be computed, algorithm MN1
takes time O(mn).

Example 2. Let x abbdadcbc, y adbbc, and k 2. Table 2 shows table
D(i,j), 0 _< _< 5 and 0 <: j _< 9. The pattern occurs at positions 3, 4, 7, 8, and 9 of
the text with at most two differences.

TABLE 2

Table D(i, j).

D

0

1 a
2 d
3 b
4 b
5 c

0 1 2 3 4 5 6 7 8 9

a b b d a d c b c

0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1 1 1

2 1 1 2 1 1 0 1 2 2

3 2 1 1 2 2 1 1 1 2

4 3 2 2 3 2 2 2

5 4 3 2 2 3 3 2 2 1

LEMMA 1 [8]. For every D(i,j), 1 <_ <_ m and 1 <_ j

_
n, D(i,j) D(i- 1,

j 1) or D(i,j) D(i- 1,j- 1)+ 1.
Let D-diagonal d be the entries of table D(i,j) such that j- d. Lemma

1 suggests a more compact way to store the information of the D table. For each
D-diagonal we store only the positions where the value increases. For a D-diagonal d
and a difference e, let C(e, d) be the largest column j such that D(j- d, j) e. In
other words, the entries of value e on D-diagonal d end at column C(e, d). Note that
C(e, d)-d is the row of the last entry on D-diagonal d whose value is e. Let C-diagonal
c be the entries of table C(e, d) such that e + d c. The definition of C(e, d) implies
that the minimum number of differences between Yl"’’Yc(,d)-d and any substring of
the text ending at Xc(e,d) is e, and Xc(e,d)+l YC(e,d)+l-d. C(e, d) m -t- d for some
e _< k if and only if the pattern occurs at position rn + d of the text with at most k
differences.

Example 3. Consider x abbdadcbc, y adbbc, and k 2 again. Table 3
shows the C table, where columns are D-diagonals and rows are differences. The



992 ZVI GALIL AND KUNSOO PARK

initial entries (-1, -oc, and the first row) will be explained below. Note that on D-
diagonal 4 in Table 2 there is no entry of value 2, in which case we set C(2, 4) 9, the
last column of D-diagonal 4. For D-diagonal d -2, -1, 2, 3, and 4, C(2, d) 5 + d.
Thus the pattern occurs at positions 3, 4, 7, 8, and 9 of the text with at most two
differences.

-1

0

1

2

TABLE 3

Table C(e, d).

d

-3 -2 -1 0 2 3 4 5 6 7

-c -1 0 1 2 3 4

-oe -1 1 1 2 3 6 5

-oe -1 3 3 2 4 6 9 8

-1 3 4 4 4 7 8 9

There are three types of D-diagonals with respect to the C table:
(i) For -k _< d _< -1, we compute d + k + 1 entries C(e, d), Idl _< e _< , because

D-diagonal d starts with value Idl.
(ii) For 0 _< d _< n- m, we compute k + 1 entries C(e,d), 0 <_ e <_ k.
(iii) For n-m+1 <_ d <_ n-re+k, we compute (n-rn+k)-d+l entries C(e,d),

0 _< e _< (n-m + k)- d because D-diagonal n- rn is the last D-diagonal
for which we want to compute C, and D-diagonal d may affect the values of
D-diagonal n- rn by differences of type (3).

Thus the shape of the C table is a parallelogram. In order to compute the C table
directly without using the D table, we have the following initial entries. For D-
diagonal d _> 0, the initial value of the D-diagonal is 0 at column d (i.e., D(0, d) 0),
so we assign d- 1 to C(-1, d), which indicates that imaginary entries of value -1
end at column d- 1. Since the initial value of D-diagonal d, -(k + 1) _< d _< -1, is

Idl at column 0, we assign -1 to C(Id 1, d). We also assign -oc to C(Id 2, d),
-(k + 1) _< d _< -1, so that they are properly initialized.

The C table is computed by the algorithm MN2 (Fig. 3), which is a variation of
Ukkonen’s algorithm [8]. It proceeds C-diagonal by C-diagonal. Now we show that
algorithm MN2 computes the C table correctly. Consider the computation of C(e, c-e)
for 0 < c < n- rn + k and 0 < e < k. For notational convenience let d c- e. Recall
that C(e, d) is the column of the last entry on D-diagonal d whose value is e. Assume
by induction that C(e- 1,d- 1), C(e- 1, d), and C(e- 1, d + 1) were computed
correctly. This means that in the D table the entries of value e- 1 reach column
C(e- 1, d- 1) on D-diagonal d- 1, column C(e- 1, d) on D-diagonal d, and column
C(e 1, d + 1) on D-diagonal d + 1. Let col’ be the maximum of C(e 1, d- 1) + 1,
C(e 1, d) + 1, and C(e 1, d + 1). Note the col’ may be greater than either n or
rn + d (the last position of either string), in which case we set C(e, d) min(rn + d, n),
the last column of D-diagonal d in the D table. If col is less than or equal to both n
and rn + d, D(col d, col) gets value e from one of the last entries of value e 1 on
D-diagonals d- 1, d, and d + 1 by one of the three types of differences. The entries
of value e on D-diagonal d continue to column col" such that Xcot,,+l Ycot"+l-d is
the first mismatch for col" >_ col, or col" is either n or rn + d. Then C(e, d) col".

Example 4. Consider the computation of C(2, 2) in Example 3. C(1, 1) + 1 3,
C(1, 2)+ 1 5, and C(1, 3) 6. So col’ for C(2, 2) is 6, and D(4, 6) gets value 2 from
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Algorithm MN2

//initialization//
for d-0ton-m+k+ldo C(-1, d)-d-lend for
for d - -(k + 1) to -1 do

C(Idl 1, d) ,-- -1
C(Idl 2, d) - -end for

for c0ton-m+k do
fore-0tokdo
d-c-e
col max(C(e 1, d 1) + 1, C(e 1, d) + 1, C(e 1, d + 1))
while col < n and col- d < m and Xcol+l -Ycol+l-d do

col - col + 1
end while
C(e, d) - rain(col, m + d, n)

end for
end for

FIG. 3. The algorithm MN2.

D(3, 6) 1. There is a match x7 y5 at column 7 of D-diagonal 2, which is the last
match on the D-diagonal. Thus C(2, 2) 7.

LEMMA 2. The characters of the text which are compared with the pattern in the
computation of C-diagonal c are at most Xc+l, ,Xc+m (Xc+l, ,Xn if c + m > n).

Proof. We show that in order to compute C(e,c- e) for 0

_
e

_
k, at most

Xc+l,’",Xm+c- are compared with the pattern. To compute C(0, c), we start with
the comparison of yl and xc+l, and we may continue up to the comparison of Ym and
Xc+m, which is the last one on D-diagonal c. Thus we compare at most Xc+l,’. ", X+m
with the pattern for C(0, c). To compute C(e, c- e) for 0 < e

_
k, the first position

of the text to be compared is greater than or equal to c + 1" the computation of
C(0, c- e) starts at text position c e + 1, and there is at least one entry of each
value e, 0 _< e < e, on D-diagonal c- e. The entries of value e on D-diagonal c-e
may continue to D(m, m + c- e), the last entry on D-diagonal c- e. Thus, at most
Xc+l,’",Xm+c-e are compared for C(e, c- e). If any position of the text is greater
than n, the last position to be considered should be n. V1

LEMMA 3. During the computation of C-diagonal c,
(1) The positions of the characters of the text which are actually compared with

the pattern are nondecreasing.
(2) The repetitions of text positions occur at most k times.

Proof. Let j be the text position where a mismatch occurred in the computation
of C(e, c e) for 0 _< e < k (i.e., C(e, c e) j 1). We show that the first position
of the text to be considered for C(e + 1, c- e- 1) is at least j. At the beginning of
the computation of C(e + 1, c-e- 1), col >_ C(e, c-e). The first position of the text
col + 1 satisfies the following:

col + 1 >_ C(e,c- e) + 1 j.

Since the repetition of a text position occurs only at the first comparison for C(e, c-e),
1 _< e _< k, there are at most k repetitions. ]

By Lemmas 2 and 3 the computation of each C-diagonal takes time O(m). Since
there are n- m + k + 1 C-diagonals, algorithm MN2 takes time O(mn).
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3. The new algorithm. The algorithm consists of preprocessing of the pattern
followed by processing of the text. In the preprocessing we build an upper triangular
table Prefix(i, j), 1 <_ < j <_ m, where Prefix(i, j) is the length of the longest
common prefix of yi ""Ym and yj ""Ym. This table is used for the comparison of two
substrings of the pattern during the text processing. The details of the preprocessing
will be discussed in the next section.

The text processing is based on the second algorithm in the previous section. It
consists of n- m + k + 1 iterations, one for each C-diagonal, as algorithm MN2 does.
Whereas algorithm MN2 relies only on direct comparisons of the text with the pattern,
the new algorithm uses both direct comparisons and lookups of the Prefix table. If
a substring of the text had matches with a substring of the pattern, the algorithm
looks up the Prefix table for the substring of the text. Otherwise, it directly compares
the text with the pattern. For the matched part of the text the algorithm compares
two substrings of the pattern instead of comparing a substring of the pattern with a
substring of the text. This technique, which first appeared in the Knuth-Morris-Pratt
algorithm [3], was also used in [4] and [7].

A reference triple (u, v, w) consists of a start position u, an end position v, and a
D-diagonal w such that substring x xv of the text matches substring y-w yv-w
of the pattern and x+l :fi y+l-. Note that w is the D-diagonal where the match
occurred. We call yu-’"y- the reference of x... x. If u > v in a triple (u, v, w),
the triple is called null, and it indicates that [u, v] is an empty interval and xv+l
y+l_. The idea of triples that are equivalent to reference triples appeared in [4].

At iteration c we compute C-diagonal c that is C(e,c- e), 0 <_ e <_ k. Let q
be the text position such that Xq+l is the rightmost character of the text which was
compared with the pattern before iteration c (i.e., Xq+ had a mismatch). Suppose
that from previous iterations we have k + 1 reference triples (u0, v0, w0), (Ul, v, w),.., (uk, vk, wk) such that the set of intervals [u0, v0], [u, v], ..., [uk, vk] is a partition
of interval [c,q] with a possible hole between v and u+l for 0

_
e < k (i.e., either

u+ v + 1 or u+ v + 2). Initially, q 0 and all triples are (0, 0, 0).
Let t be the current text position (col + 1 in Figs. 3 and 4) in the computation

of C(e, c- e) for 0 _< e

_
k. Again, let d c-e for convenience. To compute C(e, d),

we look for the first mismatch xj Yj-d for j _> t. Then C(e,d) will be j- 1. If
t > q, we have no reference triples for xt. So we compare the text with the pattern
until there is a mismatch. While t _< q, we compare the pattern with references unless
t is the position of a hole, in which case xt is directly compared with the pattern. If t
is within the interval of a reference triple (ur, vr, w) for some 0 _< r _< k, we look up
the Prefix table. The current pattern position p is t- d, and the reference position
corresponding to t is t w. We look at Prefix(p, t wr). Let f be v t + 1, the
length of the reference from t w to vr w. Let g be Prefix(p, t w), the length
of the longest common prefix of Yp’"Ym and Yt-w’"Ym. There are three cases:

(i) f < g" text xt...xt+f- matches pattern yp.. "yp+f-1, but xt+f yp+
because xt+i yt+I-w by the definition of reference triples, and Yt+I-
yp+f since f < g.

(ii) f g text xt".xt+i-1 matches pattern yp...yp+i_, and xt+ may or
may not match yp+f because xt+j Yt+-w and yt+I- Yp+f.

(iii) f > g" text xt...xt+g- matches pattern yp...yp+g_, but xt+a yp+a
because Xt+g yt+g-w and yt+g-w, yp+g.

In cases (i) and (iii) we have found j that is t + min(f, g). In case (ii) we continue at
position t + f.

After iteration c we update reference triples for the next iteration. Let
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Algorithm KN
initializations

for c-0 to n-m+k do
r --- 0
fore-0tokdo
d-c-e
col -- max(C(e- 1, d- 1)+ 1, C(e- 1, d)+ 1, C(e- 1, d + 1))
s - col + 1

found - false
while not found do

if within(col + 1, k, r) then
f - v col
g Prefix(col + 1- d, col + 1- wr)
if f- g then

col col + f
else

col ,- col + rain(f, g)
found - true

end if
else

if col < n and col d < m and Xot+ Ycot+-d then
col col + 1

else
found - true

end if
end if

end while
C(e, d) - min(col, rn + d, n)
//update reference triple (ue, v, w) //
if v >_ C(e, d) then

if e 0 then u - c + 1
else u - max(u, v-i + 1) end if

else
v -- C(e, d)
we--cl
if e 0 then u - c + 1
else u - max(s, v-I + 1) end if

end if
end for

end for

FIG. 4. The algorithm KN.

0

_
e <_ k, be the first position of the text which was considered for C(e, d). C(e, d)

itself is the last position where a series of matches (possibly empty) ended. Namely,
xs,’",Xc(,d) had matches with the pattern if s <_ C(e,d). Therefore, triples
(s, C(e,d),d), 0 <_ e <_ k, are reference triples which came up from the computa-
tion of C-diagonal c. However, triples (s, C(e, d), d), 0 <_ e _< k, cannot immediately
become new reference triples for the next iteration, since there may be multiple holes
between C(e,d) and s+l (i.e., s+ > C(e,d)+2). We combine the old reference triple
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(ue, ve, we) and the reference triple (se, C(e, d), d) to obtain the new reference triple
(u,v,w) for each 0 <_ e _< k. Two triples (ue, ve,we) and (se, C(e,d),d) compete
for (u, v, w), and the one with larger end position (i.e., ve vs. C(e, d)) wins. When
ve C(e, d), the tie can be broken arbitrarily (in Fig. 4 we choose (ue, ve, we) as the
winner to minimize update operations). New v and we are those of the winner. It
follows by induction on the iteration number c that after the update, v is the maxi-
mum of C(e, e), 0 _< _< c. New u is c + 1 if e 0. If e > 0, there are two cases for
u. In each case we show that (u, v, w) is a reference triple and u is either re_ + 1
or ve_ nt- 2.

(i) If (ue, ve, we) is the winner, u’e is the maximum of ue and ve_ + 1.
(a) (u, v, w) is a reference triple because (ue, re, we) is a reference triple

and u >_
(b) ue is either ve-1 + 1 or ve-1 + 2 from previous iterations, and re-1 <_

ve_1’ by the previous competition. Thus, ue > re_ + 1 only when
in which case ueue ve-1 + 2 and ve-1 ve_ 1, ve_ + 2.

(ii) If (se, C(e, d), d) is the winner, u’ is the maximum of se and ve_ + 1.
(a) (u’, v’, w’) is a reference triple because (se, C(e, d), d) is a reference triple

and u’ _> se.
(b) se is the maximum of C(e 1, d + 1) + 1, C(e 1, d) + 2, and C(e- 1,

d-l)+2, ve_’ is the maximum of C(e-1, d-t-l), C(e-1, d), C(e-1
C(e- 1, d) + 2.., C(e- 1,-(e- 1)). Thus, se > ve_ + 1 when

andve_ C(e- l,d), or whense C(e- l,d-1) + 2 andv’e_l
C(e- 1, d- 1). In both cases, se ve_ + 2.

Therefore, (u v/,w) (u v w) (u v’k,w) are reference triples, and the set
of intervals [u, v/], [u, v], ..., [u, v] is a partition of interval [c + 1, q’] with a
possible hole between v and ue+’ for 0 <_ e < k, where q’ is the largest end position
of the triples (q’ may not be v if triple (u, v, w)is null). Instead of updating all
reference triples at the end of iteration c, we can update the reference triple (ue, ve, we)
after the computation of C(e, d). If the old reference triple (ue, re, we) is the winner,
triple (se, C(e, d), d) is simply discarded. Otherwise, the text position to be considered
next is greater than C(e, d) by Lemma 3.1, so we can update (ue, re, we) safely.

Example 5. Consider x abbdadcbc, y adbbc, and k 2. Table 4 shows the
reference triples at the beginning of iteration c, 1 <_ c _< 6. The triples marked with
are null triples.

TABLE 4

Reference triples.

Reference triples

0 2

(1,1,0) (2, 3, -1) (4, 3, -2)*
(2,1,0)* (2, 3,-1) (5,4,-1)*
(3,2,2)* (3,3,-1) (5,4,-1)*
(4,3,3)* (4,4,2) (5,4,-1)*
(5,6,4) (7,6,3)* (7,7,2)
(6,6,4) (8,9,4) (10,8,3)*

The algorithm KN in Fig. 4 shows the text processing. Procedure within(t, k, r)
tests if text position t is within an interval of reference triples, in which case r is the
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procedure within(t, k, r)
while r_<k and t>vr do
r+--r+l

end while
if r > k then return(false)
else

if t _> ur then return(true)
else return(false) end if

end if
end

FIG. 5. The procedure "within(t, k, r)."

index of the reference triple within whose interval text position t is. At the beginning
of iteration c, r is 0. By Lemma 3.1, r never decreases during iteration c. If t > vi

for all 0 _< _< k, obviously t > q; within(t, k, r) returns false. If t _< q, it increases r
by 1 until t <_ v. If u <_ t, t is in interval [u, v]; it returns true. If t < ur, t is the
position of a hole; it returns false. Figure 5 shows the procedure within(t, k, r). The
text position q is implicitly maintained by the reference triples.

At iteration c the number of repetitions of the while loop in algorithm KN is the
number of direct comparisons plus the number of lookups of the Prefix table. Direct
comparisons are counted in two ways:

(i) If t > q + 1 (i.e., xt is a new character), the comparison is charged to text
position t.

(ii) If t _< q + 1 (i.e., xt was compared before iteration c), the comparison is
charged to C-diagonal c.

When t > q + 1, there can be at most k repetitions of text position t during iteration
c by Lemma 3.2. At the next iteration the text position belongs to (ii). Thus there
are O(kn) comparisons for the whole text processing by rule (i). In interval [c, q + 1]
there are at most k holes from the reference triples and another hole at q + 1. A direct
comparison at a hole either increases e (when a mismatch occurs) or causes passing the
hole (when a match occurs). Hence, O(k) comparisons are charged to C-diagonal c by
rule (ii). Table lookups are charged to C-diagonal c. A lookup of the table increases
either e (when f g) or r (when f g); O(k) lookups are charged to C-diagonal c.
At iteration c, procedure within also takes time O(k) because r increases from 0 to
at most k + 1. Since there are n- rn + k + 1 C-diagonals, the total time of the text
processing is O(kn).

The text processing maintains the C table and k + 1 reference triples. To find
edit distances (i.e., string matching with k differences) we keep only two previous
C-diagonals. Thus, the space required for the text processing is O(k). If we want to
find both edit distances and edit sequences, we need to keep k C-diagonals [8], which
leads to O(k2) space.

4. The preprocessing. In the preprocessing of pattern y we compute upper
triangular table Prefix(i, j), 1 <_ < j <_ m, where Prefix(i, j) is the length of the
longest common prefix of yi"’y, and yj...y,. The procedure in Fig. 6 computes
Prefix(i, j) diagonal by diagonal. For each diagonal d it starts to compare yl with Yl+d
and proceeds on the diagonal until there is a mismatch yc Yc+d. Then Prefix(l,
l+d) c-l, Prefix(2,2+d) c-2, ..., Prefix(c,c+d) O. It resumes the
comparison with yc+l and yc+1+4, and repeats until it reaches the end of the pattern.
If the procedure makes c comparisons in the inner while loop, it fills in c entries of
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ford-ltorn-ldo
i0
whilei+d<rn do

c --- 1
while + c + d _< rn and yi+c Yi+c+d do
c---c+l

end while
forjl tocdo

grefix(i + j, + j + d) - c j
end for
i-i+c

end while
end for

FIG. 6. The preprocessing.

the Prefix table. Since there are m(m- 1)/2 entries, the preprocessing takes time
and space O(m2). An alternate computation of the Prefix table which also takes time
and space O(m2) appears in [4]. Taking into account both preprocessing and text
processing, our algorithm takes time O(kn + m2) and space O(m2).

Using a suffix tree and the lowest common ancestor algorithm ([2], [4], [5]), the
time bound of the preprocessing can be reduced to O(m log m) for general alphabets
or to O(m) for alphabets whose size is fixed, and the space bound is reduced to O(m).
Since, however, the constant hidden in the suffix tree and the lowest common ancestor
algorithm is quite large, it is mostly of theoretical interest. In this case our algorithm
takes time O(kn + rn log) and space O(m).

5. Conclusion. We have presented a new algorithm for the string matching with
k differences which improves, upon the known algorithms. It is interesting that the
time and space bounds of our algorithm are the same as those of Galil and Giancarlo’s
algorithm [1] for the string matching with k mismatches. In addition to the bounds,
they are similar in that both algorithms use the Prefix table and maintain k + 1
references (by a D-diagonal and mismatched text positions in [1], and by reference
triples in ours). They are different in that [1] finds start positions of occurrences of the
pattern in the text while our algorithm finds end positions of the occurrences, and [1]
builds references from one D-diagonal while our algorithm builds them from at most
k + 1 D-diagonals.

In [6] and [8], an additional type of difference was considered:
(4) Two adjacent characters ab of the pattern correspond to the transposed

characters ba of the text.
Transposition is the edit operation which corrects the difference of type (4). Our
algorithm with some modifications can be extended to include the difference of type
(4). Since a mismatch x Yi-d may turn out to be a difference of type (4) XiXi+l
Yi+l-dYi-d

col -- max(C(e 1, d- 1) + 1, C(e- 1, d)+ 1, C(e 1, d + 1))

should be replaced by

.-- C(e- 1, d)+ 1
if xx+l Yi+l-dYi-d then - + 1 end if
col - max(i, C(e- 1, d- 1)+ 1, C(e- 1, d + 1)).
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Now the first position s of the text which is considered for C(e d) can be Ve_ + 3
because of transposed characters. Thus there are at most two holes between the
intervals of reference triples.
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LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY
IN POLY-LOG TIME*

GEORGE S. LUEKER?, NIMROD MEGIDDO:, AND VIJAYA RAMACHANDRAN

Abstract. The parallel time complexity of the linear programming problem with at most two variables
per inequality is discussed. Let n and m denote the number of variables and the number of inequalities,
respectively, in a linear programming problem. It is assumed that all inequalities are weak. Under the
concurrent-read-exclusive-write PRAM model, an O((log m+log n)log n)-time parallel algorithm for
deciding feasibility is described. It requires mn(lg’) processors in the worst case, though it is not known
whether this bound is tight. When the problem is feasible, a solution can be computed within the same

complexity. Moreover, linear programming problems with at most two nonzero coefficients in the objective
function can be solved in poly-log time on a similar number of processors. Consequently, all these problems
can be solved sequentially with only O((log rn + log n)2 log2 n) space. (These bounds assume that numbers
take O(1) space, and arithmetic on them takes O(1) time; the problem can still be solved in poly-log space
as a function of the input size even if a Turing machine model with rational input is used instead.) It is
also shown that if the underlying graph has bounded tree-width and an underlying tree is given, then the
feasibility problem is in the class NC.

Key words, parallel computation, linear programming, poly-log time

AMS(MOS) subject classifications. 68Q25, 90G05

1. Introduction. Dobkin, Lipton, and Reiss [7] first showed that the general linear
programming problem was (log-space) hard for P. Combined with Khachiyan’s deep
result [14] that the problem is in P, this establishes that the problem is P-complete
(that is, log-space complete for P). A popular specialization of the general linear
programming problem is the problem of solving linear inequalities with at most two
variables per inequality (see [15] and the references therein). It is shown in [15] that
a system of m linear inequalities in n variables (but at most two nonzero coefficients
per inequality) can be solved in O(mn log m) arithmetic operations and comparisons
over any ordered field. It is not known whether the general problem (even only over
the rationals) can be solved in less than p(m, n) operations, for any polynomial p.

Throughout the paper we assume that the space to store numbers and the time
for arithmetic operations is O(1). Since each expression we compute can be written
as an expression tree of height O(log n) in the input values, the length of numbers
only increases by a polynomial factor during the execution of the algorithm, so this
assumption does not alter the statements of our results by more than a polynomial
factor for the number of processors, or more than a poly-log factor for the time.

In this paper we are interested in the parallel computational complexity of the
two variables per inequality problem. We first mention some related results which, we
hope, shed some light on the parallel complexity of the problem.
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PROPOSITION 1.1. The problem offinding the minimum value of a general linear

function subject to linear inequalities with at most two variables per inequality is P-complete.
Proof The proof follows from the result that the problem of finding the value of

the maximum flow through a capacitated network is P-complete 11]. More specifically,
every maximum flow problem can be reduced [8] to a transportation problem, that is,
a problem of the form

minimize CijXij
j

subject to , Xij ai, Xij b, Xij O.

The dual of the latter has only two variables per inequality.
In fact, there exist much simpler but yet P-complete linear programming problems

with a general objective function and only two variables per inequality. For example,
consider the following recursive formula:

Xk+ max OkXk -]- k, 7kXk f- 6k ),

where ak, fig, Tk, and tk (k-- 1,. ., n) are given numbers. Given any value of xl, we
want to determine the resulting value of x,. Let us call this the PROPAGATION
problem. The propagation problem can be solved as the following linear programming
problem:

minimize Mixi

subject to Xk+l OkXk " k, Xk+l "kXk + 6k,

where M is sufficiently large.
PROPOSITION 1.2. PROPAGATION is P-complete.
Proof. The proposition follows from the result by Helmbold and Mayr [12] that

the 2-processor list scheduling problem is P-complete. The latter amounts to a special
case ofPROPAGATION: Xk IXk-- Tkl max {Xk-- Tk, --Xk-1 + Tk}, k 1,’’’, n),
where T1," T are given integers and Xo 0. lq

Interestingly, the subproblem of PROPAGATION where all the ak’S and yk’S are
nonnegative is in NC; this follows immediately from the parallel composition of
monotonic piecewise linear functions to be discussed in 3.

We discuss three different problems:
(i) Deciding feasibility. Here we only need to determine whether there exists a

solution to a given set of linear inequalities with at most two variables per inequality.
(ii) Solving inequalities. Here we require that if the system is feasible then some

point in the feasible space be determined.
(iii) Optimization. Here we seek to find a point in the feasible space which

maximizes a given linear combination of two of the variables. As in the previous case,
here we must distinguish between the problem of computing the optimum value of
the function and the problem of computing optimum values of the variables.

Deciding feasibility is the core of our algorithm. This is accomplished by computing
the projections of the set of feasible solutions onto the individual coordinate axes.
Using a parallelization of the sequential algorithm of [17], we will compute for each
variable x an interval [Xow, Xhigh], --OO Xlow XhighOO (possibly empty), so that for
every x’ [Xow, Xhigh] there is a solution to the system of inequalities with x x’. This
part of the algorithm suffices of course for determining whether a given system of
linear inequalities (with at most two variables per inequality) has a solution. Later we



1002 G.S. LUEKER, N. MEGIDDO, AND V. RAMACHANDRAN

shall discuss the problem of finding a feasible solution given the (nonempty) projections
onto the axes. Finally, we show how to optimize a linear function with at most two
nonzero coefficients subject to such systems of inequalities.

2. Preliminaries. Two characterizations of feasibility of linear inequalities with at
most two variables per inequality were given by Nelson [17] and Shostak [19]. Our
algorithm is a parallelization of the algorithm in Nelson [17], but our exposition will
also make use of the characterization of Shostak [19] and further results by Aspvall
and Shiloach [2] which we now describe. A key idea in these papers is the observation
that we can combine inequalities to deduce new inequalities. For example, suppose
we are given x + 2y-<_ 3 and -y + 3z _-< 4. Eliminating y between these two inequalities,
we obtain x + 6z -< 11.

It is convenient to discuss the problem using graph-theoretic terminology. We
form what is called the constraints graph, denoted G, by creating a vertex for each
variable, and an edge for each inequality whose endpoints are the two variables
appearing in the inequality. (Note that this is actually a multigraph, since a pair of
variables can be involved in many different inequalities.) We henceforth identify
variables with the corresponding vertices. To take care of inequalities involving only
a single variable, such as x _-< 4, in 19] a dummy vertex Vo was also added corresponding
to a new variable that can only occur with coefficient zero; an edge representing an
inequality involving only one variable, say x, runs between x and Vo. Now let L denote
a path in G from x to y, that is, a set of inequalities OgiXi-[-[i+lXi+l ’)li (i=0, 1,’’’
k-1), where x Xo and y Xk. (Note that since G is a multigraph, a path should be
thought of as a sequence of edges rather than as a sequence of vertices, to avoid
ambiguity.) If Ogi[3 0 for 1, , k- 1, we say P is admissible, and then by successive
elimination of xl, x2,’", Xk- we can deduce a new inequality ax + fly <-_ y that is
implied by this path. We will call this the resultant of the path. If on the other hand
there exists an (1 _-< _-< k 1) such that 0li[3 > 0, we say the path is inadmissible, and
then we cannot deduce a resultant.

The case in which the endpoints of the path are the same variable deserves special
attention; in this case we call the path a loop. Then the resultant involves only a single
variable, that is, it is a bound of the form ax-< y. It is possible that the resultant could
be an inherent contradictionmthis occurs if a 0 and < 0. For instance, the path
-x + 2y-<-7 and -y + x/2 _-< 2 has the resultant 0x _-<-3, which is clearly a contradic-
tion. In this case we can deduce that there is no feasible solution. Unfortunately the
converse is not true; it is possible to produce an example of an infeasible set of
inequalities for which no loop yields a contradiction. One further idea is needed to
produce a characterization.

The closure G’ of G is the multigraph we obtain by adding to G all of the bounds
that are resultants of simple cycles.

THEOREM 2.1 (Shostak 19]). The original system G is infeasible ifand only ifsome
simple loop in the closure G’ has a resultant that is a contradiction.

3. Operations on polygons. For parallel computation we will want to be able to
manipulate many bounds simultaneously. To discuss this approach it is convenient to
represent a set of inequalities involving x and y by a polygon Pxy consisting of all
points in the plane that satisfy all of the inequalities. (We call these objects polygons
even though they may sometimes be unbounded.) It is useful to have a term to indicate

The correctness of our feasibility test follows directly from the theorems of [17], but the presentation
we have chosen enables us to depend only on results appearing in journals.
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that membership in a polygon implies some inequality; thus we will say that a polygon
P incorporates an inequality if all points in the polygon satisfy the inequality. The
algorithm of Nelson 17] makes use oftwo operations on polygons, namely, intersection
and composition. In this section we define these polygons and operations, and indicate
how we do them efficiently in parallel. (We have not carefully optimized these algorithms
since this would not significantly improve the statement of the overall complexity of
our feasibility testing algorithm.) Let R denote the set of reals, and let Rxy, for any
two variables x and y, denote the two-dimensional space R x R given by the cross
product of the x and y axes.

Suppose S consists of m inequalities in n variables. For 1-< k-< n, let Qxy denote
the polygon corresponding to the set of all inequalities that involve no variables other
than x and y, and which are resultants of paths (not necessarily simple) of length at
most k. Note that Qxy is the polygon determined by the original inequalities involving
only x and/or y. In particular, the polygon Q1 incorporates all of the inequalitiesxy

corresponding to edges among Vo, x, and y; thus we do not need the vertex Vo in our
graphs. Clearly the polygon Q, incorporates the resultants of all cycles of length at
most k that involve x.

The algorithm uses two basic operations on convex polygons, namely, intersection
and functional composition. The intersection of two polygons is the ordinary set
intersection of their point sets, i.e.,

Pxy Pxy {(x, y) (x, y) Pxy and (x, y) Pxy}.
The composition Pz, of two pol):gons Pzy and Py is

P Py Py {(z, x)[::ly R such that (z, y) Pzy and (y, x) e Py,}.
In other words, as noted in 17], Py Py is the projection onto R of the intersection
of the cylinders with bases Py and Py.

We now describe the implementation of these two operations. We represent convex
polygons by a domain D and two bounds L and H; D is a (possibly infinite) interval,
and L(x) (respectively, H(x)) is a convex (respectively, concave) piecewise linear
function. The set of points in the represented polygon Py is

Pyx {(Y, x)lx V and L(x) <-_ y <= H(x)};
for the representation to be considered valid we require that

x D==> L(x) <-_ y <- H(x).

For simplicity we first discuss the basic operations as applied to piecewise linear
convex functions rather than polygons. Thus, we first consider functions of the form
y=f(x)=max<=i<=N {aix +/3}, which we represent by a list of pairs (a,/3) ordered
so that ai < a for i<j; we will require that there be no extraneous pairs, i.e., that no

pair of values (a,/3) appears more than once in the list, and that f coincides with each
linear function y ax + over some interval of positive length.

Consider first the intersection problem. Given two functions y =fl(x) and y =f2(x)
in the form described above, with N1 and N2 linear pieces, respectively, we have to
compute the representation of y g(x) max {f(x),f2(x)}. This problem can be solved
in O(log N) time with O(N) processors, where N N + N2. Here we briefly sketch
the method. First note that we can convert between the representation discussed above
and a list of the breakpoints (i.e., coordinates of points of discontinuity in the slope)
of each function in constant time. Next, we merge the sets of breakpoints for f and

f according to their x-coordinate, but keep track of whether each came from f or f;
call these, respectively, type 1 and type 2 breakpoints. The merging can be done
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efficiently by the algorithm of [4]. Next, using standard pointer doubling techniques,
each type (respectively, type 2) point can determine the previous and following type
2 (respectively, type 1) point. Once this information is available, each point can
determine in O(1) time whether it lies below or on g(x). Finally, knowing the type of
its neighbors, and whether they lie below or lie on g(x), each point can determine in
O(1) time whether fl and f2 intersect between it and its neighbor. Thus we can generate
a list of all breakpoints of g(x). This can then be converted back to the representation,
as a list of linear functions, described above.

The second operation we need for our algorithm is functional composition. We
first demonstrate this operation in a special case. Suppose y =f(x) and z g(y) are
strictly monotone piecewise linear functions, each represented as described above. We
would like to compute the representation of the composition z=h(x)=g(f(x)).
Suppose f and g consist of k and linear pieces, respectively, and let N k +/. The
problem can be solved by O(N) processors in O(log N) time as follows. Let
Yl,"" ", Yt- denote the breakpoints of g. These can be found in constant time from
the representation of g. Let ti =f-(yi), i= 1,..., l-1. The t’s can be computed in
parallel in O(log k) time by a binary search. Let x,..., Xk- denote the breakpoints
of f Now, the x’s and t’s can be merged and then the linear pieces of h can be
constructed as compositions of linear functions.

Obviously, if both f and g are increasing, or if both are decreasing, then h is
increasing; otherwise, h is decreasing. As for convexity or concavity properties, it is
easy to verify the following:

(i) If g is monotone increasing then h is convex if both f and g are convex, and
h is concave if both f and g are concave.

(ii) If g is monotone decreasing then h is convex iff is concave and g is convex,
and h is concave if f is convex and g is concave.

We now sketch the construction of Pz, with linearly many processors in the total
number of edges in Pyx and Pzy. Let Yh denote the smallest value of y (with y Dzy)
at which Hzy(y) attains a maximum. Note that Hzy(y) is increasing for Y<=Yh (for
y Dzy) and nonincreasing for y >-Yh (again, for y Dzy). The function Hzx(x) maps
x to the largest value of z such that there is y in [Lyx(X), Hyx(X)] for which y Dzy
and Lzy (y) <= z <= Hzy (y). Thus, if x Dy is such that Hy(x) <= Yh (and Hy(x) Dzy)
then a least upper bound on z is obtained by setting y to Hy(X), that is, Hx(x)=
Hzy(Hy(X)). On the other hand, if x is such that Lye(X) >= Yh, then a least upper bound
on z is obtained by setting y to Ly(x). Finally, if x is such that Ly (x) <= Yh <= Hyx (x),
then the least upper bound on z is found by setting y to yh. Summarizing, we have

Hzy(Lyx(X)) if Yh <- Lyx(X),
Hzx(X) Hzy(Yh) if Lye(X) <- Yh <= Hy(X),

Hzy(Hy,(x)) if Hy,(x) <- Yh.

Similarly, let Yt denote the smallest value of y at which Lzy(y) attains a minimum.
Then Lzy(y) is decreasing for y =< Yt (with y Dzy) and nondecreasing for y _-> Yt (with
y Dy). This implies that if x Dyx is such that H(x) <= Yl, then a largest lower bound
on z is obtained by picking y to be Hy(X), and if x is such that Lye(X)>= Yt, then a

largest lower bound on z is obtained by picking y to be Lye, (x). Finally, if Ly(x) <= Yl <=
Hyx(X), then we pick y yl. Thus

Lzy(Lyx(X)) if yl<=Lyx(X),
Lz(X) Lzy(Yl) if Lye(X) <-_ Yl <= Hy,(x),

Lzy(Hy(X)) if Hyx(X) <- Yi.
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Obviously, there exist Xht and Xhh such that Hyx(X) >- Yh if and only if x [Xhl Xhh]o
Analogously, there exist Xll and Xlh such that Lyx(X) <- Yl if and only if x [Xll Xlh ].
Note that the values of yl, Yh, Xhl, Xhh, Xll, and Xlh can be found in O(log N) time. It
follows that the representations of the functions Hzx(X) and Lzx(X) can be computed,
each over at most three disjoint intervals of x, as compositions of monotone functions.
Let us consider the various types of breakpoints of the functions Hz(X) and Lz(X).
Obviously, any such breakpoint is of one of the following types: (i) a breakpoint of
one of the functions Hy(X) and Lye(X), (ii) an inverse image under one of these
functions of a breakpoint of one of the functions Hzy(y) and Lzy(y), (iii) one of the
points xhi, Xhh, Xll, and Xlh. Each of the breakpoints of the functions Hzy (respectively,
Lzy contributes at most two breakpoints to Hzx (respectively, Lzx). Also, each of the
breakpoints of the functions Hyx and Ly contributes at most one breakpoint to each
of the functions Hz and Lz. Thus, the total number of breakpoints of Hz and Lzx is
at most 2N + 4, where N is the total number of breakpoints of Hyx, Lyx, Hzy, and Lzy.

The new domain is given by

Dzx= {Xlx Dy and [Lyx(x), Hyx(X)]ffl Dzy }.

We omit the details showing how this can be computed within the stated resource
bounds.

4. Deciding feasibility. Using the basic operations of intersection and decomposi-
tion, we can now sketch the algorithm for deciding feasibility of a given system of
linear inequalities with at most two variables per inequality. The algorithm consists of
two iterations of the procedure UpdatePaths:

procedure UpdatePaths(Q);
comment Q is an array of polygons indexed by x and y;
begin

for i to [lg n] pardo
for all variables z and x pardo

Qzx - Qzx l’l y Qzy Qyx)
POINTA: comment at this point the resultants of all paths are incorporated into

the polygons;
for all variables x pardo

end;

We define / to be the identity polygon, i.e., I {(x, x)Ix R}. This algorithm for
deciding feasibility begins by using an algorithm analogous to the standard parallel
transitive closure or shortest path algorithms (see [13] for more information about
such algorithms). It is interesting to note that the two operations 71 and do not form
a closed semiring in the sense defined in 1]. In particular, the distributivity condition
Pzy (Pyx P’y) (Pzy Pyx) ("l (Pzy p’yx) fails to hold in general. (As an example, let
Pzy be the entire zy plane, let Py be determined by the one inequality y _-<-1, and let
P, be determined by the one inequality y _-> 1. Then the left side is the empty set and
the right side is the entire zx plane.) It is not hard to see, though, that we do have

Pzr (Pyx ffl P’,) c__ (pzy Pyx) f (Pzy P’x).

From this we can easily show that, if for each x and y we initialize Qy to be the set
of all inequalities involving x and y, then at POINTA we will have Qxy

_
Qy, where
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Q,y is defined as in 3. (Note that while we do not claim equality, the Qxy do contain
the projection of the feasible space onto Rxy since each composition and intersection
corresponds to valid deductions that can be made about the feasible space.) In
particular, at the end of UpdatePaths each Q,, will be a set of pairs (x, x) where each
x obeys the constraints added to G in 2 to form the closure G’. Thus by Theorem
2.1, a second application of UpdatePaths will cause at least one of the Qxy to become
empty if the original set of inequalities had no feasible solution. Furthermore, if the
feasible space is nonempty, it follows from Lemma 9 of [2] that after this second
application of the procedure the projection of the feasible set onto any axis R is the
same as the projection of Qx onto Rx.

A simplification of this description is possible" by initially restricting each Q to
be contained within I,, we eliminate the need for the last loop in UpdatePaths. In
fact, then the entire feasibility checking procedure becomes the CheckFeasibility
procedure"

procedure CheckFeasibility (S, V);
comment S is the set of inequalities, and V is the set of variables;
begin

for all variables x and y pardo
Q,y (-- the polygon determined by all inequalities involving no variables outside

{x,y};
for all variables x pardo

Ox(-Oxxf-IIx;
for i(--1 to 2[lg n] do

for all variables x and z pardo
Qzx(-Qxf-)(y Qzy Qyx);

end;

This is nearly the same as the algorithm of [17], and another proof of correctness can
be found there.

Let the total number of edges in all polygons constructed during the algorithm
be E. As in the sequential algorithm of 17], the polygons Q,cy are computed in O(log n)
stages, and we have E mn("). Intersection of n polygons can be computed by n
parallel teams of processors in O(log n) phases, where in each phase each team is
computing the intersection of two polygons. It is convenient to think here of a model
of computation where the machine does not have to allocate all the processors in
advance; rather it invokes processors as they are needed, just like a Turing machine
using unlimited tape space. This allows us to talk about the "worst-case processor
complexity." Assuming we have O(E) processors, all pairwise intersections and compo-
sitions take O(log E) time. It follows that the entire procedure takes O(log E log2 n)
time. Thus, the worst-case running time is O((log m + log n) log2 n).

It is interesting to consider the space complexity implied by our result. We have
just established that we can determine feasibility in T= O((log m+log2 n)log2 n)
parallel time using P= mn(’) processors with a concurrent-read-exclusive-write
PRAM. Using standard simulation relations between parallel models of computation
and between parallel time and sequential space [3], [9], [10], [13], [20], this implies
that feasibility can be determined by a poly-log space-bounded deterministic Turing
machine. This is strong evidence that the problem is not P-complete.. Computing a feasible solution. We now consider the problem of computing a
feasible solution, given the projections of the (nonempty) feasible domain P onto the
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individual axes. Thus, let [Xlow, Thigh] (--OO Xlo Xhigh OO) denote the set of values
of variable x that can be completed into a solution of the entire system S. If all the
projections are finite intervals, then a feasible solution is readily available.

PROPOSiTiON 5.1. Iffor every x both Xlow and Xhigh arefinite, then a feasible solution
is obtained by setting each variable x to the arithmetic mean (Xow+ Xhigh).

Proof Suppose, to the contrary, that the vector whose components are the arith-
metic means (Xow + Xhigh) is not feasible. Then there is an inequality ax +y <- y that
is violated. In other words,

1/2t: (Xlo -- Thigh) -- 1/2 (Y,ow + Yhigh) >

Consider the rectangle [Xow, Xhigh]X[ylow,Yhigh]. By definition, each edge of this
rectangle contains at least one point of the projection Pxy. However, we claim that this
contradicts the inequality

1/2a (Xow + Xhigh) + 1/2/3 (Ylow + Yhigh) > %

since the center of the rectangle is in the convex hull of any set that intersects all four
edges of the rectangle. The proof of this claim is easy. Let L, R, T, and B denote
points (not necessarily distinct) that lie on the left, right, top, and bottom edges of the
rectangle, respectively. Consider the straight line determined by the points L and R.
If the center lies on this line then we are done. Otherwise, if the center lies above the
line then it is in the triangle determined by 7" together with L with R, and if it lies
below this line then it is in the triangle determined by B together with L and R.

Interestingly, Proposition 5.1 does not hold if there are more than two variables
per inequality. To see this, consider the system x -> 0, y _-> 0, z -> 0, and x + y + z _-< 1.
The projection of the feasible space onto the x-, y-, or z-axis is just [0, 1], but the point
(1/2, , 1/2) is not feasible.

The unbounded case is handled as follows. We introduce to the system an
additional variable ( and the 2n inequalities xj <= , xj >-- (j 1,..., n). We find the
projection of the augmented problem onto the -axis. In other words, we compute an
interval I :ow, high] (0 --< ow ----< :high ), such that for every e I there exist values
for xl,’" ", xn which solve the augmented problem. By setting to any finite number
in I we obtain a feasible system of linear inequalities (with at most two variables per
inequality) whose set of solutions is bounded. Any solution of the latter yields a
solution to the original problem simply by dropping :. Thus we have the following
proposition.

PROPOSITION 5.2. If a system of linear inequalities has a nonempty set of solutions,
then a solution can be found in poly-log time with mno(og) processors in the worst case.

6. Optimization problems. We have already shown that, with a general objective
function, the optimization problem with at most two variables per inequality is P-
complete. In this section we discuss the case where the objective function also has at
most two variables with nonzero coefficients.

Intuitively, the optimization problem can be solved by searching for the optimum
value, using the feasibility checking algorithm as an "oracle." In the context of
sequential computation this yields a polynomial-time (but not strongly polynomial-
time) algorithm. In the context of parallel computation this approach does not provide
a poly-log algorithm since the number of queries during the search is linear in the
length of the binary representation of the input.

Here we can use a technique presented in [16] to obtain a poly-log algorithm for
finding optimum solutions over any ordered field. Here is a sketch of the method; see
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[16] for more details. Suppose the problem is to minimize the function

f(xl," ,x,)=clxl+c2x2

subject to a system S of linear inequalities in Xl,"" ", x, with at most two variables
per inequality. Consider the system S’ of inequalities, which is obtained by adding to
S an inequality clxl + C2X2 i, where h is a parameter. We need to find the smallest
value of h for which S’ is feasible. Denote this optimum value by h*. We can run our
parallel algorithm for deciding feasibility on S’, handling h as an indeterminate. Thus
the "program variables" will be functions of h rather than field elements. Throughout
the execution of the algorithm we maintain an interval of values of , guaranteed to
contain h*, over which the current program variables are all linear functions of
Comparisons between two functions of h must be resolved according to the function
values at h*, which is itself not known. However, during each step of the algorithm,
each processor that is unable to perform a comparison for which it is responsible
simply reports the value of which is critical for that comparison, that is, a value
such that the comparison between the two functions can be resolved by comparing
and h*. The comparison between M and h* can be carried out by setting h to M and
checking feasibility of the system. Let p denote a bound on the number of processors
required to check feasibility. For the parametric algorithm we can either use p2
processors, in which case all the critical values of can be tested in parallel, or only
p processors and run a binary search over the set of critical values. In either case we
obtain a poly-log algorithm with mn(gn) processors for computing h* over any
ordered field.

Once * is known, we can solve the system S’ with h h*.

7. Bounded tree-width. Robertson and Seymour [18] introduced the notion of the
tree-width of a graph. This notion lends itself via the constraints graph to systems of
linear inequalities with at most two variables per inequality.

DEFIrI’rION 7.1. A connected graph G is said to have tree-width less than or
equal to k if there is a family V--{ V1,. ., V,} of sets V of vertices of G with the
following properties:

(i) Each V contains at most k+ 1 vertices of G.
(ii) For every edge e of G, there exists an such that e has both its endpoints

lying in V.
(iii) The intersection graph T (V, E), where V, V)

is a tree.
We assume the graph is given together with such a tree and develop an algorithm

that relies on the tree. Note that a tree with at most n nodes suffices. It will follow
that if the tree-width is bounded, then the number of edges remains polynomial in m
and n during the execution of the special algorithm.

For our purpose here we may assume, without loss of generality, that our graphs
are connected. Also, for simplicity of presentation, assume all the sets V/ are (k + 1)-
cliques in G; this assumption is also made without loss of generality since redundant
inequalities can always be added to the system.

PROPOSITION 7.2. Suppose U, V, and W are nodes of T such that V lies on the path
connecting U and W. Let u U and w W be vertices of G. Then on any path in G
connecting u and w there is at least one vertex v V.

Proof Consider any such path u v,..., vr w. For every i, i= 1,..., r-1,
there is a set V/ T such that both vi and Vi+l are in V/. By definition each (V, V/+)
is an arc in T (if V/ V+). Thus, V,. , V_I yields a path in T. It follows that one
of the V’s equals V. This implies that one of the v’s is in V.
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Given the underlying tree T, we can decompose the graph G in an efficient way.
The decomposition is based on the centroid which is often useful in the design of
parallel algorithms (see [5]). The centroid of a tree T with N nodes is a node c so
that there exist two subtrees T1, T2 rooted at e (and also e is the only common node),
each with no more than (2N/3) + 1 nodes, whose union is T. The centroid decomposition
of a tree is the iterated partitioning of a tree in this way into two subtrees rooted at
the centroid. This decomposition is obtained in O(log N) iterations, and moreover, it
can be computed in poly-log time with a polynomial number of processors [5].

In view of Proposition 7.2 the centroid decomposition oft induces a decomposition
of G as follows. At the first level of the decomposition we have a set C of k + 1 vertices
of G and two induced subgraphs G1, G2, whose vertex sets intersect at C and cover
all the vertices of G. Moreover, every edge of G is contained in one of these two
graphs. The decomposition is iterated until all the subgraphs consist of not more than
k + 1 vertices. It follows that this decomposition has only O(log n) levels.

Given the decomposition of G, we produce polygons Qxy(G) as follows. The
polygon Qxy computed will incorporate all of the resultants of simple paths from x to
y. (Recall that a simple path can begin and end at the same point, so x and y may be
equal.) Let G, G2, and C be as explained above. We state the algorithm recursively.
Thus, assume we have computed polygons Qy(Gi) for all pairs of vertices x, y Gi
(i= 1, 2). In particular, if x, y C then we have for them two polygons Qy(G) and
Q,cy G2).

The recursive step is performed as follows. Let x and y be any two vertices of G
for which we compute Qxy(G). For simplicity of notation assume without loss of
generality that x G. Any simple path from x to y can be represented as a union of
paths 7r(zo, z), 7r(z, z2), , r(zt_, zl) where Zo x, z y, zi C for 1,. , l- 1,
and 7r(z, z’) denotes some simple path from z to z’. Moreover, paths of the form
7r(z2i, z2i/) stay entirely within G while paths of the form 7r(z_i_, z2) stay entirely
within G2. Thus, to incorporate the resultants of all simple paths connecting x and y
in G, it suffices to intersect all the polygons obtained by compositions of the form

Qxzl(G1) Qzlz2((2)o Qz2z3(G1 Qzt_,y(Gi)
(where y Gi), so that the zj’s (1 <=j_-< l-1) are pairwise distinct points in C. The
number of different choices of the z’s implies that for each pair x, y, the number of
polygons intersected this way is bounded by a constant K depending only on k. For
each pair x and y, each composition is of at most k + 2 polygons. This may multiply
the number of breakpoints by at most O(k), since composition of k polygons can be
computed in O(log k) compositions of two polygons (where the number ofbreakpoints
is at most approximately doubled). Since the entire process runs in O(log n) stages,
and there are rn inequalities at the beginning, it follows that the number of edges in
each of the generated polygons is m(kK) g"). This is the same as mng’) for some
g(k) depending only on k; hence it is polynomial in m and n for any fixed k. The
running time on a suitable number of processors is O(log n log m) with a coefficient
that depends on k. By Theorem 2.1 this algorithm can determine feasibility.

8. Directions for further work. It is interesting to ask whether the algorithms we
have described in 4-6 can ever in fact require more than polynomially many
processors. This is essentially the same as the question asked in [17] of whether the
algorithm of [17] can require more than polynomial time.

More generally, resolving whether the linear programming problem with two
variables per inequality lies in NC seems like a very interesting question. To provide
context, note that Cook fairly recently observed [6, p. 18] "I find it interesting that
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very few natural problems in [poly-log space] have come to my attention which are
not in NC. One notable exception is the problem of determining whether two groups,
presented by their multiplication tables, are isomorphic I know of no NC solution
to this problem, or even any polynomial time solution." Thus the present status of
linear programming with two variables per inequality seems to be rather unusual,
particularly since it is known to be solvable in polynomial time (even if we allow that
inputs are arbitrary reals and the time bound must be independent of these values 15]).
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A TIME COMPLEXITY GAP FOR TWO-WAY PROBABILISTIC
FINITE-STATE AUTOMATA*
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Abstract. It is shown that if a two-way probabilistic finite-state automaton (2pfa) M recognizes a

nonregular language L with error probability bounded below 1/2, then there is a positive constant b (depending
on M) such that, for infinitely many inputs x, the expected running time of M on input x must exceed
2"h where n is the length of x. This complements a result of Freivalds showing that 2pfa’s can recognize
certain nonregular languages in exponential expected time. It also establishes a time complexity gap for
2pfa’s, since any regular language can be recognized by some 2pfa in linear time. Other results give roughly
exponential upper and lower bounds on the worst-case increase in the number of states when converting a

polynomial-time 2pfa to an equivalent two-way nondeterministic finite-state automaton or to an equivalent
one-way deterministic finite-state automaton.

Key words, finite state automata, probabilistic automata, complexity theory
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1. Introduction. The power of randomization is a recurring theme in the theory
of computation. One of the fundamental open questions of complexity theory asks
whether the class BPP of languages recognizable in polynomial time by probabilistic
Turing machines is larger than the class P of languages recognizable in polynomial
time by deterministic Turing machines. To gain insight into the power of randomization,
some research has focused on more restricted models of computation. For example,
Freivalds [2] and Gill [4] have shown that probabilistic one-tape Turing machines can
recognize certain languages more efficiently than deterministic one-tape Turing
machines.

Another example of the power of randomization, which provided the motivation
for this paper, concerns two-way probabilistic finite-state automata (2pfa’s). A 2pfa
consists of a probabilistic finite-state control and an input tape which is scanned by
a single two-way head, that is, the head can move both left and right (a complete
definition appears in 2). Freivalds [3] has shown that, for any e > 0, there is a 2pfa
which recognizes the nonregular language Lo {0 1 m => 1 } with error probability at
most e. In contrast, it is known that deterministic (and even nondeterministic and
alternating) two-way finite-state automata can recognize only regular languages [8],
[13], [15]. A property of Freivald’s result is that the 2pfa constructed to recognize Lo
uses exponential expected time. In the original construction in [3], the expected time
is proportional to n2n, where n is the length of the input. The construction can be
easily modified to give, for any constant c > 0, a 2pfa recognizing Lo in expected time
O(2Cn). Greenberg and Weiss [5] show that this expected time bound cannot be
improved further. They show that no 2pfa running in expected time 2) can recognize
Lo with error probability bounded below . This raises the question of whether there
is some other nonregular language which a 2pfa can recognize efficiently, for example,
in polynomial expected time. The main result of this paper answers this question
negatively: if a 2pfa M recognizes a nonregular language with error probability bounded
below 1/2, then there is a constant b > 0 such that, for infinitely many n, the expected

* Received by the editors May 8, 1989; accepted for publication (in revised form) December 14, 1989.
An extended abstract containing some of the results in this paper appeared in the Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, 1989.

t IBM Research Division, K53/802, 650 Harry Road, San Jose, California 95120.
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running time of M must exceed 2nb. Thus, although randomization adds power to
two-way finite-state automata, this added power comes with an added cost in expected
running time. The result can also be viewed as a gap theorem for 2pfa’s: for any
language L, either L can be recognized in time O(n) (if L is regular) or L requires
time 2 nb infinitely often (if L is not regular).

A tool in the proof of the main result is a measure NL(n) of the nonregularity of
a language L. Intuitively, when L is restricted to words of length at most n, NL(n)
measures the number of words which must be "distinguished" by any recognizer of
L, where words w and w’ must be distinguished on the restricted L if there exists a
word v such that the lengths of wv and w’v are both at most n, and wv L if and only
if w’v L. In 3 we show that if L is not regular then NL(n)_->,,/--1 for infinitely
many n. In 4 we show that, if a 2pfa M recognizes L in expected time T(n), then a
lower bound on T(n) can be given in terms of NL(n). Combining this with the lower
bound on N(n) for any nonregular L, the main result follows easily.

In the final three sections we mention some related results. In 5 the main result
is extended to show that a probabilistic Turing machine with space bound o(log log n)
which runs in polynomial expected time cannot recognize any nonregular language
with error probability bounded below 1/2. In 6 we consider conciseness issues, that is,
the relative number of states required by probabilistic versus deterministic or nondeter-
ministic finite-state machines to recognize the same regular language. When 2pfa’s are
restricted to halt in polynomial expected time, 2pfa’s are at most exponentially more
concise than one-way deterministic finite-state automata, and there are examples
showing that 2pfa’s can be exponentially more concise than two-way nondeterministic
finite state automata. In 7 we note that the main result is not true if the error probability
is not bounded below 1/2.

2. Definitions. A particular 2pfa M is specified by a finite set Q of states, a finite
input alphabet Z, and a transition function 6. The set Q contains designated states qo
(the initial state), qa (the accepting state), and qr (the rejecting state). Let " be a
symbol not in Z. The transition function has the form

:(Q -{%, qr}) x (E U {x’}) x Q x {left, right, stationary} [0, 1 ],

where, for each fixed q and o-, the sum of 6(q, r, q’, d) over all q’ and d equals one.
The meaning of 6 is that, if M is in state q with the head scanning the symbol r, then
with probability 6(q, or, q’, d) the machine enters state q’ and either moves the head
one symbol in direction d if d {left, right} or does not move the head if d stationary.
The computation of M on input x E* begins with the word x’xx’ written on the input
tape; the head is positioned on the left endmarker x’, and the state is qo. The computation
is then governed (probabilistically) by the transition function 6 until M either accepts
by entering state q or rejects by entering state q. We assume that 6 is defined so that
the head never moves outside the word x. M halts when it enters state q or qr.

Let L c__E*, let M be a 2pfa with input alphabet E, and let 0_-< e <1/2. Then M
recognizes L within error probability e if

1) For all x6 L, Pr [M accepts x]_-> 1-e, and
2) For all x L, Pr [M rejects x] => 1 e.

M recognizes L if.M recognizes L within error probability e for some e < 5. One reason
to bound the error probability below 5 is so that the error probability can be significantly
decreased by running the machine several times on the same input and taking the
majority answer. Specifically, if a 2pfa M recognizes L and halts with probability one
on all inputs, then for any e > 0 there is a 2pfa M’ which recognizes L within error
probability e.
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Although our lower bound result allows 6 to take arbitrary real values in [0, 1],
other results construct particular 2pfa’s which need only a fair coin to make random
choices. A 2pfa is a coin-tossing 2pfa if the range of its transition function 6 is {0, , }.
For example, the result of Freivalds [3] mentioned above is true for a coin-tossing
2pfa. (It is not hard to see that 2pfa’s with rational transition probabilities are no more
powerful than coin-tossing 2pfa’s, although we do not know whether 2pfa’s with real
transition probabilities are more powerful than coin-tossing 2pfa’s.)

Let Ix denote the length of the word x. The expected running time of the 2pfa M
on the input x’is the expected number of steps in the computation of M on input x,
where the expectation is taken over the random choices made by M. The 2pfa M runs
within expected time T(n) if, for all n and all inputs x with Ixl =< n, the expected running
time of M on x is at most T(n).

Logarithms in this paper are to the base two.

3. A measure of nonregularity. Let L_ Z* and let n be a positive integer. We first
define a relation ---/,n on words. For w, w’e * with ]w -< n and ]w’[ <_-n, the words w
and w’ are n-similar, written w --/,n w’, if, for all v Z* such that [wvl <-- n and Iw’vl -< n,
we have wv L if and only if w’v L. The words w and w’ are n-dissimilar, written
w PC L, w’, if w] -< n, [w’l =< n, and it is not the case that w L, w’, that is, there exists
a v with wv] <- n, [w’v] <= n, and wv L if and only if w’v L. Note that if w PC/,, w’,
then w and w’ must be "distinguished" as described in the Introduction. The relations

"/,n and 7*/,, are not defined for words of length greater than n. We remark that ,n
is reflexive and symmetric, although it is not transitive in general.

Let Nl(n) be the maximum k such that there exist k distinct words Wl,"" ", Wk
which are pairwise PC ,,, that is, wi PC L,, wj for all _-< <j _-< k. It is clear that N(n)
is nondecreasing in n.

LEMMA 3.1. Nil(n) is bounded above by a constant if and only if L is regular.

Proof For words w and w’, define WRlW’ if, for all words v, we have wv L if
and only if w’v L. RI is an equivalence relation. By the Myhill-Nerode theorem (see
[7]), R/ has finite index if and only if L is regular.

If L is regular, it is obvious from definitions that N/(n) is bounded above by the
(finite) index of R/. Conversely, if L is not regular, then, for any k=>2 there exist
words wl,’’’, Wk and words vij such that wivo L if and only if WjVijJ’: L for all
1 <-i<j <= k. Choosing no to be the maximum length of the words wvj, wjvo over all
such and j, we have N.(no)>= k. Since k was arbitrary, N(n) is unbounded. [3

For the remaining four lemmas in this section, fix some language L, and abbreviate

--/,, and PCL, by --- and PC, respectively. The next two lemmas establish two useful
properties of--n and PC,.

LEMMA 3.2. Let w, w’, v be words such that w -- w’, wvl <- n, and w’vl <-- n. Then
WV W’V.

Proof Suppose to the contrary that wv PC, w’v. Therefore, there exists a word z
such that wvz I<- n, w’vz <-_ n, and wvz L if and only if w’vz L. But now vz is a
witness to w PC w’, contradicting the assumption that w --- w’. [3

LEMMA 3.3. Let w, w’, s be words such that Isl <-Iw[, w---, s, and w PC, w’. Then
S PCnW’.

Proof Let v be such that wvl <- n, w’vl <- n, and wv L if and only if w’v L. We
have Isv[ <-Iwvl <- n. Since w ---, s, we have sv L if and only if wv L. Therefore, sv L
if and only if w’v

_
L, so s pc w’. 71

The next lemma shows that we can always find Nl(n) "short" words which are
pairwise PC
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LEMMA 3.4. Let k NL(n). There exist words Sl, ", Sk which arepairwise c, and
Isil <= k for all i.

Proof By definition, there are words wl, , Wk which are pairwise 7c.. If [wil----< k
for all i, we are done. Suppose that Iwil> k for some i. Consider the Iwil nonempty
prefixes of wi. Since Nil(n)= k, these prefixes cannot be pairwise 7c,. Therefore, we
can write w xyz where ]y]_-> 1 and x .-,xy. Since Ixz] <lxyzl <-n, it follows from
Lemma 3.2 that xz--.,xyz wi. For an arbitrary j with 1-<j_-< k and j i, we have
wi , w by choice of the w’s. Taking s xz in Lemma 3.3, we see that xz c, w.
Replacing wi by xz in the list wl,..., Wk, we obtain a new set of pairwise c, words
where the length of wi has been reduced. Continuing in this way, k pairwise c, words
of length at most k can be constructed.

LEMMA 3.5. Let n and k be such that Nr(n-1)< Nl(n)=k. Then n<-_2k+k2.
Proof Assume to the contrary that n > 2k + k2. By Lemma 3.4, there are pairwise

7c. words Sl, , Sk with ]sil--< k for all i. Our goal is to show that, for all and j with
1 =< <j <- k, there exists a word u such that Isul <-_ n 1, [sju =< n 1, and siu . L if and
only if sju: L. This implies that Sl,’’’, sk are pairwise ,_, contradicting the
assumption that N(n 1) < k.

Since si , sj, there is a word v with [sir[ <-_ n, [sv[ <-_ n, and sir L if and only if

Sir L. If Isiv[ and Isvl are both less than n, we are done. So assume (without loss of
generality) that Isiv[ n. Let Vl,"" ", Vm be the prefixes of v having length at least k.
Since [si[ =< k and n > 2k + k2, it follows that m > k2. For each word SiVl with 1 <_-l _-< m
there exists an a such that sivl "-, so, for otherwise there would be k+ 1 pairwise
words, contradicting the assumption that k N(n). Similarly, for each there is a b
such that svl---, Sb. Since there are more than k2 choices for l, and exactly k choices
of pairs (a, b), it follows that there exist numbers a, b and words x, y, z such that
v xyz, Ixl _-> k, lyl--> 1, and

(1) six ",so,

(2) sixy ",so,

(3) sjx ". sb,

(4) sxy
Since [v[ _-< n and Ixl _-> k, we have Izl _-< n k, so Isozl <- k +(n k)= n. Similarly, Isbz <--_ n.
Finally,

SiXZ L iff soz L by (1)

iff sixyz L by (2)

iff sir L since v xyz

iff sv
_
L by choice of v

iff sxyz L since v xyz

iff SbZ L by (4)

iff sjxz

_
L by (3).

Therefore, u xz is a word such that [siu[ <- n 1, Isju[--< n 1, and siu L if and only
if su ! L.

We can now obtain our main result about NL(n).
THEOREM 3.6. If L is not regular, then NL(n)>--x/-1 for infinitely many n.

Proof By Lemma 3.1, there are infinitely many n such that NL(n-1)< N(n).
For each such n, we have N(n) >- x/--1 by Lemma 3.5.
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Two remarks about strengthening Theorem 3.6 can be made. First, the lower
bound x/-I could be improved to at most n+ 1, since if Lg {0}* then Nl(n)<-n+ 1
for all n. We have not pursued such an improvement, since it would not improve the
lower bound on expected time obtained in the next section. Second, regarding that
the lower bound has been shown to hold only for infinitely many n, no interesting
lower bound on N/(n) can be proved for almost all n, given only that L is not regular.
If g(n) is any unbounded function, there is a nonregular L such that NL(n) g(n)
for infinitely many n. For integers 0 n < n2 < n3 " define

L {0’ (:ii)[ ni-1 < m _-< ni and m 0 mod i]}.

Then Nl(ni) <- ni_ / 1 +i for all i_-> 2. So by choosing the ni to be far enough apart,
we can satisfy N/(ni) _-< g(ni) for all _-> 2.

4. A lower bound on expected time. In this section we give a lower bound, in terms
of Nil(n), on the expected time required by a 2pfa to recognize L. The proof method
is one which we used in [1]; it is similar to methods used previously by Rabin [12]
and Greenberg and Weiss [5].

Since we model computations of 2pfa’s by Markov chains, we first give some
definitions and results about Markov chains. Basic facts about Markov chains can be
found, for example, in [14]. We consider Markov chains with finite state space
{1, 2,..., m} for some m. A particular Markov chain is completely specified by its
matrix P {Pij}i,n)=l of transition probabilities. If the Markov chain is in state i, then
it next moves to state j with probability Pij. The chains we consider have a designated
starting state, state 1, and two absorbing states, states m and m (so Pm-l,m- :Pm,
1). States other than m- 1 and m are either transient or inaccessible from state 1. Let
a(P) denote the probability that the Markov chain P is absorbed in state m when
started in state 1. Let t(P) denote the expected time to absorption, meaning absorption
into one of the states m- 1 or m.

We are concerned with how the probability a(P) is affected by small changes to
the transition probabilities. Let fl _-> 1. Say that two numbers p and p’ are -close if
either (i) p p’= 0 or (ii) p > O, p’> O, and fl-1 <__ p/p, <_ . Two Markov chains P
{Pij}i,"= and P’= {Plj}i.’= are -close if, for all and j, Pij and p’ij are fl-close.

As noted by Greenberg and Weiss [5] (see also 1, Lem. 3.2]), the following lemma
can be proved easily from the Markov chain tree theorem [9], [10].

LEMMA 4.1. Let P and P’ be two m-state Markov chains which are -close. Then
a(P) and a(P’) are fl2’-close.

We need a variation of this lemma where certain corresponding pairs of prob-
abilities Pig and p,) are not known to be fl-close, but only in the case that these
probabilities are both much smaller than the reciprocal of the expected time to
absorption. For fl _-> 1 and A _-> 0, we say that P and P’ are fl-close mod A if, for each
pair i, j, either

1) Pi<--A andp_-<A, or
2) Pi > h, p’i > A, and pi: and p are fl-close.

The basic idea is that, if h is much smaller than both t(P)- and t(P’)-, then a
transition from state to state j is unlikely to occur (before absorption) in case 1), so
such transitions can be essentially ignored. The reader satisfied with this intuition
might want to skip the proof of the next lemma.

LEMMA 4.2. Let P and P’ be two m-state Markov chains which are -close mod h.
Let t= max {t(P), t(P’)}. Then

a(P’) >-_ (1 -2Am3)fl-"a(P)-4x/Amt.
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Proof Assume A _-< m -3, since the lemma clearly holds otherwise. Say that a number
p is small if p _-< A. We transform P and P’ to Markov chains R and R’, respectively,
by changing all small transition probabilities to zero and altering the nonsmall prob-
abilities only slightly. We can then bound a(P) in terms of a(R), similarly bound
a(P’) in terms of a(R’), and apply Lemma 4.1 to R and R’.

In order to define certain events, we first describe a particular way of "running"
the Markov chains P and P’. Since the description is essentially identical for P and
P’, we focus on P. For each state i, order the transitions from state so that all small
transition probabilities precede all nonsmall transition probabilities and so that the
first nonsmall transition probability is at least l!m. More precisely, for each state i,
choose a permutation ri of {1, 2,..., m} and an integer li with 1 _-< l-< m such that
Pi,,k is small if and only if k < li, and p,,,>- 1/m. We say that r(l) is special for
i. Let S be a random variable which takes a real value uniformly distributed in [0, 1].
We use S to run P as follows. If P is in state i, call S to obtain a random value v.
Then P next enters state r(z) where

z--1

Y p,,< v -< p.,.
k=l k=l

So for each z, P next enters state r(z) with probability P,=i(z.
Let be the event that P is absorbed into state m, and let O% be the event that P

is absorbed (into state m or m 1) before any call of S produces a value v with v -< Am.
Note that if O% holds, then no transition i-j with small pij is taken before absorption.
Let ’ and o%’ be the analogous events for P’. Let A be the random variable giving
the number of steps of P before absorption. Let b (Amt) -/2. Let be the complement
of O%. Since E(A) t(P) <= t,

Pr [A> bt] <- b-.
By definition of O%, and using the inequality (1- x)Y>= 1-xy which is valid for all real
x and y with 0-<_x=< 1 and y_>-1 [6, Thm. 42],

Pr []a=< bt]<- 1-(1-Am)bt <- Ambt.

Therefore,

(5) Pr [] <- b-l+ Ambt 2x/--rnt.

Note that a(P)= Pr ] by definition. We will soon define the Markov chains R and
R’ so that a(R)= Pr [10% and a(R’) Pr ,q’l O%’]. The law of conditional probability,

Pr ] Pr O%](1 Pr ]) + Pr ]] Pr ],
yields

Pr ]O%] Pr [] _-< Pr ] _-< Pr ]O%] + Pr [].
It follows from this and (5) (and from the analogous inequalities for the primed case)
that

(6) [a(P)-a(R)[<=2x/Amt and [a(P’)-a(R’)]<=2x/Amt.
We now define R to model P in the case that S produces a value uniformly in

(Am, 1]. The definition of R’ in terms of P’ is analogous. For each state i, let o- be the
sum of Po over all j such that pj is small. For each and j,

1) If Po is small, then r 0;
2) If pj is not small and j is not special for i, then r=po/(1-Am);
3) Ifj is special for i, then ro=(po+oi-Arn)/(1-Am).
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We must bound the closeness of ro to Pi in the case 3) that j is special. Using cri =< Am,

ro<=po/(1-hm).

Using pj _-> 1/m,

r => (p Am)/(1 Am)_>-- po(1 Am2)/(1 Am).

Since P and P’ are/3-close mod A, it follows that R and R’ are (/3(1 Am2)-)-close.
Using Lemma 4.1 and the bounds (6),

a(P’) >= a(R’) 2x/mt

1-Am2 a(R)-2x/mt

->_ (1 -2Am3)-z’(a(P)-Zv/-mt)-Zx/Amt

_--> (1 -2Am3)-z’a(P)-4v/Amt.

We can now prove the main lemma of this section.
LEMMA 4.3. For every e < there are positive constants a and q such that, if a

2pfa M having c states recognizes the language L within error probability e and within
expected time T( n ), then

(7) (ac(log T(n)+log cn))C2>-Nl(n) foralln >- q.

Proof Let M be a 2pfa with c states which recognizes L within error probability
e < 1/2 and within expected time T(n). It is convenient to adopt a new starting convention
by giving M a new initial state q. M is started on input x’xx" in state q with the head
scanning the rightmost symbol of x; the machine then moves left across the input,
remaining in state ql, until the head reads the left x’, at which point M enters its
original initial state. Let ql, q2," ", qc+ be the states of the modified M, where q is
the new initial state, q is the rejecting state, and qc/l is the accepting state.

Note that x/(1-e)/2>1/2, since e <1/2. Therefore, we can choose the constant r/ so
that

(1-2/n)x/(1-e)/2-4x/]> forall n=>

Fix some n => r/. Let W be a set of pairwise 7on words with wl--N,(n). For
each w W, we define certain probabilities, called word probabilities, which capture
the behavior of M on w. A starting condition is an integer with 1-<i_-< c-1. A
stopping condition is an integer j with -<_ j _-< c + 1. The starting condition means "start
M in state q on the word x’w with the head on the rightmost symbol of ’w." We say
that M halts on w in state q if either (i) 1 -<_j <_- c- and the head moves off the right
end of x’w at the same step as M enters state q, or (ii) c _-<j -< c + 1 and M enters state
q before or at the step when the head moves off the right end of ’w. If j <_-c-1 or
j c+ 1, the stopping condition j means "M halts on ’w in state q." The stopping
condition c means "either M halts on ’w in state q or M does not halt on x’w." For
each starting condition and stopping condition j, let qo(w) be the probability of the
associated event. Let Q(w) be the (c-1) (c+ 1) matrix Q(w)= {q0(w)}.

Let

d=(c-1)(c+l), m=2c, A=(nm3T(n)) -1.
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Define an equivalence relation on words in W as follows: w--- w’ if and only if, for
all and j, qij(w)<= A if and only if qij(w’) <- A. Let E be a largest equivalence class.
Since there are at most 2a equivalence classes, IEI => NL(n)/2a.

For w E, let d’ be the number of entries of Q(w) which are strictly larger than
A. (The number and positions of these entries does not depend on the particular choice
of w.) By projecting on these entries, map Q(w) to an element q(w) of the space
[, 1] a’. Let log q(w) be the componentwise log of q(w), so log q(w) [log , 0] a’. Let

log (1-e)+l
4m

By dividing each coordinate interval [log A, 0] into subintervals of length /x (with
possibly one subinterval of length less than/x), we partition the space [log A, 0] a’ into
at most [(-log A)//x ]d cells, each of size at most

We now show that

(8) [-(-log A)//z ]d >= NL(n)/2d.

This suffices to prove the lemma, since by substituting the values of A,/x, and d into (8),

(16c(log T(n)+log(Snc3)) ) (c-1)(c+l)

+2 >- N(n).
log (1-e)+l

So it is easy to see that the required c exists.
Assuming that (8) does not hold, there must be two n-dissimilar words w, w’ E

such that log q(w) and log q(w’) belong to the same cell. Therefore, if qi and ql are
corresponding entries of Q(w) and Q(w’), respectively, then either

1) qj < A and q’ij=< A, or
2) qj > A, q’j > A, and ]log qj- log q’ij] </x.=

In the second case, qj and q’j are 2"-close.
Since w , w’, let v be such that wvl <-n, w’vl <-n, and wv L if and only if

w’v e L. By symmetry, assume that wv L and w’v e L. We describe Markov chains P
and P’ which model the computation of M on wv and w’v, respectively. First define
word probabilities for vZ similarly to the definition above for Zw. The only difference
is that starting conditions mean to start M in some state on the leftmost symbol of vZ,
and halting on v" occurs when the head moves off the left end of v or when qc or
qc+l is entered. For starting condition with -< -< c- 1 and stopping condition j with
1-<j=<c+l, let ro(v) be the probability of the associated event, and let R(v) be the
(c- 1) (c+ 1) matrix {rj(v)}.

The partial computations represented by Q(w) and R(v) are glued together by P
in the obvious way. Formally, write Q(w)=(Q(w)Q2(w)), Q(w’)=(Q(w’)Q2(w’)),
and R(v)=(R(v)R2(v)), where Ql(W), Q(w’), and R(v) are (c-1)(c-1), and
Q2(w), Q2(w’), and R2(v) are (c-1)x 2. Let 12 be the 2 2 identity matrix. Then the
m x m transition matrices P and P’ are given by

P= Rl(V 0 R(v), P’= R,(v) 0 R(v)
0 0 I 0 0 I

Note that state 1 corresponds to starting M on the rightmost symbol of w (or w’) in
the new initial state ql. State m corresponds to M accepting. Therefore, a(P) (respec-
tively, a(P’)) is the probability that M accepts wv (respectively, w’v). In particular,
a(P)>=l-e since wvL. If t=max{t(P),t(P’)}, then t<=T(n) since M runs in
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expected time at most T(n) on input wv or w’v. By choice of w and w’, the Markov
chains P and P’ are 2-close mod A. Therefore, we can apply Lemma 4.2 to conclude

Pr [M accepts w’v] >- (1 2Ama)2-2z’(1 e)-4x/-mt
-> (1 --2/n)2-(lg(1-)+l)/2(1 e)-4x/1/n

(1 -2/n)V’(1 e)/2 4x/i-/n

>1/2.

The final inequality follows by the choice of r/ and the assumption n => 7. This is a
contradiction since M recognizes L and w’v

_
L. [-1

The main result now follows immediately from Theorem 3.6 and Lemma 4.3.
TrEOREM 4.4. Let M be a 2pfa which recognizes a nonregular language within

expected time T(n). Then there is a constant b > 0 such that T(n)>= 2" for infinitely
many n.

5. Turing machines with small space. Recall that if a deterministic or nondeter-
ministic Turing machine has space bound o(log log n), then the machine recognizes
a regular language [7, Thm. 10.8]. The proof of the main result can easily be extended
to prove the same result for probabilistic Turing machines with space bound
o(log log n), provided that the expectedrunning time is not too large. The definition
of a probabilistic Turing machine (ptm) is similar to the definition of a 2pfa, except
that the machine has a fixed number of read/write worktapes. The ptm M runs within
space S(n) if, on any input x with Ixl -<- n, at most S(n) cells are used on any worktape.
A ptm M can be viewed as a 2pfa with a growing number of states: On inputs of
length at most n, the 2pfa has at most c(n) 2 ds(n) states, where d is a constant which
depends on M. If S(n)=o(loglog n) then, for any constant a>0, we have c(n)<=
(log n) for all sufficiently large n. The proof of Lemma 4.3 remains valid for 2pfa’s
with a growing number c(n) of states. Combining this observation with Theorem 3.6,
the next result follows by a simple calculation which is left to the reader.

TI-IEOREM 5.1. Let M be a ptm which recognizes a nonregular language within space
o(log log n) and within expected time T(n). Then for every b < 1,

log log T(n) >= (log n) b for infinitely many n.

In particular, T( n is not bounded above by any polynomial in n.
This result does not hold for larger space bounds. There is a deterministic Turing

machine which recognizes a nonregular language within space O(log log n) and time
O(n log n) (see [7, Prob. 10.2]).

6. Number of states. A measure of the complexity of finite-state automata is the
number of states. Some types of automata can be much more concise, that is, use many
fewer states, than other types. Previous work has studied conciseness relationships
among one-way and two-way deterministic and nondeterministic finite-state automata.
A machine is one-way if the head can move only from left to right. For j {1, 2}, a
jdfa (respectively, jnfa) is a j-way deterministic (respectively, nondeterministic) finite
state automaton. For example, Shepherdson [15] shows that any c-state 2dfa can be
converted to an equivalent ldfa having at most (c+2) ’+1 states. Conversely, Meyer
and Fischer [11] describe a sequence of regular languages Lc, c 1, 2,. ., such that
L,. can be recognized by a 2dfa with 5c + 5 states, and any l dfa recognizing Lc requires
at least c states. In this section we make some observations about the conciseness of
2pfa’s relative to other types of automata.
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Methods of Freivalds [3] can be used to show that there is no recursive function

f such that, for any c, if L is a regular language which can be recognized by a c-state
2pfa, then L can be recognized by some ldfa with at most f(c) states. In [3] it is stated
that the emptiness problem for 2pfa’s is undecidable. The proof (which is not given
in [3] but which is easy to derive from techniques described there) actually shows the
following. Any deterministic Turing machine Z can be effectively transformed to a
2pfa M such that (i) if Z halts on blank tape then M recognizes a finite nonempty
language L, and (ii) if Z does not halt on blank tape then M recognizes the language
L . In either case, L is regular. It is decidable, given a 2pfa M and an input word
x, whether M accepts x with probability greater than 1/2. Therefore, if there exists a
recursive bound f as above, then the halting problem would be decidable.

With a sufficiently small bound on the expected running time of the 2pfa, a
recursive boundf does exist. For simplicity, we focus on 2pfa’s which run in polynomial
expected time since this is a natural class. Generalizations to somewhat larger time
bounds are possible and are left to the interested reader.

THEOREM 6.1. For every e <, a > 0 and d > O, there exists a constant b > 0 such
that, for any c, if L is recognized by a c-state 2pfa within error probability e and within
expected time an d, then L is recognized by some ldfa with at most cbe2 states.

Proof Let L be as in the statement of the theorem. By Theorem 4.4, L is regular.
Let k be the maximum of Nl(n) over all n. Then some l dfa with k states recognizes
L (cf. the proof of Lemma 3.1). Let n’ be such that Nt(n’-- 1) < Nt(n’) k. By Lemma
3.5, n’ <_-2k + k2. Let n 2k+ ka, so N(n)= k since N is nondecreasing. If n < r/

where r/ is the constant of Lemma 4.3, then k < r/, so we can choose b large enough
to make the theorem true in this case. Assuming n => r/ and noting that n-< 3k2, the
inequality (7) becomes

(9) (ac(log (a(3ka)d)+log (3k2c)))e2 >_- k.

A routine calculation shows that (9) implies k<= cb2 for some b depending only on
ce, a, and d. V]

A large part of the exponential blow-up in Theorem 6.1 is necessary in the worst
case since, as noted above, 2dfa’s can be exponentially more concise than ldfa’s [11].
To study the effect of randomization on the conciseness of two-way automata, we must
compare 2pfa’s with 2dfa’s or 2nfa’s. The next result gives a lower bound on the
improvement possible to the state bound cb: in Theorem 6.1. Specifically, c in the
exponent cannot be replaced by a function of c which grows more slowly than v/c/log c,
even if ldfa is replaced by 2nfa.

The proof of this result uses a random walk technique of Greenberg and Weiss
[5] which is also used in the next section. Let w be a nonempty word. A 2pfa M
executes the procedure RW(w) as follows. M begins with its head on the leftmost
symbol of w. It then performs a random walk, moving the head right with probability
1/2 or left with probability at each step. The procedure terminates when either (i) the
head moves off the left end of w (outcome zero), or (ii) the head scans the rightmost
symbol of w (outcome one). It is known (see, for example, [14, 4.2]) that

1) The probability of outcome one is 1/Iwl, and
2) If R W(w) is run repeatedly until it gives outcome one, then the expected total

number of steps is O(Iwla).
THEOREM 6.2. (1) For every e with 0 < e < , there are constants a, b > 0 such that,

for every integer m >-4 which is a power of two, there is a coin-tossing 2pfa M, having
at most b log m/log log m states such that M, recognizes {0’} within error probability
e and within expected time an a.
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(2.) For every m, ifthe 2nfa Maccepts the language {0m}, then Mhas at least m states.

Proof. (1) The proof combines the random walk technique with a method of
Freivalds [3].

Let m 2k. The definition of Mm depends on two positive integer parameters B
and D which are chosen below to make the error probability small. Although B and
D depend on e, they are independent of m. Let Pi denote the ith prime. Recall that
Pi (R)(i log i). Let N be the smallest number such that PlP2"’’PN >- Dm, and note
that N O(log m/log log m).

The computation of Mm on input 0 has three parts. The first two parts are
deterministic.

First, check that n _-> log m, and reject if not.
Second, check that n -= m mod Pi for all -< -< N, and reject if not.
If 0 passes the first two tests, then either n m or n >-Dm. The first test needs

NO(log m) states and takes time O(n). The second test needs O(i= 1Pi) states. Since

Pi O(log m) for _-< N, the number of states is O(log m/log log m). The second part
takes time O(Nn). Since n-> log m at this point, the time is O(n2).

The third part involves two probabilistic procedures CF(k) and R W(On). The
random walk procedure RW(On) is described above. To run CF(k), Mm flips a fair
coin k times; if all flips produce "heads," then the outcome is one, otherwise it is zero.
Note that

Pr CF(k) 2-k

Pr[RW(On) 1]= n-’.
Let C and C2 be two counters which are initially zero. We can now describe the third
test:

do until C+ C2 B
begin
if CF(k)= then C1 C + 1;
if R W(0n) 1 then C2 C2 + 1;
end

if C1 > 0 and C2 > 0 then accept, else reject.

If n=m, then Pr[CF(k)=I]=Pr[RW(On)=I]. Therefore, for large B it is
extremely unlikely (probability approaching zero as B c) that one counter will be
incremented B times before the other counter is incremented once. Fix B sufficiently
large. If n# m, then n>=Dm, so Pr[CF(k)= 1]>=D Pr [RW(0n) 1]. Therefore, for
large D, it is extremely likely (probability approaching as D- o) that C will reach
value B before C2 is incremented once.

It is easy to see that the third part needs O(log m) states and takes expected time
O(n).

(2) The proof is straightforward, and we only sketch the idea. Fix an m. Assume
that the 2nfa M accepts the input 0 if and only if n m. Let the sequence {(s,, h,)[ 1 <_- _-<

T} be an accepting computation of M on input 0m. The pair (st, ht) gives the state st
and head position h, of M at time t. Head positions h, satisfy 0 <- ht--< m+l; in
particular, ht 0 (respectively, ht m + 1) corresponds to reading the left (respectively,
right) endmarker. A right pass (respectively, left pass) is a time interval [y, z] such
that hy 0 and hz m + 1 (respectively, hy m + 1 and hz 0) and 1 _-< ht <- m for all
with y < < z.

Assume that M has fewer than m states. For each right pass [y, z], we can find
times and j with y < <j < z such that si sj and hi < hi. The situation for a left pass
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is the same, except that hi > h. Call [hi- hj[ the period of the pass (if a pass has more
than one period, then choose one arbitrarily). It is not hard to see that if n > rn and
n is congruent to m modulo the period of every pass, then M accepts 0n, contradicting
the requirement that M should accept 0 if and only if n m. [3

7. Unbounded error probability. The proof of Lemma 4.3 uses the assumption that
the error probability e is bounded below 1/2. Another model of probabilistic computation
which has been considered in the literature (e.g., [4]) allows the error probability to
approach 1/2 as n increases. For a 2pfa M, define

L(M) {x Pr M accepts x > 1/2}.
In the next result we observe that the main result, Theorem 4.4, does not hold in

the unbounded error model.
THEOIEM 7.1. There is a coin-tossing 2pfa M which runs in expected time O(n 2)

such that L(M) is not a regular language.
Proof We describe a 2pfa M such that

L(M)={O"lbll <-_a<-b}.

On input x, M first checks that x 0alb for some positive a and b. M then runs the
following program until it halts:

1) If RW(O) 1, then accept;
2) If RW(lb)= 1, then reject, else go to 1.

Let

p Pr[RW(0) 1]= I/a,

pb. Pr[RW(lb) 1]= 1/b.

For {1, 2}, let qi be the probability that the program accepts when it is started at
statement i. Since

ql=Pa+(1--pa)q2, q2=(1--pb)ql,

we have

Pr M accepts 0 1 b] ql
Pa

Pa + Pb PaPb

Substituting p 1/a and Pb l/b, it is easy to check that this probability is greater
than 1/2 if and only if a =< b. [3
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THE SEARCHLIGHT SCHEDULING PROBLEM*

KAZUO SUGIHARA, ICHIRO SUZUKI:, AND MASAFUMI YAMASHITA

Abstract. The problem of searching for a mobile robber in a simple polygon by a number of searchlights
is considered. A searchlight is a stationary point which emits a single ray that cannot penetrate the boundary
of the polygon. The direction of the ray can be changed continuously, and a point is detected by a searchlight
at a given time if and only if it is on the ray. A robber is a point that can move continuously with unbounded
speed. First, it is shown that the problem of obtaining a search schedule for an instance having at least one

searchlight on the polygon boundary can be reduced to that for instances having no searchlight on the
polygon boundary. The reduction is achieved by a recursive search strategy called the one-way sweep
strategy. Then various sufficient conditions for the existence of a search schedule are presented by using
the concept of a searchlight visibility graph. Finally, a simple necessary and sufficient condition for the
existence of a search schedule for instances having exactly two searchlights in the interior is presented.

Key words, geometry, searchlight, visibility

AMS(MOS) subject classification. 68E99

1. Introduction. We consider the problem of searching for a mobile robber in a

simple polygon by a number of searchlights. A searchlight is a stationary point which
emits a single ray. The ray cannot penetrate the boundary of the polygon, but its
direction can be changed continuously. A point is detected at a given time if and only
if it is on the ray of a searchlight. A robber is a point which can move continuously
with unbounded speed. We refer to this problem as the searchlight scheduling problem.
The objective is to decide whether there exists a search schedule for detecting a robber
regardless of its movement, for a given instance. A possible application ofthe searchlight
scheduling problem is security enforcement in industrial plants where searchlights or
TV cameras are used to find an intruder.

In the searchlight scheduling problem, the locations of searchlights are given as
part of a problem instance. Obviously, there exists a search schedule for an instance
only if every point in the given polygon is visible from at least one searchlight. The
problem of obtaining a set of locations of searchlights having this property is known
as the art gallery problem [2]-[6].

First, we present a recursive search strategy called the one-way sweep strategy,
and show that this strategy can be used to reduce the problem of obtaining a search
schedule for an instance having at least one searchlight on the polygon boundary to
that for instances having no searchlight on the polygon boundary. Next, we give a
number of sufficient conditions for the existence of a search schedule by using the
concept of a searchlight visibility graph which represents the visibility relations among
searchlights. Finally, we consider the case in which no searchlight is located on the
polygon boundary, and present a simple necessary and sufficient condition for the
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existence of a search schedule for instances having exactly two searchlights in the
interior.

It is not a goal of this paper to investigate the computational complexity of the
problem. We also note that to our knowledge, the searchlight scheduling problem has
not been addressed in the literature.

The problem is stated formally in 2. The one-way sweep strategy is described
in 3. Searchlight visibility graphs and a number of sufficient conditions for the
existence of a search schedule are discussed in 4. Instances having two searchlights
in the interior are considered in 5. Concluding remarks are found in 6.

2. Problem formulation. We denote by b(R) the boundary of a two-dimensional
region R. The term simple polygon is used to denote the union of a closed simple
polygonal chain and its interior. For a simple polygon P and points a, be b(P),
[a, b]b, (or (a, b)b,)) denotes the closed (or open) continuous segment of b(P) from
a to b taken in the counterclockwise direction.

An instance of the searchlight scheduling problem is a pair S (P, L), where P
is a simple polygon and L is a set of distinct points P called searchlights. A point
x is said to be visible from a searchlight if and only if lx

_
P. Note that a searchlight

does not block visibility from other searchlights. We denote by V the set of points
visible from I.

DEFINITION 1. A schedule of a searchlight lL is a continuous function
f/" [0, T] , where [0, T] is an interval of real time and is the set of real numbers.
The ray of at time [0, T] is the intersection of V/ and the semi-infinite ray with
direction fl(t) emanating from /.1 We say that is aimed at a point x P at time if
x is on the ray of/. A point x P is said to be illuminated at time if there exists a

searchlight which is aimed at x.
DEFINITION 2. TWO points in P are said to be separable at time [0, T] if every

path between them within P contains an illuminated point; otherwise they are said to
be nonseparable.

DEFINITION 3. Let x P be any point.
(1) At time zero, x is contaminated if and only if x is not illuminated.
(2) At time 0 < t-< T, x is contaminated if and only if there exists a point y P

such that (1) y is contaminated at some 0 =< t’< t, (2) y is not illuminated at any time
in the interval [t’, t], and (3) x and y are nonseparable at t.

A point which is not contaminated is said to be clear. A region R
_
P is said to be

contaminated if it contains a contaminated point; otherwise it is clear.
It is easy to see that x P is contaminated at [0, T] if and only if a robber

who has not been detected in the interval [0, t] can be located at x at t, where a robber
is detected only when it is illuminated. Definition 3 is based on the assumption that
a robber can move continuously with unbounded speed.

By definition, an illuminated point is clear, and a contaminated point remains
contaminated until it is illuminated. The following lemma is immediate from the
definition.

LEMMA 1. At time [0, T], if two points x and y P are nonseparable, then x is

contaminated if and only if y is contaminated.
By Lemma 1, a maximal contaminated region is a nonempty connected open

region not containing any illuminated point, and hence it cannot consist-only of points
on the boundary of P. Therefore we have Lemma 2.

The value off,(t) is taken in radian. Directions are measured counterclockwise from the positive x-axis.
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LEMMA 2. Any maximal contaminated subregion ofP contains a point in the interior

of P.
Our objective is to detect a robber in P regardless of the.movement. Thus we have

Definition 4.
DEFINITION 4. F {f/ If/ [0, T] is a schedule of l L} is a search schedule

for S if P is clear at T.
In the following, we describe a schedule of a searchlight by using expressions

such as "aim at a point x" and "turn clockwise," instead of specifying a function
f/ explicitly.

Example 1. Consider the instance shown in Fig. 1. Searchlights l and 12 are aimed
at point a at time zero. (b, d)b(p) is a maximal open segment of b(P) not visible from
11. If we turn ll counterclockwise from a to b without turning 12, then the shaded
region determined by segment [a, b]b(p) and the rays of l and 12 becomes clear. Since
triangle bcd is still contaminated, the clear region becomes contaminated if l is turned
counterclockwise any further.

d

FIG. 1.

d

clear

a

Illustration for Example 1.

Example 2. The following is a search schedule for the instance shown in Fig. 2(a).
Clear regions are shown shaded in Fig. 2.

(1) Aim 12 at a.
(2) Aim 13 at a and turn it counterclockwise until it is aimed at b (Fig. 2(b)).
(3) Aim l at b and turn it counterclockwise until it is aimed at c (Fig. 2(c)).
(4) Turn 13 counterclockwise until it is aimed at d (Fig. 2(d)).
(5) Aim l at g.
(6) Turn 12 clockwise until it is aimed at h (Fig. 2(e)).
(7) Turn l counterclockwise until it is aimed at h (Fig. 2(f)).
(8) Turn l clockwise until it is aimed at g (Fig. 2(g)).
(9) Turn 13 counterclockwise until it is aimed at e (Fig. 2(h)).

(10) Aim 12 at e and turn it counterclockwise until it is aimed at f
(11) Turn 13 counterclockwise until it is aimed at g (Fig. 2(i)).
An instance for which there exists no search schedule is given in Example 4 at

the end of 5.
Throughout this paper we assume that any given instance S (P, L) satisfies the

following conditions (P1) and (P2), since obviously, otherwise there cannot exist any
search schedule.

(P1) P LJ IL Vl. (Every point in P is visible from at least one searchlight.)
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11

b b

(a) (b) (c)

b

(d) (e) (f)

(g) (h) (i)

FIG. 2. A search schedule for an instance of the searchlight scheduling problem.

(P2) For each e L, either b(P) or e Vr for some l’ L-{l}. (Every searchlight
is either on the boundary of P or visible from another searchlight.)

3. One-way sweep strategy. In this section we show that the problem of obtaining
a search schedule for an instance having at least one searchlight on the polygon
boundary can be reduced to that for instances having no searchlight on the polygon
boundary. The reduction is achieved by a recursive search strategy called the one-way
sweep strategy.

It is convenient to describe the one-way sweep strategy as a method for clearing
a subregion of P determined by the rays of searchlights. For this reason, we begin the
discussion with the following definition.
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DEFINITION 5. Let S (P, L) be an instance. Semiconvex subpolygons of P suppor-
ted by a set of searchlights at a given time are defined recursively as follows.

(1) P is a semiconvex subpolygon of P supported by at any time t-> 0.
(2) Let R

_
P be a semiconvex subpolygon of P supported by K c L at time _-> 0.

For an arbitrary searchlight L- K and an arbitrary maximal open segment (a, b)b(P)
of b(P) not visible from l, let Q be the closed simple region whose boundary is
[a, b]b(p)l,..J ba. If (1) R f-I Q and (2) is aimed at a and b at t, then R f"I Q is a
semiconvex subpolygon of P supported by K U {/} at t.

In Fig. 3, the boundary of a semiconvex subpolygon R supported by K {/1,12}
is shown in thick lines.

R\ Jb".................
/bin ............................ bI

FIG. 3. The one-way sweep strategy OWSS R, K, 1), where K {11,12}.

If R is supported by K at time t, then (1) it is. "enclosed" by a segment of b(P)
and the rays of (some of) the searchlights in K, and (2) the interior of R is not visible
from any searchlight in K. In the following, the qualifier "at time t" may be omitted
when it is understood from the context. The term "semiconvex" is due to the following
fact which is straightforward from definition: any reflex vertex of R is a vertex of P.

Let S- (P, L) be an instance. Let R be a semiconvex subpolygon of P supported
by K c L. Suppose that there exists a searchlight L-K such that

(1) ! R- b(R) (l is either on the boundary of R or external to R), and
(2) (R-b(R))f’l V! (at least one point in the interior of R is visible from l).

Let W be the smallest wedge with apex such that R (’l V/_ W. Let dR and d/ be the
bounding semi-infinite rays of W where the interior of W lies to the left of dR and to
the right of d/. Let (aJ, bj)b(R)b(R)-Vt, l<-j<-m, be the maximal open segments
of b(R) not visible from l, where the line segments albl, a2b2,’", amb, appear in
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counterclockwise order within W when viewed from /. Let Rj be the closed simple
region whose boundary is [aj, bj]bR (-J bjaj (see Fig. 3). Then the one-way sweep strategy
OWSS (R, K, l) for R (with respect to K and l) is the following.

OWSS (R, K, l)
1. Aim in the direction of
2. forj=l to m do

2.1. Turn counterclockwise until it is aimed at aj and
2.2. If there exists a searchlight 1’ L-(K LJ {1}) such that 1’: Rj- b(Rj) (1’ is

either on the boundary of Rj or external to Rj) and (Rj-b(Rj))CI Vl,#
(at least one point in the interior of Rj is visible from 1’), then execute
OWSS (Rj, K CJ {1}, 1’). Otherwise, if there exists a search schedule for the
instance SRj (Rj, L Rj), then execute it; otherwise output failure and
halt.

3. Turn counterclockwise until it is aimed in the direction of d/.

In OWSS (R, K,/), we clear R by sweeping it by in one direction, in such a way
that every region Rj not visible from is cleared in step 2.2 (if possible) without turning
any searchlight in K t_J {1}. Since R is supported by K, it is easy to see that if each
can be cleared without turning any searchlight in K U {l}, then R becomes clear when
step 3 is completed.

In step 2.2, to clear Rj we apply the one-way sweep strategy recursively if there
exists a searchlight I’ L-(K U {1}) which is not in the interior of Rj and from which
at least one point in the interior of Rj is visible. Note that the idea of applying the
strategy to Rj is valid, since Rj is a semiconvex subpolygon of P supported by K U {1}
when is aimed at aj and bj. If there exists no such l’, then the interior of Rj is visible
only from the searchlights in the interior of Rj (and hence there exists no searchlight
on the boundary of Rj, since at least one point in the interior of Rj would be visible
from any searchlight on the boundary of Rj). In this case we regard SRi--
as a separate instance and clear Rj by executing a search schedule for SR., if such a
search schedule exists. If there exists no search schedule for SR.i, then the strategy
outputs failure and halts.

THEOREM 1. Let S (P, L) be an instance. Let R be a semi-convex subpolygon of
P supported by K c L. Suppose that there exists a searchlight L-K such that
R- b(R) (1 is either on the boundary of R or external to R) and (R- b(R))
(at least one point in the interior of R is visible from l). Then R can be cleared without
turning any searchlight in K if and only if there exists a search schedule for the instance
So (Q, L f3 Q) for every semiconvex subpolygon Q of R found during the execution of
OWSS R, K, l) to which the strategy cannot be applied recursively.

Proof (If) Execute OWSS (R, K, l). As is discussed above, R becomes clear when
the execution terminates, since (1) R is supported by K and (2) every semiconvex
subpolygon Q of R found during the execution of OWSS (R, K, l) can be cleared
either by a recursive application of the one-way sweep strategy or the execution of a
search schedule for the instance So (Q, L fq Q).

(Only if) Let Q be a semiconvex subpolygon Q of R found during the execution
of OWSS (R, K, l) to which the strategy cannot be applied recursively. Let F=
{f" [0, T]- [l L-K} be a collection of schedules which clears R without turning
any searchlight in K starting from the state in which R is supported by K. Suppose
that there exists no search schedule for So (Q, L fq Q). Then Q is contaminated when
the execution of Fo {f F]l Q} terminates at T, and hence by Lemma 2 there exists
a contaminated point x in the interior of Q. Here, since the interior of Q is visible
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only from the searchlights in the interior of Q, for any 0-<_ _-< T, a point in the interior
of Q is illuminated at during the execution of Fo if and only if it is illuminated
at during the execution of F. This, together with Lemma 2, implies that x is contam-
inated when the execution of F terminates at T. This contradicts the assumption that
F clears R. [3

Let S (P, L) be an instance having at least one searchlight on the boundary of
P, and let L b(P) be an arbitrary searchlight on the boundary of P. Since P is a
semiconvexsubpolygon of P supported by and at least one point in the interior of
P is visible from l, we can execute OWSS (P, , l). Then by Theorem 1, there exists
a.search schedule for S if and only if there exists a search schedule for the instance
So (Q, L Q) for every semiconvex subpolygon Q of P found during the execution
of OWSS (P, , l) to which the strategy cannot be applied recursively. Since there
exists no searchlight on the boundary of such Q, the problem of finding a search
schedule for an instance having at least one searchlight on the polygon boundary has
been reduced to that for instances having no searchlight on the polygon boundary.

Example 3. Consider the instance S (P, {ll, 12, 13,/4}) shown in Fig. 4. It is easy
to see that the one-way sweep strategy can be recursively applied to every semiconvex
subpolygon of P found during the execution of OWSS (P, , 11), and hence by
Theorem 1 there exists a search schedule for S.

P
FIG. 4. An instance having a search schedule.

4. Searchlight visibility graphs. In this section we present a number of simple
sufficient conditions for the existence of a search schedule. The conditions are stated
by using the concept of a searchlight visibility graph introduced below.

DEFINITION 6. Let S (P, L) be an instance. The searchlight visibility graph of S
is an undirected graph SVG (S)= (L, E) with vertex set L and edge set E such that
for any and l’ L, (l, l’) E if and only if l’ and V/,.

THEOREM 2. Let S (P, L) be an instance. There exists a search schedule for S if
for every connected component Gi (Li, Ei) of SVG (S), there exists at least one search-
light Li such that b(P).
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Proof Suppose that we execute OWSS (P, , 1), where L b(P) is an arbitrary
searchlight on the boundary of P. By Theorem 1, it suffices to show that the one-way
sweep strategy can be applied recursively to any semiconvex subpolygon Q of P found
during the execution of OWSS (P, , l). Suppose that the strategy cannot be applied
to some Q. Consider the instance So (Q, L 71 Q). Note that the interior of Q is visible
only from the searchlights in the interior of Q and there exists no searchlight on the
boundary of Q. This observation, together with condition (P1), implies that (1) there
exists at least one searchlight in the interior of Q, (2) any connected component of
SVG(So) is a connected component of SVG(S), and (3) Lib(P)= for any
connected component Gi (L, Ei) of SVG (So). This contradicts the assumption. [3

LEMMA 3. Let S =(P, L) be an instance. For an arbitrary searchlight L, let
(a, b)b(P) b(P)- V! be a maximal open segment of b(P) not visible from l, and let R
be the closed simple region whose boundary is [a, b]b(p) ba. If SVG (S) is connected,
then R can be cleared while is kept aimed at a and b.

Proof Aim at a and b (Fig. 5). Then R is a semiconvex subpolygon of P
supported by {/}. By condition (P1) and the connectedness of SVG (S), there exists a
searchlight l’ such that l’.R-b(R) and (R-b(R)) VI,. Thus we can execute
OWSS (R, {/}, l’). By Theorem 1, it suffices to show that the one-way sweep strategy
can be applied recursively to any semiconvex subpolygon Q of R found during the
execution of OWSS (R, { 1}, l’). Suppose that the strategy cannot be applied recursively
to some Q. By condition (P1) and the fact that the interior of Q is visible only from
the searchlights in the interior of Q, there exists at least one searchlight in the interior
of Q. But then the searchlights in the interior of Q are not visible from any searchlight
outside of Q, and thus SVG (S) cannot be connected. [3

FIG. 5. Illustration for Lemma 3" is aimed at a and b.

THEOREM 3. Let S= (P, L) be an instance. If SVG (S) is connected, then there
exists a search schedule for the instance S’--(P, L {/’}), where l’6 P is an arbitrary
searchlight not in L.

Proof By condition (P1), l’ is visible from some searchlight l L. Let p be the
first intersection of b(P) and the ray emanating from in the direction from l’ to
(Fig. 6). Aim and l’ at p, and then turn counterclockwise through a rotation of 2r.
During this rotation, whenever is aimed at points a and b b(P) such that (a, b)b(p
b(P) VI is a maximal open segment of b(P) not visible from l, clear the closed region
R whose boundary is [a, b]b(p .J ba without turning I. This is possible by Lemma 3,
since SVG (S) is connected and R is a semiconvex subpolygon of P supported by {l}
when is aimed at a and b. Since l’ need not be turned while R is being cleared, P
becomes clear when the rotation of is completed. [3
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b R

FIG. 6. An additional searchlight l’.

THEOREM 4. Let S P, L) be an instance. If SVG S) is connected and there exist
two searchlights and l’ L such that Vt fq Vr f, then there exists a search schedule
for P.

Proof Let (a, b)bp)_ b(P)- V! be the maximal open segment of b(P) not visible
from such that l’ R, where R is the closed simple region whose boundary is
[a, b]bp) ba. Similarly, let (a’, b’)bp_ b(P)-V/, be the maximal open segment of
b(P) not visible from l’ such that R’, where R’ is the closed simple region whose
boundary is [a’, b’]bpt-J b’a’ (Fig. 7). Since SVG (S) is connected, by Lemma 3 we
can aim at a and b and then clear R without turning I. At this state P-R’ is clear,
since Vt V/,= . Next, we aim l’ at a’ and b’ and clear R’ without turning l’. Again,
this is possible by Lemma 3. Then P becomes clear. [3

5. Instances having two interior searchlights. In this section we present a simple
necessary and sufficient condition for the existence of a search schedule for instances
having exactly two searchlights in the interior.

THEOREM 5. Let S=(P, {/1,/2}) be an instance such that ll, 12: b(P). Letp (or q)
be the first intersection of the boundary ofP and the extension of l112 in the direction from
l to ll (or from ll to le). Let Wu-[p, q]b<P> and Wl=[q,p]b<p>. There exists a search
schedule for P if and only if one of the following conditions holds.

b O

FIG. 7. Illustration for Theorem 4.
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(1) There exist points cu6 Wu and Cl W’t such that [Cu, Cl]b(p) CC VI, and
It,, C.]b() =_ v,.

(2) 1112(3 Wu # ( and 112(3 W! (.

(3) l12 0 W, and either W
_

Vi, or WI Vt2.
(4) lleO W! ( and either Wu

_
Vl, or W, VI2.

Note that S is assumed to satisfy conditions (P1) and (P2) given at the end of
2. Since l12fqb(P)=f holds if there exist points cue W, and ce W such that
[c,, C]b(p) V6 and [ct, c]b(p)_ V, Theorem 5 follows from Lemmas 4 and 5 given
below.

LEMMA 4. If llzf’)b(P) Q3, then there exists a search schedule for P if and only
if there exist points c, W, and ct Wt such that [c,, Cl]b(p)___. Vii and [Cl, Cu]b(p)___ Vl2.

Proof (If) The following is a search schedule for P (Fig. 8).
(1) Aim 1l at c,.
(2) Aim 12 at
(3) Turn ll counterclockwise until it is aimed at q.
(4) Turn lz clockwise until it is aimed at p.
(5) Turn l counterclockwise until it is aimed at Cl.
(6) Turn 12 clockwise until it is aimed at ct.
(Only if) Assume that such c, W, and Cl W’t do not exist. We consider the case

in which there exist maximal open segments (al, b)b(p W,- V and (a2, b2)b(p)
W,- Vt, not visible from 12 and ll, respectively, such that a, b, a_, and b2 appear in
counterclockwise order in W, (Fig. 9). The argument for the case in which there exist
similar open segments in W/ is basically the same. By llf-’l b(P)= and condition
(P1), we have a, bl, a2, b2C:pq. We may assume that a, b, a2, and b2 have been
chosen so that [p, al]b(p)__ Vie and [b, q]b(P) Vt,. For i= 1,2, let Ri be the closed
simple region whose boundary is [ai, bi]b(p)J bias. Let Ro be the closed region whose
boundary is W LJ --.

Before we proceed, we prove the following proposition.
PRO’POSITION 1. In any search schedule for P, if R is changed from contaminated

to clear at time t, then there exists some 6 > 0 such that in the interval t-6, t), is
aimed at a point in (al, bl)b(p) and lz is aimed at a point in [p, al]b(p).

Cu

FIG. 8. Points c. and ct.
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R2 R1

b2// aI Wu

q P

R0

FIG. 9. Illustration for the proof of Lemma 4.

Proof Let 6 > 0 be any value such that R1 is contaminated in [t-6, t). Suppose
that in [t-6, t), either 11 is not aimed at any point in (a, b)b(p) or 12 is not aimed at
any point in [p, a]b(p) (Fig. 10). At any time in It-6, t), since R1 is contaminated
and any two points in R1 which are not illuminated are nonseparable, by Lemma 1
any point in R which is not illuminated is contaminated. Then it is impossible
to change R1 from contaminated to clear at t, since contaminated points remain
contaminated until they are illuminated. [3

The proof of the following proposition is basically the same as that of
Proposition 1 and is thus omitted.

PROPOSITION 2. In any search schedule for P, if R2 is changed from contaminated
to dear at time t, then there exists some 6 > 0 such that in the interval t- 3, t), 2 is
aimed at a point in (a2, bz)b(p) and 11 is aimed at a point in [b, q]b(P).

We return to the proof of Lemma 4. Assume that there exists a search schedule
for P. Let F be a search schedule in which the total number of times R1 and R2 are
changed from contaminated to clear is smallest among all search schedules. Suppose
that during the execution of F, R is changed from contaminated to clear at t and R
remains clear after q. Since R1 and Rz cannot be changed from contaminated to clear
simultaneously by Propositions 1 and 2, without loss of generality assume that R is
contaminated at or at some time after tl. Let t2 > tl be the first time after tl at which

R2 is changed from contaminated to clear.

R1

a1

FIG. 10. Illustration for the proof of Proposition 1; any two points in R which are not illuminated are

nonseparable.
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First, we show that both Ro and R2 are contaminated at tl. Let 61 > 0 be a value
satisfying the conditions of Proposition 1 with respect to tl, that is, 11 is aimed at a
point in (al, bl)b(p) and 12 is aimed at a point in [p, al]b(p) in [q-- 61, tl). Then by the
assumption that 1112("1 Wt , in [tl- 6, tl) any two points in Ro R2 which are not
illuminated are nonseparable, and hence by Lemma 1 either Ro and Rzare both clear
or both contaminated. Suppose that Ro and R2 are clear in tl- 61, t), and hence by
Lemma 1 the points in Rot3 R2 are separable from any contaminated point. Since

[P,a]b(P) VI2 and 11 W/=, there are only two possibilities at any time in
[tl-6,tl).

Case 1. 12 is not aimed at al, and the region determined by some segment of
[13, bl)b(p) and the rays of 11 and 12 is the only contaminated region (Fig. 11).

Case 2. l is aimed at al, and some of the regions determined by some segments
of [al, a2]b(p) and the rays of ll and 12 are the only contaminated regions (Fig. 12).
(Without the assumption that [p, al]b(p) Vl2, there may exist a contaminated region
determined by the ray of 12 and some segments of [p, al]b(p). Also, if
then there may exist a contaminated region determined by the ray of 12 and some
segments of W/.) In Case 1, P can be cleared by turning 11 and l to al clockwise and
counterclockwise, respectively. In Case 2, the contaminated regions are visible from

ll by condition (P1), and thus P can be cleared without changing any of R1 and R
from clear to contaminated after tl. In either case, there exists a search schedule for
S in which the number of times R1 and R2 are changed from contaminated to clear
is smaller than that in F. Since this contradicts the assumption on F, it cannot be the
case that Ro and R are clear in [tl- 61, tl). Thus both Ro and R2 are contaminated
in t- 61, tl). Then, since by Proposition 1 it is impossible to change either of Ro and

cle ntaminated

FIG. 11. Case in [tl-6, t) in the proof of Lemma 4.

contaminated

a1

clear

FIG. 12. Case 2 in [t-6, t) in the proof of Lemma 4.
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R2 from contaminated to clear at tl, both Ro and R2 are contaminated at tl. Also,
note that by the argument given above, q is contaminated at t since a2, b2 : pq.

Let 62 > 0 be a value satisfying the conditions of Proposition 2 with respect to t2,
that is, 12 is aimed at a point in (a2, bz)b(p) and 1 is aimed at a point in [b2, q]b(P) in
t2-62, t2). Then by the assumption that lll2 W/- , in t2-62, t2) any two points

in Ro R which are not illuminated are nonseparable. Thus by Lemma and the
assumption that R1 remains clear after t, Ro is clear in [t2-62,

In summary, we have found that R1 is clear in [tl, t2], R2 is contaminated in
[tl, t2), Ro is contaminated at t, and Ro is changed from contaminated to clear in
[tl, t2). In the following we show that at least one of p and q is contaminated at any
time in [tl, t2), and hence R0 cannot become clear in [t, t2).

Since in [t, t2) R1 is clear and R2 is contaminated, by Lemma 1 the points in R
should be separable from any contaminated point in R2. Thus we have Proposition 3.

PROPOSITION 3. In the interval t,
(1) Whenever Ii is aimed at p, 12 is aimed at a and bl (Fig. 13), and
(2) Whenever, 12 is aimed at q, ll is aimed at a2 and b2.
Also, by Lemma 1, a, b, a2, b2-pq and the condition on R1 and R2, we have

Proposition 4.
PROPOSITION 4. In the interval [tl, t2)
(1) Whenever ll is aimed at q, 12 is aimed at a point in [b, a2] (Fig. 14), and
(2) Whenever 12 is aimed at p, ll is aimed at a point in b, a2].
Furthermore, since a, bl, a2, b2 --, we have Proposition 5.
PROPOSITION 5. At any time, if neither p nor q is illuminated, then p and q are

nonseparable.
By al, bl, a2, b2 and Propositions 3 and 4, (1) at most one of p and q is

illuminated at any time in [tl, t2), and (2) if p and q (or q and p) are illuminated at

a1

b1

FIG. 13. Illustration for Proposition 3; 11 is aimed at p.

a b1

FIG. 14. Illustration for Proposition 4; 11 is aimed at q.
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sl and s2 for some S ( S2 < t2, respectively, then there exists some s < < s2 such
that neither p nor q is illuminated at t. This observation, together with Proposition 5,
Lemma 1, and the fact that q is contaminated at tl, implies that p and q cannot
be clear simultaneously in [t, t2). Thus Ro cannot be clear in [tl, t2). This is a
contradiction.

LEMMA 5. If l12f3 b(P) (, then there exists a search schedule for P if and only
if one of the following conditions holds:

(1) l12f-] Wu ( and l12fq Wt (.
(2) l12 (q W,, ( and either Wt V or W

_
V2.

(3) l12 fq Wt and either Wu
_

V, or Wu
_

Vt2.
Proof (If) Note that l12 P by condition (P2). The following is a search schedule

for P if 1112 fq Wu and l 12 71 W (Fig. 15).
(1) Aim l at q.
(2) Aim 12 at p.
(3) Turn l counterclockwise through a rotation of 27r.
(4) Turn 12 counterclockwise through a rotation of 27r.

If llzf] W, ( and Wt___ Vt,, then P can be cleared by the following (Fig. 16).
(1) Aimlatq.
(2) Aim l at p.
(3) Turn 11 clockwise through a rotation of 27r.
(4) Turn 12 counterclockwise through a rotation of

Search schedules for other cases are similar and are thus omitted.
(Only if) Since the argument is similar to that in the (only if) part of Lemma 4,

we only give an outline. Consider the case in which l Iz W, , l l (q W , and

Wu

FG. 15. I 12 (-’1 W ( and I I 0 Wt (.

Wu

FG. 16. ll2 W,, ( and Wt_ V6.
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W/ V/, for 1, 2. The argument for the other case (1112 0 Wu , 1112 f) W/ , and
W, V/, for i= 1, 2) is similar and is thus omitted.

Since ll,l:,_b(P) and lll2(q W,(, there exist maximal open segments
(al, bl)be) W,- VI2 and (a2, b2)be) W,- V/1 not visible from 12 and 11, respectively,
such that al, bl, a2, and b2 appear in counterclockwise order in W (Fig. 17). By
condition (P1), if bl a2 then bla2_ b(P). For i= 1,2, let Ri be the closed simple
region whose boundary is [ai, bi]bp) ba. Let Ro be the closed region whose boundary
is W/U --.

R2 R1

/
b

b2

"..

2

/ll’ P
al

Ro
FIG. 17. Illustration for the proof of Lemma 5.

Assume that there exists a search schedule for P, and let F be a search schedule
in which the total number of times R1 and R2 are changed from contaminated to clear
is smallest among all search schedules. First, as we did in the proof of Lemma 4, we
can show that R1 and R2 cannot be cleared simultaneously. Thus without loss of
generality we can assume that R is changed from contaminated to clear at tl, R1
remains clear after tl, and R2 is contaminated at tl or at some time after t. Let 2 > t
be the first time after tl at which R2 is changed from contaminated to clear. Then by
l12 fq Wt , the assumption on F and an argument similar to that in the proof of
Lemma 4, we can show that Ro and R2 are contaminated at tl (more specifically, any
point in RoU R2 which is not illuminated is contaminated at q). Next, by using the
assumption that 1112 ("l W/-- , we can show that Ro must be clear at t2 6 for some 6 > 0.

In summary, R1 is clear in tl, t2], R2 is contaminated in tl, t2), Ro is contaminated
at tl, and Ro is changed from contaminated to clear in [tl,/2). Since by assumption
W/ V/,, for 1, 2, Ro cannot be cleared unless each of ll and 12 is aimed at the points
in W/ not visible from the other searchlight. Here, since R1 is clear and R2 is
contaminated in tl, t2), 12 must be aimed at al and b whenever 11 is aimed at a point
W not visible from 12 (Fig. 18), and 11 must be aimed at a2 and b2 whenever 12 is aimed
at a point in W/ not visible from l (Fig. 19). Thus (1) at any time in [tl, t2) at most
one of 11 and 12 can be aimed at a point in Wt not visible from the other searchlight,
and (2) if 11 and 12 (or 12 and 11) are aimed at a point in W not visible from the other
searchlight at s and s2 for some tl--< s < s2 < t2, respectively, then there exists some
sl< t<s2 such that any two points in W/ visible from only one of l and 12 are
nonseparable at t. This observation, together with Lemma 1 and the fact that any point
in Ro which is not illuminated is contaminated at tl, implies that Ro contains a
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Ro
FIG. 18. Illustration for the proof of Lemma 5; 11 is aimed at a point in W not visible from 12

R2 R1

b2 ,,, 1

Ro
FIG. 19. Illustration for the proof of Lemma 5; is aimed at a point in W not visible from

contaminated point at any time in [tl, t2), and hence Ro cannot be clear in [tl, t2).
This is a contradiction. [2

Example 4. Consider the instance $ (P, {l, 12, /3)) shown in Fig. 20. When the
one-way sweep strategy is applied to S, we obtain a semiconvex subpolygon Q of P
supported by {/} containing two searchlights 2 and 13 in the interior. Note that the
strategy cannot be applied to Q, since the interior of Q is visible only from 12 and 13.
Also, the instance SO (Q, {12,/3}) does not satisfy any of the conditions of Theorem
5, and hence there exists no search schedule for S0. Thus by Theorem 1, there exists
no search schedule for S.

6. Concluding remarks. We have posed the searchlight scheduling problem and
presented various conditions for the existence of a search schedule. In particular, we
have shown that the problem of obtaining a’ search schedule for an instance having at
least one searchlight on the polygon boundary can be reduced to that for instances
having no searchlight on the polygon boundary, and then presented a simple necessary
and sufficient condition for the existence of a search schedule for instances having
exactly two searchlights in the interior. Some preliminary results for the case in which
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Q

clear

FIG. 20. An instance having no search schedule.

there are three searchlights in the interior have been reported in [8], but obtaining a
necessary and sufficient condition for this case remains as a challenging open problem.

As a final note, we remark that given an n-sided simple polygon P we can compute,
in O(n log log n) time, a set L of searchlights such that (1) ]L In/3] and (2) the
instance S (P, L) has a search schedule. This is an immediate corollary of Theorem
2 and a linear time coloring algorithm (see [1], [6, Chap. 1]) for computing, given a
triangulation of P, a subset L of the vertices of P such that L In/3] and every point
in the interior of P is visible from at least one vertex in L. It is known that a triangulation
of an n-sided polygon can be computed in O(n log log n) time [9]. If P is rectilinear,
then a set L with the desired property such that ]L]= In/4] can be computed in
O(n log log n) time [7].

Acknowledgments. We wish to thank the anonymous referees for their careful
reading of and helpful comments on this paper.
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MINIMUM CUTS FOR CIRCULAR-ARC GRAPHS*

D. T. LEE?, M. SARRAFZADEH?, AND Y. F. WU?

Abstract. The problem of finding a minimum cut of n arcs on a unit circle is considered. It is shown
that this problem can be solved in (R)(n log n) time, which is optimal to within a constant factor. If the
endpoints of the arcs are sorted, the problem can be solved in linear time. The solution to the minimum
cut problem can be used to solve a minimum new facility problem in competitive location and a minimum
partition set problem for the intersection model of a circle graph. As a by-product it is also shown that the
maximum independent set of n arcs can be obtained in linear time, assuming the endpoints are sorted,
which is much simpler than the most recent result of Masuda and Nakajima [SIAM J. Comput., 17 (1988),
pp. 41-52].

Key words, computational complexity, algebraic computation trees, circular-arc graphs, circle graphs,
minimum covering, maximum independent set

AMS(MOS) subject classifications. 68Q25, 68Q20, 68R10, 90B50

1. Introduction. We consider the following problem:

Problem 1 (Minimum cuts for circular arcs (MCCA)). Given a set S of n nonempty
open arcs S--{A1, A2,’’’, An} on a unit circle Y{, find a set C of cut points C-
{Cl, c2,..., c,}, for some m > 0, such that each arc Ai contains at least one cut point
and the cardinality of C is minimized.

The number m is referred to as a minimum cut number of S, and C is referred to
as the minimum cut set of S. For convenience each arc Ai, 1, 2, , n is represented
as (Oib Oie), where Oib and Oie denote, respectively, the beginning and ending points
of the arc when it is traversed in counterclockwise manner, starting with an arbitrarily
chosen point on Y{" that is not an endpoint of any arc in S.

Before we give details of how to solve the minimum cut problem for circular-arcs
optimally, we consider two applications that arise in different contexts.

Consider the so-called one-on-one competitive location problem studied by Drezner
[2]: Given a set of demand points Pi with associated weight wi, i= 1, 2,..., n, in the
plane and an existing facility X, locate a new facility Y, so that Y will attract the most
total weight; a demand point Pi (and its associated weight wi) is considered attracted
to Y if d(pi, Y)< d(pi, X), where d(a, b) is the Euclidean distance between points
a and b. This problem was solved optimally in (R)(n log n) time [2], [4]. A related
problem, the Minimum New Facilities problem, is of interest here and is defined below.
For a more general description of competitive location problems, see [3].

Problem 2 (Minimum new facilities (MNF)). Given an existing facility X serving
n demand points Pi (xi, yi), 1, 2, n, find a minimum number m ofnew facilities
at least R away from X so as to attract all demand points that can be attracted; a
demand point Pi is considered attracted by a new facility Y if d(pi, Y)< d(pi, X).

Without loss of generality, we can assume that the existing facility is at the origin.
Let r R/2. Denote the circle of radius R centered at the origin as the R-circle, and
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1990. This work was supported in part by the National Science Foundation under grants DCR 84-20814
and MIP 87-09074.

t Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,
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denote the circle of radius r centered at the origin as the r-circle. Although the position
of each demand point is specified in terms of its Cartesian coordinates, in the course
of the following discussion, we shall use polar coordinates for convenience, i.e.,
pi=(ri, Oi), i= 1, 2,..., n, where ri is the polar radius and 0i is the polar angle. If
there is a demand point Pi located within the r-circle, i.e., ri -< r, then it is impossible
to attract Pi away from the existing facility using any facility at least R away from the
origin. Therefore, we shall assume from now on that every ri > r.

For any facility located more than R away from the origin, we can always shift
it closer to the origin without losing the attraction of any demand points (in fact, doing
so may attract more demand points). Thus we can restrict ourselves to facilities on the
R-circle only. Given a demand point Pi, the range of angles in which we can locate a
new facility on the R-circle to attract Pi is Ai--(Oib, Oie):(Oi--cos-l(r/ri),
COS

-1 (r/ri)), where Oib and Oie are determined by the tangent points of the two tangents
of the r-circle passing through Pi (see Fig. 1). We treat A as an open arc on the
R-circle and call it a demand arc with the following implication: if there is any facility
located on this open arc, then demand point Pi is attracted.

Ai

Oie
r-circle

R-circle
FIG. 1. Mapping of a demand point to a demand arc.

Through these assumptions and mapping every demand point to its corresponding
demand arc, we have transformed the MNF problem into an instance of the MCCA
problem with the following correspondence: the demand arcs are the input arcs to the
MCCA, and the locations of the new facilities correspond to the positions of the cut
points. Note that the values of the angles of demand arcs are taken modulo 2r, i.e.,
each arc is of length less than 2r.

Next we consider a partition problem that arises in topological via
minimization [6].

Problem 3 (Minimum partition set (MPS)). Given a set S {ul, u2," ", un}, of n
chords in a unit circle 2{’, find a partition set P {Pl, P2," ",PK } of points on 2{ such
that no chord in S has both of its endpoints on the same circular-arc defined by two
consecutive points, Pi and Pi+l, for 1, 2, , K, where pK +1 Pl and K is minimum.
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The set S of chords induces the intersection model of the so called circle graph
of n chords. The cardinality K of the minimum partition set P is called the partition
number of (chord) representation of a circle graph. The resulting partition of the
endpoints of the chords (into K subsets) has the following property: the (intersection
of the) subset of chords with an endpoint in the same partition defines a permutation
graph. Recall that a set T of chords forms a permutation graph if there exists a chord
(not in T) that cuts across each chord in T. Of interest here is to determine the partition
number of representation of any circle graph, for it reflects the degree of difficulty in
finding a maximum 2-independent set of the circle graph. (A 2-independent set of
chords is a set that can be partitioned into two subsets such that no two chords in
each subset intersect. For details, the reader is referred to [6].)

The problem MPS can be transformed into an instance of MCCA as described
below. Assume that each chord u, is represented as a pair of integers (ti, t), where ti
and tj represent the rank of the endpoints sorted in counterclockwise direction with
respect to an arbitrary point on Y{. Now for each chord u, we construct two arcs, A
and A" A =(t+ 6, t-6) and AZt=(t + 6, t-6), where 6 represents a small deviation
from the corresponding endpoints. It is obvious to see that to separate the two endpoints
of each chord u,, it is sufficient to place at least a cut-point on each of its two associated

and A. Thus we have an instance of MCCA in which these 2n arcs are thearcs A,
input arcs, and the minimum cut set corresponds to the partition set of the circle graph.

2. Preliminaries. We now begin our discussion of how to solve the MCCA
problem. We begin with some definitions. Recall that we have a set S of arcs,
{A, A2,"" ", A,}, each of which is represented as (Oib, 0ie), where Ob and Oie denote,
respectively, the beginning and ending points of the arc when it is traversed in
counterclockwise manner. The endpoints, Ob and 0, ofA are called CW (for clockwise)
end and CCW (for counterclockwise) end, respectively. Let a cut at angle a denote a
half-line emanating from the origin with orientation a.

DEFINITION 1. A cut interval is a nonempty angular interval c (0b, 0) or Oh,
such that 0e{0,[i=l,’’.,n} and Ob{O,bli=l,2,’’’,n}Cl{O,[i=l,2,’’’,n},
and for all 01, 02 c, the set of arcs intersecting the cut at 01 is the same as the
set of arcs intersecting the cut at 02; c does not contain Oh, if and only if
Ob {Obli 1, 2, ", n}, i.e., Ob is a CW end.

In general, each 0i (or arc A) determines a cut interval; thus we have n cut
intervals unless some of the 0’s of the n given arcs are not distinct. Let us denote the
set of <- n cut intervals as c {Cl, , c,}. If the endpoints are not distinct, we shall
use the following convention that beginning endpoints always come before ending
points, and for cases where two beginning (or similarly, ending) points of different
arcs coincide, the arc With smaller index comes first. In other words, when sorting of
these n arcs is performed, it is done in lexicographic ascending order of angle, type of
endpoint, index, where type of endpoint is either b or e, denoting beginning or ending,
respectively. We shall use the phrase "arc A is covered by cut interval c" to mean
that any cut point located within c intersects A. Figure 2 shows an example with arcs
Al,"" ", As, and cut intervals cl,"" ", c7; el is open on both ends, while c7 is closed
on the CW end and open on the CCW end.

LEMMA 1. A minimum number of cuts that cover all arcs can be obtained by placing
at most one cut inside each cut interval and none outside the union of all cut intervals.

Proof In an optimal placement of cuts, it there is a cut at angle a that does not
lie in any cut interval, we can always shift the cut CCW until it reaches a cut interval,
say at angle a’. The new cut still intersects every arc that intersects the old cut because
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A1

FIG. 2. Illustration of cut intervals.

the shifting process does not move the cut away from any of these arcs. Now if there
are already some cuts in the new cut interval, we can arbitrarily retain one cut and
eliminate the rest and still keep the original intersections. Thus our restriction does
not prevent us from finding an optimal placement of cuts. [3

DEFINITION 2. The successor interval function maps a cut interval in or th
into another cut interval or 4 in the following way: 0(4) 4; for all ci , 5(ci) 4,
if there exists no arc not covered by ci. Otherwise, 5(ci)= cj, where cj is the first cut
interval encountered when traversing the circle CCW from c such that its CCW end
is determined by an arc not covered by c.

We use the abbreviation (c) to denote (5(... 5(c))... ). The following
lemma is obvious.

LEMMA 2. If there exists a cut interval c such that (ci) oh, then the minimum cut

set c= {c}.
Hereafter, we shall consider nontrivial cases where 5(c) 4, for all c % From

Lemma 1 we may consider each cut interval c as a cut point cp on the circle with
angle 0i 1/2(0b + Oe) and shall use the terms, cut interval and cut point, interchangeably.
In the subsequent figures, a cut interval is indicated by its cut point.

DEFINITION 3. The angle a spanned by a sequence of cut intervals,
(c, 5(c),..., 5(ci)) is defined as the angular displacement from the cut point cp to
the cut point corresponding to (c).

We use "" to denote the relative positioning of cut intervals on the circle in the
following way: c c Ck " el means that the cut intervals c, cj, Ck, ", C occur
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in counterclockwise order such that cj follows ci, Ck follows cj,. ., and ci follows c.
The successor interval function on the cut intervals has the following monotonicity
property.

LEMMA 3. Consider any two cut intervals ci and cj. Let Ck (Ci) and ct (cj).
If ci c - Ck, then either ct Ck or Ck Cl Ci"

Proof It suffices to show that it is not possible to have c - ct- Ck. Suppose it
were. The arc A, which determines ct (c), is not covered by c by the definition of
the function . Clearly, the arc A is not covered by c. Then 0(c) would be ct, a
contradiction to the assumption that (ci)= Ck.

DEFINITION 4. A Minimal Covering (cut interval) Sequence (MCS) starting with
c is a sequence of cut intervals, denoted MCS(c)=(c’, c,..., c), such that the
following hold:

(a) el el,

(b) el+l-- b(cl), for <_- l_-<j,
(c) j is the smallest integer so that the angle (cf. Definition 3) spanned by

(c, c;,. ., cj, e+,) is greater than or equal to 27r, where c+1 5e(e).
It is easy to see that an MCS starting with any cut interval ci covers the entire set of
arcs in S.

LEMMA 4. Suppose that a cut must be placed within the cut interval e. Then an
optimal solution to this restricted MCCA problem is to place one cut within each cut
interval in the minimal covering sequence MCS(ci).

Proof The suggested placement is greedy in nature. Suppose we have placed one
cut within each of e, (c), b2(e),..., bk(i) and there are still arcs not covered by
any cut. Then obviously the best way to place the next cut is to place it within 0k+l(c)
because we have to cover the arc A that determines 5ek+l(ci) and is not covered by
k(ei), and placing it at any point between 5ek(c) and 5ek+l(ci) will not do any
better.

DEFINITION 5. Given an arbitrary cut interval cj C where 1 =<j=< t, define ,
jo, . as follows.

=the infinite sequence of cut intervals (cj, 5(c), b2(c), 53(c), ),
o (c--cj, c,..., c,,..., c), is a finite subsequence of , and. (c,,..., cl) is a subsequence of o, such that
(1) c oW(c_l) for 1 < -< l, and c, oW(c), and
(2) all elements in o are distinct.

In other words, o is the longest nonrepeating subsequence of j, and j. is the
repeating subsequence of j.

LEMMA 5. Let ]MCS (ci)[ denote the number of cut intervals in the minimal cut
sequence starting with c. Then IMCS (c’)[ [MCS (c’) for all c’, c’ ., and u v.

(c’c c). Recall that c= 1) for i=2,3,...,q andProof Let j. (Cl,
b(Cq) cl. We distinguish two cases.

Case 1. Suppose . MCS (cl), i.e., the angle spanned by
where cq+l cl, is exactly 27r. See Fig. 3(a). Since we have a circular" sequence, the
claim follows.

Case 2. The angle spanned by (cl, c’,..., cq, Cq+l) is greater than 27r. See Fig.
3(b). Let c denote the MCS (e), i.e., c (c, c,. , c’) for some m < q. We claim
that IMCS (C’s)l=m for any cut interval c’.. From Lemma 3, it follows that

between intervals e and=5( andc c,,+2Cm+ Cm) must fall between intervals cl
and so on. Starting with interval c, the MCS (c) has exactly m cut intervals. Thus,
IMCS (c;)l- IMCS (c)l. The claim follows by repeating the arguments.

We shall omit the phrase "cut interval" in subsequent discussions.
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d2

(a) (b)

FIG. 3. Proof of Lemma 5.

THEOREM 1. The MCCA problem, as defined earlier, can be solved by placing one
cut at each cut interval in the minimal cover sequence starting at any cut interval cs, i.e.,
MCS (Cs), for c

Proof From Lemma 5 we may consider only MCS(c) (where .=
(c, c,..., c)). As in Lemma 5, we distinguish two cases.

Case 1 The angle spanned by (c’ c c’, q, Cq+) is exactly 2rr. See Fig. 3(a).
It is obvious that q cut points are necessary, as there are q distinct nonoverlapping
arcs that need to be covered.

Case 2. The angle spanned by (c, c,..., Cq, Cq+) is greater than 2. See Fig.
3(b). Let denote the MCS (c), i.e., (c’, c, c) for some m < q. We claim
that the solution to the MCCA problem has exactly m cut points. Note that from
Lemma 3, c+ c) must fall between intervals c and c, c+2’ between intervals
c and c3,’ and so on. Assume that there exists a solution D= {d, d2, d} with
r < m and d d. d. We distinguish three subcases"

Subcase 1. D c Qj.. In this case D must be an MCS staing with, say, d,
according to Lemma 4. By Lemma 5 all MCSs are of the same size; it is, therefore,
impossible to have a covering with r < m.

Subcase 2. t, 1 < r, such that {dl,. dr_l} j, , and {dr,. d} c ..
Since {d,,..., dr} j,, it must be a sequence induced by the successor interval
function . Therefore we can reindex the cut intervals in , and select an MCS so
that the last r-t + 1 cut intervals match those of D. Let us assume that the MCS is
MCS (c) with d,+ c’ for 0 < <_+,+, r-t. Now consider the set of intervals
defined bythe cut points corresponding to the first m r + 2 cut intervals in MCS (c’),
i.e., { cp cp; cp; cp cp Cp + ,--+t-2 )}. From the assumption that
r< m, t-1. That is, there are no fewer than t-1 intervals that must contain
exactly t- 1 d’s in D, 1 N < t. Clearly the only possibility is that r m- 1, and one
d is placed in each interval in , as shown in Fig. 3(b). Note that the interval
cp’ cp_+ cp’,-r+,-, cp,+I), for r= m- 1, contains no element of D. Now let us
focus on the cut interval following c’ in . C+l must fall between dl and cp"
otherwise the arc determining c+1 will not be covered by D. Similarly, c+2,
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Cm+3, , c,,+,_, must fall between appropriate intervals. A contradiction results when
’and andwhich must lie between c,considering the next cut interval, era+,, Ct+l

(cp’t, cp’,+,) contains no element of D.
Subcase 3. D j, c. Let denote MCS (c), i.e., = {c, c,. ., c’}, with

c’ lying between c and c Let denote the set of corresponding cut points, i.e.m+l

{cp, cp’,..., Cp’m}. All the elements in D must fall in the intervals (cpl, cpl+),
i= 1, 2,..., m, where cp’,,,+l cp, with the condition that each element falls in one
interval, except possibly the interval (cp’,,, ep). (Recall that r= rn-1.) (See Fig. 4.)
By similar arguments as in Subcase 2, the cut interval c’,,+,, will result in a contradiction.
This completes the proof. [3

Crn+l

Crn+

FIG. 4. Illustration for the proof of Theorem 1.

3. The algorithm. Based on our discussions above, we can now describe the
algorithm for the MCCA problem.

ALGORITHM MCCA
Input. A set S of n circular-arcs, S- {A,, A2,’" ", An}, on a unit circle centered

at the origin O. Each arc is represented as Ai- (Oib, Oie), where Oil, and Oie
denote, respectively, the angles of the beginning and ending points of arc Ai
with respect to the origin and the positive x-axis when it is traversed in
counterclockwise manner.

Output. A set of cut points of minimum cardinality so that each arc in S contains
at least one point in %

Begin
(1) Sort the endpoints of the arcs in the counterclockwise direction and

arrange them in a circular list .
(2) Compute the set of cut intervals C by traversing .
(3) Compute the successor interval function 5 for %
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(4) If oW(ci)= b for some cic , then return c= {c}.
(5) Pick an arbitrary cut interval c from C, form the sequence c, oW(c),

92(c), , and compute the repeating subsequence R*
(Cjl, Cj2," Cjr

(6) Select an arbitrary cut interval, say Cjl c ,, and find the MCS (Cjl), i.e.,
find the smallest index m such that the angle a, spanned by cj,,

Cj2 ", Cjm+l is greater than or equal to 2r.
(7) Return c {c,, %,..., %}.

enl
THEOREM 2. Algorithm MCCA takes 6)(n log n) time and is optimal. Furthermore,

if the endpoints are sorted, O(n) time suffices.
Proof The correctness of the algorithm follows from the above discussion. The

time bound is due to sorting of the endpoints (step 1). It is not difficult to see that
each of the remaining steps takes only O(n) time. The algorithm is optimal because
we can reduce the Minimum Gap problem, which requires l(n log n) time under the
algebraic computation tree model of Ben-Or 1 ], to the MCCA problem. The reduction
is as follows.

An instance of the Minimum Gap problem follows:
Given Xl, X2, X C R and e > 0, determine if ]x x] => e for all Cj.
We first find the maximum, Xmax, and the minimum, Xmin, of the n numbers and

map every number x into an open arc ((Xi--Xmin)/(Xmax--Xmin4C-E), (Xi--Xmin-k-
F-,)/(Xmax--Xmin-t" 6)) on the unit circle. Now we invoke algorithm MCCA to compute
the minimum number of cuts needed to cover all arcs. If the answer is n, answer YES
to the original problem; otherwise answer NO. Clearly the transformation is done in
O(n) time, thus establishing the l(n log n) lower bound for the MCCA problem. 13

Remark. The above reduction is based on the assumption that in the input, each
arc is specified in terms of the radiant values of its two end angles. Thus to solve the
Minimum New Facilities problem using algorithm MCCA, we have to use inverse
trigonometric functions, which are not available in the algebraic computation tree
model, to compute angles from the x and y coordinates of the given demand points.
In fact, we can avoid trigonometric functions by using the intersection point between
the cut at angle cr and the unit circle, called the representing point of or, to specify c.

For example, (x//2, 1/2) is the representing point of the angle zr/6. Given a demand
point p, the representing points of the beginning and ending angles of Ai, p’s demand
arc, can be readily computed using operations in the algebraic computation tree model.
Let’s refer to the new MCCA problem, using representing points as the input/output
format, as the MCCA’ problem. The new MCCA algorithm, denoted as algorithm
MCCA’, is almost identical to algorithm MCCA because the comparison oftwo angular
positions can still be done in constant time.

THEOREM 3. Both MCCA’ and MNF problems require l)(n log n) time.

Proof We show the proof by using a reduction from the Minimum Gap on a Circle
problem. The Minimum Gap on a Circle problem follows:

Given n points (Xl, Yl), (x2, Y2),’", (xn, yn) on the first quadrant of the unit
circle, and e > 0, determine if the straight line distance between any pair of points is
at least e.

We can show that the Minimum Gap on a Circle problem requires l)(n log n)
time under the algebraic computation tree model, using the same approach as in the
lower bound proof for the Maximum Gap on a Circle problem by Lee and Wu [4].
Given an instance of the Minimum Gap on a Circle problem, we do the following
reduction to the MCCA’ problem:
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(1) For every input point (xi, Yi), compute (xi+, Yi+) and create a demand arc Ai
with its two ends specified by (xi, yi) and (x+, y+), where xi+ and yi+ are the unique
solutions to the following equations for x and y"

(x-x,)2+(y-yi)2=e2

X
2 4- y2 1

Y<Yi.

Literally, (xi+, yi+) is the point on the unit circle e away from (xi, y) and is the CW
end of the arc A.

(2) Use algorithm MCCA’ to compute m, the minimum number of cuts required
to intersect all demand arcs.

(3) If m- n, then answer YES; otherwise answer NO.
The above reduction solves the Minimum Gap on a Circle problem using O(n)

effort in addition to the time spent in algorithm MCCA’; thus the MCCA’ requires
(n log n) time. We can further treat the intersection of the tangent of the unit circle
at (x, y) and the tangent of the unit circle at (x;+, y+) as a demand point p; for the
MNF problem. Thus it is obvious that any algorithm that solves the MNF problem
can also be used to solve the Minimum Gap on a Circle problem with O(n) additional
effort. Hence the MNF problem also requires 12(n log n) time.

THEOREM 4. The MPS problem requires (n log n) time.

Proof It is not difficult to show that the Minimum Gap on a Circle problem is
linearly reducible to the MPS problem.

THEOREM 5. The maximum independent set of n circular-arcs can befound in O( n)
time if the endpoints have been sorted.

Proof Let S {A1, A2, , An} denote the set of arcs whose endpoints have been
sorted, and let

_
S denote a set of maximum independent arcs, no two of which

intersect. We show that [] is either equal to [%)[ or [%)[- 1, where
denotes the minimum cut set of S obtained by algorithm MCCA, and (ci)= e+l for
i=l,2,...,m-1. Let e,,,+l=

Case 1. e,,+ Cl. In this case, each cut point ei corresponds to an arc and no
two of them overlap. We have ]] >- ]%)1. If ]9] > l%)], there would exist two arcs falling
betweeen two consecutive cut points, which is impossible. The set of arcs corresponding
to %) is a maximum independent set.

Case 2. Cm+ Cl. In this case Cm+ must fall between e and c2. Note that the arc
that determines c, overlaps the arc that determines cl. Let Y(= {hi, h2,""" ht}. As
before, we have m- _-< _-< m. We show in this case m- 1. Let chi be the cut interval
determined by arc hi for all h . It is obvious that no arc in 9 can span two
consecutive cut points of %). If were equal to m, then there would exist a one-to-one
correspondence between the set of cut intervals %) and %), i.e., (ch)= (e).
Consider now the subsequence ’ (oW(c,,), 02(Cm), of the repeating sequence
,* (C1, oQg(Cl), o,c’2(C1), o’m-l(c1) /gq(c1) such that q+(c) c. As shown
in Lemma 5 (see Fig. 5), (c,,) must fall between c and eh, 2(c,,) must fall between
c2 and oh2,"’, and ow"(e,,) must fall between c and chin. Now "+1(c,) must fall
between (c,,+) and chl which is "away" from c. That is, the sequence * cannot
repeat itself, a contradiction. The set of arcs corresponding to {c, c2,"’, c,,_} is a
maximum independent set.

4. Conclusion. We have presented an optimal (R)(n log n) algorithm to solve the
MCCA problem for n circular-arcs. Based on this we have derived efficient (also
optimal) solutions to the MNF problem and the MPS problem. We have also shown
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Cm+rn+l (?)

C1

Crr+rr--I

FIG. 5. Proof of Theorem 5.

that the maximum independent set of a set of n circular-arcs can be found in linear
time if the endpoints of these arcs are sorted, a result much simpler than previously
known results.

Acknowledgment. Concurrently and independently, Theorem 5 (i.e., a "simple"
algorithm for finding a maximum independent set of n circular-arcs) was discovered
by two other groups of researchers: (1) M. C. Golumbic and P. L. Hammer, Stability
in Circular Arc Graphs, Journal of Algorithms, 9 (1988), pp. 314-320; and (2) W. L.
Hsu and K. H. Tsai, Linear Time Algorithm on Circular Arc Graphs, 26th Annual
Allerton Conference, September 1988, pp. 842-851.
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Abstract. An optimal O(log log n) time parallel algorithm for string matching on CRCW-PRAM is
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1. Introduction. On a CRCW-PRAM we can solve some problems in less than
the logarithmic time needed on weaker models such as CREW-PRAM. For example,
OR and AND of n input variables, and finding the minimum or maximum of integers
between and n (see 7) can be done in O(1) time using n processors. Finding the
maximum in the general case takes O(log log n) time on n/log log n processors ([14]
and [13]), and the same is true for merging ([14], [9], and [3]). Recently, a few more
O(log log n) optimal parallel algorithms have been found for finding prefix minima
[11], all nearest neighbors in convex polygons [12], triangulation of a monotone
polygon, and nearest smallers [2]. We show that the string matching problem can be
solved in O(log log n) time with n/log log n processors too, establishing that it belongs
to one of the lowest parallel complexity classes.

The problem of string matching is defined as follows: Given two input arrays
TEXT(1... n) and PATTERN(1... m), find all occurrences of the pattern in the
text. Namely, find all indices j such that TEXT(j+ i-1)-PATTERN(i), for i-
1 m. In the sequential case, the problem can be solved, for example, using the two
well-known linear time algorithms of Knuth, Morris, and Pratt [8] and Boyer and
Moore [4]. In the parallel case, an optimal algorithm discovered by Galil [7] for fixed
alphabet and later improved by Vishkin [15] for general alphabet solves the problem
in O(log n) time on a CRCW-PRAM. Recall that an optimal parallel algorithm is one
with a linear time-processor product. We use the weakest version of CRCW-PRAM:
the only write conflict allowed is that processors can write the value 1 simultaneously
into a memory location.

Our algorithm solves the string matching problem for general alphabet in
O(log log m) time using n/log log m processors on a common CRCW-PRAM. It is
based on the previous two optimal algorithms, and similarly works in two stages. In
the first, we gather some information about the pattern and use it in the second stage
to find all the occurrences of the pattern in the text. The output of the algorithm is a
Boolean array MATCH(1... n) that has the value "match" in each position where
the pattern occurs and "unmatch" otherwise.

Suppose we have mn processors on a CRCW-PRAM. Then we can solve the string
matching problem in O(1) time using the following method"

First, mark all possible occurrences of the pattern as "match."
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To each such possible beginning of the pattern, assign m processors. Each
processor compares one symbol of the pattern with the corresponding symbol of the
text. If a mismatch is encountered, it marks the appropriate beginning as "unmatch."

Assuming that we can eliminate all but of the possible occurrences (ignoring
the problem of assigning the processors to their tasks), we can use the method described
above to get an O(1) parallel algorithm with lm processors. Both [7] and [15] use this
approach. The only problem is that one can have many occcurrences of the pattern
in the text, even much more than the nm needed for optimality in the discussion above.

To eliminate this problem,we use the notion of the period suggested in [7] and
also used in [15]. A string u is called a period of a string w if w is a prefix of uk for
some positive integer k or equivalently if w is a prefix of uw. We call the shortest
period of a string w the period of w.

Suppose u is the period of the pattern w. As explained below, we cannot have
two occurrences of the pattern at positions and j of the text for IJ- il < lul. If instead
of matching the whole pattern, we look only for occurrences of u, assuming we could
eliminate many of them and have only n/lul possible occurrences left, we can use the
O(1) algorithm described above to verify these occurrences using only n processors.
Then by counting the number of consecutive matches of u, we can match the whole
pattern.

In many cases, we slow down some computations to fit in our processor bounds.
This is done using a theorem of Brent [5], which allows us to count only the number
of operations performed without concern about their timing.

THEOREM (Brent). Any synchronous parallel algorithm of time that consists of a
total of x elementary operations can be implemented on p processors in [x/p + time.

Using this theorem, for example, we can slow down the O(1) time string matching
algorithm described above to run in O(s) time on lm/s processors.

Brent’s theorem, as well as other computations described below, requires the
assignment of processors to their tasks, which in our case is done using standard
techniques.

In 2 we review two facts on periods from [7] and in 3 we review the notion
of witness from [15]. In 4-6 we describe the algorithm. Section 7 is devoted to some
technicalities left out in the previous sections.

2. Periodicity properties. We will use some simple facts about periods in the next
sections. The proof can be found in [7].

(1) If w has two periods of length p and q and wI_->p+q, then w has a period
of length gcd (p, q) ([10]).

(2) If w occurs in positions p and q of some string and O<q-p<lwl, then w
has a period of length q-p. Therefore we cannot have two occurrences of the pattern
at positions p and q if 0< q-p <lu[ and u is the period of the pattern.

3. Witnesses. An important idea in our algorithm is a method suggested in [15],
which enables us to eliminate many possible occurrences in O(1) time. One computes
some information about the pattern, which is called WITNESS(1 m) in [15], and
uses it in the second stage for the analysis of the text.

Let u be the period of the pattern w, and let v be a prefix of w. It follows
immediately from the periodicity properties that if lul does not divide Iv and Ivl <
max ([ul, Iwl-lul), then v is not a period, and hence w is not a prefix of vw. In that
case we can find an index k such that

PATTERN(k) # PATTERN(k lvl).
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We call this k a witness to the mismatch of w and vw, and define

WITNESS(Ivl + 1) k.

We are interested only in WITNESS(i) for 1 < <-lul, which by the periodicity proper-
ties mentioned above can be based only on the first 21u -1 symbols of the pattern (If
some WITNESS(i) is greater than 21ul, it can be modified to be in the desired range:
Let r= WITNESS(i)mod ]u[; then if r<i set WITNESS (i) to r+[u[; otherwise set
WITNESS(i) to r).

4. Duels anti counting. Assume that u is the period of the pattern w, w b/k/), V

is a proper prefix (possibly empty) of u, and p [u[. We call the pattern periodic if its
length is at least twice its period length (i.e., m _-> 2p). Having computed the WITNESS
array in the first stage, Vishkin [15] suggests the following method to eliminate close
possible occurrences which he calls a duel. Suppose we suspect that the pattern may
start at positions and j of the text where 0<j-i<[u[, thus, since we computed
r WITNESS(j + 1) we can find in O(1) time a symbol in the text that will eliminate
one or both of the possible occurrences. More specifically, since PATTERN(r)
PATTERN(r-j+ i), at most one of them can be equal to TEXT(r+ i- 1) (see Fig. 1).

FIG. 1. X Y and therefore we cannot have T X and T Y.

Actually, we eliminate possible occurrences of some prefix of the pattern. In the
periodic case, we saw in the previous section that the witness information can be based
only on the first 2p symbols of the pattern, thus we eliminate positions in which there
is no occurrence of u2. While in the nonperiodic case, the witness information is based
on the whole pattern, and positions where there is no occurrence of it can be eliminated.
Having many such duels in pairs, the algorithm of [15] eliminates enough possible
occurrences of u in the text in O(log m) time and verifies them using the O(1) time
algorithm described above. We manage to reduce the time of [15] to O(loglog m)
time algorithm using the following observations:

Duels "work like" maximum. Having a block of the text of length equal to p,
only one occurrence of the pattern might start in it. Assume that the pattern can start
anywhere within that block, and suppose we have p2 processors. Assign a processor
to each pair and perform a duel. Since in every pair at least one loses, at the end we
are left with no more than one possible occurrence in each block. The exact details
of the algorithm appear in the next sections.

We simplify the "counting" of consecutive occurrences of u in the text in the
periodic case. A recent result of Beame and Hastad [1] shows that computing the
parity of n bits on a CRCW-PRAM takes log n/log log n with any polynomial number
of processors, so no "real" counting is possible within our time bounds. Assume
without loss of generality that the text is of length n 2m-p (divide the text into
n/(m-p)= O(n/m) overlapping groups of length 2m-p). We call an occurrence of
u2 at position an initial occurrence if there is no occurrence of it at position i-p. We
call such an occurrence a final occurrence if there is no occurrence at position i+p.
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The main observation is that there is at most one initial occurrence of interest which
is the rightmost initial occurrence in the first m-p positions. Any initial occurrence
in a position greater than m-p is of no interest, since there are not enough symbols
in the text to match the whole pattern. Since the pattern is periodic with period length
p, initial occurrences that are smaller cannot start occurrences of the pattern either.
The correspondng final occurrence is the smallest final occurrence that is greater than
the initial occurrence.

5. Processing the text. As we mentioned above, duels are like maxima. We describe
an optimal O(log log m) time text analysis based on having WITNESS(2... r), for
r min (p, [m/2 ]), computed in the pattern analysis stage that works similarly to the
maximum finding algorithm of [13]. Recall that p--lul is the length of the period of
the pattern. In the periodic case we divide the text into groups of length n--2m-p,
whereas in the nonperiodic case we work on the whole text.

We have WITNESS(i)<2p. Partition the text into blocks of length r. We have
n/r such blocks. In each block mark all positions as possible occurrences. Partition
them into groups of size x/7 and repeat recursively. The recursion bottoms out with
one processor per block of size 1, where nothing is done. When done, we are left with
one possible occurrence (or none) in each block of size v/-;, thus x/ possible occurrences
altogether. Then in O(1) time make all duels as described above. We are left with a

single possible occurrence (or none) in each block of size r.
The algorithm described above takes O(log log m) time but is not optimal; it

requires n processors. To achieve optimality we first partition our block into small
blocks of size log log r. To each one of the r/log log r small blocks assign a processor
and make duels between pairs using a sequential algorithm until left with at most one
possible occurrence in each small block. Then, proceed with the O(log log r) algorithm
having at most r/log log r possible occurrences to start with. Since we have n r blocks
and in each block we used r/log log r processors, we need a total of n/log log r

processors for this computation. Left with at most n/r possible occurrences, we can
use the O(1) algorithm we described in the introduction to verify these occurrences.
The next step depends on the periodicity of the pattern; we have two cases:

(1) The pattern is not periodic (m < 2p, r m/2): Verify the whole pattern at
each possible occurrence. This can be done using mn/r 2n processors in O(1) time.

(2) The pattern is periodic:
Verify at each possible occurrence in the text only the first 2p symbols of the

pattern. This can be done using only 2n processors in O(1) time.
Find the initial occurrence and the corresponding final occurrence: First find

all initial occurrences and final occurrences. Then, find the maximal initial occurrence
in the first m-p symbols and the corresponding final occurrence. This can be done
O(1) time using m processors on our weak CRCW-PRAM (see 7).

Verify v right after the final occurrence. Note that v occurs after each nonfinal
occurrence since v is a prefix of u.

For each verified occurrence of u2 check to see if enough occurrences follow
and whether or not they are followed by a verified occurrence of v. This can be done
using the position of the initial occurrence and the final occurrence, and the information
about v computed in the previous step.
Both (1) and (2) can be done in O(1) time using n processors or O(loglog m) time
using n/log log m processors.

6. Processing the pattern. The WITNESS array that we used in the text processing
stage is computed incrementally. Knowing that some witnesses were already computed
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in previous stages, we can compute more witnesses easily. Let and j be two indices
in the pattern such that i<j < [m/2] + 1. If s WITNESS(j-i+ 1) is already com-
puted, then we can find at least one of WITNESS(i) or WITNESS(j) using a duel
on the pattern as follows:

If s + i- _-< m, then s + i- 1 is also a witness either for or for j.
If s + i- 1 > m, then either s is a witness for j or s -j + is a witness for (see

Fig. 2).

FIG. 2. X g and therefore we cannot have Z X and Z Y.

First we describe an O(log log m) nonoptimal algorithm. It works in stages and
it has at most log log rn stages. Let ki rnl-2-’, ko- 1. At the end of stage i, we have
at most one yet-to-be-computed witness in each block of size ki. The only yet-to-be-
computed index in the first block is 1.

(1) At the beginning of stage we have at most k/ki_ yet-to-be-computed
witnesses in the first k-block. Try to compute them using the naive algorithm on
PATTERN(1... 2k) only. This takes O(1) time using 2k(ki/k_l)= 2m processors.

(2) If we succeed in producing witnesses for all the indices in the first block (all
but the first for which there is no witness), then we compute witnesses in each following
block of the same size using the optimal duel algorithm described in the text processing
section. This takes O(log log m) time only for the first stage. In the following stages,
we will have at most indices for which we have no witness, and duels can be done
in O(1) time.

(3) If we fail to produce a witness for some 2<-j<-_k, it follows that PAT-
TERN(1 2k) is periodic with period length p, where p =j-1 and j is the smallest
index of a yet-to-be-computed witness. By the periodicity properties mentioned above,
all yet-to-be-computed indices within the first block are of the form kp+ 1. Check
periodicity with period length p to the end of the pattern. If p turns out to be the
length of the period of the pattern, the pattern analysis is done and we can proceeed
with the text analysis. Otherwise, the smallest witness found is good also for all the
indices of the form kp + 1 that are in the first k-block, and we can proceed with the
duels as in (2).

These three steps seem to require a simultaneous write of different values. In the
next section we show that our weaker CRCW-PRAM can do it too. In order to make
our algorithm optimal, we take a more careful look at the algorithm described above.
We redefine our block sizes ki as follows,

ko 1,

--2m
k= fori=l...loglogm,

log log rn

k 2ki_l, for > log log m,
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introducing log log log m more stages. Using this new sequence, m/log log m processors
are enough for step 1 of the original algorithm. Step 2 will now take log log m time
for the first two stages, after which we will have fewer than (m/log log m) 1/2 yet-to-be-
computed witnesses. However, step 3 still needs m processors and we need to modify
the entire algorithm.

We have two kinds of stages: nonperiodic stages and periodic stages. Each kind
is associated with certain initial conditions. The first stage is a nonperiodic stage 1 for
which the initial conditions hold vacuously because ko and no witnesses are
computed.

A nonperiodic stage starts with at most one yet-to-be-computed witness in each
ki_l-block (in the first ki_l-block the yet-to-be-computed witness is always the first).
Moreover, all computed witnesses satisfy

WITNESS(l) <= + ki+,.

A periodic stage starts with some yet-to-be-computed witnesses in the first k_l-block.
They are all the indices of the form kp+ 1, where p is the period length of the first

ki-block. In a periodic stage all computed witnesses satisfy

(2) WITNESS(1) <- + ki
and also,

(3) WITNESS(I) <-_ 2p <- ki for 2 <- _<- p.

In a nonperiodic stage we execute step of our original algorithm, and if all
witnesses in the first k-block are computed, we perform the duels of step 2, which
result in at most one yet-to-be-computed witness in any k-block. The new witnesses
in the first ki-block obviously satisfy WITNESS(I)<=2ki<=ki+. Hence, the new wit-
nesses in the other k-blocks satisfy WITNESS(l) < + k+2. So all computed witnesses
satisfy (1) with increased by 1. If all witnesses in the first ki-block have been computed,
we proceed in a nonperiodic stage i+ 1; otherwise, we verify p to be the period length
of the first k+l-block. If it is not, we find the same witness (=<ki+) for all the indices
of the form kp + 1 in the first ki-block, and we continue with the duels of step 2 as in
the previous case; otherwise, we proceed with a periodic stage + 1. In both cases, the
initial conditions obviously hold.

In a periodic stage we first check if p is the period length of the first ki+-block.
In case it is, we use the periodicity to compute witnesses for all incides l, where
# 1 (mod p), in the first ki-block as follows. Let j [(/-1) Set WITNESS(l)=

j+ WITNESS(I-j)<-_2k<-k+ (by (3)). We then proceed with a periodic stage i+ 1,
and the initial conditions obviously hold. Actually, (3) might not hold immediately.
By (2) we have WITNESS(I)<ki+ for 2<=l<-p. Since p is the period length of the
first k+l-block, we can modify the witnesses to satisfy (3) as in 3.

If we find that p is not the period length of the first ki+-block, we actually find
at once a witness for all indices of the form kp + 1 in the first ki_-block. This witness
is not larger than ki+l. We then perform the duels in each of the k_l-blocks, which
result in all computed witnesses satisfying (1) and with at most one yet-to-be-computed
witness in each ki_l-block. These are the initial conditions for a nonperiodic stage i.
We then proceed with a nonperiodic stage i. Note that unlike the nonoptimal algorithm,
we perform duels only if the next stage is nonperiodic.

We now take a careful look at the last stage. Let r be a maximal index such that
kr < m and define kr+ m. As we have shown, duels can be made for all and j where
<j < [m/2] + 1; thus in a nonperiodic stage r everything works well if we perform
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duels only in the first half of the pattern. In a periodic stage r we either verify the
period of the whole pattern, or we find a witness and enter a nonperiodic stage r.

Since we can be in a periodic stage and a nonperiodic stage at most once for
each i, the total number of operations is O(m), and by Brent’s theorem our algorithm
is optimal.

7. Some detail. Our computation model is a CRCW-PRAM where the only write
conflict allowed is that processors can write the value simultaneously into a memory
location. The duels of our text analysis can obviously be implemented on such a model,
whereas the duels of the pattern analysis and a few other steps seem to require a
stronger model of computation. We show how to implement the algorithm on our
weaker model.

Consider the following problem: given an array of k integers, find the first 0. Fich,
Ragde, and Wigderson [6] proposed the following O(1) time algorithm using k
processors on our weak CRCW-PRAM. Partition the array into v/ blocks of size ,/-.
For each block find in O(1) time if it has a 0 using / processors. Using O(1) time
minimum algorithm, find the first block that has a 0, and then, using the same algorithm,
find in that particular block the first position of a 0.

Using this algorithm, we find the initial occurrence, the final occurrence, and
witnesses in the first block in any stage of the pattern analysis without increasing our
time/processor bounds on our weak CRCW-PRAM. The implementation of finding
the initial occurrence, the final occurrence, and witnesses is obvious. However, the
duels of the pattern analysis need to be done carefully. Using h 2 processors, suppose
we perform duels among h indices. Each processor will write to a different memory
location; then assign h processors to each of the h indices and check to see if a witness
was found using the algorithm mentioned above.

We left out the details of the processor allocation for the duels, since it can be
done exactly as in Shiloach and Vishkin’s [13] maximum finding algorithm. We need
to calculate some sizes for our algorithm and for the usage of Brent’s theorem (i.e.,
k’s). [log log m] can be calculated in O(log log m) time using a single processor, and
square roots can be computed in O(1) time on few processors as in [13].

As in [7], the text analysis can also be done in O(log 1 / e) time using nm processors
and the pattern analysis can be done in O(1/e) time using m/ processors.
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FAST PARALLEL ALGORITHMS FOR SPARSE MULTIVARIATE
POLYNOMIAL INTERPOLATION OVER FINITE FIELDS*

DIMA YU. GRIGORIEV, MAREK KARPINSKI, AND MICHAEL F. SINGER

Abstract. The authors consider the problem of reconstructing (i.e., interpolating) a t-sparse multivariate
polynomial given a black box which will produce the value of the polynomial for any value of the arguments.
It is shown that, if the polynomial has coefficients in a finite field GF[q] and the black box can evaluate
the polynomial in the field GF[qr2g,tnt+37], where n is the number of variables, then there is an algorithm
to interpolate the polynomial in O(log (nt)) boolean parallel time and O(n2t log nt) processors.

This algorithm yields the first efficient deterministic polynomial time algorithm (and moreover boolean
NC-algorithm) for interpolating t-sparse polynomials over finite fields and should be contrasted with the
fact that efficient interpolation using a black box that only evaluates the polynomial at points in GF[q] is
not possible (cf. [M. Clausen, A. Dress, J. Grabmeier, and M. Karpinski, Theoret. Comput. Sci., 1990, to
appear]). This algorithm, together with the efficient deterministic interpolation algorithms for fields of
characteristic 0 (cf. [D. Yu. Grigoriev and M. Karpinski, in Proceedings of the 28th IEEE Symposium on the
Foundations of Computer Science, 1987, pp. 166-172], [M. Ben-Or and P. Tiwari, in Proceedings of the 20th
ACM Symposium on the Theory of Computing, 1988, pp. 301-309]), yields for the first time the general
deterministic sparse conversion algorithm working over arbitrary fields. (The reason for this is that every
field of positive characteristic contains a primitive subfield of this characteristic, and so this method can be
applied to the slight extension of this subfield.) The method of solution involves the polynomial enumeration
techniques of [D. Yu. Grigoriev and M. Karpinski, op. cit.] combined with introducing a new general method
of solving the problem of determining if a t-sparse polynomial is identical to zero by evaluating it in a slight
extension of the coefficient field (i.e., an extension whose degree over this field is logarithmic in nt).

Key words, sparse multivariate polynomials, finite fields, interpolation

AMS(MOS) subject classifications. 68C25, 12C05

1. Introduction. The polynomial interpolation algorithms play an important role
in the design of efficient algorithms in algebra and their applications (cf. [G83], [G84],
[K85], [BT88]). For the case of finite fields there were no deterministic polynomial
time algorithms known (cf. [BT88]) for the sparse interpolation problem. The existing
methods required large extension fields of order GF[qn]; so, for example, no effective
procedures for finding primitive elements over an actual interpolation field were known
without using randomization.

Here we remedy the situation by considering what we call a "slight" extension
of fields, which is an extension whose degree over the coefficient field is logarithmic
in nt, GF[qrclgq(nt)]. The method of solution involves two major steps" (1) solving
the zero identity problem of polynomials from GF[ q] by evaluating in a slight extension
GF[qr21g,,n’+3], and (2) using inductive enumeration of partial solutions for terms
and coefficients over GF[q] by means of recursion on (1). We develop a general
method involving Cauchy matrices to solve the zero-identity problem in Step 1, and
combine this with the refined polynomial enumeration techniques of Grigoriev and
Karpinski [GK87] to solve Step 2.

Because of the lower bound of ’(g/lgt) (cf. [CDGK88]) for the interpolation over
the same field GF[q] without an extension, our slight field extension is in a sense the
smallest extension capable of carrying out the efficient interpolation.
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In what follows we shall use the basic notions of the theory of finite fields (cf.
[LN86], [MS77]) and algorithms for computing in finite fields (cf. [L82]), and the
basic models of parallel computation (cf. [C85], [G82]).

2. Interpolation problem over finite fields. We consider the problem ofinterpolation
for multivariate polynomials given by black boxes (special cases of it are the explicit
interpolations of polynomials given by straight-line programs (cf. [K85]), or poly-
nomials given by determinants (cf. [L79], [GK87]). In this setting we are given a
polynomial f in GF[q] as a black box that allows us to evaluate f in extensions of
GF[q] and information about its sparsity (the bound on the number of its nonzero
coefficients). Given this, we must determine an extension GF[qs] of GF[q], s as small
as possible, and an efficient polynomial time interpolation algorithm working over
GF[q] to determine all coefficients off in GF[q].

We say that the black box interpolation problem (over a finite field extension
GF[qS]) is in NCk (cf. [C85]), if there exists a class of uniform (ntq)l)-size and
O(logk (ntq))-depth boolean circuits with oracle nodes S (returning values of a black
box over the field extension GF[qS]) computing for an arbitrary n-variate polynomial

f GF[q][xl,’’’, x,] all the nonzero coefficients and monomial vectors off, with the
oracle S, defined by S(xl,. ., x,, y) if and only iff(x ,. , x,) y over GF[qS].
If the lifting of a black box (given explicitly by a straight-line program, determinant,
boolean circuit, etc.) from GF[q] to the extension GF[qS], and the computation of
f(x,..., x,) over GF[qs] by a black box, are both in boolean NC (in P), then the
explicit interpolation problem lies also in boolean NC (in P).

We note that the interpolation problem over finite fields deals not only with the
interpolation of polynomials but with arbitrary functions in their t-sparse ring sum

expansion representation (RSE) ([W87]).
We shall develop an interpolation algorithm (for polynomials over GF[q]) for

the slight extension of a field of order s =r2 log (nt)+ 37. This allows us for the first
time to efficiently find the generators in GF[qS], as the size of this field is polynomial
in the size of the input polynomial under interpolation. Our slight field extension is
in a sense the best possible, as the efficient interpolation over the same field (i.e., for
s 1) is not possible. In [CDGK88] the tight lower and upper bounds (R)(ngt) have
been established for the number of steps needed to determine identity to zero of
polynomials f GF[2][Xl,.

3. The algorithm. We now formulate the Interpolation Theorem and the under-
lying Interpolation Algorithm over Finite Fields.

THE INTERPOLATION THEOREM. Given any t-sparse polynomial f
GF[q][x,..., Xn]. For an arbitrary q, there exists a deterministic parallel algorithm
(NC3) for interpolating f over a slight field extension GF[qr2g, (n’+3] working in

O(log (ntq)) parallel boolean time and O(n2l6 log2 (ntq)+ q2.5 log q) processors. For
afixedfield the algorithm works in O(log nt)) parallel boolean time and O( n2t6 log:z nt)
processors.

SPARSE INTERPOLATION ALGORITHM OVER FINITE FIELDS
Input" A black-box oracle allowing one to evaluate a t-sparse polynomial f
GF[q][Xl, xn] for s 1,. .. (A t-sparse polynomial is a polynomial with
at most nonzero coefficients.)
Output" All (k, fk) such thatf=YfkxkwhereO#fk GF[q] andx’ x "..." x

We begin by first describing a Subalgorithm.

SUBALGORITHM (IDENTITY-TO-ZERO TEST)"
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Input: Same as above.
Output: Yes, if f-= 0; No, if f 0.

Step 1: Choose s so that qS-1 >4nq(n-1)(). So let s=r21Ogq (nt)+3-.
Step 2: Construct the field GF[q] by looking over all polynomials of degree s with

coefficients in GF[q] and testing irreducibility with the help of the Berlekamp
algorithm [BT0]. We find an irreducible b GF[q][z], and then GF[q] is
isomorphic to GF[q][z]/(d). We find an to that is generator of the cyclic
group GF[q]* in the following way. Factor q-1 I] Pi prime. For any
a GF[q], calculate a (q.-l/"‘ for each i. We do this using the binary expansion
of the exponent and by techniques from [L82]. An element is a generator of
the cyclic group if and only if all these powers are distinct from 1.

Step 3: Denote N =(rq-1-)/4nq. Use the sieve of Eratosthenes to find a prime p
with 2N <p-<4N. Such a prime exists by Bertrand’s postulate (cf. [HW78]).

Step 4: Now construct an N x N Cauchy matrix C (cf. [C], [PS64], [MS77]) over the
field GF[p], yi--xi= i, l <=i<- N by C=[1/(xi+ yj)]=[1/(i+j)]. We have

det C---Hl<----i<j<=n (Xj Xi)(YJ--Yi)
H l<:i,j<n (Xi -t- Yi)

For any of its minors S0, a similar formula holds. Therefore any minor of
any size is nonsingular. Compute, using the Euclidean algorithm cij 7/, such
that cij=-1/(i+j)(modp) and O<-ci<p<=4N.

Step 5: Denote by C [g0.] an arbitrary submatrix of C of size N n.

Step 6: Pick out in parallel any row i (i), 1 <=j -< n, of the matrix C and, for each
l, 0_-< < t, plug tolC/ for each x in the black-box (with s =2 logq (nt)+ 37)
for the polynomial f fk Xk fk xkl X kn, where k (kl, k) and the
number of k’s is less than t, 0 -< k < q 1, fk GF[q ].

We now pause to justify that iff 0, then for some /1 as above f(tole,) : O, where
tolgo has been substituted for xj. We first show that for a suitable vector gi, 1-<iN N,

X
k’after substituting toe for x, any two monomials xk, would give different elements

of GF[q]. Suppose that for some pair k, k’ and 6i we have toe,.k= toe,.k’. This means
that kC)i-- kC’o(mod q-l) and so (k-k)=-O(modq-l). Since Ik-kl <
q 1, Cij < 4N, we have I,1<=<= (k k)6i[ < (q 1)n4S < (q- 1); therefore (k
kfi)cij =0. For any pair of monomials xk, xk’, we consider all the "bad" vectors i,
l<-i<-N, i.e., those C for which 1-<__-<, (k-k’)go=O. There cannot be more than
(n- 1) "bad" vectors for this pair, since if there exist such n vectors gil,’", C5,,, the
corresponding n x n submatrix of C would have determinant zero. As there are at
most () pairs of monomials, there is a vector , 1 -< ion N, that is not "bad" for any
pair of monomials k, k’, since ()(n- 1)< N.

Let be some vector such that distinct monomials xk, xk’ yield distinct elements
of GF[q] after substituting toio. We now show that f(tolg) 0 for some 0<_-l < t. If
f(tolg) 0 for all l, 0 _-< < t, then XV 0, where X (fk)k and V (tol" k) is the x
matrix whose rows are indexed by l, 0_-< < t, and columns are indexed by the k that
appears as an exponent in f

Note that det (V)= I-Ikek’ toy’- toy’) 0 (it is a Vandermonde matrix), so
we have a contradiction. Therefore the identity-to-zero subalgorithm is correct.

We now continue with the main algorithm. Assume n =2" for simplicity of
k k

notation. Define S. {(kl, ", k2-,)" x-+ ..... X,5-l+z-I occurs as a subterm
in some nonzero term off}, where 1 -< a -< m + 1 and 0 _-</3 < 2 m+l-. We produce S,
recursively for a 1,. ., m+ 1.
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Basis Step: Let a 1. Let {a l, a2,""" } be an enumeration of GF[q]. In parallel for
each a GF[q], substitute a for x+1 in f Find a vector utE(GF[q])q such that
u. (a)--(0,..., 1,...,0) where all entries of this latter vector are 0 except for
a 1 in the /th place We then have ut’(f(xl,"’,x,al,x,+2,"’,xn),’",
f(xl," ", xt, aq, X/3+2 ", Xn) Pt where f= x+Pt and P/6 GF[q][xt,. .,
xt,X+z,...,xn]. We see that P may be evaluated at any point (bl,"’, b-1,
b+1,..., b) by evaluating f at the q points (b,..., b-1, ai, b+,..., b,), i=
1,. ., q and using this last formula, where u has been found by inverting the matrix
(a) and extracting the /th row. This gives a black box for Pt. The identity-to-zero
subalgorithm now allows us to determine which P’s are not identically zero, and so
to determine Sl..

Recursion Step: Assume that we have produced S,t for all/3, 0-</3 < 2m+-. We now
produce S/, for fixed/3, 0-</3 <2m-". For each element from the set S,,2 and for
each element from the set S,2t+, consider the corresponding product
k k2cx2/l,"" ", x/. For all such products (observe that the number of them is at

most 2, since 1Sce,2/3+1[ < t), we can find (in parallel) a vector v N2" as in Step
6 such that v-(vl,’’’,v-), O<=vi<4N1, where Sl is chosen such that (V-q sl-
1-)/4nq N1 > (n 1)( ‘2 k, k2 andz) and for any two products X/32,+l’...’X/32+2,
k k

Xfl2+l Xf12+2o, q -1 ( kiv- kirk). Let tol GF[q ,] be a generator of the
Consider thecyclic group GF[qS,]* For any 0-< l< 2, we replace xt2+ with tol.

x 2 matrix B (to ]yk),) (bu, 1). Note that det (B)2 HkCk’ to
’jkivj)

to jk;vj)) 0,
since q,-1X(Yjkjv-,kfiv). Calculate vectors u(GF[q,])2 such that uB=
(0,...,0, 1,0,...,0) where this latter vector has in the ith position and zeros
everywhere else. We then have ui" Y=fii where f=kXk, where xk=

x02+l x +2 and /3k GF[q][xl, , xt., xt+l)2+l, , x,], and Y is the
1 vector whose lth entry is f(xl," , xoo, to viI v2l Xn).tol X(/3+1)2’+1
Using this last formula with black box evaluations of f gives us the new black boxes
for the Pi as before. The identity-to-zero subalgorithm now allows us to determine
which P are not identically zero and thus to determine S+l,. Notice that when
a rn + 1 we have determined all the terms of f in the form of (k, fu) such that

kf--Zkfkxk, OCfkF[q] and X
k xkll,’’’,Xgln, [-]

4. Analysis of the Algorithm. Let N=(-q’-l/4nq). Note that N<ntZq. The
parallel time of our algorithm is O(log N). This is because the identity-to-zero test
takes O(log2 N) parallel time, the recursive step calls this test and uses matrix inversion,
which requires O(log N) parallel time [M86], and the recursion depth is O(log n).
Steps 1-5 take O(N log (Nnq))processors. Step 6 takes O(Nnt logz (Nnq))processors.
Therefore the total cost (in processors) of the identity-to-zero subalgorithm is
O(Nnt log (Nnq)).

We now proceed to analyze the complexity of the rest of the algorithm. In the
basic step, we must invert the q q matrix (a) over GF[q]. This requires O(q log q)
processors by [M86]. In applying Steps 1-6 to test whether P/is identically zero, we
refer q times to substituting to in a black box and calling the identity-to-zero test.
Thus we need Nntq log Nnq processors. In the recursion step, we calculate N1 sums

Z .k.v.kv of length n and compute tol, in the field GF[q,]. This takes Nltn log2 N
processors. Notice that N1 < nt4q. Inverting the matrix B over GF[q,] requires
tlog2 N processors [M86]. Therefore the total number of processors would be
O(t6n2q log (tnq)+ q25 log2 q). For a fixed field, the algorithm works in O(log nt)
time and O(nt610g nt) processors.
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5. Further research. Our parallel algorithm enjoys very good parallel time bound.
Concerning the number of processors, would it be possible to improve on the number
of processors of the interpolation algorithm?
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LINEAR CIRCUITS OVER GF(2)*

NOGA ALONt, MAURICIO KARCHMER, AND AVI WIGDERSON

Abstract. For n 2k, let S be an n n matrix whose rows and columns are indexed by GF (2) and,
for i,j GF (2) , Si, (i,j), the standard inner product. Size-depth trade-offs are investigated for computing
Sx with circuits using only linear operations. In particular, linear size circuits with depth bounded by the
inverse of an Ackerman function are constructed, and it is shown that depth two circuits require l)(n log n)
size. The lower bound applies to any Hadamard matrix.

Key words, size-depth trade-offs, Boolean circuits, linear circuits, graph covers, Hadamard matrices
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1. Introduction. Let F be a field, and A a fixed n x n matrix with entries in F.
There are no nontrivial lower bounds for computing the linear transformation Ax
where x F is an input, even if the circuit uses only linear operations.

When F is GF (2), linear operations are not more than exclusive-or gates. Counting
arguments show that for a random matrix A, circuits of size i2(n2/log n) are needed.
In fact, O(n2/log n) is an upper bound on the size needed for every matrix [B].
However, no explicit matrix A is known which requires superlinear size, even if the
depth is restricted to be O(log n). (Valiant IV] has given an algebraic condition on
matrices that would imply such a lower bound, but no matrix satisfying this condition
has been constructed.)

In this note we consider H, the Boolean Hadamard matrix, and investigate
size-depth trade-offs for computing Hx.

2. Definitions. A Boolean Hadamard matrix H is a matrix with entries in GF (2)
and such that every two rows have Hamming distance n/2. Note that a Boolean
Hadamard matrix can be constructed from a Hadamard matrix H’ by H =1/2(J+ H’)
where J is the matrix of all ones. For n--2k, the Sylvester Boolean matrix, S, is one
whose rows and columns are indexed by GF (2) k and, for i, j GF (2)"k, Si, i, j), the
inner product of and j. It is easy to show that S is a Boolean Hadamard matrix.

A circuit for y Bx where B is an m n Boolean matrix is a DAG with n input
nodes Xl,’’’, xn, m output nodes Yl,"’,Y,, and every noninput node computing
the sum mod 2 of its inputs. (There is no bound on the fanin or on the fanout.) The
size of the circuit is its number of edges. The depth is the length of the longest directed
input-output path. Let s(B) denote the size of the smallest circuit for Bx, and let
sa(B) be the smallest size when the depth of the circuit is restricted to d.

The following lemma is important in understanding size-depth trade-offs.
LEMMA 2.1. Let A, B be any two Boolean matrices. Then:
(1) s (B) s (B 7‘), where B 7- is the transpose of B.
(2) s(AB) <-_ s (A) + s (B) ifA and B can be multiplied together.
(3) s(B)= s(B), where B is the matrix B with rows permuted according to

Furthermore, the same is true for depth restricted circuits where (2) is replaced by
sa,+a2(AB) <= sa,(A) + sa2(B).
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Proof (1) Let be a circuit for Bx with input nodes 5 {I1,. ", In} and output
nodes {O1,"" ", O,,}. Note that Ii has an odd number of paths to Oj if and only
if Bi,j 1. Hence, by switching the roles of 5 and 7 and reversing all edges in , we
get a circuit for B ’x.

(2) Let A(B) be a circuit for Ax (Bx) with input nodes 5A (SB) and output
nodes A (). It is easy to see that the circuit obtained by identifying A with
computes ABx.

(3) Let be a circuit for Bx with input nodes 3 {I1,. ., In). By permuting
according to r and redirecting the edges going out of 5 we get a circuit for B=x.

The depth restricted claims can be proved similarly.

3. Known results. The following results are known (see [B]):
THEOREM 3.1 [B]. For most n n Boolean matrices B, s(B) l)(n2/log n).
THEOREM 3.2 [B]. For every n n Boolean matrix B, s2(B) O(n2/log n).
FACT 3.1. For every n n Boolean matrix B, Sl(B)=to(B), where w(B) is the

number of ones in B.
The only specific matrix that has been studied in some detail is the parallel prefix

matrix P, where Pi, 1 if and only if _-<j. We will first define some very slowly growing
functions as in [CFL]. Let A(O,j)= 2j; A(i, 1) 2; and A(i,j) A(i- 1, A(i,j- 1)) be
the Ackerman function. Let a( n, d) min {j: A(d,j) >= n}. Furthermore, let a(n)=
min {j: A(j, j)>= n}.

THEOREM 3.3 [CFL]. sa(P) O(na(n, d)).
In particular, this theorem implies the following corollaries.
COROLLARY 3.1. so)(P)= O(na(n)).
COROLLARY 3.2. sn)(P)= O(n).

4. New results. We present the following results.
THEOREM 4.1. s2a(S)= O(na(n, d)) where S is the Sylvester Boolean matrix.
In particular, S can be computed in linear size and a (n) depth. This seems different

from the behaviour of similar matrices (say FFT) over other fields which are conjectured
to have size l(n log n) regardless of the depth.

Though we would dare to conjecture that the above bounds are the best possible,
we can only prove them for d 2, namely, Theorem 4.2.

THEOREM 4.2. IfH is a Boolean Hadamard matrix, then s2(H)= l)(n log n).
As far as we know, this is the first nontrivial lower bound for these circuits, even

in the restricted case of depth two. Another interpretation of Theorem 4.2 has to do
with a nonmonotone version of the problem of covering a graph with complete bipartite
graphs. The monotone question was studied in connection to lower bounds on
monotone, depth-three formulae (Hansel, Krichevskii [S]). In the same vein, the
combinatorial question below relates to lower bounds on nonmonotone, depth-three
formulae. Let G ([ n ], n ], E) be a bipartite graph. Let Y{ be a collection of complete
bipartite graphs A x B, where A, B

_
[n]. We say that Y{ covers G if (i,j) E if and

only if (i, j) appears in an odd number of graphs in Y{. Let IX] i (IAI/IB, I) and
define the cover number of G,/3(G) as the minimum of ]Y{I, where Y{ covers G.

A Boolean matrix B can be considered as the adjacency matrix of a bipartite
graph G. Given a depth-two circuit c for B, and a node v in the middle layer, we
can associate a complete bipartite graph A(v)x B(v) where A(v) (B(v)) is the set of
nodes with edges to (from) v. With this as a hint, the proof of the following fact is
left for the reader.

l[n]={1,...,n}.
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FAc’r 4.1. s2(B)= fl(GB).
We thus get the following corollary.
COROLLARY 4.1. (Gs)=O(n log n) where S is the Sylvester Boolean matrix.
It is an open problem to construct a graph G with/3(G) =12(n1/).

5. Upper bounds. We now prove Theorem 4.1. Recall that we are working over
GF (2). Let n 2k. Then, by definition, S DD, where D is the 2kx k matrix whose
rows are all the vectors in GF (2) k. By Lemma 2.1, we have that s(S)<=s(D)+ s(DT)
2s(D).

A Grey code is an ordering vl,’’ ", v2 of GF (2) k such that to(viO)vi+) 1 for
all (i.e., the Hamming distance of every two consecutive vectors is one). Once again,
by Lemma 2.1 we can assume, without loss of generality, that the rows of D are
V V2 as above.

Let u (0, 0,. , 0), and let ui vi- q) vi for 2 =< _<- 2 k. Let U be the matrix whose
rows are u, , u2. Clearly, s(U) <= to(U) <- n 1. Furthermore, D PU where P is
the parallel prefix matrix as defined in 3. We thus get s(S)<=2(s(P)+ n-l) and, by
Theorem 3.3, s2a (S) O(na (n, d)).

6. Lower bounds. We give two different lower bounds for s2(H). The first is weaker
than Theorem 4.2, but uses only the combinatorial structure of Hadamard matrices.
The proof of Theorem 4.2 will use the algebraic structure of Hadamard matrices,
together with results of Valiant IV] and Alon and Maass [AM].

Let be a circuit for H and let and be the set of inputs and outputs of ,
respectively. Furthermore, let At be the set of nodes of in the middle layer. Without
loss of generality, we may assume that all edges of are either in 5 x At or in At x .

The following combinatorial fact will be needed. A sunflower with k petals is a
set system {R1," ’’, Rk}, where R= CO Z and the Zi’s are pairwise disjoint. C is
called the center of the sunflower and the Z’s are called the petals. The following
theorem is well known.

THEOREM 6.1 (ErdiSs-Rado). Everyfamily ofr[ k sets each ofwhich has cardinality
less than r contains a sunflower with k petals.

Now we prove the weak version of Theorem 4.2.
THEOREM 6.2. For any Hadamard matrix H, s(H) f(n log n/log log n).
Proof. Let E1 be the set of edges of in x At, and let E be the set of edges in

At x . Let m c log n/log log n, for some constant c to be determined later. We will
show that if [E[ _-< mn then [EEl--> mn/2, proving the theorem.

Let S 5 be the set of inputs with (out)degree at most 2m. Clearly, IsI--> n/2. For
a vertex i S, let T/___ At be its set of neighbours. The collection of T’s for i S forms
a set system of many small sets. By the sunflower theorem, there exists R

_
S, IRI- 2m

such that {r, Ii R} form a sunflower. Let C be the center of the sunflower and
{Z,[i R} its petals. Let F denote the edges of E2 emanating from Zi.

[-]

CLAIM 6.1. For every i,j R, [Fi[+[FI>- n/2.
The theorem follows from Claim 6.1 by pairing the elements of R into

{(il,j),""", (ira,j,,)} arbitrarily so that

m/’/

iR I=1 2

Proof of claim. Let K
_

be the set of outputs that depend on exactly one of the
inputs xi and xj. By the definition of H, [K I= n!2. For every element k K, the number
of paths from to k must have a different parity than the number of paths from j to
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k. But then, there must exist at least one edge from Zi U Z to k. Since this is true for
every k K, IFi[ + IF l->- n/2.

Now we prove Theorem 4.2. S2(H)=II(n log n). For S c__ and To__ t, let
L(S, T)_ be the nodes in connected both to nodes in S and T. Let Hs,r be the
[S[ x [T submatrix of H indexed by S and T. The following observation of Valiant
[V] is the key to our proof.

FACT 6.1. [L(S, T)[ _-> rank (Hs, r).
Intuitively, this fact says that the information contained in linearly independent

values cannot be compressed. We will use the following theorem of Alon and Maass
[AM].

THEOREM 6.3. If for every S c_ and T with IsI =lrI n ’/+, [L(S, T)I >-
e log n, then r has at least f(n log n) edges.

Hence it will suffice to prove Claim 6.2.
CLAIM 6.2. Let Isl =ITI n ’/+ then rank (Hsr) > e log n.

Proofi Assume this is not so. Then there are at most n different columns in Hs,r
so that one appears at least nl/2+ many times. Without loss of generality, assume that
this column has more ones than zeros. Then H contains a monochromatic submatrix
of size (nl/:+)x(nl/:+/2), which contradicts the well-known fact [L] that every
monochromatic submatrix of H has area at most 4n.
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RANDOM POLYNOMIALS AND APPROXIMATE ZEROS OF
NEWTON’S METHOD*

JOEL FRIEDMAN?

Abstract. In this paper the authors study the size of the set of "approximate zeros" for Newton’s
method, for a randomly chosen polynomial over certain distributions. For a degree d monic polynomial
with coefficients chosen uniformly and independently in the unit ball, the results of this paper show, for
example, that the set of approximate zeros is at least C d(-15-) for any positive e, with C depending only
on E.

Key words. Newton’s method, random polynomials, approximate zeros
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1. Introduction. The goal of this paper is to give average case analyses of a
randomized version of Newton’s method. For a function f" C-> C we define Newton’s
map

f(z)
Tf(z)- z

f’(z)

z C is said to be an approximate zero of f (for Newton’s method) if the iterates of
z, Zo z, z Ts(zo) z2 T:r(z),... converge to a root of f, ’, and converge quickly
enough so that

It is easy to see that the above condition implies

Iz-’l_-< [Zo-’l,

The following a-test was proven independently in [Kim85] and [Sma86a].
LEMMA 1.1. For some constant ao> 0, a(f z) < ao implies that z is an approximate

zero off, where

If(z)[
(f, z)-= sup

If’(z)l k>l

f(k)(z)
k!f’(z)

1/(k-l)

Following [Sma86b], we consider the following randomized version of Newton’s
method. ForfPd(1)={f(z)=zd+azd-l+’’’+adl[ai[_-<a}choosezwith[z[_-<3 at
random and see if a(f z) < ao. If not, repeat the random choice until we find a z with
a(f, z)< ao. Then apply Newton’s method, which is known to converge very quickly,
some small number of times. Since Newton’s method converges quickly there, the
main cost of the algorithm will be the number of times needed to pick z’s until we

Received by the editors November 30, 1987; accepted for publication (in revised form) March 6,
1990. Part of this work was done at University of California at Berkeley, and was supported by an IBM
(Yorktown Heights) fellowship and an IBM (Almaden) R.S.A.
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find one with a(f, z) < ao (times the cost of verifying this condition). Let

x-- {z cl (f, z) < o},

and let

A (f) [Af (-I B3(0)[
IB3(0)

the density of Af in B(0) with respect to Lebesgue’s measure. If z is chosen uniformly
in B(0), then the expected time to a z with a(f z)<ao is 1/,(f).

Unfortunately, there exist polynomials in Pa(1) with arbitrarily small A(f)--in
particular, Af will be contained in a small ball about 0 if the roots off are contained
in a sufficiently small ball about 0. We therefore seek to estimate A(f) for a typical
polynomial f.

View Pa(1) as a probability space with uniform distribution as a bounded subset
of Ca. In [Sma86a] Smale proves that the expected value of A (f) overf Pa(1) is at
least c/d for some positive constant c. To be more specific, let Q(e) be the set of
polynomials in Pa(1) with (f)< e. Smale obtained the estimate

(1.1) Pr {Q(e)} < cdSe

for some absolute constant c.
In this paper we use a different approach to estimate Pr {Q(e)}, which gives

estimates for various distributions of random polynomials. We obtain improved esti-
mates, such as those given in the following theorem.

TIaEOREM 1.2. For the uniform distribution on Pa (1) we have for any integer N a
e such that

Pr{Q(e)}<c ed+ elog d

This shows that the expected value of A (f) is >cd-- for any > 0, and that
Pr {O(e)} decays like e rather than e. For other versions, see Theorems 7.2, 4.12, 5.8,
and 6.5. For polynomials with roots chosen independently and uniformly in B(0) we
get for any r > 0 constants c, c’ such that

Pr { Q(e)} < c(ced) c’ min(d,(ed)n-’).

The term approximate zero first appeared in [Sma81]. There Smale defined a
weaker notion of approximate zero (exponential as opposed to doubly exponential
convergence) and proved that an iterate of 0 under a relaxation of Newton’s method
is an approximate zero (with bounds on how large an iterate). Related papers include
[SS85] and [SS86]. Before that, double exponential convergence of Newton’s method
was proven under conditions on the values off and f’ at a point and off" in a region;
this was done by Kantorovich in [Kan52]; see also [KA70] and [GT74]. Independently,
Kim in [Kim85] and Smale in [Sma86b] discovered the a-test. Kim used Schlicht
function theory and obtained ao 1/54. Smale proved the a-test in the more general
Banach space setting (e.g., Newton’s method for maps" C" C") and obtained ao
.1307.... Royden, in [Roy86], has recently improved the best known ao value to
.15767. for maps C C.

Namely, Tf, z- h(f’(z)/f(z)) with O< h < 1.
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Our method of proof obtains an estimate of Pr Q(e)) in terms of the distribution
of the roots, which is proven in 2. In 3 we apply this to the distribution on f where
we take the roots to be chosen independently with uniform distribution.

In 4-7 we estimate Pr {Q(e)} forf with coefficients chosen independently. This
leads us to the problem of determining the distribution of the roots given independently
chosen coefficients. This problem has received a lot of attention (see [BS86]), but most
of it is concentrated on estimating the density function of one randomly chosen root
of the polynomial (i.e., "the condensed distribution"). We are interested in the joint
density of two or more roots. To do this we use a generalized formula of Hammersley
(see [Ham60]) for the joint density of two or more roots. In 4 we calculate the joint
density of two roots assuming the coefficients are distributed normally, and then prove
a theorem about the density of approximate zeros. In 5 we show that if the coefficients
are distributed uniformly, similar results hold for the joint density of two roots and
thus about the density of approximate zeros. These results also hold for a wider class
of bounded distributions. In 6 we refine the estimate of Pr {Q(e)} given in 4-5 by
estimating the joint density of three or more roots. In 7 we use an estimate of Erd6s
and Turin on the distribution of the roots to improve our Pr { Q(e)} estimates further,
and to obtain Theorem 1.2.

We mention that Coppersmith has pointed out that if the estimates of 5 held
for all values of the joint density function, we could prove that the expected value of
A(f) over uniform f Pd(1) is >c/(d log2 d). This could well be the case, but the
estimating of the joint density function is quite involved, and it is only in certain ranges
of values that the joint density function is estimated. We also mention that a referee
has pointed out that for e smaller than roughly d -7, Pr {Q(e)} decays very quickly,
more precisely Pr {Q(e)}-<_ (ced7) dIE for some constant c.

2. Distances of roots.
LEMMA 2.1. Let xl, Xd be the roots off Let

1

For any constant Co> 0 there is a constant c > 0 independent of f and r such that
a(f, z) < ao for all z e B(x).

Proof. Consider g(y)=f(y-z)=,d by, which has roots x-z. We wish toi=0

bound

bo blk
1/(k-l)

a (f, z) l maxk>l
d

Consider h(y)=Y.i=o bd-y. Since h(y)=ydg(1/y), h has roots 1/(xi-z) and thus

bd-,y’ h (y) bo y
i=0 i=1 X Z

Thus

X Z Xd Z

Independently, Renegar (see [Ren87]) has discovered such an estimate, though his is weaker by a

factor of anywhere from d to d4.
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where O"k is the kth symmetric polynomial,

Now

O’k Wl Wd 2 Wi Wi2 Wid"
il<..’<i

O"k "--O-k
X Z Xd X2 Z Xd Z

Since z Bcr(Xl) we have

-Jr O’k_
X 7, X2 Z Xd Z

Thus

and

m( 1

X2 Z

1

X z

C

1)

On the other hand

Xd

Hence

and

Thus

>>Z Ix zl"

i=2 [Xi Z X1-- Z

1) (1 1)X2 z Xd Z

1

c .4y C
m-1

IXl-Zl

(1X Z Xd Z

1

X --Z

1

1--c

-IXl-l

Xd Z

d 1

ol(fz) <IX1-Z]= max (k--k-1)1 1

1-c >, ----c ]x,-z[
1

1-c k>l 1-- 1--C 1--C

and hence a(f z)< ao for the appropriate choice of c.

1)Xd Z
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3. The uniform root distribution. We can use Lemma 2.1 to estimate the measure
of Q(e) for various distributions on the set of degree d polynomials. In this section
we illustrate this by carrying out such an estimate in a case where the roots are
distributed independently. In this case we can apply Lemma 2.1 without much difficulty.
Consider the distribution on polynomials

f(z):(z-x,) (z-xa)

with xl,’’’, xa chosen independently, uniform in Bl(0)c C. We begin by proving
Pr { Q(e)} -< ode for some c, and then we refine the argument to get Pr { Q(e)} -<_ (cde)
for some c.

THEOREM 3.1. Pr {Q(e)} <- cde for all e for some absolute constant c.

Proof Viewing Xl as fixed, we have for any fixed j

pr {lxj xll < p}
lBp(O) f3 B,(O)l

[B,(0)[ <-P

Thus, for any i <... < i, we have

Pr {Ix,- Xll, ", Ix xJ are <-p} _-< p2.

Hence

d-1 2k 2kPr {k of [x2- x[, IX3- Xll IXd XI[ are =<p} <=
k P =< P

(where (d-)<=(dk)<--(ed/k)k was used), which is <=rl/2k if p<-(k/(2ed))/zrl /2k. So
if al <-"" <- ad- are the Ix2-xll,""", IXd- XI arranged in increasing order, we have

1 1/2 2 1/4Pr al -< r/ or a2 -< r/ or’’’or ad-l= ed

__<-+-+ + 2--_, < n.2 4

Hence with probability >_-1-rt we have

dl 1 (() 1/2 1 ()1/4 1 () 1/2(d-I))(3.1) ------< + +’’" +v/d-1i= ai

LEMMA 3.2. N+(1/x/)N/+ "+(1/x/--)N/" <- 2N+4v/- for N>-4.

Proof Let > 1 be the first integer for which N/ _-< 2. Then 1 -< log N and so

1 1 N/t-I< N+(t_2)N1/2Nnt-- N1/2 + nt-
<- N+ (log N)N1/2 <- 2N,

since logz N <- N1/ for N_-> 4. Furthermore,

N1/t+’’’+--m N1/" <-2 +... + <-2 dx<=4v/-

and the lemma follows.
Applying Lemma 3.2 to (3.1) yields that with probability <-1- r/,

at--1 1
2 <-2(2/]-+ 4,,/-d)
i=1 ai
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(for v/l/r/=>4), and if l/r/=> d, this gives

<- ,,/UYJ 2x/f-+ 2vqT- <= 4-g- 4d/ n
i:1 ai

and hence

for some constant c. Hence, by Lemma 2.1, a(f, z)< ao in a ball about x of area

Applying the arguments with Xl replaced by an arbitrary root, it follows that with
probability _-> 1- dr/, each root has a(f, z)<-ao in a ball about it of area err d, for a
total area of c7. D

Theorem 3.1 implies that the expected value of A(f) is >c/d. We now remark
that the rate of decay of Pr {Q(e)} can easily be improved upon, although we will not
obtain a better estimate of the expected value of A (f).

To improve the decay rate, let m be a positive integer to be specified later, and
superimpose a square grid over BI(0) with squares of side length V’dm’rr, so that Bl(0)
is subdivided into dm + O(dx/-d-) pieces, with all but O(dv/-d-) of the pieces being whole
squares. For appropriately chosen and 6, we will estimate the probability that (1) no
square contains more than roots, (2) at least d/2 of the squares contain exactly one
root, and (3) at least, say, d/100 of the squares in condition (2) have their roots being
of distance at least 6//dmTr away from the boundary of the square. Assuming these
three conditions hold, we get for each of the d 100 roots, xi, of condition (3), that

O(d/l)v/dm_,<c6-V’dmTr+ c lk,, Ix-x,I --1 k

the sum over k representing squares that are k squares away (say, in the Manhatten
distance) from the original square, and the above is

Thus the above three conditions guarantee A (f) to be at least

cd min rl’ di-ml
On the other hand, condition (1) does not hold with probability

=<dm " ()(m)r(1-d-) <= dmc ()(--m) < cdm (--m) I.
If condition (2) does not hold, then there must be some d/4 roots which land in
squares occupied by the other 3d/4 roots; this occurs with probability

<_ ( d )(3d/4)d/4 <_ ()d/4.d/4 dm ]

Finally if condition (2) does hold, condition (3) will fail to hold with probability

<= (d2)(46--462)d/2-r(1--46+462)r,rd/lO0
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which, for 6 less than some absolute constant, is

_<(46) ‘1/4"

Given e, assuming that e < e/d for a small e > 0, we take 6 (de) l/s, m (de) -1/1,
and 1/(edm) yields

Pr {Q(e)} _-< (ed) c’min(d’(d)-9/’)

for constants c and c’. Similarly adjusting 6, m, and we can replace the above 9/10
with any constant <1.

4. Normally distributed coefficients. In the next sections we will estimate
Pr { Q‘1(e)} for distributions in which the coefficients ai of

(4.1) f(z) a‘1z‘1 +...+ ao

are chosen independently with fixed distributions. In this section we consider the case
in which the ai’s are distributed normally, i.e., ,qt(ai) and (ai) are independent random
variables on R with density

1 _t2/24, - e

Here we have the problem that for any fixed value of d, there is some small probability
that all the coefficients are large enough to enable B3(0) to lie completely within a
sink of period 2. Hence Pr {Q‘1 (0)} > 0 for each d; we cannot hope to prove Pr {Q‘1(e)} <=
edl). Instead, we shall prove

(4.2) Pr {Qd (8)} c182d -- 2 -c2‘1,

the 2 -c2d term taking Pr {Qd(0)} >0 into account.
We begin by noting that for d large the roots tend to be located on the circle of

radius 1.
zn--1LEMMA 4.1 (Specht). Let zl, ", zm be roots of z + a,_l +’’" + ao. Then

[z,’’’ Zml =< X/1 + ]d_l[2 -{-]d_2] 2 ..t_,,,

__
]0] 2.

Proof For the proof, see [Mar66]. U
COROLLARY 4.2. If fewer than d/2 of the roots of f(z)= a‘1z‘1 +...+ ao have

absolute value between and 2, then either

(4.3)

or

-,t/41 ,/laol+... + laal >-_ 2‘1/4(4.4)
laol

Proof Either d/4 roots have absolute value >2 or <1/2. Apply Lemma 4.1 to either
f(z)/a, or f(1/z)za/ao.

COROLLARY 4.3. With probability >-1 -2c‘1 there are at least d/2 roots z in the range
1/2 =< ]z] _-< 2 for some constant c > O.

Proof For (4.3) or (4.4) to hold, one of the ai’s must be exponentially large or
exponentially small (i.e., _->2 c‘1 or =<2-‘1). For standard normal random variables, this
occurs with probability <-2 -‘1 for some _-> 0.
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Next we derive a bound of the form Pr {[z-z2[_-< e} _-< O(E4)(O(e4) for fixed d)
where z, z2 are randomly chosen roots of f(z)= aaza +... + ao. Contrasting this to
Pr{Izl-z2l<=e}=O(e) when zl, z2 are distributed independently and uniformly
explains why in (4.2) we estimate Pr {Q(e)} quadratically in e rather than linearly
(i.e., (3.1)).

In [Ham60], Hammersley gives a formula for the density function, P(z), of a
randomly chosen root, zl, of f(z)= adgd at-.. t- ao. Viewing f(z) and f’(z1) for Z

fixed, as sums of independent random variables (zat )ad /. / ao and (dza -l)ad +" /

a, the formula for P can be written as

where by

P(z) =5 U{If’(z)[ subject to f(21)=0},

E{[f’(Zl)l 2 s.t. f(z,)=0},
the expected value of [f’(z)[ z subject to f(z)= 0, we mean

4,(0, t)ltl dt,

where 4’ is the joint density function off(zl) andf’(zl). One can generalize this formula
to the joint density of k randomly chosen roots

P(ZI’’’’’ zk)--d(d- 1)... (d-k; 1)
E{lf’(21)12""" ]ft(zk)12 s.t. f(z,)

f(z,) =0};

see Appendix B for the derivation. In particular,

1
(4.5) P(Zl, z2) E{lf’(z)12lf’(z2)l s.t. f(z1) (z2) 0}.

d(d-1)

We will estimate this expression for Az z2-Zl with IAz[ <= lid 5/4 (actually <=old for
some constant c would give the same estimates) and 1/2 < ]zil < 2.

For constants bo,’’’, be we can write the random variable biai as (b, ), where
b (bo, , be) or_ C d+l, h (rio, ia) Cd+l, denoting complex conjugation, and
(,) denotes the usual inner product on Cd+. Analogous to sums of real normal random
variables, one can easily verify that (b, ) and (b’, ) are independent random variables
if 9t(b, b’)= 0.

For i= 1, 2, let u denote (1, zi,’", za)e Ca/ and v denote

V (0, 1, 2Zi, dzai -) Ca+.
Let i be the projection of vi onto (CUl +Cu2) +/-, i.e.,

We have

i i-
<i, Uj)

j:l <Uj, Uj)
Uj.

1
P(z,, z) E {l<v,, )12[(v2, fi)l 2 s.t. (Ul, ) <U2, ) 0}

1

(2) E{I(I, a>l s.t. (u,, a> (u, a) O}

Equivalently, the chance of finding at least one root in Be(g1) is dP(zl)" re2+(lower order terms).
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(since (W, )= (, ) if (u,, )= 0)

1
(4.6) (d) E{I(I, >1=1<=, >l=)q(o, o)

by independence, where 0 is the joint density of (ul, fi), <112, ). Similar to the case of
real normal random variables,

<Ul, Ul> <Ul, U2>det
<u2,u) <uz,u2)/

(see Appendix A for details). Letting Au u2-ul, we have

and so

det ( <Hi’ ul)
<u, u)

We have

-1

d-1
Z2 _[_ _[_ z2d-1AU--- (Z2 z1)(0 1, zl + z2, ", zi -]- z1

d-2

Az(0, 1, 2Zl, dzld-1)(1 + O(d-’/4))

Azv,(1 + O(d-’/4))

( <Ul’ Ul) <Ul, Au) )det
\(Au, Ul) <AU, AU)

-IAzl2(luzl=lvll2(l+ O(d-’/4))-l<u,, v,>l=(l+

lu,I + IZll 2 /... / IZll 2a,

IVll 2 + 4lz, 2 +... + d2lZll 2a-2,
<Ul, 1) z,(1 + 2lz, =/ 3[z1[4/... /

I<Ul, Vl>l 2 --[z112(1 / 2lz, = / 31z1] 4 /... / dlZll2a-2)2.

PROPOSITION 4.4. lu,l=l ,l =, I<Ul, v,)l 2, and lu,121v,12-I<u,, 1)12 are each O(d4) for
1-(1/d)Nlz]N and O((1-[z]:) -4) for Izl 1-(1/3). (Forfro be O(g) means clg <
f< c2g for some constants c and c.)

Proofi Let y [z]. We have

lu,llVll = (1 + y +... + ye)(1 + 4y +... + d2ya-1),

[<u, Vl)[2=y(1+2y+’’" + dya-),
and upon subtraction

lulllv -I<u,, vl>l 1 + Y + Y +’’" +
3

+ caya + ca+ya+1 +... + c2a_2ya-,

where ca," ", c2a-2 are positive integers. If 1 (1/d) < Izl 1, then we have e-2 [zl 1
for any j= 1,...,2d-1 and the aforementioned estimates easily follow. If Iz]<
1- (1/d), then the proposition follows using

ir and ir are both =
=0 =0
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for any n and any r < 1- c/d for any fixed c (this latter condition ensures that the
former sum has enough terms to approximate its limiting infinite sum).

COROLLARY 4.5.

To estimate

note that

where

Hence

d4

(o, o)
iAzl = d2

(1 IZl]2)4

if -- -< IZll 1

1 1
if-<= Iz, <= d"

E{l(,, )121(2, )l 2}

u=u + (Az)vl + (Az)2
wl(1 + O(d-1/4))

2

Wl--(0 0,2, 6Z,,""", d(d-1)Zld-2).

_u2-ul) Az
1-- 1 AI ---- 1(1 -}- O(d-’/4))

(where denotes the projection onto (Cu +Cu2)1). Similarly we have

So we estimate

Az
2 T1(1 q- O(d-1/4)).

E{I(I, a)[21(2, a)l 2}
(where c is an absolute constant replacing (1 + O(d-/4))

<_ c(Az)a(E{l(Vl, )14} _.. E{[(,, )14})
by Schwartz’s inequality. To simplify estimating these fourth moments we use
Proposition 4.6.

PROPOSITION 4.6. Let a, , and be independent complex valued random variables
with E{a’c} 0 for #j and similarly for fl and y. Then

E{1 [4} E

Proof
E{I //3 / ,)/[4} E{(o --]- -]-- ,)/)2( _]_ d_}_ /)2},

which, when expanded as the sum of expectations of products, has terms that are of
the form E{3g} > 0 or that drop out. One of these terms is E{cec/2}.

Since (w, ) is the sum of the three independent, radially symmetric random
variables (vl, ), al(u, ), and O2(U2, ) for appropriate 01, O2 we have

Now

E{l<w,, a)l 4} E { d

i(i- 1)zi-2ai
i:0 4}

E i(i- 1)j(j- 1)k(k- 1)/(/- 1)zi+J++t-8E{aiajaat}.
i,j,k,!
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The only terms not vanishing in the latter sum are those for which either i= k, j l,
or i= l, j k. By the symmetry of these conditions, and since the E{aiatkgtl} are
bounded, we can estimate the above sum by

2d

(4.7) <-c 2 i4j4lzI 2(i+j)-8 <- C’ 2 m9[z] 2m-8,
i,j =0

where we have set m=i+j. If[zl<l-(1/d), we can estimate (4.7) by using

igri<=c
i=0

to get

E{](1,)[4}<c( 1 )
l

which gives O(d 1) or better for ]zl in this range. For 1-(1/d)<=[z] <-_ 1 we simply use
1 in (4.7) to get

2d

E{](I, )14} 2 m9 <- c’dl"
m=-o

Summing up, we have the following lemma.
LEMMA 4.7.

0

E{I(/.I, a)121(2, a)l 2} cIAz[41( 1 iZll=)_,o

Combining Lemma 4.7, Corollary 4.5, and (4.6) yields Theorem 4.8.
THEOREM 4.8.

P(z,z)<-_
d(d-1)

1
/f 1 -=< ]z,I =<

1 1
if -<--_ lZl] <--_ l --.

COROLLARY 4.9. For 1 _--< [Zl[----< 2, the same estimates, as in Theorem 4.8, hold (with
slightly different c and 0).

Proof. Let y- 1/zl, Y2 1/z2. Let P(, be the density of two random roots of

(4.8) aoy d + ayd- -t-" nt- ad O.

On the one hand, clearly /3_ p. On the other hand, y satisfies (4.8) if and only if
x 1/y satisfies

adxd +" + ao O.

Thus

O(1/s, 1/t)

=P
istl4.
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Thus, since 1-< ]Zll, Iz=l 2, we have

P(zl, z2) -<- P(Yl, Y2) -.
Since ]Yl-Y2I -< c/d can be ensured by requiring Izl- z21 -< c’d, we can apply Theorem
4.8 in this case to obtain the desired estimate (note that (1-Izll)= and (1-lyll) differ
from each other by some multiple in a bounded, positive range).

LEMMA 4.10.

(4.9)

Pr {]zl z2[ <- 6 and 1/2 <= Izll <= 2} =< 64d 3.

Proof We have

I Is P(s, t) ds dt
tB2(O)-B1/2(O Bs(t)

d 6

C
64fB2(O)--BI/2(O)-’ (1 tl2) -6

1
if 1--_-< Itl-<_ 1

dr.
1 1

if2= --The integral in (4.9), over the range 1-(1/d)ltll +(l/d) is

<= d-- d6lBl+(,/a)(O)- Bl_(,/a)(O)l

C
64d6 47r ,64d---5 -d--Over the range 1/2<-Itl-< 1-(l/d), setting r= Itl, the integral of (4.9) becomes

" 64 d l 27rr dr’l--It] 2 dr=l/2 1 -r2

C
64(1 r)- 1/2

c"4d.
d
4 1 -

< 2 for whichCoov 4.11. e probability that there is a root Izl with = Izl
there is some other root, ]z with ]zi- zjl , is no more than c4d for some constant c.

Proof For 6 > d -/4 the statement holds with c 1. For 6 d -/4 we apply Lemma
4.10 to each of the d(d 1) pairs of roots, z, z, j; the total probability is no more
than the sum of the d(d-1) probabilities c’4d 3.

Finally we arrive at our main theorem.
TzozM 4.12. For a’s distributed as independent standard normals,

Pr {Qd(e)} ce2d + 2 -’d

for some constants e, c’> O.
Proof By Corollary 4.11 and Corollary 4.3 we have that with probability 1-

1c64d3_2 c’d we have at least d/2 of the roots z lying in the range =]z]<2 and each
such root is separated from the others by a distance 6. By Lemma 2.1 this guarantees
for each of these d/2 roots an approximate zero region of area c6/(d 1), for a
total of c6/d. Setting e c62/d we get 64d5= ce2d and the theorem follows.
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5. Uniform and some other distributions. In this section we obtain estimates like
those of the previous section for coefficients distributed independently according to
some other distribution. We will assume the distribution is the uniform distribution in

BI(0) for ai with < d and aa 1. In fact, one can do the same estimtes verbatim with

aa 1 and for < d taking ai according to any distribution supported in BI(0), possibly
different for different i’s, which satisfy (5.3) for 14 with uniform bounds on the rnls.

In Smale’s works, [Sma81] and [Sma86b], the polynomials aaza+ + ao are
considered with aa and ai distributed uniformly in B1(0) for i d. This has the
advantage of guaranteeing that the roots lie in the ball of radius 2 (if ]z > 2, then
clearly ]zd[ > i<d ]aizi] if [ai[--<-- 1 and so such a z cannot be a root of the polynomial).
In contrast to the distribution of the previous section, (almost all) such polynomials
have regions of approximate zeros in B3(0), and we will obtain estimates of the form

(5.1) Pr {Q(e)} _-< cd7e.
We begin by considering the probability measure on polynomials in which aa

and the remaining coefficients distributed uniformly in the unit ball, BI(O); i.e., with
density

1/rr for z E Bl(O
O(z)

0 otherwise.

For the density 0, we have its characteristic function, 0, which satisfies

(5.2)

for some k, and

(5.3) (sc) 1 mll:l2- m21#l m,l12’ + o(I :1 z’+)
for any (see Appendix A.)

It will be easier to have all the ai’s radially symmetric, so we will take a to be
distributed as

27ri0

with 0 uniform random variable in [0, 1]. We denote its characteristic function by

For p we also have an expansion

I1( M,I:I- MI :14 M,Isl’ + O(1:1/+).
We begin by estimating P(Zl, z:) for Iz- z: small. As in the previous section, by

IZl- zl small it suffices to take Iz- z: _-< ClZl{/d for some constant c, but we will only
be applying the estimate when IZl--Z21<--_ClZlld-S/4; we will assume the latter for
notational convenience.

To estimate P(Zl, z:), from (4.5) we see that it suffices to estimate

(5.4)

We can estimate it as

E{lf’(z,)[4 s.t. f(zl) f(z2) =0}.

< clAzl= Ic Itl4y(0’ O, t) dt(5.5) =d(d-1)
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where Y is the joint density of

(5.6) E ailgi, E aivi, E aiwi

with

Ui Z
i-1 -1/4)1, vi izl (1+ O(d ), w i(i- 1)zil-2(l+ O(d-1/4)).

Let be distributed as 2x/- times the standard normal distribution, and the
distribution of

(5.7) Y lilJi, E lil)i, E iWi

The main task of this section is to prove the following theorem.
THEOREM 5.1. There exist constants c and do independent of d, t, z, and z2 such

that the following hold. For all z and zz with Iz,- z2[-<_[z[(1 + 0(d-5/4)), we have if
d <-_ do or [zl -< then

(5.8) fc Itl4y(’ o, t) at <-c,

if d>do and 1-(1/d)<-[Zl[<-_l+(1/d) then

(5.9) Y(O, O, t) -<_ c..(O, O, t) + c..(O, O, t/2) + cd -15,
< 1 (1/d) thenand if d > do and =]Zll_-<

(5.10) Y(0, 0, t) _<- c..(0, 0, t)+ c..(0, 0, t/2)+ c(1 Iz 12)
This will give estimates on (5.5), and thus on (5.4), similar to those in 4.
For (5.8), notice that for any do there is a c such that for any d _-< do or if ]z] <_-,

we have

Itl4y(0, 0, t) E{IE aiwil4 s.t. E aiu E aivi 0}dt

<= max [Y aiwilny(o, O) c

where (0, 0) is the joint density of au, Y aivi at (0, 0), since

Elallvil<-Elvil,

which is bounded uniformly for such [z[, and

aiui: ao+za1+.
ai)i a +"

so that

Pr {Y a,u B (0), Y aivi B (0)}

Pr {ao B(lo), a, B(I,)}

E4

where lo, 11 are linear combinations of a2,..., aa, and so

Y(O, O) -<

Next we estimate Y(O, O, t) for 1



1082 J. FRIEDMAN

and set

It will be convenient to rescale u, v, and w via

U I.) W
Ui d’ Vi i d-2’z dza -’ d(d-1)zl

Y(U, V/, W) za-a 1,-,
Note that Y/I-<_ c for some constant c independent of and d. We will obtain estimates
as in (5.9), with being the density of

(5.11) E aiUi, E aiVi, E aiW

and the density of (5.11) with ai replaced by i.
Consider, for each j, (ajU;, a;V;, a;W;) C R6. Since the characteristic function

of a; forj>d is

the characteristic function of (aj, aj, aj) is

(, , )= E{ei)t(najuuj+a+%)}

It follows that the characteristic function of the joint density of (5.6) is

d-1

j=O

and its density is

e-il(q+sO+’@(’ ’ r) d dd.

Let (, , ). Then

d-1

i=0

From (5.3) it follows that

() e-m,ll+ml14+’"+mll4+ o(11)
and

1() e-N’/’]]2+M;]I4+’"+M]]’4-- o(ll ’6)
for I1 small for some constants m, , m- and M, , M-. Let 6 be a small positive
number with 226-<_ 1. Let

B Ba-,/2(O).

Let 03 be defined by
-ml12+m;l14+’’’+mll4 for z B

3 (:)
0 otherwise,
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and let o31 be defined by replacing the m’s by M’s. Let 11 be given by
d-1

i=0

Henceforth we will replace (1 and O) by 0 and w when we write our equations.
It makes no difference in the analysis.

We reduce the study of W to that of f.
LEMMA 5.2. For some constant c we have for any zl with l<_-Izll <- 1 +(l/d),

[xlr(0, 0, t)-(0, 0, t)[ =< cd -9 lt C.

(5.12)

Proof By the Fourier inversion formula,

lair(0, O, t)--a(0, O, t)]--< ][x(z)--fi(:)] e-i:)(x,)[ d

( 1)eft I() fi()l d

3--B B

To estimate the second integral of (5.12), we have

d d

H ((, ))-H o((,
=0 =0

which, by Lemma A.1, is

@,

2 ]((:, Y))- o3((:, Y))] d: c 2 I(, )l6 d,
B B

which, by Cauchy-Schwarz and since the 11 are bounded independent of and d,

c f Z Il ’6 d clB d(da-1/2) ’6= c(da-1/2)22d
(5.13) .

cd22-1 cd -9

since 223 1, where we have used the fact that IB(0)I cr6 for balls in C3.
To estimate the first integral of (5.12), let

Do{i6Z d-Zi<d},

Dl{i6Z’d-lid},

D {i z Z: a-1 ia}.
Note that for d sufficiently large the Dj’s are disjoint and each D contains d/6
integers. Let do be an integer such that this is the case for d > do. This will be our do
in Theorem 5.1. We will use the following sublemma.

SUBLEMA 5.3. Let Do, j D1, k D. en for each C3, either

I<, L>I, <, >1, or I<, v>l i cll
for some absolute constant c (independent of and Zl with l]Zll 1 +(l/d)).

Proof This is an easy calculation. For d small one can use compactness in

z B+/a)(O)-B(O). For d large we have
i-dz (1,0,02
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i-dwith (1/6)-(1/d)<=0<=(2/6); note that z, EB,(O)-B1/(O), since [z,[-a>=
(1 + (1 / d))-a => 1 / e. Similar estimates hold for Y and Yk, in which 0 takes on a different
range of values, leading to the desired estimate

Let A Bzke2(0) where c2 is the constant in Lemma 5.3 and k is the constant in
Lemma 5.2 We write

(5.14)

In C3-A we use

3_B 3_A

I()1 I(<=, Y>)I
i=0

which follows from (5.2) and Lemma 5.3, to obtain

(5.15)
3--a 3-a

In A-B, we take a constant k" with the property that

149(:)1 -< e -I1=’’ : A,

d/6

and estimate

d

i=0

so that

(5.16) I’()1 d <= fA-/3 -B
e-cdl12 ds <= c’ e -cd2a.

Combining (5.12), (5.13), (5.14), (5.15), and (5.16) yields Lemma 5.2.
To deal with f, note that for st E B,

fi() e-Q2(:) Q,4(),

where the Qi are homogeneous polynomials of degree in sc (r/, r, r) given by

d

Q2() m,l(:, Y/)I 2’,
i=0

where m’ ml. Note that

d
Q.() >= m,c - I1 cdll

and that

d

IQ,,()I E ml:ll YI cdll’.
i=0

Expanding by power series we get

fi(SC) e-Q:() Q,4()

e-%)(1 + R4() q-. q- RI4())-F O(Iscl’6),
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where R() are homogeneous polynomials of degree 2k in sc. Since

O2()l--< cd/ll2

for 2k _>-4, we have

(5.7)

for some c’, and hence

(5.18)

for k 2, , 7 (in (5.17), we can replace fractional powers of d by the nearest lower
integral power of d).

Let (R) be given by

(s:) e-Qa()(1 + R4(:)+"" "+ RI4()).

We finish the proof of Lemma 5.2 with the following lemma.
LEMMA 5.4.

LEMMA 5.5.

I(o, o, t)-o(o, o, t)l < cd -9.

Io(o, o, t)l--< c(O, o, t).

The proof of Lemma 5.4 is the same as the proof of Lemma 5.2. Note

fc3 [--)[ d= fc3._B ’)’ @+ IB ’--)" d"

Similar to the proof of Lemma 5.2, we can estimate

I1 dg: =<61 cd
B

and estimate

3-B 3-A -B

_c,d2a<=cd +e

the d coming from (5.18).
The proof of Lemma 5.5 is a straightforward calculation. We have

d

’(sC) 1-I
i=0

It follows that

XX -k-’’"-t- R14 ixx (I)(x).

SUBLEMMA 5.6. Let B be an n x n, complex Hermitian matrix, and let

g(x) e-<B-’x,x>.
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Then for any multi-index a we have

Og (t) llB-llllI/2cg(t/2) Vt
Ox

for some constant c c(a, n) independent of B.
Proof. Since B is Hermitian, it suffices to prove it, assuming B is diagonal. To

prove it for B diagonal it suffices to prove it for the one variable case. In the one
variable case,

g(t)=e-t2/b

and

Og- (t) P e
OX

where P is a polynomial of degree a. We have

Po e-(3/4)t2/b < C( Ol

for some constant c(a) for each , and thus the sublemma follows.
Taking B to be the matrix given by

(B, )= Q2()

we get that since Q2() cd]] that [B-][ c/d and thus

R2 @(x) cd @(x) cd/2d-@(x/2)

for k 2 and Lemma 5.5 follows.
Combining Lemmas 5.4, 5.5, and 5.2 we get

(0, O, t) c(O, O, t) + c(O, O, t/2) + cd -9

for all for some c for 1Nlz]N 1 +(l/d). Changing from U, , to u, v, w sums
yields the desired estimate.

The same estimates hold for 1-(1/d)NlZlN 1. One can see this directly, or by
using the same trick as in Corollary 4.9.

< (l/d) Let m be the largest integer such thatNext we estimate for 5= lz] N

We remark that

m 0(-log [z,l) 0(1-lz,[) 0(1-[Zl] 2)

(where f O(g) means cg NfN Czg for some positive constants el and c2). We claim
that

Y(0, 0, t)N c(0, 0, t)+ c(0, 0, t/2)+ cm -12,
which is the same as (5.10). To see this, we go through estimates similar to those for
1N]z]N +(l/d). We rescale

2
Z1 Oi Z WiU,u, 2m m
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and let

Then we have

=(u,, v, ).

yil <_ c e-C’(i/,)

for positive constants c and c’ independent of and z. We define and as before.
Set

s--/m-,(0)

and define to and t2 as before. As before we get

IxIr(O, O, t)- -(0, O, t)l cm -9

using

Next let

d d

E YI’ c ]z,l6i c ]z,]’i era.
=0 =0 =0

Do={i Z: m<-i<-2m},

D1-- {i6 Z: 3m-<_ i=<4m},

De-- {i Z: 5m-<_ i=<6m}.

Then Sublemma 5.3 holds for these Do, D, D2. Defining 19 and Qi and Ri as before
we have

Q2()>-_cmll2

and

and all the estimates go through as before to yield

(0, O, t) <= c(O, O, t) + c(O, O, t/2) + cm -9.

Upon rescaling to get Y and E we get the desired result.
COROllARY 5.7. If Iz,- Z21----< levi O(d-5/4), then we have

C (Az)2{d6 if 1-(1/d)lZll 1 +(l/d)
(5.19) P(z,, z)

d(d 1 .(1 -z,]2) -6 for other ]z, [0, 2]

Proof If 1-(1/d)]z,l+(1/d) then

aiwi] c lwil cd3

so that Y(O, O, t)=O for Itl> cd and so

Y(O, O, t)ltl 4 dt Y(O, O,/)l/I 4 dt
J JB,,3(o)

C ((O,O,t)+(O,O,t/2)+d-l)ltl4dt
Bcd3(O)

c [ ((0, O, )+ (0, O, /2))114 dt + cd
c
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and using the estimates on in 4 the above is

d6.
For 1/2<-Iz, l<-l-(1/d) we have

Y Iw, cm

and the same estimates as before yield the theorem. For 1 + (1/d)N ]Zl] N 2 we use the
same trick as in Corollary 4.9 and note that the same estimates hold for 1/Zl and the
equation

d

2 aa-izi O.
i=o

(Note that aa does not affect the estimates, since Do, D1, D never contain ao or
aa.) For 0 [z] we use Theorem 5.1 to get the desired result.

We can finally prove the following theorem.
THEOREM 5.8.

Pr {Q (e)} ced.
Proof By integrating Corollary 5.7 as in 4 we get that for any constant k there

is a constant c such that

Pr {[Zl- z2] 6 and k6d/4 [z[ 2} c64d 3.

We need [z[ kd/4 to apply Corollary 5.7. By Lemma 4.1 we see that for f(z) to
have d/2 roots of absolute value k6d 5/4 would imply

(d/.)/ 1o1+... + i1
d + 1

-ol Iol
so that

which happens with probability

d+l

(k6dS/4)d/2’

cd 2

(k6dS/4)a’

which is dominated by 2d if 6 < d -5/4 and if we take, say, k 1/2. Thus the probability
that some root in B2(0)- Bg,as/4(O) is within of another or that there are fewer than
d/2 roots in B2(0)-Bg6dS/4(O) is <-c4d. When this is not the case, then Lemma 2.1
guarantees a total approximate zero region of area >=c’62d. Setting e c"2/d yields
the theorem.

6. A refined estimate. In this section we improve the estimates of the previous
two sections by considering the joint density of three or more roots, similar to the
latter part of 3.

THEOREM 6.1. Let Zl," ", zg C satisfy [z,- zl[ [zl[O(d -1-) for some fixed .
Then

(6.1)

P(z1,...,Zg)
d(d 1)... (d-k+ 1),.j Izj- zi[2

{d k(k+l) if 1-(1/d)<=lzll < 1 +(l/d)
(l -[Zl[) -k(k+l) for other [Zl[ [0, 2]
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Proof The calculations are similar to the ones done in 4 and 5. We wish to
estimate

E{lf’(z,)l2... [/’(zk)[ s.t. f(zl) f(zk) =0}.
As in Theorem 5.1, it suffices to prove the theorem for 1/2_-< [zl[--< 1 and d sufficiently
large; for 0 -< [Zl[--<1/2 and small d, the theorem will be clear from the estimates used
elsewhere, and the bounded sums of the linear combinations of the ai’s involved. For
1-<[z1[_-<2, we have that the 1/zi’s satisfy the equation with coefficients reversed and

1< 1 estimates can be invoked.the =[zl]_-<
For convenience, let

fd if 1-(1/d)<-[zl]<= 1
m

[-logzlzl[J if=[zl[<l (l/d)
where [aJ denotes the largest integer =<a.

We first deal with the case of ai being distributed normally. It suffices to estimate

{l(z,)l... IF(z)l2}
and

6(0,... ,0),
where is the density of f(zl),’"" ,f(z) and where F(zi) is the random variable
f’(zi)’s projection in (Cf(zl)+’’’ +Cf(zk))’.

For the latter, note that by setting

i--(1, Zi, Z2i, 2di
we have, first of all,

ul (1, z,, ,zf).
Secondly, if we set u (uj + u,)/(Z -z) for j > 1, then we have

(0, 1 2zl dza-1)(1 + O(d-3)).b/2 ,’"

Next, if we set u)’=(u-u)/(z-z2) for j>2, then we have
d -2 -/3

u3 (0, O, 2, 6z,,..., d(d 1)21 )(1 + O(d )).

Continuing in this fashion, we see that

det .
k, Ul) ("/k, Uk)/

H (z zi) 2 det
j>i

(Ul, U,) (U,, U;) (Ul, U]k-l))
(u’,,u,) (u,u) (u, u]-’))

(u? -’), u,) (u-), u’,) (u-’), u-’))
where

u]) (O,".,O,j!,...,d(d-1)...(d-j+l)z,-)(l+O(d )).
We claim that

(6.2)

/’/1,

u)
det

(u’

(u?-’),

(u,, u;) (u,, u-’))
(u,,. u’,) (u’ . --1))

(Uk-l), U) (Uk-l), Uk-l))

k
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If we expand the above determinant into a sum of the products of the entries of the
kmatrix, each entry has size proportional to m It suffices to show (6.2), with the u]j)

replaced by

vj (0,..., O,j!,..., d(d-1)... (d-j+ 1)zd-J),

(i.e., the old uJ)’s without the error term (1 + O(d-t))). Next note that

t </)0, V0> <)0, yk_l> /det . =det ..
</)k-l DO> Vk-l’ Vk-l>/ k-1, VO> k-1, 1> k-1, k-l>

VO, VO><1, 1> k-1, k-l>
where t is the projection of vj onto (CVo+’’’ +CVj_l)-, i.e.,

i1o (v, v)

LEMMA 6.2. For any n there exist c, do > 0 such thatfor any d > do and or l, , a,
we have

(6.3) It" 01 tn-1 Olnl > cd

for at least d/4 of the integers 1, 2,..., d.
Proof We can write

t"-alt"-’ a, =(t-T1)""" (t-y,)

for some y C. For each we have

1
It- y,I > I(t- y,)l> d

9n

for all integers t, (d/2) 1 -< -< d, except for possibly (2/9n)d + 1 values of t. If d is
sufficiently large we have

2 1
d+l<=d,
9n 4n

and thus for d/4 values of t, (d/2)- _-< =< d, we have

It"- alt
n-1 anl >-- cd ,

where c= 1/(9n)".
COROLLARY 6.3. For any k there is a c > 0 such that

(6.4)

forj=O, 1,..., k- 1.

Proof We have

<, )>= cm2j+1

d

ij- 2(i

i=j

for some a1,’’’, aj. For sufficiently large d we can estimate this sum as

>= (ciJ)21zl[ 2’ >= c’m2J+1.
(m/2)-l<--i<=m
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Corollary 6.3 establishes (6.2), and thus

t(O, O) = lj>i (ZJ Zi)2d+3+’"+(2k+l)

C lj>i (ZJ--Zi)2dk2

To estimate

E{lF(zl)l2,.. IF(z)l2}

we notice that the equation

f(zJ)-f(zl)=f’(zl)+ z-zl f"(z,)+. .4-(ZJ--Zl)k-Z
Z--Z 2 (k-l)!

(Zj Z1) k’-I

+ f(k)(zl)(1 + O(d-t))
kl

-1

f(k-1)(Z1)

enables us to write

]f’(zl)-L]<=c( > ]ZJ--Zl)lf(k)(Zl)[,
where L is a linear combination of f(zl),""" ,f(zn). This is true because the linear
combination of the above k-1 equations that eliminates the f"(z),... ,fk-(Zl)
terms and gives an f’(zl) term with coefficient 1 on the right-hand side is the linear
combination gotten by taking a2 times the z2 equation and adding them, where the cg’s
satisfy

1 1
Z2 Z1 Zk Zl 0l2 0

2 2 013 0

(Z2 Zl Zk Z1) k-2

(k-l)! (k-l)!

Using Kramer’s rule and solving van der Monde determinants yields

, II z z,., z; zi

The fk(z) term in the linear combination therefore has coefficient

1 1 (H (zi-z)) >k’ 2 (zi- z1) k-1 U Zj Z (Z ZI) k-2

i>1 j#i, z-zi-k! i>1 --Z--Zi)
1 (H (zi-zl)) 1’k, i>1

since

2
(Zi--Zl) k-2.__ 2i>1 [(--l)i+l(zi--zl)k-2Hl<n<l,n,li (Zl--Zn)]

1,
i>1 H,,1 (Zj--Zi) 1-Ii<n<, (zt-z,,)

and since the numerator is a polynomial, with the same z-21-Ii<.<,.. (z-z.)
coefficient as in I-[l<.< (z- zn), and the numerator vanishes whenever z z. for some
lCn.
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Hence we may write

E{]F(Zl)]2"’" [F(gk)]2} (j[I> [ZJ--Zil4) E{lf(k)(Zl)[2 [/(k)(zk)]2}

where the analogue of Proposition 4.6 for 2kth powers was used, and by Minkowski’s
inequality the above is

C(ji [ZJ--Zi[4) mk+2k2’
the bound on E{[f((z)[} coming from expanding the expression as in (4.7) and
the preceding equation. Combining the above and the estimate on $(0, ., 0) yields

E{lf’(z,){... f’(z)l s.t. f(z,) f(z) =0}
j>i

which gives the desired result.
For the a’s distributed uniformly, we do the same estimates a in 5. From the

above discussion we see that it suces to estimate

c
ltl2ky(o, O, t) dt,

where Y is the joint density of au, av,..., as with

UiZ1,. i-1
vi z, (l+O(d-’)),

s i(i- 1)’’’ (i- k+ 1)z-(1 + O(d-)).
From here the arguments are just like those in 5.

Cogonv 6.4. e probability that there are k roots within distance d-- of
each other in B2(O)- Ba-l-,(0) is

ck2+k-2d k2+k-1"
Proof For the proof, integrate Theorem 6.1.
Applying Corollary 6.4 to the case of k and to some other value of k yields

that each root in B2(0 Bmax(6,,62)d--(0) has no roots within a distance and at
most k- 1 roots within a distance 62 with probability 1- rl + 2, where

c6d= Zl

and

kz+k-2dkZ+k-1C2 T

If we have at least d/2 such roots we get an approximate zero region of area

cd
(k-1/)+(d-k/)

cd min ,
Setting e d /d yields

T c82d 3, r2 cd(ed3) (k2+k-2)/2.
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The probability of having <d/2 roots in B2(0 Bmax(tl,t2)d-l-/3(0) can be estimated as
in the proof of Theorem 5.8 and is dominated by rl+ r2. Hence we can replace the

62d

term in (4.2) and (5.1) by

62d d-- E(k2+k-2)/2d (3k2+3k-4)/2.

We summarize the improved results in the following theorem.
THEOREM 6.5. For any fixed N >-2, there are positive constants c and e’ such that

Pr { Qd( e )} <= c( e2d3 + 8Nd3N+’) + 2 -c’d

if the ai’s are normally distributed, and

Pr {Qa(e)} <-- c(eZd3 + erVd3u+’)

if the ai’s are uniform.
7. Consequences of the Erd6s-Turfin estimate. In this section we give two types

of improvements of the previous estimates using the following theorem of Erd6s and
TurS.n.

LEMMA 7.1. Let N(ce, ) be the number of roots of ydi:o aiz 0 of the form r el
with r; 0 real and a <-0 <= fl (and fl-a <= 2rr). Then

S a, fl
ce )---d <- 16/d log

/a-lail
2r laol laal

Proof For the proof, see [ET50].
The following argument assumes that the ai’s are distributed uniformly in BI(0).

The same estimates hold for the ai’s distributed normally, with minor modifications
in the arguments. From the above it follows, with probability ->1-7., that [aol is >
and thus

(t )d _/ d
N(a, =<c/dlog.2rr

This implies that the kth closest root to a given root z has distance

k cv/d log d /x/7)
d

By Lemma 4.1 we have that more than d/2 of the roots lying in Bp(0) implies

so that

It follows that with probability >-1-r-71- 7"2 we have a region of approximate zeros
of size

d 7"1/d>-cd min 61,62 dlogr, /(dlgd)
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where

Setting

"rl c’64d ’2 c"62N-ld N, N k2-+ k-

d
e =d62 t32/1ogx/,

we get

7" ce2d 3, "I"2 C(e 1og) (N-l)/2

tt N.

Choosing " eZd 2, and assuming e < 1/d 2, we get that, with probability,

>=l-c ed3+ elog d

we have an approximate zero region of area c’e, since /d is smaller than
r/e/(d log d) > ce/e/(d log d). Hence we have proven Theorem 1.2, which we restate
in the following theorem.
ToM 7.2. For the uniform distribution on Pe(1) we have for any integer N a

c such that

Pr {Q(e)} < c ed3+ e log d

Second, we claim that the ed term can be replaced by (ed3) + e-a for any
fixed integer M, c depending on M. This is because Lemma 7.1 gives that with probability
> 1 e-a we have

N(0, r/M), N(2r/M, 3’/M),. ., N((2M 2)r/M, (2M 1)r/M)

each contains e’d/M roots. For i= 1,..., M,

Zl," ,Zk N((2i-2)/M, (2i-1)’/M)(B2(O)-B’/(O)).

With ]z-- zl] =< clzil]/d, we have that

M
M g)" H P(Zl, Zk),2 Z2k Z(7.1) P(zll,

i.e., the events of finding roots at Zl,’’’,Zk for i= 1,...,M are approximately
independent. This can be seen by considering for

the matrix

vji (0,’’" O,j’., d(d- 1)... (d-j+ 1)(zil) d-)

)) <)1 /3//_1<Vl,. 1,. /’)11>

<kM-1, /’)> <)//--1, /’)11> <)//--1, )/--1>
and noting that its determinant is approximately

(7.2)
/-) k-l>

[[ det ..
i=

/)k-1, V0> Dk-1,

cd Mk2
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since for ij the term

(vl, v)= O(d t+m)
instead of proportional to d t+"+. Hence any term in the expansion of the determinant
involving at least one and therefore at least two such terms has size O(1! d2) times the
term in (7.2).

From here on, calculations similar to those done previously yield (7.1) and thus
the ability to replace e2d by (82d3) M. Our conclusions are given in Theorem 7.3.

THEOREM 7.3. For the uniform distribution on Pd(1) we havefor anypositive integers
M and N positive constants c and c’ such that

Pr{Q(e)}<c e-’e+(ed3) + e log d

eix A. Clerdles. In this appendix we give some basic facts
about complex random variables and their Fourier transforms.

The real isomorph of an m x n complex matrix M U+ iV, with U, V real, is the
real 2m x 2n matrix given in block form as

It is easy to see that (M, + M)=,+, (MeMo)=,=*, where M
denotes the transpose of M and M* denotes the complex conjugate transpose of M,
and

det det MI.
For v (v, , v) e C, let

= ((v), ., (v), 3(Vl), ", 3(v)) e.
One can check that v=Aug=a, and that (u, v} (a, ), where (,} and (,)
denote the usual inner products on C and R, respectively.

We say that u is a normally distributed complex random variable if (u) and
(u) are independent, identically and normally distributed, real random variables.
The standard complex normal u has distribution

2

If w, , w are independently, normally distributed real random variables with
mean 0, and v,..., v are linear combinations of them, then the v,..., v have
distribution " R R

(x)-2/ det e

where C is the variance-covariance matrix for the v’s. If v aw, then

(a,,a,) (a,,a2) (a,,ak)

C= (a2: a,) (a2: a2) .’’" (a2,.ak)

(ak, a,) (ak, a2) (ak,

where a (al,’"’, a,j). Writing w Au, we have C AA-.



1096 J. FRIEDMAN

If u=(u,..., Urn are standard complex normals, and w=Au, then one has
tU= At-. Thus t5- are real normals with distribution

(_) k
-(C-’x,x)/2

x/det C e

with C =/T. Hence C-/, where

((a,,. a,) (a, ak)tB AA*

\(ak, a,) (ak, ak)

Also C- B-. and so (C-x, x) N(B-lz, z), where x Since B-1 (AA*)-(A-)*A-, we have (B-z,z)=(A-z,A-lz), which is real, and so ,(B-lz, z)
(B-z, z). Thus w has the distribution

b(z) (2)
k

x/detl C e

(_) k
-(B-’z,z}/2

]de B[
e

In particular, Vl and v2 are independent if and only if (al, a2)=0.
Next we recall some facts about the characteristic functions (Fourier transform)

of complex random variables. For an R valued random variable, u, with density b,
its characteristic function b" R - R is

ffP() E{ei(")}-- IR" e(t’x)4’(x) dx.

By the Fourier inversion formula,

i(,x)ok(x) - R"
e- ()

For a complex valued random variable u with density b:C- R, we can view u
as two real random variables and define its characteristic function

) E{e,’*(")+e(")} f e"’(x) dx,

where + i.
If is radially symmetric, i.e., (z)= (]z), then we claim that is radially

symmetric. To see this, note

f. O(x, y) e-’(x,+’) dx dy

(r) e-i(e,s+esin) dO r dr.
r=O 0 =0

Writing ] e and substituting this in the above, we get

which is independent of q.
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Assuming that the fourth moments of u are finite, we have

,(,) f f (r)(l +(irl,l cos O)+
(irl’l cs O) )+" dO rdr

2

1 m]:[ + O(114),
since the integrals involving odd powers of cos 0 vanish. Furthermore, if the 2g+ 2th
moments of u are finite, we have

() 1 m,l:[ melle+ o(l:le+).
Furthermore, for any a C, it is easy to see that the characteristic function of ua is
4; (I a:l).

The characteristic function of the standard normal v, with density

1
O z - e-Izl2/

is

I()-- e -Ifl2/2 1-1/21:12+ O(1:14)
for sc small.

In 5 we will need to make estimates similar to those used in proving the central
limit theorem. For these estimates, we recall the following facts. If u is a complex
random variable with density b, then

If b is bounded, of bounded support, and, say, has b(x, y) for fixed y of bounded
total variation in x, then

for some a.

To see this, given b is supported in [-B, B]2, We estimate

I()1 IR ok(x, y) e ’xll dx dy

_-< 2B max
y

2B max
y

-< max Ib(x, y)[ + (x, y)
-I1 L x,y B OX

c[ ]-< max Ib(x, Y)I + T.V.xb(x, y)

49(x, y) e ixll dx

eXll I 0___ e
4)(x, Y) i _,- , ox (X, Y) i- ax

One can calculate the density of u ul+’" "+ u, by taking the characteristic
functions and using

(sc) E{ei:t(’u>} (-I E{e’:’<e’"’>} fi i()"
j=l j=l

Finally, the following lemma is useful.
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LEMMA A.1. If z,, z., z, z’. BI(0 cz: C, then

Proof For the proof, see [Bi179]. lG

Appendix B. Hammersley’s formula. In [Ham60], Hammersley gives the formula

If’(z’)l=""" If’(z)l =
(B.) g(z,, z) -------- (c) dc dc,

where P(z,..., z)dz.., dz is the probability of finding a root in the region of
volume dz.., dz at (z,..., z),

d

f(z)= cz,
i=0

and w(c) is the density function of the coefficients. Note that this P differs from the
P defined in 4 by a factor of

(-)... (-r+),

since in 4 we first choose r roots at random to calculate P. Then he claims that

(z,) Itl0(0, t) t,

where is the joint density of f and f’. More generally we have

(z,,..., z)= {If’(z,)l... lf’(z)l s.t. f(z,) f(z) =0}

where by the right-hand side of the above we mean

It,I... Itl(0, 0, t,,..., t) t, tr,

where is the joint density off(z),... ,f(z), f’(z),... ,f’(z). This can be derived
from (B. 1) by setting

(=f(zi)), writing

P(Zl,""" ,Zr)

and noting that

Thus

P(z1,

d

j=O

If’(/,_)_!
_ _

If’(z,)l
iBe(O),i=l,’",r h-;p<q<r i;-, ;,r dSr,

O(S,,’’’,Sr,,’’’,,) O(S,, Sr)
1-I (z- z,).

O( CO," ", Cd O( CO," "’, Or- 1) i<j <r

If’(z,)l’’" If’(z,)I(C) dco" dca
Be(0),/= 1,...,r

Itrl2(O, O, t, ,..., tr) dt, dtr,

where b is the joint density off(zl),’’’ ,f(Zr), f’(z,),""" ,f’(Zr).
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CATEGORY AND MEASURE IN COMPLEXITY CLASSES*

JACK H. LUTZ?

Abstract. This paper presents resource-bounded category and resource-bounded measure--two new tools
for computational complexity theory--and some applications of these tools to the structure theory of
exponential complexity classes.

Resource-bounded category, a complexity-theoretic generalization of the Baire category method, defines
nontrivial ideals of meager subsets of E, ESPACE, and other complexity classes. Similarly, resource-bounded
measure, a generalization of Lebesgue measure theory, defines the measure 0 subsets of complexity classes.
Properties developed here include a useful characterization of meager sets in terms of resource-bounded
Banach-Mazur games.

Resource-bounded category and measure are applied to the investigation of uniform versus nonuniform
complexity. Kannan’s theorem that ESPACE P/Poly is extended by showing that P/Poly(3 ESPACE is
only a meager, measure 0 subset of ESPACE. A theorem of Huynh is extended similarly by showing that
all but a meager, measure 0 subset of the languages in ESPACE have high space-bounded Kolmogorov
complexity. A new hierarchy of exponential classes is introduced and used to refine known relationships
between nonuniform complexity and time complexity.

Known properties of hard languages are also extended. Recent results of Sch6ning and Huynh state
that any language L that is _-< Prn-hard for E or --hard for ESPACE cannot be feasibly approximated. It
is proven here that this conclusion in fact holds unless only a meager subset of E is _-< Pro-reducible to L and
only a meager, measure 0 subset of ESPACE is -<_ SPACE-reducible to L. This suggests a new lower bound
method which may be useful in interesting cases.

Key words, resource-bounded category, resource-bounded measure, exponential complexity classes,
Banach-Mazur games, Kolmogorov complexity, circuit-size complexity, polynomial reducibilities, hard
languages, accessible information, approximable languages

AMS(MOS) subject classifications. 68Q15, 03 D15, 68Q30

1. Introduction. This paper presents resource-bounded category and resource-
bounded rneasure--two new tools for computational complexity theory--and some
applications of these tools to the structure theory of exponential complexity classes.

Like the reducibilities -<_P and <=P, introduced by Cook [1971], Karp [1972], and
Levin [1973], and like the generalized Kolmogorov complexities investigated by Hart-
manis [1983], Sipser 1983], and others, these tools are complexity-theoretic generaliz-
ations of well-developed mathematical methods. Specifically, resource-bounded
category generalizes the classical Baire category method and resource-bounded measure
generalizes Lebesgue measure theory.

This paper falls naturally into two main parts. In 3-5 we introduce resource-
bounded category and measure and their basic properties. In 6-10 we apply these
tools to the structural investigation of exponential complexity classes.

Resource-bounded category and measure reveal new structure in certain com-
plexity classes by identifying certain subsets of these classes as "small."

Sets that are small in the sense of category are called meager. The classical Baire
category method (in Oxtoby [1971], for example) says what it means for a subset of
a complete metric space to be meager. A computable, or effective, version of Baire
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category was introduced by Mehlhorn [1973] and has also been investigated by Lisagor
[1979]. This effective version says what it means for a subset of the set of recursive
functions to be meager. The resource-bounded version of Baire category developed in
3 is a natural extension of these ideas that enables us to discuss meager subsets of

complexity classes such as E, ESPACE, etc. (See 2 for notations and terminology
used in this introduction.) As it turns out, our formulation is general enough to include
classical and effective versions as special cases, so the treatment here is self-contained.

In classical Baire category, meager sets admit a characterization (described in
Oxtoby [1971]) in terms of certain two-person infinite games of perfect information,
called Banach-Mazur games. Computable Banach-Mazur games were introduced in
Lisagor 1979] and shown to give an analogous characterization in the effective setting.
Resource-bounded Banach-Mazur games are introduced in 4 and shown to (almost)
characterize sets that are meager in the corresponding sense.

Suppose a language L is chosen probabilistically by using an independent toss of
a fair coin to decide whether each string is in L. Then classical Lebesgue measure
theory (described in Halmos [1950] and Oxtoby [1971], for example) identifies certain
measurable sets of languages (also called events) and assigns to each measurable set
X a measure tx(X), which is the probability that the language so chosen will be an
element of X. A set X of languages is then small in the sense of measure if it has
measure 0. Effective versions of measure theory, which say what it means for a set of
computable languages to have measure 0 as a subset of the set of all such languages,
have been investigated by Freidzon 1972], Mehlhorn 1974], and others. The resource-
bounded measure theory introduced in 5 has the classical and effective theories as
special cases, but also defines measurability and measure for subsets ofmany complexity
classes. The small subsets of the complexity class are then the measure 0 sets.

It is tempting to regard the measure of a subset X of a complexity class as the
"conditional probability" that L X, given that L6 , when L is chosen by the
above-mentioned experiment. However, this interpretation should not be taken
seriously because is itself a countable, hence measure 0, subset of the set of all
languages. (See the remarks on the Borel paradox in Kolmogorov 1933], for example.)

The main results of 3-5 are the definitions of the resource-bounded meager
and measure 0 sets, the justification for calling these sets small (especially Theorems
3.12 and 5.9), the game characterization of meager sets (Theorems 4.3 and 4.4), and
a resource-bounded generalization of the classical Kolmogorov zero-one law (Theorem
5.15) stating that measurable sets of interest in complexity theory have measure 0 or
1. Many other results can be proven but are not included here because they are not
needed for the applications in the ensuing sections.

The applications in 6-10 all concern the structure of exponential time and
space complexity classes. Despite the fact that such classes are far beyond the realm
of feasible computation, there are three good reasons for studying their structure.

The first reason is the unfortunate circumstance that many known methods do
not work below this level. One of the main areas of complexity theory, the effort to
clarify relationships between uniform and nonuniform complexity measures, is cur-
rently in this predicament.

A central part of the study of uniform versus nonuniform complexity is the ongoing
investigation of (nonuniform, Boolean) circuit-size versus (uniform, algorithmic) time
and space. In particular, if P/Poly is the set of languages that have polynomial-size
circuits, then it is clear that P P/Poly and that P/Poly REC. The following is also
known.

TEOREM 1.1 (Kannan [1982]). ESPACE P/Poly.
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It is generally believed that NP P/Poly and in fact Karp and Lipton [1980]
have shown that NP_ P/Poly has the unlikely consequence of collapsing the
polynomial-time hierarchy to the second level. Nevertheless, the weaker conjectures
NPg SIZE (n), ESIZE(n), and EXPP/Poly have yet to be proven, and the
results of Wilson [1985] show that even these will require nonrelativizable proof
techniques.

In 7 we extend Theorem 1.1 by "widening the separation" between ESPACE
and P/Polyf3ESPACE. As a matter of fact, our development of resource-bounded
category and measure began with the following question. Among languages in ESPACE,
is the phenomenon of not having small (e.g., polynomial-size) circuits rare or is it in
some sense typical? In 7 we show that the phenomenon is very typical in the senses
of category and measure. For example, as a subset of ESPACE, P/Poly f3 ESPACE is
meager and has measure 0.

Although the results in 7 were originally proven directly, they are proven here
as easy consequences of the results in 6, where we investigate the relationships
between (nonuniform) resource-bounded Kolmogorov complexity and uniform time
and space complexity. Our starting point for this is the following known fact, which
implies Theorem 1.1.

THEOREM 1.2 (Huynh [1986b]). There is a language L6ESPACE such that
KS[2" (L<_,) > 2 almost everywhere.

In 6 we extend this existence theorem by proving an "abundance theorem,"
which implies that a comeager, measure 1 set of the languages L in ESPACE have
KS[2"](L<=,) > 2 infinitely often. It is interesting to note that the category portion of
this result is proven by formulating the "voting argument," by which Theorems 1.1
and 1.2 were originally proven, as a winning strategy for a resource-bounded Banach-
Mazur game. Moreover, playing this strategy against itself immediately gives Huynh’s
proof of Theorem 1.2.

In 6 and 7 we also investigate nonuniform complexity in exponential time
classes, but the results here are less satisfying. As mentioned earlier, an analogue of
Theorem 1.1 for E is conjectured but will probably be very hard to prove. The same
holds for Theorem 1.2. Nevertheless, we can generalize the notion of exponential time
to more accurately pinpoint the limits of relativizable methods, and then prove category
and measure results right up to these limits.

To this end, we introduce the G-hierarchy Go, G1," in 2. Each Gi is a class
of functions from N to N, these functions being regarded as growth rates. The class
Go contains all linearly bounded growth rates and the class G1 contains all polynomially
bounded growth rates. Each class Gi is closed under composition and each class G+
contains growth rates which asymptotically dominate all growth rates in G. Thus, for
> 1, Gi contains superpolynomial growth rates. Nevertheless, every element of LJ =o G

is o(2"), i.e., subexponential.
We then define a hierarchy E, E2, via Ei DTIME (2G’-’). The first two levels

of this hierarchy are the widely studied exponential time complexity classes E
DTIME (2 linear) E and E2-- DTIME (2plynmial) EXP. Here we use the expression
"exponential time complexity class" to refer to any of the classes E. In 6 and 7 we
investigate nonuniform complexity in these classes. Among other things, we show that
P/Poly is meager and has measure 0 in E3 and that SIZE (n k) is meager and has
measure 0 in E2. Since Wilson 1985] has exhibited oracles relative to which E2 P/Poly
and E_SIZE (n), these results are essentially the strongest that can be proven by
relativizable means.

The second reason for studying the structure of exponential complexity classes is
the recent emergence of results that relate questions about these classes to open
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questions about classes at lower levels. As just one example, we note that Hartmanis
and Yesha 1984] have shown that P/Poly f’] PSPACE P if and only if E ESPACE.

The third reason for studying the structure of exponential complexity classes is
derivative from the first, and is the motivation for 8-10 of this paper. This is the
fact that, unlike lower-level classes, the exponential classes have been proven to contain
intractable problems. For the purpose of proving intractability of specific problemsm
arguably the most important objective of complexity theorymthis existence of intracta-
bility is a valuable resource.

In practice, proofs that specific languages L are intractable have taken the following
three-part form:

(i) A complexity class % is shown by diagonalization to contain an intractable
language. (The language so constructed does not correspond to any natural problem.)

(ii) The specific language L is then shown to be polynomial-time hard for ,
i.e., it is shown that every language in is polynomial-time reducible to L.

(iii) It is inferred from (i) and (ii) that some intractable problem is reducible to
L, whence L itself must be intractable.

Thus the structure of the class under polynomial-time reducibility allows us to
infer the intractability of a specific problem from the existence of intractability in %

The advantage of this method is that part (ii), a "positive" assertion about what
can be efficiently computed, is easier to establish by known methods than a direct
proof of the "negative" assertion that L cannot be efficiently computed.

For example, a number of problems are now known to be intractable because
they are polynomial-time hard for E or ESPACE. (For examples, see Meyer and
Stockmeyer 1972] and Stockmeyer and Chandra 1979].) Similarly, the real significance
of the P versus NP question is the fact that many extremely important computational
problems are known to be hard for NP, so a proof by any means that P NP will
imply immediately that these problems are not in P.

The properties of languages that are hard for various complexity classes have
been investigated extensively. Recently it has been shown that the intractability of hard
languages for E and ESPACE also includes lower bounds for "approximate recogni-
tion." In particular, the following two facts are known.

THEOREM 1.3 (Sch6ning [1986], Huynh [1986a]). If L is <- -hard for E, then L
is 2 n, far from P for some c > O.

TEOREM 1.4 (Huynh [1986b]). if L is <=--hard for ESPACE, then L is 2 " far
from P for some c > O.

Unfortunately, most of the problems that we would like to prove intractable are
probably not hard for such large classes as E or ESPACE. Efforts to prove the
intractability of these problems have thus focused on carrying out part (i) of the above
method for smaller classes %

Here we propose a different remedy. Let (L) be the set of languages that are
polynomial-time reducible to L. Part (ii) of the above method requires us to show that
___

Y(L), i.e., that L contains all information about in Z-accessible form. In 9
and 10 we prove that, for E and ESPACE, it suffices just to prove that (L)
is a nonsmall subset of , i.e., that L contains a "substantial amount" of information
about % Specifically, we prove that the conclusion of Theorem 1.3 holds if a nonmeager
subset of the languages in E are =<Pro-reducible to L. Similarly, the conclusion of
Theorem 1.4 holds if either a nonmeager or a nonmeasure 0 subset of the languages

PSPACEin ESPACE is <-T -reducible to L. Stated in the contrapositive, these results say
that any language that is feasibly approximable contains very little accessible informa-
tion about the class % In the course of proving these results we also prove that "most"
languages in E and ESPACE are intractable, even to approximation.
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Although it appears that we have greatly weakened the hypotheses of Theorems
1.3 and 1.4, this has not been proven. It is conceivable that every language that contains
nonmeager or nonmeasure 0 accessible information about one of these classes is
actually hard for that class. In 8, after introducing some notation, we formulate some
partial information hypotheses. These are conjectures that assert the existence of
languages L c such that Yt (L) is not small in and also does not equal c, i.e.,
L contains "accessible partial information" about c. If these conjectures hold, and
can be proven, then the methods provided by 9 and 10 may lead to interesting
intractability proofs.

The main results of 6-10 are the extensions of Theorems 1.1, 1.2, 1.3, and 1.4
(Theorems 7.2, 6.1, 10.6, and 9.3, respectively), the analysis of nonuniform complexity
versus exponential time (Theorems 6.6 and 7.6), and the fact that "most" languages
in E and ESPACE are hard to approximate (Theorems 9.1 and 10.5).

It should be noted here that the very interesting "highness" and "lowness"
properties investigated by Sch6ning 1983]; Balcizar, Book, and Sch6ning [1986]; and
others are somewhat analogous to the notions of accessible information content
introduced in 8.

2. Preliminaries. If X and Y are sets, then X\Y={xX[xC:Y}, X/hY=

(X\ Y)U (Y\X) is the symmetric difference of X and Y, and IXI is the cardinality
of X.

We write {0, 1}* for the set of all finite binary strings, Ixl for the length of a string
x, & for the empty string, {0, 1}+ for {0, 1}*\{}, {0, 1} =" for {x {0, 1}*llx]-< n}, and
{0, 1}" for {x{0, 1}*l]xl=n}. We fix the lexicographic enumeration So=, Sl=0,
s2- 1, s3 00,. of {0, 1}* and let "next" be the successor function for this enumer-
ation, i.e., next (s)= s+. We write x=_y to indicate that x is an initial substring of
y, i.e., y xz for some z.

All functions, unless otherwise stated, are from {0, 1}* into {0, 1}*. Such functions
are also called transductions. We write f" for the n-fold composition off with itself.

We say a condition (R)(n) holds almost everywhere if it holds for all but finitely
many n N. We say (R)(n) holds infinitely often if it holds for infinitely many n N.

All languages here are sets L_ {0, 1}*; we write g({0, 1}*) for the set of all
languages. We identify a language L with its characteristic bitstring bobb," ", where
bk is 1 if Sk L and 0 otherwise. A string x is an initial bitmap of a language L, and
we write x L, if x is an initial substring of the characteristic bitstring of L. We write
L_n for Lf3{0, 1}n and L=n for L[3{0, 1}.

Our model of algorithmic computation is the multitape Turing machine (TM).
We write REC for the set of languages L that can be recognized by a deterministic
TM. For a resource bound t:N N we write DTIME (t) (respectively, DSPACE (t))
for the set of languages L that can be decided by a deterministic TM that halts in
O(t(n)) steps (respectively, after using O(t(n)) workspace) on inputs of length n.
Similarly, NTIME (t) is the set of languages L that can be accepted by a nondeterminis-
tic TM that halts in O(t(n)) steps on all accepting computations. We mention the
following well-known uniform complexity classes:

P= U{DTIME (n)l k e N},
NP= U{NTIME (nk)l k N},
PSPACE U{DSPACE (nk)lk N},
E U{DTIME (2k’) k e N},
ESPACE U{DSPACE (2kn)]k N},
EXP CI{DTIME (2n’) k N},
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EXPSPACE U{DSPACE (2"k) k N}.

For each i N we define a class Gi of functions from N into N as follows.

Go {f[ (:::lk)f(n) <= kn almost everywhere}

Gi+l-- 2Gi(lgn) {fl (Elg G)f(n) =< 2 g(’gn) almost everywhere}

(The logarithm here is log n=min {lNl2t-> n}.) For iN, we define the function

G by o(n)= 2n, ,i+(n)= 2e;lgn). We will think of the functions in these classes
as growth rates. In particular, Go contains the linearly bounded growth rates and G
contains the polynomially bounded growth rates. It is easy to prove by induction that
for each i N, the following hold:

(i) Gi is closed under composition.
(ii) For each f Gi, f(n)= o(i+l(n)).
(iii) i(n)= o(2n).

(For example, consider the induction step in (iii). Assuming (n)= o(2"), we have
log (i+(n)) o(n), so log (i+(n)/2")- -oe, so i+(n) o(2").) Thus, for each i> 1,
G contains superpolynomial growth rates, but all growth rates in the G-hierarchy are
subexponential.

Using the G-hierarchy, we define, for i_-> 1, the following uniform complexity
classes:

Ei DTIME (2G’-’) U{DTIME (2") g G,-1},

ESPACE DSPACE (2G’-,).

Using the standard hierarchy theorems for deterministic time and space, it is clear that

EiEi+ and EiSPACEE+SPACE for each i-> 1. It is also clear that E1 E,
E2 EXP, ESPACE ESPACE, and E2SPACE EXPSPACE, i.e., the first two levels
of these hierarchies are the well-known exponential complexity classes. We generalize
this terminology by calling each Ei an exponential time complexity class and each
EiSPACE an exponential space complexity class. (Note that all these are well below
doubly exponential levels.) The class E3--DTIME (2 ’g’)’)) will be of particular
interest.

We also define some classes of transductions, i.e., of functions that transform
strings. The computational model we use for this is the TM transducer, which is a TM
augmented with a write-only output tape, the contents of which are not counted as
workspace. To avoid confusing transduction classes with complexity classes of
languages, we will write transduction classes using lowercase letters. The following
classes are used:

all {flf: {0, 1}* {0, 1}*},

rec {f e all If is recursive},

p {f all lf is computable in G time},

pspace {f all If is computable in G space}.

We write p and pspace for p and plspace, respectively.
If L and L2 are languages, then a many-one reduction of L to L is a transduction

g such that for all x6 {0, 1}*, x L1 if and only if g(x)6 L2. As usual, then, L1 is
polynomial-time many-one reducible to L2, and we write L1 --< P, L2, if some g p is a
many-one reduction of L1 to L2.
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For Turing reducibilities we use oracle machines. An oracle machine is a TM M
augmented with a write-only oracle tape. An arbitrary language A {0, 1}* may be
used as the oracle. During any cycle of execution, the machine is allowed to "query
the oracle," i.e., to base its next action on whether or not the string currently written
on the oracle tape is an element of A. We write L(MA) to denote the language decided
by M when equipped with the oracle A. We then say L1 is polynomial-time Turing
reducible to L and write L1 <P=7" L2, if there is a polynomial-time-bounded oracle
machine M such that L1 L(ML2). The polynomial-space Turing reducibility =7"<PSPACE

is defined analogously, with the convention that the oracle tape is counted as workspace.
P.For >= 1, we also consider the Turing reducibility < , which is like < PT, except that

the oracle machine is Gi-time-bounded.
For a fixed TM M, a resource bound t, a language L, and n N, the t-time-bounded

Kolmogorov complexity of L=n relative to M is

where r is the shortest "program," i.e., binary string, such that for each x {0, l} <--n,
the machine M on input {-, x} correctly decides in _-<t steps whether x L. Since
{0, }---n {s0, , s2-/,-2}, we abbreviate this condition by saying that

2 --2M((r,si))=o Ln in <-t time. If there is no such program, then KT4[t](L_n)
The space-bounded Kolmogorov complexity KSM[t](L=n) is defined similarly, except
that M decides membership in L using <-t cells of worktape.

It is well known (see Huynh [1986b], for example) that there exist a universal
TM U and a polynomial p such that for each TM M there is a constant c such that
the following hold for all t, L, and n"

(i) KTt[t](L=n) <= KT4[p(ct + c)](L_n)+ c.
(ii) KSt[ t](L=n) <- KS[ct + c](Ln) + c.

As usual, we fix such a universal machine U and omit it from the notation. The time-
and space-bounded Kolmogorov complexities KT[ t](L=,) and KS[ t](L=n) are defined
analogously.

All circuits here are Boolean (combinational, acyclic) circuits over the basis {and,
or, not, 0, 1}. (All gates have fan-in _-<2; fan-out is unbounded.) A circuit has some
number n of inputs and a distinguished output gate, at which it computes a set S c__ {0, 1}
in the usual way. (The set S consists of those input strings for which the circuit’s
output is 1.) The size of a circuit c is the number size(c) of gates in c. (Inputs are not
gates.) The circuit-size complexity of a language L is the function CSL" N N defined by

CS(n) min {size(c) c computes L=n}.
We will insist that a circuit-size bound be a function f: N N, which is computable in
space polynomial in n, nowhere zero, and such that limn_ n2-nf(n) exists (or is
infinite). For each such f we define the nonuniform complexity class

SIZE (f)= {L {0, 1}* CS= O(f)}.
We callftrivial if SIZE (f) ({0, 1}*); otherwise it is nontrivial. Well-known theorems
of Shannon 1949] and Lupanov 1958] establish that a circuit-size boundf is nontrivial
if and only if limn_, n2-nf(n)=0. For any circuit-size bound f, we note that SIZE (f)
has the cardinality of the continuum and hence contains many nonrecursive languages.
Finally, we define the set P/Poly=U{SIZE(nk)]kN} of all languages that have
polynomial-size circuits.

Following Yesha [1983], Sch6ning [1986], and others, a language L is f(n) close
to a complexity class c if there is a language L’ e such that I(LAL’)<_,I <f(n) almost
everywhere. Otherwise, L is f(n) far from .
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3. Resource-bounded Baire category. In this section we introduce and develop a
general formulation of notions of Baire category on ({0, 1}*). The formulation is
general enough to admit the classical and effective notions as special cases, but its real
significance is that it admits resource-bounded versions of Baire category, which will
be of use in computational complexity theory.

We will define a notion of category to be a class of functions from {0, 1}* to {0, 1}*
that contains certain initial functions and is closed under certain operations. Our first
task is thus to specify these initial functions and operations.

We fix once and for all a one-to-one pairing function (, from {0, 1}* onto {0, 1}*
such that the pairing function and its associated projections 7rl((x, y)) x, 7r2((x, y)) y
are computable in polynomial time. We insist further that (x, y) {0}* if and only if
x, y {0}*. This latter condition canonically induces a pairing function (,) from N N
onto N. We write (x, y, z) for (x, (y, z)), etc., so that tuples of any fixed length are coded
by the pairing function.

By the conditional function we mean the function cond ((x, y, z, w)) whose value
is z if xy, and w otherwise.

The composition f g, concatenation fg, and pairing (f,, g) of two functions f and
g are defined by (fo g)(x)=f(g(x)), (fg)(x)=f(x)g(x), and (f, g)(x)=(f(x), g(x)),
respectively.

The functions and operations defined thus far are natural and somewhat standard
in the theory of subrecursive function classes. In the following definition, two more
necessary operations are specified. These operations are a little more awkward to state
than the preceding ones but are natural in the context ofresource-bounded computation.
Both are called "inversion" operations because they involve reconstructing ways in
which a string could have been built up by recursion.

For a function f and k N it will be convenient to define the function fk(X)=
f((Ok, x)). The function f can thus be considered a "uniform enumeration" of the
functions fo, f,"

DEFINITION 3.1. Let f be a function.
(1) The type I inversion off is fX(x) (0k, xk), where k is maximum such that the

sequence Xo A, X,+l f, (x,) satisfies

v’- X ._ __
Xk

__
X.Xo -(2) The type II inversion of f is fiX(x)= 0’, where m --0 if x h and otherwise

m is maximum such that there exists a sequence Xo,"" ", Xm- satisfying

A Xo r- fo(Xo) r- x E xm- r-- fm-l(Xm-1) X.

Since f(x) and fXI(x) specify "internal" properties of the string x with respect to f,
it is also natural to think of these inversion operations as "internal primitive recursion"
and "internal search recursion," respectively.

The general formulation of notions of Baire category can now be stated and
developed.

DEFINITION 3.2. A notion of category is a class F of functions from {0, 1}* into
{0, 1}* which contains the projections, all constant functions, and the conditional
function, and which is closed under composition, concatenation, pairing, and type I
inversion. A notion of category F has the Mazur property if it is also closed under type
II inversion.

From now on, F, F’, etc. will denote notions of category.
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The essential link between Definition 3.2 and the development of a Baire category
theory for g({0, 1}*) is the simple observation that binary languages can be constructed
by using functions from {0, 1}* into {0, 1}*.

A constructor is a function y which satisfies x =__ y(x) for all x {0, 1}*. The result

of a constructor 3’ (i.e., the language constructed by y) is the unique language R(y)
such that yk(A )=__R( y) for every kN. A clocked constructor is a function 3/ which
satisfies x

_
y((w, x)) for all w {0}* and x {0, 1}*. The result of a clocked constructor

y is the unique language R(y) such that xk R(y) for every k N, where Xo A and

xk+ y(xk). (No confusion will result from the obvious ambiguity here.)
Intuitively, a constructor or clocked constructor 3’ builds a language R(y) by

starting with A and then iteratively generating successively longer initial bitmaps of
R(y). A clocked constructor is permitted to have an "agenda that varies over time,"
i.e., to extend the initial bitmap in a way which depends upon the stage k of the
construction.

For each F, Fc denotes the set of all constructors in F and Fcc denotes the set of
all clocked constructors in F. It is then natural to define the sets R(Fc), R(Fcc) of all
R(y) such that y F, 3’ F, respectively.

LEMMA 3.3. If F is a notion of category, then R(Fc)= R(F).
Proof If yFc, then yo zr2Fc and R(yo zr2)= R(y), so R(y) R(Fcc). Con-

versely, let 3’ Fc and define Xo A, x,+ y,(xn). It is clear that
(i) y(xn) (On, x,) for every n e N.

Also, by the maximality of k in the definition of y, we have
(ii) y(y’(x))V=x for every x {0, 1}*.

Define

I y(y’(x)) if x__= y(yI(x))
x0 otherwise.

Since y is a notion of category and y F, it is clear that F. Also, it is clear from
(ii) that x __= (x) for all x {0, 1}*, whence Fc.

We now show by induction that 4/n()=xn for all n N. For n =0 we have
4/(A) A Xo, so this is clear. For the induction step, first note that xn y((0n, xn))=
y(y(xn)) by (i) and the fact that y is a clocked constructor. It follows by the induction
hypothesis, the definition of , and (i) that

x.))= x.+,,

whence the induction is complete.
Since "(h)=x, for all nN, we must have R(y)=R()R(F).
Lemma 3.3 says that it makes no difference whether constructors or clocked

constructors are used in a notion of category. This justifies the following definition.
DEFINITION 3.4. The result class of F is R(F)= R(F)= R(Fc).
The following routine lemma is the reason for our interest in the transduction

classes defined in 2.
LMMA 3.5. The classes all, rec, p(i ->_ 1), and pspace (i ->_ 1) are notions ofcategory

with result classes as follows.
(1) R(all)= ({0, 1}*).
(2) R(rec)= REC.
(3) R(p,)= Ei.

(4) R(pspace) ESPACE.
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The classes all, rec, and p/space (i _-> 1) have the Mazur property.
Proof We prove (3). The proofs of (1), (2), and (4) are similar.
Let L=R(T), where 3/Pi is a constructor. Consider a TM M which does the

following"

begin
input x;
n :-the unique index such that s, x;
z:=h;
while [z[-<_ n do z := 3/(z);
if the nth bit of z (counting from 0) is 1

then accept
else reject

end M.

(Recall that So, s, s2, is the standard enumeration of {0, 1}*. The computation of
n is very simple because lx is the usual binary representation of n + 1.) It is clear that
M recognizes the language R(3/) L. Since 3/ P, the assignment z := 3/(z) takes Gi(Izl)
time, so the while loop takes at most

(n + 1)G,(n) 2(Ixl)Gi(2 (Ixl)) Gi(2I’1) 2 G,-l(Ixl)

time. Thus L DTIME (2,-l) E.
Conversely, let L E. Then there is a 2,-,-time bounded TM M that recognizes

L. Let 3/be the function computed by the following algorithm.

begin
input z;
if M accepts Slz

then output z l
else output z0

end 3/.

It is clear that 3/ is a constructor with R(3/)= L. In fact, 3/ p, since the simulation
of M on input Slz takes at most

2G’-l(Islzll) G,(2 Is’=’l) G,(Izl)
time. Thus L R(6) R(p). [3

The classes all and rec are, respectively, the classical and effective notions of
category on ({0, 1}*). The classes Pi and pspace are resource-bounded notions of
category. Of course many other such notions can be defined, e.g., by relativization,
variation of the resources or bounds, etc.

We conjecture that the time-bounded classes p do not have the Mazur property,
but this is probably hard to prove, since it implies, for example, that p does not contain
every function that is computable on-line in polynomial space.

The significance of a notion of category F lies in the structure it imposes on
({0, 1}*) and on the result class R(F). In particular, these structures yield natural
notions of"smallness" for subsets of ({0, 1}*) and R(F). The structures on ({0, 1}*)
and on R(F) are analogous and will be developed in parallel.

DEFINITION 3.6. For each x {0, 1}*, the basic set about x in ({0, 1}*) is B,
{L {0, 1}*[x=__L}. The corresponding basic set about x in R(F)is B fq R(F).

DEvirqi’rioy 3.7. A set Z_ ({0, 1}*) is F-nowhere dense (respectively, nowhere
dense in R(F)) if there exists h F such that B() fq Z (respectively, Bh() R(F) fq

Z ) holds for every x {0, 1}*.
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Intuitively, a set Z is F-nowhere dense if F provides sufficient resources to compute
from any basic set B, a basic set By Bx which completely avoids Z.

The following lemma summarizes some easy properties of nowhere dense
sets.

LEMMA 3.8. (1) IfZ is F-nowhere dense, then Z is nowhere dense in R(F).
(2) IfZ is F-nowhere dense and F

_
F’, then Z is F’-nowhere dense.

(3a) Subsets of F-nowhere dense sets are F-nowhere dense.
(3b) Subsets of sets nowhere dense in R(F) are nowhere dense in R(F).
(4a) Finite unions of F-nowhere dense sets are F-nowhere dense.
(4b) Finite unions of sets nowhere dense in R(F) are nowhere dense in R(F).
(5) Finite subsets of R(F) are F-nowhere dense.
Proof Assertions (1), (2), (3a), and (3b) are obvious.
To prove (4a), let Z, Z’ be F-nowhere dense sets, with h, h’ Fc as witnesses.

Then h h’ Fc testifies that Z Z’ is F-nowhere dense. The result for arbitrary finite
unions follows inductively. The proof of (4b) is identical.

To prove (5), fix y F. By (4a) it suffices to prove that the singleton set {R(y)}
is F-nowhere dense. Define

x0 ifxl (’yI(x))
h(x)=

xl otherwise.

Then hF, so it suffices to show that Bh(x)("I{R(T)}=( holds for all x. If xV;R(y)
this is trivial, so fix x=___R(y). Let z= y(y(x)). Then z=__R(’y) and zV:x=_R(y), so
x _=_ z, so either x0_= z =__ R (y) or x 1 _=_ z _=_ R (y). In the first case h (x) x R y); in

thesecond case h(x)=xO;R(y). Either way, Bh(x){R(y)}---.
We are finally ready to define what it means for a set to be "small" with respect

to a notion of category F.
DEFiNITiON 3.9. A set X

_
({0, 1}*) is F-meager (respectively, meager in R(F))

if there exist a function h F and a family {Zk[k N} of sets such that
(i) X

_
U{zI k N},

(ii) for each k N, the function hk testifies that Zk is F-nowhere dense (respec-
tively, nowhere dense in R(F)).
(Note that this implies hFc.) A set X

_
({0, 1}*) is F-comeager (respectively,

corneager in R(F)) if its complement ({0, 1}*)\X is F-meager (respectively, meager
in R (F)).

Thus a set X is F-meager if F provides sufficient resources to "uniformly enumer-
ate" a family of F-nowhere dense sets which covers X. More concisely, X is F-meager
if it is contained in a "F-union of F-nowhere dense sets."

If F =all, then "F-meager" and "meager in R(F)" are both equivalent to the
classical notion of "meager set," i.e., "set of first category." If F rec, then "meager
in R(F)" is equivalent to the effective notion of meagerness of Mehlhorn [1973] and
Lisagor 1979].

The rest of this section will develop the interpretation of meager sets as "small"
subsets of R(F). For this, we need the following definition.

DEFINITION 3.10. A F-union of F-meager sets (respectively, of sets meager in
R(F)) is a set X such that there exist a function g F and a family {X,[k N} of sets
such that

(i) X U{XIk N},
(ii) for each kN, the function g testifies that X is F-meager (respectively,

meager in R (F)).
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LEMMA 3.11. (0) F-nowhere dense sets are F-meager and sets nowhere dense in

R(F) are meager in R (F).
(1-5) Lemma 3.8 holds with "nowhere dense" replaced by "meager" throughout.
(6a) F-unions of F-meager sets are F-meager.
(6b) F-unions of sets meager in R(F) are meager in R(F).
Proof Assertions (0), (1), (2), (3), and (5) are obvious and assertion (4) follows

trivially from assertion (6).
To prove (6a), assume X is a F-union of F-meager sets with g F and {Xklk N}

as witnesses. Then for each k, gk testifies that Xk is F-meager, i.e., there is a family
{Zkjlj N} of sets such that Xk c_ U{Zkjlj N} and each gkj (gk)j testifies that Zkj is
F-nowhere dense. Define h(((y, z), x)) g((y, (z, x))) and Z’ Z,(n)2(n). Then h F,
X={Xk[kN}_ {Zkj[j, kN}={Z’,[nN}, and each h,= g=,(,)2(,) testifies
that Z’, is F-nowhere dense, so X is F-meager.

The proof of (6b) is similar.
Assertions (1) and (2) of Lemma 3.11, though obvious, are important because

they unify results for various F. For example, if we prove that a set X is p-meager,
then we know that it is meager in E, but we also know that it is pspace-meager,
rec-meager, and all-meager; hence it is immediately meager in ESPACE, REC, and
({0, 1}*) as well. Thus a proof that X is p-meager yields considerably more informa-
tion than a proof that it is meager in E. This is why results are usually stated in terms
of F-meagerness, even when the matter of primary interest is meagerness in R(F).

In the classical case, i.e., when F all, a F-union is simply a countable union, so
assertions (3) and (6) of Lemma 3.11 say that the meager sets form a g-ideal of subsets
of ({0, 1}*). Accordingly, in the general case, we interpret (3) and (6) as saying that
the F-meager sets form a "F-ideal in ({0, 1}*)" and that the sets meager in R(F)
form a "F-ideal in R(F)." Assertion (5) then tells us that these F-ideals contain many
sets. (Note, however, that a singleton set {L} need not be F-meager if L R(F).)

It is natural to think of the sets in a F-ideal as small, provided that the F-ideal
is proper, i.e., does not contain every set. The following generalization of the classical
Baire category theorem establishes this for the meager sets and thereby completes our
argument that meager sets can be thought of as small sets. The simple diagonalization
proof is a natural extension of the classical one.

THEOREM 3.12. ( A F-meager set contains no basic set.

(2) A set meager in R(F) contains no basic set in R(F).
In particular, ({0, 1}*) is not F-meager and R(F) is not meager in R(F).

Proof Assertion (1) follows easily from assertion (2) via part (1) of Lemma 3.11.
(Alternatively, assertion (1) follows from the classical Baire category theorem via part
(2) of Lemma 3.11.)

To prove (2), let X_ ({0, 1}*) be meager in R(F) with h Fc. and {Zk[ k N}
as witnesses and let B’z Bz f’l R(F) be a basic set in R(F). Define

X))
h((w, x)) ifx

and define the sequence Xo h, xk+ Yk(Xk). Note five things:

(i) y rcc, so R (y) R(F).
(ii) R (y) B’ for each k N.
(iii) g( y) B’, B’h(,z

_
B’z.

(iv) B’, Zo B’o(z f-I Zo , so R (y) Zo.
(v) For k_-> 1, xk A, so Btx+l
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These things together imply that

R(y) B’\ U {Zk[ k N)
_
B’\X,

whence X does not contain B’z. [3

Thus the sets that are meager in R(F) form a proper F-ideal.

4. Resource-bounded Banach-Mazur games. It is usually awkward to exhibit
explicitly a F-meager set as a F-union of F-nowhere dense sets. In this section we
give an alternate characterization of F-meager sets (and sets meager in R(F)) which
is often easier to use when proving that a set is F-meager. The characterization is in
terms of certain two-person infinite games ofperfect information, called Banach-Mazur
games. In the present setting, the games will be resource-bounded in the sense that a
player may be required to play according to a strategy that can be computed within
the resources provided by F. Thus the "perfect information" may not always be available
in a usable form.

Informally, a Banach-Mazur game is an infinite game in which two players
construct a language L by taking turns extending an initial bitmap of L. There is a
distinguished set X of languages such that player I wins a play of the game if L X;
player II wins otherwise.

More formally, a strategy for a Banach-Mazur game is a constructor o-. A play
of a Banach-Mazur game is an ordered pair (a, fl) of strategies. The result of the play
(a,/3) is the language R (a,/3) R (/3 a). This result is the language constructed when
player I uses strategy a and player II uses strategy/3. If X_ g({0, 1}*) and ZI, ZiI
are classes of functions, then G[X; Ei, EI] is the Banach-Mazur game in which X is
the distinguished set, player I is required to use a strategy a E, and player II is
required to use a strategy/3 6 Ell. A winning strategy for player I in G[X; El, ZI] is
a strategy a :E such that R(a,/3) X holds for every/3 ZII. A winning strategy for
player II in G[X; , E] is a strategy/3 5;i such that R(a, fl) X holds for every

I" A player wins G[X; ,] if he has a winning strategy in G[X; I, Eli]"
For the remainder of this section, let U be the set of all finite sequences of

nonempty binary strings and, for u (xl,’" ", xn) U, let Ilull Ix, /... / [x l. For
any strategy /3, we define the associated function /3[ from U into {0, 1}* by the
recursion fl[A] A, /3[xl,..., X,+l] =fl([x,’’’, Xn]X,+l). We then define the sets

Y[,8 F’I { Yk[ k e N},

Zk[]-- ({0, 1}*)\ Yk[fl],

Z[fl] ({0, 1}*)\ Y[fl] k N}.

Intuitively, /3[x,..., x,] is the status of a Banach-Mazur game immediately after
player II’s nth move if player I appends xi to the bitmap in his ith move and player
II uses strategy/3. Thus Btx,,...,x,, is the set of all languages that could "conceivably"
result from this play of the game, no matter what strategy either player uses after
player II’s nth move. In this same sense, Yk[] is the set of all languages that could
conceivably result from any play of the game in which player II uses strategy/3 in all
moves up to and including his response to the move by which player I’s total contribu-
tion to the bitmap reaches or exceeds k bits. Hence Y[fl] is the set of all languages
that could result from any play of the game in which player II uses strategy/3.
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Note that/3[ is recursive in/3, but that/3[ need not be computable within the
resources of F, even when flF. (For example, if Ifl(x)l=lxl for all x, then
[fl[xl,""", x,]l is hyperexponential in n.) Also note that Ifl[u]l_-> Itull and/3[u]_=fl[v]
hold for all u, v U with u an initial subsequence of v.

LEMMA 4.1. For any strategy F, Z[ is F-meager.
Proof Let/3 F and define

h((x, y))= {(x) ify=A
((y)x) ifyA.

Then h F and for each k N we have
,0 = fl(O) h((O, )) h(A)

and

x ;x =__ (x)=_(x)O = t((x)0) h((0, x)) h(x)

so h Fcc. Thus it suffices to show that each hk testifies that Zk[fl is F-nowhere dense,
i.e., that Bhk(x) C_ Yk[fl] holds for each k and x. This is trivial for k=0 because
Yo[fl] ({0, 1}*), so assume k>0. Then Bhk(a Bt(o) Bo1 c_ Yk[/?] and for x ,
Bhk(X --B(t(x)o)= B,o]___ gk[[], SO we are finished in any case. [3

If F is a notion of category, then it is easy to check that the class rec (F) of all
functions f such that f is recursive in some g e F is also a notion of category.

LEMMA 4.2. (1) If fl is a strategy and x_ L e Y[fl], then there exist u U and
y e {0, 1}+ such that x

_
l[u]y r-- (fl[u]y)r-L.

(2) If is a strategy andL Y[fl], then there is a strategy a such that R(a, ) L.
(3) If fl F is a strategy and L Y[fl] R(F), then there is a strategy a rec (F)

such that R (or, fl L.
Proof Assume the hypothesis of assertion (1). Then L Yll+l[fl ], so there exists

u’=(xl,... ,x,) U with Ilu’ll>lxl and LeBu,j, i.e., fl[u’]=_L. Note that n=> 1, let
u (x,..., X,_l), and let y=x,. Then [fl[u]y I_-> Ilu’ll> Ixl and [u]y -/(fl[u]y)
l[u’]_L. Since x_L, it follows that x /3[u]y; hence (1) holds.

Assertion (2) follows trivially from assertion (3) by taking F all.
To prove (3), assume the hypothesis. Since fl F and L R(F), the condition

x [u]y - fl(/?[u]y)= L is decidable relative to F. It follows that there is a partial

function g with the following properties.
(i) If there exist u U and y e {0, 1}+ such that x

_
[u]y - fl(fl[u]y)- L, then

# N
g(x) is defined and has the form g(x)= [u]y for some such u and y.

(ii) If no such u and y exist, then g(x) is undefined.
(iii) g is partial recursive in F. (Briefly, g is computed by performing an unbounded

search for such u and y.)
Define

(x) g(x) ifxL
x0 if x g: L.

Since L Y[/3], (i) and part (1) of this lemma tell us that a(x) is defined for all x.
Since L R(F), the condition xc_L is decidable relative to F. It follows by (iii) that
a rec (F). It is clear that x __= a(x) for all x, i.e., that a is a strategy. A routine

induction shows that R(a,/3) L. [3

We now characterize the F-meager sets in terms of Banach-Mazur games.
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THEOREM 4.3. For a set X
_
({0, 1}*), consider the following conditions:

(a) Player II wins G[X; all, F].
(b) X is F-meager.

In any case, (a) implies (b). If F has the Mazur property, then (b) implies (a).
Proof Assume (a) holds with the winning strategy fief as witness. Assume

L Y[fl ]. By part (2) of Lemma 4.2, there is a strategy a such that R(a,/3) L. Since
/3 is a winning strategy for player II, it follows that L X. Taking the contrapositive,
this argument shows that X

_
Z[fl ]. Since Z[/3 is F-meager by Lemma 4.1, it follows

that (b) holds.
Conversely, assume that F has the Mazur property and that (b) holds, i.e., that

X is F-meager with h Fcc and {Zklk N} as witnesses. Note that if [h(x)l > k, then
there is a sequence Xo,’’’, Xk with

A
_

Xo - ho(xo) Xk r- hk(Xk) r-- X,

SO B Zk Bhk(Xk) ("l Zk , the last equality holding because hk testifies that Zk is
F-nowhere dense. This shows that hI has the property that

(*) [h’(x)] >kBx 0 Zk
holds for all x and k. Define/3(x) h((h(x), x)). Since h Fcc and F has the Mazur
property, /3 is a strategy in F. To see that fl wins G[X; all, F] for player II, let a be
an arbitrary strategy for player I. It is immediate from the definitions of h and fl that
[h((/? a)(,X))] is strictly increasing in n. It follows by (*) that for each k there exists
n such that B(floa)"(h)OZk=. Since (/3 a)n(h)_R(a, fl) for each n, it follows that
R(a,[3)Zk for each k. But then R(a,)e!X, i.e., player II wins, so (a) holds.

Analogously, we characterize the sets which are meager in R(F).
THEOREM 4.4. For a set X

_
({0, 1}*), consider the following conditions:

(a) Player II wins G[X 71R(F); all, F].
(b) Player II wins G[X R(F); rec (F), F].
(c) X is meager in R(F).

In any case, (a) implies (b) and (b) implies (c). If F has the Mazur property, then (c)
implies (a).

Proof It is trivial that (a) implies (b).
The proof that (b) implies (c) is the same as the proof that (a) implies (b) in

Theorem 4.3, except that X 71R(F) is used in place of X and part (3) of Lemma 4.2
is used in place of part (2).

If F has the Mazur property, then the proof that (c) implies (a) is the same as
the proof that (b) implies (a) in Theorem 4.3, except that X 71R(F) is used in place
of X and basic sets Bz f-1R(F) in R(F) are used in place of basic sets Bz.

In the case where F has the Mazur property, the equivalence of (a) and (b) in
Theorem 4.4 is somewhat remarkable. For example, if F pspace and X ESPACE,
this says that player II wins G[X; all, pspace] if he wins G[X; rec, pspace]. That is,
if player II can beat every recursive strategy, he can beat any strategy whatsoever.
Intuitively, this says that, in the game G[X; all, pspace], most of player I’s available
resources are no help to him.

The role of the Mazur property in Theorems 4.3 and 4.4 illustrates an interesting
aspect of the resource-bounded setting. In the classical and effective settings (where
the Mazur property holds trivially), the fact that player II can win whenever the
designated set is meager is the "easy direction" of the characterization. (This direction
was noted by Mazur when he invented the classical game; it was Banach who sub-
sequently proved the converse.) In the resource-bounded setting, this direction seems
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tO require an additional property, which we have called the Mazur property. For
example, it is not clear that player II wins G[X; rec, p], or even G[X; p, p], whenever
X is a meager subset of E.

We conclude this section with an easy application. A language L is sparse if there
is a polynomial q such that IL__I_-< q(n) for all n. The sparse languages are a central
concern of current research in computational complexity theory. It is easy to see that
the set SPARSE of all sparse languages has the cardinality of the continuum, i.e., of
({0, 1}*). The following theorem shows that SPARSE is nevertheless small in the
polynomial time-bounded sense of category.

THEOREM 4.5. SPARSE is p-meager; hence, it is meager in E.
Proof Consider the strategy/3 that extends x by appending 4Ix + 1 l’s to it. It is

clear that/3 is a constructor and/3 p. It is also easy to check that, for any strategy
a, there are infinitely many n such that IR(a,/3)=hi =2n, whence R(ce,/3) SPARSE.
Thus /3 wins G[SPARSE; all, p] for player II, so the present theorem follows from
Theorem 4.3. [-]

5. Resource-bounded measure. The sense in which meager sets are small is not
always the most intuitive one. For example, consider the set X of all languages L such
that xx_ L holds only for finitely many strings x. The strategy (x) xx testifies readily
that X is p-meager. However, if L is chosen probabilistically by using an independent
toss of a fair coin to decide whether each si L, then it is easy to see that L will be
in X with probability 1, i.e., almost certainly. Thus the Baire category notion of
smallness disagrees sharply with this very intuitive probability measure on ({0, 1}*).

This independent coin-toss measure is precisely the classical Lebesgue measure
on ({0, 1}*). That is, if we identify a language L with the real number x[0, 1],
whose binary expansion is the characteristic bitstring of L, then the measure of a set
of languages is (when defined) precisely the usual Lebesgue measure of the correspond-
ing subset of the unit interval. Equivalently, this measure is the product probability
measure on I-Ixo,l. {0, 1}, where {0, 1} has the uniform distribution.

In this section we introduce and develop resource-bounded (Lebesgue) measure,
i.e., resource-bounded probability, for complexity classes of languages. This will provide
a notion of smallness for subsets of these classes that corresponds nicely with the
classical Lebesgue measure on ({0, 1}*).

The subject of this paper is resource-bounded category and measure in exponential
complexity classes. It will thus suffice here to say that a notion of measure is a class
A of functions from {0, 1}* into {0, 1}* and that the classes all, rec, pi(i:> 1), and
p/space (i _-> 1) are notions of measure. Some results will be stated in terms of arbitrary
notions of measure A, but we will require their proofs to be valid for these examples
only. This approach is less general than that of 3 but is still general enough to
encompass classical, effective, and resource-bounded notions.

From now on, A, A’, etc., will denote notions of measure in the above sense. The
result classes R(A) are defined exactly as in 3, so the language classes treated here
are ({0, 1}*), REC, Ei(i>= 1), and E/SPACE (i >- 1).

DEFiNITiON 5.1. The measure of a basic set Bx is /z(Bx)= 2-1lo The measure of
the empty set is/z() 0.

DEFINITION 5.2. A A-cover is a pair (h, m)A2 such that m({0}*)_ {0}* and

tZ(Bhok))<__2_t
:=1 (01)1

holds for each N. If (h, m) is a A-cover, then h is called the enumerator, m is called
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the modulus, and the real number

/x*(h)= Z /(B(o)
k=O

exists and is called the total measure of (h, m).
Intuitively, a A-cover is a family of basic sets Bh), Bho), Bhoo),’’" such that A

provides sufficient resources to enumerate the family and to compute approximations
of the finite total measure of the family.

DEFiNITiON 5.3. A A-cover of a set X c_ ({0, 1}*) is a A-cover (h, m) such that
XU{Bhok)lkN}.

DEFINiTiON 5.4. A A-null cover of a set X
_
({0, 1}*) is a pair (h, m) 6 A2 such

that the following two conditions hold for each k 6 N:
(i) (hk, mk) is a A-cover of X.
(ii) /x*(hk)=<2 -k.
DEFiNITiON 5.5. Let X

_
({0, 1}*) and let X ({0, 1}*)\X be the complement

of X.
(1) X has A-measure O, and we write /x(X)=0, if there exists a A-null cover

of X.
(2) X has measure 0 in R(A), and we write/z(X[ R(A))= 0, if/z(X f3 R(A)) 0.
(3) X has A-measure 1, and we write /A(X)= 1, if /ZA(Xc) =0.
(4) X has measure 1 in R(A), and we write/z(XIR(A)) 1, if/z(X[R(A)) =0.
Thus a set X of languages has A-measure 0 if A contains sufficient resources to

uniformly enumerate A-covers of X with rapidly vanishing total measure.
Note that (X[R(A)) depends only on the set X f3R(A). In particular, the

conditions/z(XIR(A)) 1 and/za(X f-)R(A))= 1 are not equivalent.
It is amusing to think of/z(X R(A)) as the "conditional probability" that L X,

given that L R(A), when L is chosen by independent tosses of a fair coin. It should
be emphasized, however, that this interpretation is not meaningful (and. is probably
misleading) because, in cases of interest, R(A) will be a countable, hence measure 0,
subset of ({0, 1}*).

The next definition and lemma are analogous to Definition 3.10 and Lemma 3.11.
DEFINITION 5.6. A A-union of A-measure 0 sets (respectively, of sets of measure

0 in R(A)) is a set X such that there exist a pair (h, m) A and a family {Xklk N}
of sets such that

(i) X kJ{Xk k N},
(ii) for each k N, the pair (hk, mk) A2 testifies that Xk has A-measure 0 (respec-

tively, has measure 0 in R (A)).
Of course any finite union is a A-union here.
LEMMA 5.7. (1) IfX has A-measure O, then X has measure 0 in R(A).
(2) IfX has A-measure 0 and A

_
A’, then X has A’-measure O.

(3a) Subsets of A-measure 0 sets have A-measure O.
(3b) Subsets of sets with measure 0 in R(A) have measure 0 in R(A).
(4a) A-unions of A-measure 0 sets have A-measure O.
(4b) A-unions of sets with measure 0 in R(A) have measure 0 in R (A).
(5) Finite subsets of R(A) have A-measure O.
Proof Assertions (1), (2), and (3) are clear and (4b) follows immediately from

(4a), so it suffices to prove (4a) and (5).
To prove (4a), let (h, m) A and the family {Xk[k N} testify that X is a A-union

of A-measure 0 sets. Define

h’((u, (v, w)))= h((v, (uvO, w))).
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Then h’A and for each k, i,jN, h’((Oi, O))--hi,k+i+(OJ). That is, h, "weaves
together" the enumerators hi,k++ for iN. Note that each (h,k++,m,k+i+) is a
A-cover of Xi with total measure/z*(h,k++) ----<2 -(k++). Define m’ so that m’({0, 1}*)

_
{0}* and

[m’((Ok, 01>)1-- 1 + max {(i,j)[i <- and j <-[mi,k+i+(021+)[}
for all k, N. The key property of m’ here is that

(i) for each i,j,k,lN, the condition (i,j)>=[m(Ol)[ implies that i>-_l+l or
_> (0t+J Imi,,+i+ )l-

It is clear that (h’, m’)A2. We will show that (h’, m’) is in fact a A-null cover
of X. For this, it suffices to prove that the following three things hold for each k, N:

(a) X
_

1,3 nN B,.(O’).
(b) E,_l,,;,(o,)l/x(Bh;,(o,,))_--<2 -’.
(c) /z*(h,)_-<2 -’.

So fix k, N. To prove (a), just note that each Xi
_
LJjN Bh,.k+i+,(oJ) LJjN B;(<o’,o>),

whence X t_JN Xi
_

t2 ,.iN Bh.(<o",oA LJ,N Bh.(o"). For convenience, write rfi
(0+Imi,k+i+l )1. Before proving (b) and (c), note that the following two things hold

for each N.
(ii) =o tZ(Bh,(<o’,o">) tz*(h.k++).
(iii) Y__ IX(Bh.<o’.o’>) <--2 -21+)

Now to prove (b), note that (i) tells us that

n=[ ’(01)1 i=/+1 j=0 i-----0 j=r

whence by (ii) and (iii) we have

=lrn.(o)l i=!+1 i=0

_--< 2-(k+i+)+(/+l)2-(2t+)--<2-t_
i=1+1

i.e., (b) holds. Finally, (ii) tells us that

/z*(h,)= Z /z(Bh;,((o’.o;))) 2 tz*(hi,k+i+,) <= 2 2-(k+i+’)=2-k,
i=0j=0 i=0 i=0

i.e., (c) holds. Thus (h’, m’) is a A-null cover of X, so (4a) is affirmed.
To prove (5), it is sufficient by (4a) to prove that singleton subsets of R(A) have

A-measure 0. So let L= R(6), where 6 A. Define h((u, v))= "(h), where n is least
such that [6"(,)[>[uv[, and m((u,v))=v. Then it is easy to check that (h,m) is a
A-null cover of {L}.

Assertions (1) and (2) of Lemma 5.7 have the same unifying effect as the corre-
sponding assertions of Lemma 3.11. Thus, for example, if we prove that a set X_

({0, 1}*) has p-measure 0, then we can conclude immediately that 0=/x(X[E)=
/x(X ESPACE) =/x(X REC) =/x (X).

Assertions (3) and (4) of Lemma 5.7 say that the A-measure 0 sets form a A-ideal
in ({0, 1}*) and that the sets that have measure 0 in R(A) form a A-ideal in R(A).
Assertion (5) then says that these A-ideals contain many sets.

The following theorem is analogous to Theorem 3.12 in that it shows that these
A-ideals are proper. The main idea of the proof is a diagonalization, which we first
isolate in a lemma. (This lemma is a resource-bounded version of a classical theorem
of Borel.)
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LEMMA 5.8. IfX
___
R(A) has a A-cover with total measure less than 2 -Izl then X

does not contain Bz R A).
Proof. Let (h, m) be a A-cover of Xc_ R(A) with *(h)<2-Izl and let X’=

(J{Bh(ok)lk E N}. Note that X c_ X’. Fix a rational q and a positive integer such that
21zl*(h) _-< q < q + 2 -t < 1. Define from h a real-valued "density function"

d(x)=2 Ixl (BxCI
k=O

and an "approximate density function"

e(x, n) 2 I’1 tx(B 71Bh(o,)).
k=O

Note that each e(x,n)<=d(x) and limn_e(x,n)=d(x). Note also that for each
xE{O, 1}*,

(i) B
_
X’ implies d(x)>= 1, and

(ii) d(x)= 1/2[d(xO)+ d(xl)].
Define a clocked constructor by

tk(X)={xO if e(xO, r)<----q+2-t(1-2-k)
x otherwise,

where rh Im(Olxl+k+t+2)l. Since h, m A, it is easy to check that A.
Assume for a moment that d(x)<--q+2-t(1--2-k). Then (ii) tells us that

min {d (x0), d (x 1 } _-< q + 2-t( 2-k), whence e(k (X), rh --< q + 2-/( 1 2-k). It follows
that

d(a,(x))<-e(ak(X), rh) +21x1+1 E
j=

=<q + 2-1( 1 2 -k) + 21x1+12 -Ixl-k-l-2

=q+2-1(1--2-k-1).
Now define the clocked constructor g by gk(X)= 6k(), where )= z if xz and
x otherwise, and define the sequence Xo A, Xk+l 6"k(Xk). It is clear that g e A and

that ZXl, whence R(g)eBz. It is also clear that d(z)<=21zllx*(h)<=q, whence the
preceding paragraph provides an inductive proof that

(iii) d(Xk)<=q+2-1(1--2-k)
holds for each k_-> 1.

Now let k E N be arbitrary and let /= [h(0k)[ + 1. Then (iii) tells us that d(xr,)<-_
q+ 2-t< 1, soBx;-X’ by (i). In particular, then, B;,-Bh(ok). Since [x]->/> [h(0k)[
and R(g) Bx;, it follows that R(g) Bh(o). Since k is arbitrary here, it follows that
R (g) X’, whence R (g) X.

We now have 6A such that R() Bz\X. It follows that X does not contain
Bz ("I R(A).

THEOREM 5.9.
(1) A A-measure 0 set contains no basic set.
(2) A set of measure 0 in R(A) contains no basic set in R (A).
Proof Assertion (1) is immediate from assertion (2) via part (1) of Lemma 5.7.
To prove (2), let the null cover (h, m) testify that/x(XIR(A)) =0 and fix a basic

set Bz f-I R (A) in R (A). Then the pair (hlzl+ 1, mlzl+ 1) is a A-cover of X (’l R (A) with total
measure tx*(hlzl+l)<-2 -Izl-1 <2 -Izl. It follows by Lemma 5.8 that X does not contain
Bz CI R(A).
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By Lemma 5.7 and Theorem 5.9, the measure 0 subsets of R(A) are "small" subsets
of R().

Once again let X be the set considered in the first paragraph of this section. For
each k, IN, let hk(0t) xx, where x is the lth binary string of length >k, and let
mk(0t) =02’+’. It is easy to check that (h, m) is a pspace-null cover of the complement
of X, whence X has pspace-measure 1. On the other hand, we saw that X is p-meager,
hence certainly pspace-meager. It follows that X is meager and has measure 1 in
ESPACE. Thus, just as in the classical case, resource-bounded notions of category
and measure do not always agree as to which sets are small.

It is conspicuous that the resource-bounded measure theory developed so far
assigns measures of only 0 or 1 to sets of languages. We now present the basic ideas
of a more comprehensive resource-bounded measure theory and explain why sets of
intermediate measures are of very little interest in complexity theory.

The following definition is a generalization of Lebesgue’s original formulation of
measurability via inner and outer measure.

DEFINITION 5.10. Let X ({0, 1}*) and let Xe= ({0, 1}*)\X be the comple-
ment of X.

(1) X is A-measurable if there is a triple (g, h, m) A such that the following
conditions all hold for each k 6 N:

(i) (g, m) is a A-cover of X,
(ii) (h, m) is a A-cover of X e,
(iii) /*(gk)+/z*(h)-l+2-.

In this case, the real number

tA(X) lim /x*(g) 1 lim z*(h)

exists and is called the A-measure of X.
(2) X is measurable in R(A), i.e., X is an event in R(A), if there is a triple

(g,h,m)A such that conditions (i’), (ii’), and (iii) hold for each keN, where (i’)
and (ii’) are conditions (i) and (ii) above, with X and X replaced by X R(A) and
R(A)\X, respectively. In this case, the real number

/(X[ R(z)) lim/x*(g) 1-lim *(h)

exists and is called the measure of X in R(A).
It is easy to see that if X is A-measurable (respectively, measurable in R(A)),

then /xa(X) (respectively, /x(X[R(/X))) is well defined, i.e., does not depend on the
witness (g, h, m). Also, each of the conditions /XA(X) 0, /ZA(X) 1, /z(X[ R(A)) 0,
/x(X[ R(A)) 1 holds under Definition 5.10 if and only if it holds under Definition 5.5.

If A all, then A-measurability and measurability in R(A) are equivalent to each
other and to classical Lebesgue measurability in ({0, 1}*). Similarly, a set is measur-
able in R(rec) REC if and only if it is effectively measurable in the sense of Freidzon
[1972].

For an easy resource-bounded example, one can check that each B is p-measurable
with/zp(B) =/x (B). It follows easily that each B is measurable in E with/z (B, E)
x(B). As a cautionary example, however, note that B, fq E is not p-measurable for
any x.

We now give two useful lemmas. The first is immediate from Definition 5.10.
LEMMA 5.11. (1) If X is A-measurable, then X is measurable in R(A) and

(XIR())=(X).
(2) IfX is A-measurable and A c_ A’, then X is A’-measurable and tzx, X I X).
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LEMMA 5.12. (1) IfX is A-measurable and (h, m) is a A-cover ofX, then ix*(h)>=
(x).

(2) IfX is measurable in R (A) and (h, m) is a A-co2er ofX R(A), then I.t* (h) -tz(X[R(A)).
Proof. Assertion (1) follows immediately from assertion (2) by part (1) of Lemma

5.11.
To prove (2), let (g’, h’, m’) testify that X is measurable in R(A) and let k N

be arbitrary. Then (h,, m,) is a A-cover of R(A)\X with /x*(h,)_-<
2-k+lim,_oo/x*(h’,). Now (h, m) and (h,, m,) can be "woven together" to give a
A-cover (h",m") of R(A) with tx*(h")=tx*(h)+tx*(h’k ). By Lemma 5.8, then,
l <- tx *( h" tx *( h + tx *( h’k ), so tx *( h >= l tx *( h’k >- l im,_o tx *( h’, 2 -k

tx(XIR(A))-2 -k. Since k is arbitrary here, it follows that tx*(h)>-_tx(XlR(A)). [3

The following definition formalizes what it means for a class of languages to be
"insensitive to finite alterations."

DEFINITION 5.13. (1) TWO languages L1, L2 {0, 1}* are equivalent almost
everywhere, and we write L1--L2 almost everywhere, if their symmetric difference
L1A L2 is finite.

(2) A set X__ ({0, 1}*) is a tail set if for all L1, L2 c_ {0, 1}* such that L1 Lz
almost everywhere, L X if and only if L2 6 X.

In complexity theory, virtually all language classes of interest are tail sets. In
classical measure theory, the Kolmogorov 1933] zero-one law states that every measur-
able tail set has measure 0 or 1. We now prove a resource-bounded generalization of
this law. We first need a lemma.

LEMMA 5.14. IfX is a tail set that has a A-cover of total measure < 1, then X has
A-covers of arbitrarily small total measure.

Proof Let (h, m) be a A-cover of the tail set X with /x*(h)= r < 1. Fix k such
that r2+2-k<r3/ and let n be the maximum of all Ih(0i)] for 0<-i<rfi, where
r ]m(0k)]. Let Wo, w,..., w.-i be a list of distinct strings of length n such that
U{Bw,[O<= < s} [..J{Bh(o’)10 -< < rfi}. Define from h a real-valued density function d
exactly as in the proof of Lemma 5.8. Note that d(wi) _-> 1 for0_-< < s. Fix a string u
of length n such that d(u)<=r. (This u exists because d(A)=r and each d(x)=
1/2[d(xO)+d(xl)].)

Now modify the list h(A), h(0), h(02), as follows"
(i) Delete the first rh entries.
(ii) In each place where there is an entry of the form uv, insert the entries

WoV," Ws-lV immediately after.
Since k, rh, n, s, the list Wo, , W-, and u are all constants, there is an enumerator

h’6 A such that the resulting list is exactly h’(A), h’(O), h’(O), Also, the function
m’cA defined by m’(x)= m(x0S+l) +1 is clearly a modulus for h’, i.e., (h’, m’) is a
A-cover. In fact, since X is a tail set, (h, m) is a A-cover of X, and h’ replicates on
each X ffl Bh(o’), 0 -< < rh, the cover of X f’l B, by h, (h’, m’) is a A-cover of X. This
new A-cover of X has total measure

ix*(h’)= s2-"d(u)+ tx(Bh(o,))<=lx*(h)d(u)+2-k<=r+2-k<r3/.
i=

We have now shown that if r < and X has a A-cover of total measure r, then it
..3/2 convergeshas a A-cover of total measure of <r3/. Since the sequence ro r, r,+ ,,

to 0, this proves the lemma. 13
We now prove the zero-one law for resource-bounded measure.
THEOREM 5.15. (1) IfX is a A-measurable tail set, then ix(X)=0 or Ixa(X)= 1.
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(2) If X is a tail set that is measurable in R A then i X R A O or

(xl R(a))-- .
Proof. Assertion (1) follows immediately from assertion (2) by part (1) of Lemma

5.11.
To prove (2), let X be a tail set that is measurable in R(A) and assume that

(X[ R(A)) < 1. Let e > 0 be arbitrary. By Definition 5.10, X KI R (A) has a A-cover of
total measure <1, whence by Lemma 5.14, it has a A-cover (h, m) with/z*(h) < e. By
part (2) of Lemma 5.12, then, i(XIR(A))<. Thus/z(XIR(A)) =0. V1

As we have noted, most sets of interest in complexity theory are tail sets. By
Theorem 5.15, every measurable tail set in R(A) has measure 0 or 1 in R(A), so sets
of intermediate measure are of very little complexity-theoretic interest. We should
emphasize, however, that for resource-bounded notions A, measurability in R(A) is a

very strong hypothesis. Thus we do not interpret Theorem 5.15 to mean that sets of
interest necessarily have measure 0 or 1. The third possibility, nonmeasurability in
R(A), must be considered.

In this section we have presented a mere beginning of resource-bounded measure
theory. We have not selected an axiomatization, we have restricted attention to measures
induced by the usual Lebesgue measure on ({0, 1}*), and we have omitted even the
most basic properties of measurable sets (e.g., they form a "A-algebra," the measure
is monotone and "A-additive," etc.). The only theorems we have proven are 5.9, the
nontriviality ofthe measure, and 5.15, the resource-bounded zero-one law. Nevertheless,
we have enough to begin applying the theory to the structure of exponential complexity
classes.

6. Resource-bounded Kolmogorov complexity. Theorem 1.2 says that some
languages in ESPACE have high space-bounded Kolmogorov complexity. In this
section we prove that, with respect to both category and measure, nearly all languages
in ESPACE have this property. We then prove an analogous but weaker result for
exponential time complexity classes.

THEOREM 6.1. For any c>0 and b< 1, the set of all languages L such that
KS[2Cn](L<=n) < b. 2 n/l almost everywhere is pspace-meager and has pspace-measure O.

Proof. Let X be the set of all such L, where we assume without loss of generality
that c is a positive integer and b is a rational between 0 and 1.

To see that X is pspace-meager, it suffices by Theorem 4.3 to exhibit a winning
strategy/3 for player II in the game G[X; all, pspace]. Let /3 be defined as follows.
(Recall that So, sl, s2," is the standard enumeration of {0, 1}*.)

begin
input x;
n :=the least integer such that (1-b)2"+l->lxl+ 1;
while Ixl < 2"+1 1 do
begin//decide Slxl//

VOTE;
if yes < 1/2(total)

then x := x
else x := x0

end while;
output x

end/3.

The macro VOTE operates as follows.
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begin
yes, total, 7r := O, O, h
while < b" 2"+1 do
begin

if OK (r, n,x) then
begin//r gets to vote//

total := total + 1;
if U((r, slxl) outputs 1 in -<2 space

then yes := yes + 1
end if;
r := next (r)

end while
end VOTE.

The predicate OK(r, n, x) here asserts that Ixl <2"+1-1, U((r, si)) halts in =<2 space
for each 0 =< =< [x[, and U((-, si)) outputs the ith bit of x for each 0 _-< < Ixl. It is clear
that this condition can be tested in space polynomial in 2" + Ix + [rl, whence it follows
easily that/3 pspace.

Now fix one of the values of n computed by player II during a play (a,/3) of the
game, where a is an arbitrary strategy for player I. For each Ixl-<j_-<2 "+1-1, let
total(j) be the final value of total computed by VOTE during the while-loop cycle in
which /3 decides sj. (Here Ix[ denotes the length of the original input to /3 and we
insist that total(2"+1-1) be defined even though the corresponding cycle of the
while-loop is not actually executed.) Then /3 ensures that 0=<total(Ixl) <2 b’2’’+’ and

total(j) for Ixl-<j < 2 "+1 1 It follows from these and the choice of0 <= total(j + 1
n that 0=<total(2"+1-1) < 1, whence total(2"+l- 1)=0. But this implies that KS[2"]
(R(a,B)<=,)>=b 2 "+1. Since /3 establishes this condition for a different value of n
during each of player II’s turns, it follows that R(a,B)C_X. Thus /3 wins
G[X; all, pspace] for player II, so X is pspace-meager.

We now turn to the proof that X has pspace-measure 0. For each j 6 N, let X be
the set of all languages L such that KS[2"](L<=,)<b 2 "+1 holds for all n_->logj.
Clearly, X tA{X [j N}. By Lemma 5.7, it suffices to show that this union is in fact
a pspace-union of pspace-measure 0 sets.

Fix j, k N for a moment and choose the least n N such that (1 b)2 "+1 =>j + k + 2.
Let 7r(), 7r

(N-l) be the lexicographic enumeration of all programs zr of length
<b. 2 "+l such that U((Tr, x)) halts in _-<2 space for all Ix[ _-< n. Then it is easily checked
that there is an enumerator hjk pspace such that

2"+’- ifl<NU((TI’(’), Si))i:Ohik()
0+t+ if l_-> N

holds for each N. In fact, since 2" is linear in j + k, there is a function h pspace
such that this holds for all j, k, N. Similarly, there is a function m pspace such
that m(0) --0 N/l for all j, k, N. It is now routine to check that each (h, m) is a
pspace-cover of X with total measure/x*(hk) =< 2 -. It follows that each (hi, m) is a
pspace-null cover of X, whence (h, m) testifies that X is a pspace-union of the
pspace-measure 0 sets X.

COROILAR 6.2. For any c>0 and b < 1, the set of languages L with KS[2"]
(L_<_,) _-> b. 2 "+1 infinitely often is comeager and has measure 1 in ESPACE.

If the game strategy/3 used in the first part of the proof of Theorem 6.1 is played
against itself, then the result R(/3,/3) is essentially the language constructed by Huynh
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[1986b] in his proof of Theorem 1.2. In this sense, Theorem 1.2 is an immediate
corollary of Theorem 6.1.

A simple modification of Theorem 6.1 and its proof gives the following result,
which will be useful in 7.

COROLLARY 6.3. For any c >0 and b < 1, the set of all languages L such that
KS[2cn](L=n)<b 2 almost everywhere is pspace-meager and has pspace-measure
O.

The situation in exponential time complexity classes is not as well understood as
the situation in ESPACE. It is reasonable to conjecture that E contains languages
whose KT-complexities are superpolynomial, but this implies E P/Poly, which is a
major open problem of complexity theory and cannot be proven by relativizable
methods.

Here we prove a weaker analogue of Theorem 6.1. In order to formulate this
result, we use the G-hierarchy of 2 to define the following hierarchy of time-bounded
Kolmogorov complexity classes.

DEFINITION 6.4. For each -> 1,

KE; {L KT[2G,-,](L<_n) Gi_l}.

Each KEi is an uncountable nonuniform complexity class. Nevertheless, these
classes have the following useful properties.

LEMMA 6.5. For each i>=l, Ei_KE_KEi+I and KEi+ is closed under
< P’-reductions and Gi closeness.---T

Proof It is obvious that KEi KE+I. If L E, then KT[2G’-,](L=n) is bounded,
so it is also clear that Ei_ KE.

P.Assume L’ _-< L KE+I. Then there exist a Gi-time-bounded oracle machine M
and a sequence 7r), 7r), of programs such that L’=L(MI), ]Tr")lG, and
U((Tr"),x)) decides whether x L in G/(n) time for all x{0, 1} --<- and n N. For
each n, then, consider a program " which simulates M, using 7r

’n) to answer oracle
queries, where G is a bound on the running time of M. It is easily checked that
the programs - testify that L’ KE+. This proves that KE+I is closed under
< P’-reductions---T

Finally, assume L’ is G close to KEi/, i.e., that I(L’/L)<__,IGi for some
LKE/1. Then, since i_->l, each (L’GL)<= has a listing whose length is G as a
function of n. These listings can then be combined with programs testifying that
L KEi+ to get programs testifying that L’ KE+. Thus KEi+ is also closed under
G closeness. [3

We now prove a time analogue of Theorem 6.1. This says that most languages in

E+ have high KT-complexity in the sense that they are not in KEi.
THEOREM 6.6. For i--> 1, KEi is Pi/l-meager and has p+l-measure O.
Proof Let X be the set of all languages L such that KT[2’,")](L<__n) < (n) almost

everywhere. Then KEi X, so it suffices to show that X is p/-meager and has
pi+-measure 0.

To see that X is p+-meager, modify the strategy/3 used in the proof of Theorem
6.1 in the following ways.

(i) In the assignment to n, replace (l-b)2 "/ with 2 ".
(ii) In VOTE, replace b. 2+ with (n) and replace 2 space with 2,) time.

Since 2e,n) +1(2") and 2" is linear in Ixl, it is easy to check that the modified strategy
/3 runs in Gi+ time, i.e., that/3 p+. Also, in a play (a,/3) of the game, player II
establishes the condition 0 =< total(2"+ 1) < 2’,’)-2’’ for a different value of n during
each of his turns. Since (n) o(2n), it follows that total(2"+- 1) =0 for all sufficiently
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large such n, whence R(a,)X. That is,/3 wins G[X; all, pi+l] for player II, so X
is pi+l-meager by Theorem 4.3.

Now for each j N, let X be the set of languages L such that KT[2,(")](Ln)<
i(n) for all n_->logj. We will show that X is a Pi+l-union of the pi+l-measure 0 sets

Since 2,(gk)-> i((log k))+ k+2 holds for all but finitely many k, there is a
finite modification g of such that g(k)>-k and 2n>-i(n)+k+2 hold for all k and
all n _-> g(log k).

Now, given j and k, we let n g(log (j+ k)). This is easily computed and 2" is

G+I as a function of j + k.
There are fewer than 2 ,(") +1(2") programs r of length <(n). The total time

to run U((r, x)) for 2,(") steps for each such 7r and each x {0, 1}" is thus Gi+l as
a function of 2", hence as a function ofj + k. Using this simulation, we can now imitate
the second half of the proof of Theorem 6.1 to get (h, m) p+ such that each (hjk, mjk)
is a p+-cover ofX with total measure *(hk) <---- 2 -k. This shows that X is a pi+-union
of the p+-measure 0 sets X., whence X has pi+l-measure 0 by Lemma 5.7.

COROLLARY 6.7. For i_--> 1, KE is meager and has measure 0 in E+.
The case 2 here says that most languages in E have superpolynomial time-

bounded Kolmogorov complexity.

7. Small circuits in exponential classes. Theorem 1.1 separates ESPACE from
P/Poly f3 ESPACE. In this section we widen this separation by proving that P/Poly is
meager and has measure 0 in ESPACE. We then examine circuit-size complexity in
exponential time complexity classes and prove, among other things, that P/Poly is
meager and has measure 0 in E3.

This investigation of small circuits in exponential complexity classes was our
original motivation for the development of resource-bounded category and measure.
Consequently, the main results of this section were originally proven directly. Here,
however, we use Lemmas 7.1 and 7.5, both of which express a well-understood
relationship between Kolmogorov complexity and circuit-size complexity, to easily
derive the present results from those of 6. For both ofthese lemmas, we fix a one-to-one
coding scheme

# "{circuits}{0, 1}*

and a constant k# 6 N such that
(i) given w, y{0, 1}*, a deterministic TM can compute in polynomial time

whether y is the code of a circuit c with wl inputs and, if so, the output of c on input
w;

(ii) I#(c)l < k# size(c) log(n +size(c)), where n is the number of inputs to c.
LEMMA 7.1. If f is a nontrivial circuit-size bound, then every L6 SIZE (f) has

KS[2"](L=n) < 2-1 almost everywhere.
Proof Let f be such a bound and let

h(n) k#g(n) log (n + g(n)),

where g is a nontrivial circuit-size bound chosen so thatf o(g). Note that h(n) o(2").
Now assume L SIZE (f) and for each n N, let c, be a minimum-size circuit

computing L=,. Then for each n, we can combine a circuit-simulating machine M
with the circuit code #(c) to get a program r" such that the following conditions
hold for almost every n"

(i) Ir(") < h(n) <
(ii) For each x {0, 1}", U((r("), x)) correctly decides whether x L in _-<2" space.
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That is, the programs 7r
") testify that KS[2"](L=,)<2- almost everywhere. [3

From Lemma 7.1 and Corollary 6.3, we immediately get the following theorem.
THEOREM 7.2. Iff is any nontrivial circuit-size bound, then SIZE (f) is pspace-

meager and has pspace-measure O.
(The category portion of Theorem 7.2 was proven directly by a voting argument

in Lutz [1987].)
COROLLARY 7.3. Iff is any nontrivial circuit-size bound, then SIZE (f) is meager

and has measure 0 in ESPACE.
COROLLARY 7.4. P/Poly is meager and has measure 0 in ESPACE.
We now turn to the matter of small circuits in exponential time complexity classes.

Here it is convenient to use the KE-hierarchy introduced in 6.
LEMMA 7.5. If >- 1, then SIZE (Gi)_ KEi+I.
Proof Let f be an arbitrary circuit-size bound in Gi. Since i_-> 1, we can choose

g G such that f= o(g). If we then define h from g as in the proof of Lemma 7.1,
we will have h Gi also.

Now assume L SIZE (f). Then an easy modification of the argument used in
the proof of Lemma 7.1 shows that KT[G](L<=,)G, whence LKE/I. Thus
SIZE (f)_ KEi+,. [3

From Lemma 7.5 and Theorem 6.6, the following theorem is immediate.
THEOREM 7.6. If i>= 1, then SIZE (G) is p+a-meager and has p+a-measure O.
COROLLARY 7.7. P/Poly is meager and has measure 0 in E3.

If we fix a particular circuit-size boundf G (i=> 1) and a language L SIZE (f),
then the proof of Lemma 7.5 gives us a function g Gi such that KT[g(n)](L=) < g(n)
almost everywhere. It follows by the proof of Theorem 6.6 (with replaced by g) that
SIZE (f) is pi+-meager. This argument gives us the following corollaries. (Recall that

Ez EXP.)
COROLLARY 7.8. If > 1 and fGi, then SIZE(f) is Pi+l-meager and has

pi+-measure O.
COROLLARY 7.9. For each keN, SIZE (n k) is meager and has measure 0 in E2.
Since Wilson [1985] exhibits oracles under which E2_ P/Poly and E SIZE (n),

Corollaries 7.7 and 7.9 take us about as far as we can go with relativizable techniques.

8. Information accessible by reducibilities. As mentioned in 1, most intractability
proofs for specific problems have taken the same form. Here we describe the more
general reducibility method, which includes this form as a special case but may also
lead to new lower bound arguments.

The reducibility method can be stated simply and informally as follows. Given a
language L, let (L) be the set of all languages that are efficiently reducible to L.
Then the size of G(L), which is a measure of the amount of G-accessible information
in L, provides a lower bound for the complexity of computing L.

In applications of this method, which are taken here as paradigmatic, the size of
G(L) is simply the matter of whether or not G(L) contains a particular complexity
class f, i.e., whether or not L is G-hard for . To date, most uses of the reducibility
method have followed this paradigm.

The recently proven Theorems 1.3 and 1.4 show that the paradigmatic reducibility
method also gives lower bounds for "approximate recognition" of languages.

The primary weakness of the paradigm is its extremely primitive interpretation of
the "size" of G(L). Unless L is G-hard for , i.e., contains all information about
in G-accessible form, the paradigm deems G(L) to be small and offers no nontrivial
lower bound. Since most interesting intractable problems are probably not hard for
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classes now known to contain intractability, this limitation is a severe one. It means,
for example, that Theorems 1.3 and 1.4 are not likely to be applicable to interesting
problems.

The remedy we propose is to use resource-bounded category and measure to refine
this primitive notion of size. If we do this, then the reducibility method, as stated
above, gives a quantitative relationship between the G-accessible information content
of L and the computational complexity of L.

P.The specific reducibilities of interest here are =m,
< P =T,<

p
=T<PSPACE, and < (i>= 1).

It is thus convenient to define the set P,,(L)= {L’] L’ <-P, L}, and to define the sets
Pr(L), PSPACEr (L), and Pi-(L) similarly from the other reducibilities.

Under the hypothesis that L is 2n close to P for every c > 0, Theorems 1.3 and
1.4 tell us that E Pm(L) and ESPACE P(L), respectively. In 9 and 10 we will
show that this hypothesis in fact implies that P,,(L) is meager in E and that
PSPACEr (L) is meager and has measure 0 in ESPACE. That is, we replace conclusions
of the form (L) with conclusions asserting that (L) is a very small subset
of . Put differently, we replace conclusions stating that L does not contain all
information about in G-accessible form with conclusions stating that L contains
very little G-accessible information about % Although these new conclusions appear
to be considerably stronger, this has not been proven. We thus formulate the following
hypotheses.

DEFINITION 8.1. If is a complexity class and is a reducibility, then the
category partial information hypothesis for and is the assertion PIHcategory (c, ),
which says that there is a language L such that (L) does not contain and

(L) is not meager in . The measure partial information hypothesis PIHmeasure (c, )
is defined similarly, except that "meager" is replaced by "measure 0."

Thus partial information hypotheses assert the existence of languages containing
"substantial but incomplete" information about in G-accessible form.

We make the following three conjectures.
CONJECTURE 8.2. PIUcategory (E, =<) holds.
CONJECTURE 8.3. PlUcategory (ESPACE, =< PTSPACE) holds.
CONJECTURE 8.4. PlUmeasur (ESPACE, _.SPACE) holds.
If any of these conjectures hold, then the results of the following two sections do

indeed increase the power of the reducibility method.

9. Information accessible in polynomial space. Theorem 1.4 says that, if L is 2
close to P for every c > 0, then Pr(L) does not contain all of ESPACE. In this section
we prove the stronger result that, if L is 2 n close to DSPACE (2") for every c > 0,
then PSPACEr (L) is meager and has measure 0 in ESPACE. That is, a language that
is approximable in feasible space does not contain significant polynomial-space-
accessible information about ESPACE.

The key to Huynh’s proof of Theorem 1.4 is Theorem 1.2, the existence of ESPACE
languages with high space-bounded Kolmogorov complexity. Theorem 6.1, which says
that most languages in ESPACE have this property, plays an analogous role in this
section.

We first prove that almost all languages in ESPACE are very hard to approximate.
THEOREM 9.1. If C>0 and b > 1, then the set of languages that are 2+l/bn far

from DSPACE (2") is pspace-comeager and has pspace-measure 1.

Proof Fix such c and b and suppose L is in the complement of this set, i.e., that
there is an O(2") space-bounded machine M such that ](LAL(M))=n]<2n+/bn
almost everywhere. Fix 0 < c’ < c and 1/b < b’ < 1. Then for each n we can combine a



CATEGORY AND MEASURE IN COMPLEXITY CLASSES 1127

description of M with a listing of (L2xL(M))=n to get a program r(n) such that the
following conditions hold for almost all n.

(i) 137"(n) < b’, 2 n+l
2n+1-2 c’n(ii) U((r(n), si))i=o L_<_n in _-<2 space.

That is, the programs r() testify that KS[2C’](L<=) < b’. 2 +1 almost everywhere. By
Theorem 6.1, the set of all L’s with this property is pspace-meager and has pspace-
measure 0. [3

COROLLARY 9.2. If C > 0 and b > 1, then the set of languages that are 2+/ bn far
from DSPACE (2 c) is comeager and has measure in ESPACE. [3

We now give our improvement of Theorem 1.4.
THEOREM 9.3. IfL is 2 elose to DSPACE (2n) for every c > O, then PSPACEr (L)

is pspace-meager and has pspace-measure O.

Proof Let X be the set of languages L such that KS[2n"](L=)<2 "" holds almost
everywhere for every c > 0. If the hypothesis holds, then an argument like that in the
proof of Theorem 9.1 shows that L X. Since Theorem 6.1 says that X is pspace-meager
and has pspace-measure 0, it thus suffices to prove that X is closed under < PSPACE

----T

Assume L’ < PSPACE
r L X. Fix a q(n)-space-bounded oracle machine M such that

L’= L(ML), where q is a polynomial. Also, for each c > 0 and n N, fix a program
r(c, n) testifying to the value of KS[2""](L<=).

Now for each c and n, consider a program r’(c, n) which simulates M, using
r(c, q(n)) to answer oracle queries. Then there is a constant d > 0, not depending on
c or n, such that for almost all c, for almost all n, the following conditions hold.

(i) [’rr’(c, n)l<--2q(n)+ d.
(ii) For all x {0, 1} --<", U((r’(c, n), x)) decides whether x L’ in <-_q(n)+2q(")+

d space.
Now let c>0 be arbitrary and choose c>0 such that q(n)+2q(""<2 "’l almost

everywhere. Then the programs r’(c,n) testify that KS[2"’I](L .c,,) < 2 almost
everywhere. Thus L’ X, whence X is indeed closed under =r<

PsPacE and the proof is
complete. [3

COROLLARY 9.4. If L is 2 close to DSPACE(2n) for every c>0, then

PSPACEr (L) is meager and has measure 0 in ESPACE.
Thus, if a language can be shown to contain significant polynomial-space-access-

ible information about ESPACE, it will follow that the language is not very close to
PSPACE.

10. Information accessible in polynomial time. If Conjecture 8.3 or Conjecture 8.4
holds, then 9 already extends the class of languages that can be proven intractable
by the reducibility method. However, any language that is susceptible to the method
of 9 still must lie "well outside" of PSPACE. Since most languages that we would
like to prove intractable are elements of PSPACE, it follows that we need a finer
method, i.e., a method that applies to a finer reducibility.

Theorem 1.3 says that, if L is 2 "" close to P for every c > 0, then Pm(L) does not
contain all of E. In this section we show that, if L is 2 "’ close to DTIME (2 "’) for
every c > 0, then Pm (L) is actually meager in E. That is, a language that is approximable
in feasible time contains only meager _-< pro-accessible information about E. If Conjecture
8.2 holds, this strengthens Theorem 1.3.

The basis of 9 is Theorem 6.1, which says that most ESPACE languages are
incompressible in a space-bounded algorithmic sense. Similarly, the present section is
based on Theorem 10.2 below, a technical result which says, in part, that most languages
in E are incompressible in a time-bounded, many-one sense. The following definition,
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which specifies this sense, uses the function mg(n) [{x {0, 1}=" Zly {0, 1}n[x y
and g(x)= g(y)]}[ to quantify the rate at which a function g" {0, 1}*- {0, 1}* fails to
be one-to-one.

DEFINITION 10.1. (1) A language L is f(n)-incompressible by _-<P-reductions, if
every _-<P-reductionm g of L has mg(n)<-_f(n) for infinitely many n. If every
_-< P -reduction g of L is one-to-one almost everywhere (i.e., if every such mg is bounded)
then L is strongly incompressible by --< p -reductions.

(2) A language L is simultaneously f(n)-incompressible by _-<P-reductions and
h(n) far from a set X of languages if for each --<Pro-reduction g of L and each language
L’X there are infinitely many n for which mg(n)<-f(n) and [(LAL’)=n[>-h(n) both
hold.

THEOREM 10.2. For any e >0, any a>0, and any nondecreasing, unbounded
function f(n) that is computable in 2( time, the set of all languages that are simul-
taneously 2-incornpressible by <-_P-reductionsm and 2"+l/f(n) far from DTIME (2 a")
is p-comeager.

Proof Let X X(e, a, f) be the set of all such languages, where we assume without
loss of generality that e_-< 1 and f(n)_-__2 for all n. Let Mo, M1,’’" and To, T1,’’"
be standard enumerations of the Turing machine acceptors and transducers, respec-
tively.

If Tk is a transducer and x, y {0, 1}*, we say that Tk(x)= Tk(y) in time if
Tk(x)- Tk(y) and Tk halts in -<t steps on each of the inputs x and y. We then say
that x defies Tk if there exist <j < Ix[ such that the ith and jth bits of x are different
but Tk (si) Tk (sj) in time [x[.

If x defies Tk and x=__ L, it is clear that Tk is not a many-one reduction of L. It
is also clear that the predicate "x defies Tk" can be evaluated in time polynomial in [x[.

Now let (R)(k, i,j, x, n) be a predicate asserting that k < [x[, x does not defy Tk,
i<j, [x[ _--<j < 2"+l --1, and Tk(Si) Tk(S) in time 2 n+l. Note that the condition
(=lk, i,j)(R)(k, i,j, x, n) can be tested in time polynomial in Ix[+ 2. Consider the strategy
fl fl(e, a,f) defined as follows.

begin
input x;
z, n, {:= x, [e -1 log (2+ Ixl)], o;
if (:lk, i,j)(R)(k, i,j, x, n)

then fix such i, j with k minimum
else i,j := O, 1;

while Iz[ < 2+1 1 do
cases

[zl-i:
Izl-j:

[3 else:

z :: Z0
z :: zb, where b is the negation of the ith bit of z
if Me accepts Slz in _-<2 (a+l)" time

then z, (:= zO, ((+ 1) mod If(n)/4J
else z, E:= zl, (E+ 1) mod [f(n)/4J

end cases and while;
output z

end ft.

Since 2" is polynomial in Ix[ here, it is easy to check that/3 p. In fact, we will
show here that /3 is a winning strategy for player II in G[XC; all, p], where Xe=
({0, 1}*)\X(e, a,f). To this end, let L-R(a,/3), where a is an arbitrary strategy
for player I. It suffices to show that L X.
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Fix a <-Prn-reduction g of L and a language L’ DTIME (2 an), with witnesses Tk
and Me, respectively.

Since g Tk is a reduction of L, no initial segment of L defies Tk. This implies
that the first if-test in /3 is not true with k as the least witness during any move by
player II. Since Tk runs in polynomial time, this in turn implies that, for all but finitely
many of player II’s moves, mg(n)<-lxl<2.

The machine Me runs in O(2an) time on any input in {0, l} <--n, so the while-loop
in /3 ensures that, for all but finitely many of player II’s moves, I(L/L’)__<I->
[(2 "+’- Ixl- 3)/[f(n)/4JJ >-_ (2n+3-4lxl- 12)/f(n) 1 ->_ (2 "+2-12)/f(n) >-_ 2+l/f(n).
Since g and L’ are arbitrary here, we have now shown that L X. Thus /3 does
indeed win G[XC; all, p] for player II, so Theorem 4.3 tells us that X is p-co-
meager.

COROLLARY 10.3. For any e > O, any a > O, and any nondecreasing, unbounded
function f(n) that is computable in 2 time, the set of all languages that are simul-
taneously 2n-incompressible by <-P-reductions, and 2n+I/f(n) far from DTIME (2
is comeager in E.

If the game strategy /3 used in the above proof is played against itself, where
e c and f(n) n, then we get the following result, which is the basis of Sch6ning’s
proof of Theorem 1.3.

COROLLARY 10.4. There is a language L E which is strongly incompressible by
Pro-reductions and 2/n far from P.

If we ignore the incompressibility in Theorem 10.2, then we immediately get the
following.

THEOREM 10.5. If C > 0 andf(n) is any nondecreasing, unbounded function that is
computable in 2) time, then the set of languages that are 2+/f(n) far from
DTIME (2’) is comeager in E.

Since f(n) may be an extremely slow-growing function, this is a very strong
nonapproximability theorem. It says that, in the sense of category, most languages in
E cannot be approximated with an error rate that converges to 0 in any feasible way.

We finally come to our improvement of Theorem 1.3.
THEOREM 10.6. If L is 2 close to DTIME (2 "’) for every c>0, then P,(L) is

p-meager.
Proof Assume that P,(L) is not p-meager and let X be the set of languages in

Theorem 10.2, where e 1/2, a 1, and f(n)= n. Since X is p-comeager, there is a
language A X (’1 Pro(L). Fix such, let g be a Pm-reduction of A to L, let q be a
polynomial such that Ig(x)l <- q(Ixl) for all x, and choose 0< c < b such that q(n) b <-_ n
almost everywhere. We will show that L is 2 "’ far from DTIME (2n").

Let L’DTIME(2""). Then g-I(L’)DTIME(2") and AX, so there exist
infinitely many n such that m(n)<-_2/2 and I(AAg-l(L’))<=,l>-2n+/n. For any
sufficiently large such n we thus have I(L/L’)<=q,,l>=(2n+l/n) 2/2->_2 In>-2
2 q")’. Since L’e DTIME (2 "’) is arbitrary here, it follows that L is 2 "’ far from
DTIME (2"").

COROLLARY 10.7. IfL is 2 "" close to DTIME (2 "’) for every c>0, then P,(L) is

meager in E.
Thus, if a language L can be shown to contain nonmeager =,,<

P -accessible informa-
tion about E, it will follow that the language is not very close to P. In fact, the proofs
of Theorems 10.2 and 10.6 show that this will follow if it is just shown that player II
does not have a winning strategy for the game G[Pm(L); all, p].

It is not known whether Theorem 10.6 holds with Pr(L) in place of P,,(L) or
with "measure 0" in place of "meager," but it is now easy to get the following much
weaker result.
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THEOREM 10.8. If >- 1 and L is Gi close to Ei+, then PiT(L) is pi+2-meager and
has pi+2-measure O.

Proof By Lemma 6.5, the hypothesis implies that PiT(L)_ KEi+I, so this follows
immediately from Theorem 6.6. [3

COROLLARY 10.9. If L is polynornially close to E2, then Pr(L) is meager and has
measure 0 in E3.

11. Conclusion. Resource-bounded category and measure have been introduced
and shown to reveal new structure in many complexity classes. This structure has been
used to refine known relationships between uniform and nonuniform complexity
measures. It has also been used as the basis for a new formulation of the reducibility
method.

The important open questions here concern the partial information hypotheses.
If any of Conjectures 8.2, 8.3, or 8.4 hold, then the newly formulated reducibility
method is indeed more powerful than the old one. Of course it would be ideal for
these conjectures to be shown to hold with interesting, natural problems as witnesses,
as the work here then gives lower bounds for such problems.

In any case, it is already clear that resource-bounded category and measure interact
in interesting ways with resource-bounded reducibilities, nonuniform complexity
measures, approximation, and other much studied structural aspects of complexity
classes. It is expected that the study of such interactions will continue to yield clarifying
insights.
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COMPUTING PUISEUX-SERIES SOLUTIONS TO DETERMINANTAL
EQUATIONS VIA COMBINATORIAL RELAXATION*

KAZUO MUROTA

Abstract. Let A(t, x) (A0.(t, x)) be a square matrix with Aij being a polynomial in and x. This paper
proposes an algorithm for computing the Puiseux (= fractional power) series solutions x x(t) to the
equation det A(t, x) 0. The algorithm is based on an observation which links the Newton diagram (polygon)
for det A(t, x) with the perfect matchings of a bipartite graph associated with A. The algorithm is efficient,
making full use of available fast network-type algorithms.

Key words, computer algebra, determinant, Newton diagram (polygon), Puiseux-series expansion,
combinatorial optimization, convex hull, parametric assignment problem, sensitivity of eigenvalues
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1. Introduction. Let A(t, x) (Ao(t, x)) be an n n matrix with

(1) Aij(t, x)-- ’ Aijrstrx s,
sZ rQ

where the coefficients AijrL are elements of a certain field, and the summations are
assumed to involve a finite number of terms.

We are interested in the computational procedure for the Puiseux (= fractional
power) series solutions x x(t) to the equation det A(t, x)=0. This problem arises in
many different contexts; we may be interested in the sensitivity of the (generalized)
eigenvalue x of the matrix A which is subject to a perturbation t. In fact, the author
was motivated by a problem of this type which appeared in the sensitivity analysis of
bifurcation phenomena of truss structures (Ikeda and Murota [16]).

If we could explicitly compute the expansion

(2) f( t, x) det A( t, x) ] frLtrx

to find r(s)= min {rlfrs 0} for each s, then we could apply the standard procedure
using the Newton diagram (polygon) that computes the Puiseux-series solutions of an
algebraic equation (see 2.1 for details). This method plots all the points (s, r(s)) on
a plane and considers the convex hull (or convex epigraph, to be more precise) of
those points; the slope p of the sides of this convex polygon gives the order of the
first term x---’t-p in the Puiseux-series solutions.

The present work is motivated by the following observations"
(1) Even when the matrix A is moderately sized, say, n 10, explicit enumeration

of all the nonzero coefficients fr would be prohibitively time- (and memory-) con-
suming.

(2) The exponent p is determined by those pairs (s, r) which correspond to the
extreme points (or vertices) of the convex hull. The other points (s, r) lying inside
contribute nothing, and therefore, need not be computed.
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(3) There is a close relation between the nonzero terms frs and the perfect
matchings of a bipartite graph associated with A. So long as no accidental numerical
cancellation occurs in the determinant expansion, the extreme points (s, r) can be
identified by solving a parametric assignment (or weighted bipartite matching) problem
(see 3 for the details).
The present work is an attempt to establish a link between computer algebra [3], [9],
[24] and mathematical programming (combinatorial optimization [18], in particular).
We make use of results in mathematical programming in two different ways. First, the
proposed algorithm uses the results from network flow theory in its individual steps;
the correctness relies on the duality theorem and the practical efficiency on the fast
network-type algorithms. Second, the whole algorithm is designed in line with some
general methods known in mathematical programming. In particular, we make use of
the idea of "relaxation" (and "cutting plane") which typically appears in integer
programming [25], and also the idea of "artificial variable" which appears in the
simplex method in linear programming [5], [8].

The basic idea of the proposed algorithm may be described in general terms as
follows. As mentioned above, the exponent in x 3it

-p is determined from the extreme
points of

N(A)={(s,r)lfr,O}.
Instead of working directly with N(A), we consider its combinatorial counterpart
N(A) based on the relation between the nonzero terms in detA and the perfect
matchings in a bipartite graph associated with A. The combinatorial counterpartN(A),
to be called the "combinatorial relaxation" to N(A), has the properties that N(A)_
N(A) and that N(A)= N(A) if no numerical cancellation occurs in the determinant
expansion of A. The combinatorial relaxation/Q(A) has the computational advantage
that the extreme points can found by efficient network-type algorithms.

In our algorithm we first solve the easier problem defined by the relaxation/Q(A),
hoping that the solution thus obtained is also valid for the original problem defined
by N(A). If the solution is not good for N(A), we modify the matrix A slightly, so
that N(A) is kept invariant and at the same time the invalid solution is eliminated
from the relaxation. In summary, the proposed algorithm consists of the following
three phases:

Phase 1. Finding a solution to the relaxation.
Phase 2. Testing for the validity of this solution in the original problem.
Phase 3 (In case of invalid solution). Modifying the relaxation so that the invalid

solution is eliminated.
It would be worthwhile comparing our present approach to the cutting-plane

method in integer programming, as follows. To be specific, consider an integer program"

Minimize cx subjectto x S,

where

S S(A) {xlAx >-_ b, x Z"}.

The cutting-plane method first solves its relaxation to a linear program:

Minimize ex subject to x S,

where

,= (A)= {xl Ax>= b},
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and then tests for the integrality of the solution : of the relaxation; in case : is not
integral, it modifies A by introducing an additional constraint (cutting plane) in such
a way that no longer belongs to (A) and S(A) is not changed. The three general
phases mentioned above should be evident in this context.

The outline of this paper is as follows. In 2 some fundamental results on the
Newton diagram and the weighted bipartite matching are described. In 3 the key
concept of "combinatorial relaxation" to the Newton diagram is introduced. In 4
the basic approach of the proposed algorithm is explained, while the major steps of
the algorithm are described in 5-8, and the whole algorithm is shown in 9. The
termination and the complexity of the algorithm are discussed in 10. Notation is listed
in the Appendix.

2. Preliminaries.
2.1. Newton diagram. Consider a polynomial in x and in a fractional power of t"

(3) f(t, x) frstrX s,
sZ rQ

where the coefficients frs are elements of a certain field, and the summations are
assumed to involve a finite number of terms.

We describe the method of a Newton diagram (polygon) for obtaining the solution
x x(t) to the equation f(t, x) 0 in the form of (formal) Puiseux series (or fractional
power series with bounded denominators of the fractional exponents) in t"

(4) x( t) yt-P’-t yt-Pl-P-t

where / 0, p Q for i-1, 2,..., and p <0 for i-2. Note that f(t, x)-O is an

algebraic equation in x and can have as many solutions x--x(t) as its degree in x; in
particular, p is not uniquely determined.

The exponent p can be found with the aid of the Newton diagram"

N {(s, r) lfr O}.

We say that a line supports N, if all the points in N lie above (or on) and if N .
To be more precise, let r= as+ denote the equation for 1. Then supports N if
r >= as + for all (s, r) N and if equality holds for some (s, r) N. Note that /3
min { r as s, r) N}. Let us say in this paper that tightly supports N, if, in addition,
]l N[_->2. We also define the southwest point SW(N)=(s*, r*) of N by

(5) s* min {s (s, r) N}, r* min {rl(s* r) N}.

It is not difficult to see that p is given by the slope a of a line: r as + fl, which
tightly supports N. The coefficient y is determined from the leading terms in the
equation

(6) f(t, yt-p’) t E frsY + o(t) =0.
r--ps=

Once the leading term x(t)-- yt-p’ is found, the second term is determined by
applying the above procedure to the equation

(7) f(t, t-v,(yl + x)) 0.

From the computational-theoretical point of view, however, this recursive procedure
is not free from tough complexity issues associated with approximating y. In this
paper we do not enter into these issues, concentrating on the computation of the
first-order term.
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Remark 2.1. Evidently it is sufficient to consider {(s, r(s))} instead of N, where
r(s) min { r Ifr, 0}. Then the above procedure is applicable to more general algebraic
equations in x with coefficients being Puiseux series in t. In fact, the Newton diagram
means more often the diagram consisting of {(s, r(s))} in this general case. It may also
be mentioned that the equation f(t, x)= 0 (even in the general case) is known to have
a (formal) Puiseux-series solution if the underlying field is algebraically closed with
characteristic zero (e.g., C) (see, e.g., [2], [4], [11], [15], [26]).

Remark 2.2. Finding the convex hull of a planar point set is one of the most
fundamental problems in computational geometry. A number of efficient algorithms
are known for this problem (see, e.g., [23]).

Example 2.1. Consider

f( t, x) -t + (t2 + t4)x2- t6x4.

The Newton diagram N is shown in Fig. 1, where SW(N)= (0, 1). This shows two
__1possibilities for Pl, namely, pl and p]2= 2. The corresponding coefficients yl are

(2)= + 1, respectively, fromdetermined as y]) +1 and yl

f(t, ylt-/2) -t(1- y2) + o(t)

and

f(t, ’)/lt--2) -2 2 2 -2)1(1 /1) q- o(t

Thus we obtain four solutions" x---+/-t -1/2 +t-2

2.2. Assignment problem. Let G be a bipartite graph with vertex set V= R U C
and edge set E; we assume that [R [CI. The initial and the terminal vertex of edge
e E are denoted by 0+e and 0-e; all the edges are directed from R to C so that
0+e R and 0-e C. Parallel edges are allowed, i.e., there can be two distinct edges e
and e’ such that 0+e 0+e’ and 0-e 0-e’. A matching is a subset M of E such that
IMI=[O+MI=IO-MI, where O+M={O+eleM}, etc., and a perfect matching (or an
assignment) is a matching M with [M[ [R[.

0 1 2 3 4 5 s
FIG. 1. Newton diagram N of Example 2.1.
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Suppose a cost Ce is given for each edge e, i.e., c: E -* R. The cost of a matching
M is defined by

c(M)= E Ce"
eM

The assignment problem is to find a perfect matching with minimum/maximum cost.
The optimality of a perfect matching is expressed in terms of the potentials (or dual
variables) each associated with a vertex of G. Namely, a perfect matching M has the
minimum cost if and only if there exist potentials u (i e R) and u (j e C) such that

Ce+UR--u>--O, i=O+e, j=O-e VeeE,
(8)

Ce+UR--u=O, i=O+e, j=O-e VeM.

Similarly, a perfect matching M has the maximum cost if and only if there exist
potentials vR (i R) and v (j e C) such that

Ce--ViR-[-vO i=O+e, j=O-e Ve E,
(9)

Ce--VR+v=O i=O+e, j=O-e VeM.

We may assume that the potentials are integers if the costs are integers. We may also
assume that potentials are chosen to be (dual) basic, in correspondence to a tree in
G. This guarantees that the difference of potentials at two vertices is bounded by

(10) (2n- 1) max {[ce[[e E}.

There are a number of very efficient algorithms for finding the optimal assignment
as well as the associated potentials. See, e.g., [5] and 18] for more about the assignment
problem.

3. Combinatorial relaxation of the Newton tliagram. This section introduces the
key concept of combinatorial relaxation to the Newton diagram for det A. This concept
will enforce the link between linear algebra (determinant) and graph theory (matching)
observed in various contexts [19], [20]. First recall that we have defined

N(A)={(s,r)lfrsO}
with reference to (1) and (2). We call N(A) the Newton diagram for A.

The structure of the matrix A of (1) is conveniently represented by the bipartite
graph G G(A)= G(A; p) defined as follows. The vertex set V V(G) is the disjoint
union of the row set R and the column set C of A. The edge set E E(G) is identified
with the nonzero terms in the entries of A, i.e.,

E {( ijrs) Aij. O},

where

O+( ijrs) e R, O-( ijrs) =j e C.

Note that G has parallel edges from R to j C if Aij(t, x) contains more than one
term. To edge (ijrs) is given a cost parametrized by p:

Cijrs(P r-ps.

By considering the expansion of the determinant, we see that

(11) det A(t, x)= . AMtr(M)xs(M),
M
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where the summation is taken over all perfect matchings M in G(A), and

Au + Aijr.
ijrs M

r(M) Z r, s(M) 2 s.
(jrs) M jrs) M

Suggested by this expression, we define

(12) ]Q(A) {(s(M), r(M))lM’perfect matching in G(A)},

and name it the combinatorial Newton diagram or the combinatorial relaxation to N(A).
It should be emphasized that /Q(A) is a combinatorial notion in the sense that the
numerical values of the coefficients Aijrs are disregarded.

These two notions, N(A) and N(A), are closely related as follows. Putting

we obtain from (11)

(s, r)= {MI(s(M), r(M)) (s, r)},

Comparing this with (2), we see

(s, r) (a) if (s, r) u(a),

and that the converse is also true unless {AM M (s, r)} is equal to zero due to
"accidental" numerical cancellation. Such numerical cancellation does not occur, if,
e.g., the nonzero coefficients Aors are algebraically independent over some base field.
Hence we obtain the following statements, which would justify the name of "relaxation"
for/Q(A).

PROPOSITION 3.1. (1) N(A) 1Q(A).
(2) N(A) IQ(A) if the nonzero coefficients Aijr are algebraically independent.
We call (s, r) N(A) genuine if (s, r) N(A), and spurious if (s,,, r): N(A). We

also say that a supporting (respectively, tightly supporting) line of N(A) is genuine
or spurious according as it is a supporting (respectively, tightly supporting) line of
N(A) or not. Proposition 3.1(1) implies that a supporting (respectively, tightly support-
ing) line of N(A) is genuine if fq N(A)# (respectively, if II f"l N(A)] >= 2).

The tightly supporting lines of N(A) can be computed efficiently on the basis of
the following relation to the parametric assignment problem on G(A)= G(A; p). Let
c(p) denote the minimum cost of a perfect matching in G(A; p) with respect to the
parametrized cost co. r-ps. The minimum cost c(p) is a concave piecewise-linear
function in p. The breakpoints are defined as those points at which the slope of c(p)
changes. Then, we have the following obvious but important statement, which is a
consequence of the well-known point-line duality.

PROPOSITION 3.2. p is a breakpoint of G(A; p) if and only if p is the slope of a

tightly supporting line of IQ A).
Efficient combinatorial algorithms for finding breakpoints are available (see

Remark 9.1 in 9).
Example 3.1. Consider a 3 x 3 matrix

o
(14) A(t,x)= l+tx

3x2 1 + 2

(13) detA(t,x)= ( AM) trx s.
(s,r) M(s,r)
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for which we have

det A + 12 -k-/4)X2 f6X4 _. spur 13x3, 15x3),

where spur (...) is the list of terms that appear in (11) and are cancelled out. The
graph G(A) is illustrated in F. 2, in which the cost is attached to edges. The
combinatorial Newton diagram N(A) is shown in Fig. 3, in which the genuine points
are indicated by solid disks () and the spurious points by open circles ((C)). Note
that G(A) has eight perfect matchings, arnong which two cancelling pairs yield the
spurious points (s, r)= (3, 3) and (3, 5). N(A) has three tightly supporting lines with
slopes p 1/2, 1, 3. As we have seen in Example 2.1, only the first is genuine, corresponding
to the solution x---+t -1/2.

4. Outline of the algorithm. In this section we give an intuitive description of the
main idea of the proposed algorithm for determining all possible first-order approxima-
tions x-- 3/t -p to the solution of det A(t, x) 0. The complete description will be given
in 9.

i-1
0

j-1

3- 2p

i-2
1

j-2

3- 3p

2- 2p
2

0 j-3

FIG. 2. Graph G(A) of Example 3.1.

r

6

5

4

3

2

1

0 1 2 3 4 5 s
FIG. 3. Combinatorial Newton diagram IQ(A) of Example 3.1.
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Recall (cf. 2.1) that the order of magnitude -p is determined by the geometrical
configuration of N(A), whereas the coefficient 3’ is to be computed numerically. The
main idea of the algorithm lies in the following observations.

(1) The p is determined from the tightly supporting lines of N(A) (cf. 2.1).
approximated by (A) (cf. Proposition 3.1).(2) N(A) is

(3) Tightly supporting lines of N(A) can be computed by efficient combinatorial
algorithms without constructing )Q(A) explicitly (cf. Proposition 3.2, Remark 9.1).

As we have seen in Example 3.1, however, not all tightly supporting lines of N(A)
correspond to the solution of det A 0. Namely, the genuine lines give the solutions
while the spurious ones do not. To cope with the spurious lines we take note of the
fact that (rowwise) elimination operations on A can modify ]Q(A) without affecting
N(A). We will show how to modify or adjust A by elimination operations so that the
particular spurious point in question may be eliminated from N(A) (for the adjusted
A). It should be emphasized that the proposed modification of A by elimination is
only local and computationally efficient. Furthermore, this procedure is invoked,
hopefully, only rarely, i.e., only when the numerical cancellation results in a spurious
extreme point.

In our algorithm we maintain a genuine supporting line for ]Q(A) and a point
P e f-) N(A). Recall (cf. 3) that is a genuine supporting line for N(A) if and only
if supports ]Q(A) and 1 N(A) (. If we have [lf)N(A)[->2 for such 1, then /is

a tightly supporting line for N(A), and hence the slope p of corresponds to a desired
solution.

The prototype of the algorithm is described below in geometric terms. Note that
the slope p of is nondecreasing in the course of the algorithm. It should be emphasized
that we never generate all the points of/Q(A). See Example 4.1 below for illustration.

ALGORITHM (outline).
Step 1 (initial point). Find a genuine supporting line for (A) and a point P

fq N(A) such that p -c (i.e., the slope p of is sufficiently small).
Step 2 (solution to relaxation). Rotate counterclockwise around P so that tightly

supports r(A)
If is vertical, i.e., parallel to the r-axis, stop;
Let P’ be the rightmost point (i.e., with the largest s-coordinate) of ]Q(A).

Step 3.1 (genuine P’). If P’ N(A), then the slope p of corresponds to a solution
X 3/t -p"

Determine the coefficient 3’ numerically;
P := P’; Go to Step 2.

Step 3.2 (spurious P’). If P’ N(A) then modify A by rowwise eliminations so
that P’: (A), N(A) is not changed and is a supporting line for ]Q(A);
Go to Step 2.

The reader is advised to put this algorithm into the general framework of relaxation
explained in the Introduction and, in particular, to identify the three phases mentioned
there.

In order to implement the above algorithm we need algorithms for the following
subproblems.

SUBPROBLEM 1 (initial point). To find the starting pair (I, P) in Step 1.
SUBPROBLEM 2 (solution to relaxation). To find the tightly supporting line for

/Q(A) with the next larger slope in Step 2.
SUBPROBLEM 3 (test for membership in N(A)). To test in Step 3 whether P’ of

N(A) is genuine or spurious.
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SUBPROBLEM 4 (modification of A). To find the adjustment scheme of A in
Step 3.2.

Our approach to these problems is briefly described here.
Subproblem (initial point). The southwest point SW(N(A))=(s*, r*), where

(s*, r*) is defined by (5) with N replaced by/r(A), can be computed as the solution
to the assignment problem on G(A; p) with p -eo (sufficiently small). Usually, the
southwest point may be expected to be genuine and then it serves as the initial P; any
line passinkg through P with the slope p -o will do. If, unfortunately, the southwest
point SW(N(A)) is spurious, we mimic the starting procedure of "artificial variables"
in the (two-phase) simplex method for linear programming (see, e.g., [5], [8]). Namely,
we modify the matrix A by introducing a number of "artificial terms" along the
diagonal. The modified problem has the genuine southwest point and therefore the
algorithm can be started. After a number of steps, we will find that the artificial terms
play no roles, then we are solving the original problem. The details are described in 8.

Subproblem 2 (solution to relaxation). As already discussed in 3, the tightly
supporting lines of N(A) are in one-to-one correspondence with the breakpoints of
the parametric assignment problem on G(A; p) with cost c0r(p) r-ps. Hence finding
the tightly supporting line with the next larger slope amounts to finding the next larger
breakpoint of G(A; p). For the latter problem, a number of efficient combinatorial
algorithms are available. See Remark 9.1.

Subproblem 3 est for membership in N(A)). It is all-important to note that only
extreme points., of N(A) are to be tested for membership in N(A). An extreme point
P’= (s, r) of N(A) corresponds to the minimum assignment on G(A; p) for some p.
In the notation of (13), P’ is genuine if and only if

Y A.0.
M /t s,r

With the help of potentials (= dual variables) (cf. 2.2) we can extract those terms in
A(t, x) which can contribute to this sum; i.e., those terms for which (8) holds with
strict inequality cannot contribute to this sum, and therefore may be discarded. In this
way the membership test for an extreme point P’ N(A) is reduced to the test for
nonsingularity of a numerical matrix composed of part of the coefficients Ar. The
details are described in 6.

Subproblem 4 (modification of A). It is not trivial to modify A with a small
amount of computation so that P’ is eliminated from N(A) while maintaining the
condition that should support )Q(A). Again the potentials associated with assignment
problems play substantial roles both to extract those terms of A(t, x) which contribute
to P’ and to maintain the condition above. An additional annoying phenomenon is
that the elimination operation on A can give rise to new spurious points, which may
force the algorithm to run forever in the loop of Step 2 and Step 3.2. Therefore some
special care must be taken in the elimination operations for guaranteed finite termina-
tion of the algorithm. The elimination scheme is given in 7 and the termination and
the complexity are discussed in 10.

Example 4.1. The above algorithm is applied to the problem of Example 3.1. The
flow of computation is traced below. Recall Fig. 3.

Step 1. Fortunately the southwest point P (0, 1) is genuine and we can start with
this P. The line is" r ps + with p -.

Step 2. is now rotated around P (0, 1) to contain a side of/Q(A), so that we have
l" r=1/2s+ 1.
P’:- (2, 2).
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Step 3.1. Since P’= (2, 2) N(A), we obtain one solution with p 1/2.
The coefficient 3/= +1 is obtained as the solution x =y to the equation
det D(x) x2- 1 0, where

D(x) 1 0

1 -1

(This matrix is extracted from the original A with the aid of the potentials.
Thus we have obtained the first set of solutions x---+/-t-1/2.)
P:= (2, 2).

Step 2. is rotated around P (2, 2) to contain another side of )(A), and we have
l:r=s.
P’:= (3, 3).

Step 3.2. Since P’=(3,3)N(A), we modify A by A:= W(t,x)A with

W(t,x)= 0 1

0 0

(15)

to obtain

Step 2.

--t-ix
-1

--X
-1 0 tA 1 d- tx 3x

X
2 1 d- 1

(The combinatorial Newton diagram /Q(A) is now changed to that in Fig.
4, whereas N(A) is invariant since A is modified through a unit triangular
matrix W(t, x). Note that P’= (3, 3) N(A) and a new spurious point (s, r)
(-1, 0) has appeared. The current line l’r s is still a genuine supporting
line.)
is rotated counterclockwise around P (2, 2) to contain a side of N(A),

and we have l’r =2s-2.
P’:= (4, 6).

-1 1 2 3 4 5 s

FG. 4. (A) of Example 4.1 (with modified A).
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Step 3.1. Since P’= (4, 6) N(A), we obtain another solution with p 2.
The coefficient 3’ + 1 is obtained as the solution x y (S0) to the equation
det D(x) -x2- x4 0, where

D(x) 0 0

x2 1

Step 2.

(We have obtained the second set of solutions x---+t-2.)
P:- (4, 6).

is rotated to a vertical line, and we stop the algorithm.

In this illustration we have used two matrices, W(t, x) and D(x), which have not
been defined before, and will be considered in 6 and 7. At this point, however, it
is noted that the entries of W(t, x) and D(x) are monomials (possibly with negative
exponents), respectively, in (t, x) and in x. Moreover, W(t, x) can be expressed as a
product of diagonal scaling factors and a constant matrix; i.e., the matrix W(t, x)
above can be written as

W(t, x) diag (1, tx, t-Zx-2) 1

0

5. Useful transformations. The following three kinds of transformations for the
matrix A(t, x) are used, explicitly or implicitly, throughout this paper. For a vector

u--(uili 1,""", tl) and a variable x in general, we put

diag (x; u) =diag (x", x"2, , x"-)

for notational convenience.
The first is a transformation of A by means of row/column scaling by diagonal

matrices having monomial entries (possibly with negative exponents):

A’(t, x)=diag (t; rR) diag (x; S R) A(t, x) .diag (x; -sc) diag (t; -re),

where
Rs =(sli-1," .,n),

rR=(rili= l, n), rC-(r:lj: 1,...,n).

This transformation has no essential effect on N(A) and/(A) in that it causes a mere
coordinate shift in the (s, r)-plane, namely,

(s, r) N(A)<:>(s+As, r+Ar) N(A’),

(s, r)e ](A)c:>(s+As, r+Ar)e (A’),
where

The variables {s, s:} and {r, r.:} may be regarded as the potentials associated with
the assignment problem in G(A).

The second transformation is a change of the dependent variable

A’( t, x) A( t, t-Px).
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This corresponds to another coordinate change for N(A) and N(A), namely,

(s, r) N(A)(s, r-ps) N(A’),

(s, r) S(A)C(s, r-ps) S(A’).

Note that the r-axis is invariant.
The last kind oftransformation is a rowwise (sweeping-out) operation by a constant

nonsingular matrix W:

A’(t, x) W" A(t, x).

This has an essential effect on (A) and keeps N(A) invariant. Often W is a triangular
matrix (with respect to some orderings of rows and columns).

6. Testing for membership in N(A). This section affords an algorithm for testing
for the membership in N(A) of an extreme point of (A) (cf. Subproblem 3 in 4).

6.1. Degree of determinant. Let D(x)= (Do(x)) be an n x n matrix with

Di(x)= Y Di.x,
c=Z

where the summation is assumed to be a finite sum. We denote by 8(D) (or 8x(D))
the maximum degree of a nonzero term in det D(x)"

8(D) degx det D(x),

where 8(D) may possibly be negative. We often use the term "degree" in this extended
sense.

A bipartite graph G*= G*(D) is associated with D(x) in a similar manner as
G(A) is with A(t, x). The vertex set V(G*) is the disjoint union of the row set R and
the column set C of D, and the edge set E(G*) is identified with the nonzero entries
of D, i.e.,

E( G*) {( ij) Dij(x 0}.

Note that, unlike G(A), G* has no parallel edges. To edge (ij) is attached a cost"

co max {slDo, 0} deg D(x).
We define g(D) to be the maximum cost of a perfect matching in G*(D).

The argument in 3 shows the following.
PROPOSITION 6.1. (1) 8(D)<-g(D).
(2) 6 (D) 6 (D) if the nonzero coefficients Dij are algebraically independent.
We say that D(x) is upper tight (or u-tight) if 6(D)= 6(D).
A procedure [21] is given below which tests for u-tightness of D(x) without

computing all terms of det D(x). Let v (i R) and v (je C) be the potentials
associated with a maximum perfect matching that satisfy (9) (cf. 2.2). Then

where

6(D)=Av,

(16) Av=2 v/-2 vc,

and

(17)
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Consider a perfect matching M in G*(D). It follows from (17) that M has the maximum
cost 6(D) Av if and only if (17) holds with equality for all (ij) M. In other words,
a term with strict inequality in (17) can never contribute to a maximum matching and
may be deleted without any influence on the coefficient of xi() in the determinant
expansion.

Define D(x)=(Do(x)) by

ijciiXD(x)=
0

and D* (D) by

ifY0 =0,
otherwise

if t/ 0,
(18) D 0 otherwise.

Note that

/(x) diag (x; v R) D* diag (x; -vC),
and hence D*= D(1). The following proposition shows that the test for u-tightness
of D(x) is reduced to the test for nonsingularity of a constant matrix D*.

PROPOSrrlON 6.2. D(X) is u-tight if and only if D* is nonsingular.
Proof Consider a perfect matching M in G*(D). In the determinant expansion

of D(x), this matching corresponds to

I-I Do(x),
ij) M

which yields terms with degree less than or equal to

c(M)= Z co-
(ij)M

We see by (17) that c(M) g(D) if and only if =0 for all (ij) M. Hence

det D(x) det/(x) +
where the last term means an expression consisting of terms with degree strictly less
than g(D). Finally, we note that

det/(x) (det D*)xi(),
completing the proof.

6.2. Testing for membership in N(A). Let P’=(s’, r’) be an extreme point (of
the convex ep,,igraph) of N(A). Then there exists a supporting line of/Q(A) such
that P’ f’) N(A). We assume that P’ is the rightmost point in f-)/Q(A), since this is
the case in Step 2 of our algorithm ( 4).

We can naturally translate these geometrical statements into the language of the
assignment problem on G(A; p) as follows. Since P’/Q(A) is an extreme point, there
exists a closed interval [pl), p2] of parameter values of p and a perfect matching M
in G(A;p) such that M has the minimum cost for p[p,p2] and (s’, r’)=
(s(M), r(M)). Let uR uiR(p) and uc u(p) be the associated potentials satisfying
(8); we have

(19) Or r-ps + u u >= O,

and the equality holds for (ijrs) M. Then the line defined by

(20) r=ps-Au
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supports /Q(A) at P’, where

(21) Au = u/- uc.

Furthermore, P’ is the rightmost point of f-I/Q(A) if and only if p < pZ.
Let us extract from A(t, x) those terms which can contribute to the minimum

assignment in G(A). Define D(x)= (Do(x)) by

(22) D,j(x)

where

(23) Eo= {(s, r)[jr. =0, (ijrs) E(G)},

and consider the bipartite graph G*(D) associated with D(x) as in 6.1. It follows
from (19) that a perfect matching M’ in G(A) has the minimum cost if and only if
(19) holds with equality for all (ijrs) M’. In view of this and (20) we see that a
perfect matching_ in G*(D) corresponds to a perfect matching M’ in G(A)
such that (s(M’), r(M’)) l, and, conversely, a perfect matching M’ in G(A) with
(s(M’), r(M’)) (s’, r’) has a corresponding perfect matching in G*(D). In particular,
the s-coordinate of P’ is given (cf. (16) for notation) by

(24) s’=6(D)=Av.

The following characterizations provide us with a computational procedure to test
for the membership of P’ /Q(A) in N(A).

PROPOSITION 6.3. For the rightmost point P’ of f] IQ(A), the following three
statements are equivalent, where D(x) is defined by (22) and D* by (18)"

(1) P’ is genuine (i. e., P’ N(A)).
(2) D(x) is u-tight (i.e., 8(D)= g(D)).
(3) D* is nonsingular.
Proof The equivalence of (1) and (2) follows from the relation between matchings

on G(A) and on G*(D) explained above. The equivalence of (2) and (3) is already
given in Proposition 6.2.

Example 6.1. Let A be the matrix of (14) used in Examples 3.1 and 4.1. The line
(with slope p= 1) defined by r=s tightly supports N(A) and P’=(3,3) is the

rightmost point of lfqN(A) (see Fig. 3). As the potentials satisfying (19) we may
choose u-- uS -0 (i, j= 1, 2, 3). According to (22) we have

(25) D(x)= l+x 0 x
0 1 -1

The associated bipartite graph G*(D), illustrated in Fig. 5, has two perfect matchings
both corresponding to P’= (3, 3). As the potentials satisfying (17) we may choose

Vl 0, v2=l, v3 -2,

vC=0, v2C=-2, v3C=-2.
This shows that ,(D)= Av= 3. According to (18) we have

tio(26) D* 0 1

-1
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i-1
0

j-1

i-2 j-2
3

0

i-3
0

j-3

FIG. 5. Graph G*(D) of Example 6.1.

Since D* is singular, Proposition 6.3 shows that P’=(3,3) N(A), which is also
equivalent to (D) (=3) > (D) (=2). This is how we have found that P’= (3, 3) N(A)
in Example 4.1, Step 3.2.

7. Modification of matrix. This section deals with the modification of A in Step
3.2 of our algorithm when the point P’ /(A) turns out to be spurious (cf. Subproblem
4 in 4). To be more precise, we are given a tightly supporting line with slope p of
]r(A) such that I0 N(A) ; and that the rightmost point P’ f3/r(A) does not
belong to N(A). We are to modify A(t, x) to another matrix A’(t, x) (A,(t, x)) such
that

(P1)

(P2)

(P3)

N(A’)=N(A).

supports /(A’).
The rightmost point of 0 N(A’) lies to the left of P’, i.e., has strictly smaller
s-coordinate than that of P’.

Note that the last condition implies, in particular, that P’ (A’). We also require
the following additional properties:

(P4) 6*(a’) <-_ 6*(a), where

*(a) max {degx aij( t, x) R,j C}.

(P5) If A(t, x) contains only integer powers of and x, so does A’(t, x).

Recall from 6 that a matrix D(x) is associated with P’ by (22) and that a constant
matrix D* is derived from D(x) with reference to the potentials {vn, v:C}. We have
term-rank D* n since P’ (A) and rank D* < n since P’: N(A) (cf. Proposition
6.3), where term-rank of a matrix means the maximum size of a matching in the
bipartite graph associated with the matrix as in 6.1. Assume that W is a nonsingular
constant matrix such that

(27) term-rank (WD*) < n.

Using the potentials {u/n, uc} for G(A; p) and {v, vc} for G*(D), we define

SO )i
R t)f, rij pSij t -+- U,
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and put

cr( i, k)= so--Skj= Vi--v,

p(i, k)= rij-rk=p(v-v)-(u-u).
We define the transformation from A to A’ by

A( t, x) 2 tt’(i’kx(i’k WikA.i( t, x)
k

(28)
E . E WikAkjrstr+o(i’k)xs+(i’k),
k

A’(t,x)=diag(t;--uR+pvR) diag (x; vR) W
(29)

diag (x; -vR). diag (t; u -pvR) A(t, x).

The second expression reveals that

det A’(t, x) det W. det A(t, x),

which implies the property (P1). We claim that the properties (P2) and (P3) are also
satisfied.

PROPOSITION 7.1. Properties (P2) and (P3) hold if W satisfies (27).
Proof (P2). For any i, j, k, r, s such that WkAk.i, 0 in (28), we have

(30) (r+p(i,k))-p(s+o(i,k))+uiR-u=r-ps+u-u=Cir>=O,
where the last inequality is due to (19).

Let (g, ) be any point in )Q(A’) and consider a corresponding perfect matching
M in G(A’). Then

= 2 (s+tr(i, k)), = (r+p(i, k)),
(ijrs)c M (ijrs)c M

where k denotes an index which varies with (ijrs). Since is given by the equation
(20)" r=ps-Au, the above inequality (30) implies that (g, ) lies above (or on) /.

Noting fq N(A’) N(A) (, we conclude that supports N(A’).
(P3) As we have done in 6.2, we can throw away some terms of A’(t,x) in

considering the points of fq ]Q(A’). In parallel to (22) we define D’(x)= (D(x)) by

Dl(x) E W/ E {Akr,X’+’(i’k) l(S, r) Eke}.
k

Using the expression r(i, k)= v- v, we may rewrite this as

D;j(x) x E Wk 2 {Akjr.x +l(s, r) Ekj }.
k

By (17) the last term can be expressed as

’. {AkjrsxS-V+v’l(s, r) E Ekj}= D*-+-O()kj

where O(1/x) means an expression consisting of terms with negative powers of x.
Therefore,

WikD*kj -+- 0
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Since term-rank (WD*)< n by (27), we see

6(D’)<--Av-1,

where Av is defined by (16). The expression (24) for the s-coordinate of the rightmost
point on completes the proof. l

As to the property (P4) we have the following proposition.
PROPOSITION 7.2. Property (P4) holds if W satisfies the condition

(31) W, # 0 :=> v -< v.
Proof This condition on W implies that o-(i, k)_-< 0 in (28). Then

s + tr( i, k) <= s <= 6*(A)
and therefore 6*(A’) <= 6*(A). [3

The statement above says in effect that W should be in a triangular form with
respect to the orderings of rows and columns determined by the potentials on the rows
of D(x).

The last property (P5) is now considered. First note that the potentials {v/, vc}
for G*(D) can be chosen to be integers; then sij and or(i, k) are also integers. On the
other hand, p can be fractional even if A(t, x) contains only integer powers of and
x, i.e., even if

(32) Aj #Or Z

holds. Thus, the integrality is not readily guaranteed for p(i, k). The following is a
preliminary for Proposition 7.4, which gives a sufficient condition for the integrality
of p(i, k). A sufficient condition for (P5) will be given in Proposition 7.5.

PROPOSITION 7.3. Assume (32). Then

rij 6 Z fD*ij # O.

Proof. By (18), D is the coefficient of the term xS, x- in Do(x of (22).
The latter is equal, by (22), to the coefficient Aorjs, of the term tr,xS,.J in Ao(t, x) since
(r, so) Eo implies r rij. That is,

Dj Aijr,,.
Note that this statement is true whether or not D vanishes. Hence if D # 0, then
(32) guarantees r

We will introduce an equivalence relation on the row set R, and show in Proposition
7.4 that p(i, k) Z under (32) if and k belong to the same equivalence class. Let us
say that R and k R are D*-adjacent if DD# 0 for some j C. We also say that
R and k R are D*-connected if there exists a chain of indices il, i2, , i,, R

such that il i, im k, and ij and !j+l are D* connected for j 1,. , m 1. Evidently,
D*-connectedness is an equivalence relation.

PROPOSITION 7.4. Assume (32). Then

p (i, k) Z if and k are D*-connected.

_Proof First suppose and k are D*-adjacent. Then there exists j C such that
DoDkj # O. Applying Proposition 7.3 we obtain rij Z and rkj Z, from which follows
p( i, k)= rij rj Z.
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For a general D*-connected pair (i, k), relations such as

p(i, k)= p(i, m)+p(m, k)

prove the claim. [3

We have arrived at a condition on W that guarantees the property (P5) as follows.
PROPOSITION 7.5. Property (P5) holds if W satisfies the condition

(33) Wik 0 and k are D*-conneeted.

Proof The proof is obvious from (28) and Proposition 7.4. [3

In order to meet the requirements (P1)-(P5) we have imposed three conditions
on W, namely,

(27):

(31):

(33):

term-rank (WD*) < n,

W/k 0 and k are D*-connected.

Note that these conditions, respectively, imply (P3), (P4), (P5), without mutual depen-
dence. It is important that such W can always be found.

We conclude this section by suggesting a concrete choice of W that meets these
three conditions. Since rank D*< n, there exists a nonzero vector w=(wi]i R)
such that

(34) wrD* =0.

Let w be such a vector with minimal support, i.e., such that

supp w=- { R lwi 0}

is minimal with respect to set inclusion. Such w can be computed by a Gaussian
elimination on D* with column pivoting. Let i0 R be such that

V Rio min { vli supp w}.

The suggested choice of W is

Wk if io,
(35)

6ik otherwise,

where ik denotes the Kronecker delta, being equal to one or zero accordingly as k
or not. This W satisfies the above three conditions: (27) follows from (34), (31) from
the choice of io, and finally (33) from the minimality ofsupp w. Note also that det W 1.

Example 7.1. Recall from Example 6.1 that the line defined by r s tightly
supports N(A) for the matrix A of (14), P= (2, 2) l N(A) and the rightmost point
P’= (3, 3) of 1 (A) does not belong to N(A). We may take w=(1,-1, 0) r in (34)

Rfor D* of (26); w has the minimal support, supp w {1, 2}. Since vR 0, v2 1, we
have io 1, and

W= 1

0

in (35). Then, according to (29), the matrix A is modified to

A’(t, x) diag (1, tx, t-2x -2) W. diag (1, t-ix-1, t2x2) A(t, x).
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The resulting matrix A’ agrees with the matrix A of (15) in Example 4.1, and N(A’)
is shown in Fig. 4. Note that(P1)-(P5) are satisfied. In particular, supports N(A’),
the rightmost point of l N(A’) is P (2, 2), lying to the left of P’= (3, 3), and
6*(a’)=6*(a)=3.

8. Starting procedure with artificial terms. This section addresses the problem of
finding the initial point in Step 1 of the algorithm when the southwest point of (A)
is spurious (cf. Subproblem in 4). As suggested bythe starting procedure of"artificial
variables" in the (two-phase) simplex method for linear programming (see, e.g., [5],
[8]), we modify the matrix A by introducing a number of "artificial terms" along the
diagonal. The modified problem has the genuine southwest point and therefore the
algorithm can be started. After a number of steps, we will find that the artificial terms
play no roles, and then we are solving the original problem.

Let M be a minimum assignment in G(A; p) for p-, and let

ui(p) ri-psie (i R), u(p) r-ps: (j C)

be the associated potentials satisfying (19). It should be clear that for sufficiently small
p the potentials are linear functions in p and that the coefficients (i.e., r/n s/, rc, sc)
can be computed easily once M is found.

Define a’(t, x) (a,(t, x)) by

A r+rR’-rC:(36) ali t, X) E E "-ijrs xS+Si j,

A’(t, x) diag (t; r R) diag (x; s R). A(t, x) diag (x; -s c ). diag (t; -rc).

As remarked in 5, this transformation causes only a coordinate shift in the (s, r)-plane.
Since p -o, (19) means

+/-_->0,
(37)

r+riR--r>:O if s+siR--s=O.
Therefore,

(0, 0) ]r(A’) {(s, r)ls> O} U {(s, r)ls-O, rO}.

(38) D*:A’(t,x)l:ol,:o.
Note that this notation is consistent with (18) when D(x) is defined by (22) with A
replaced by A’. Then Proposition 6.3 shows that D* is singular since the southwest
point of N(A) is assumed to be spurious.

The artificial terms are introduced into A’ as follows. Consider a nonsingular
submatrix D*[I, J] of D* with row set I c R and column set J c C; then

n -l I[ n rank D*.

Fixing an arbitrary one-to-one correspondence zr’R- I- C-J, we define B(t, x)=
(Bij(t, x)) by

(39) Bij(t,x):Aii(t,x)+otqx-’ ifj:’(i), iR-I,
[A,( t, x) otherwise,

Note that (0, 0)= SW(I(A’)), which corresponds to (s*, r*)= SW(IQ(A)).
By (37) we may substitute x 0 in A’(t, x) and then put 0 to obtain
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using v artificial terms otqx-l, where c # 0 and q is a sufficiently large parameter. To
be more specific (cf. Proposition 8.1 below), it suffices to take q such that

where

q>Pmax(Smax+l)+rmax,

Sma n max {s Ar, 0}, Pmax /’max /’min,

rma n max {rlArL # 0}, /’min n min {r]AorL 0}.

In actual computations, however, a and q are treated as symbols rather than numerical
values. It would be natural to choose v as small as possible, i.e., t, n- rank D*.

We have the following proposition, which shows that the algorithm of 4 can
start for B(t, x) with the initial point P (-v, vq) and the essential portions of N(A’)
and (A’) are kept unchanged.

PROPOSITION 8.1. Let q be sufficiently large, say,

q>P’max(S’max+2).

(1) (-u, vq) N(B).
(2) (-v, vq)=SW(l(B)); in particular, l(B)_{(s, r)]s>-u)(.J{(s, r)]s=-u,

r>= vq}.
(3) IQ(B)_I(s,r)lr+, qs>=O}.
(4) N(B)

_
N(A’), N(B)

_
I(A’).

(5) N(B)(’]{(s, r)lr<rmax} N(A’), l(B){(s, r)lr<rmax} I(A’).
(6) A tightly supporting line for N(A’) tightly supports N(B).
(7) If v=n-rankD*, then N(B){(s,r)lr+qs=O}={(-v vq)}.
Proof (1) The coefficient of (tqx-) in det B is equal to +c multiplied by

det D*[I, J] (#0).
(2), (3) Consider a perfect matching in G(B) that contains k (=>0) edges corre-

sponding to artificial terms. In the determinant expansion of B this matching yields a
term

(tqx-1) k"

in which 0-< or_-< Smax, rmin= p
and r kq + p, and noting k =< v, we see that s -> v, and that r => uq if s u, establishing
(2). To show (3) first note that

>q + p > q + rmi PmaxSmax -f" -4- >Pmax rmax-- rmax-

Then (3) follows from r + qs p + qo >- O, since p + qo" p _-> 0 if cr 0 and p + qcr ->
p+q> >0ifo’#0./’max

(4),(5) Ifk>l, thenr=kq+p>q+p >--rmax, where the last inequality is shown
above.

(6) Let be a tightly supporting line of N(A’) passing through two distinct points,
say (si, ri) (i= 1,2), of N(A’). The slope p of is equal to (r2-rl)/(s2-s), which
implies that IPl <----P’m" The point (s, r) (-k+ or, kq + p) with k => 1 lies above l"
r=p(s-sl)+rl since (kq+p)-p(-k+o-sl)-rl>O follows from k(q+p)>=
k(q-Pmax) > q--Pmax>Pmax(Smax + 1), and --p(o’--S)>----PmaxSmax

(7) As we have seen in establishing (3), r+ qs=O only if cr=p =0. Noting that
a submatrix of D* of size greater than n-v is singular, we complete the proof by a
similar argument to (1).
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Example 8.1. Consider a matrix

tx-- X2

a(t,x)= tx

for which we have

t3xtl+tx2 0

--X

det A -t6xd t2x2+ t3x4- tx5 + spur (t3X, t4x3),
where, as before, spur (. is the list of cancelled terms. The combinatorial Newton
diagram /(A) is shown in Fig. 6, in which the genuine points are indicated by solid
disks () and the spurious points by open circles ((C)).

For p- we have

uR(p)=O, u(p)=O, u(p)=--Z--p,
UC(p)=l--p, UzC(p)=0, u((p)=--p

as potentials for G(A; p). According to (36) and (38) we obtain

/1 + t-ix 1\
A’(t,x)= 1 l+tx2

1 --t-2x4

and

D*= 1 1

1 0

where rank D* =rank D*[I, J] 2 with I {2, 3}, J {2, 3}. This shows that (0, 0)
SW(1Q(A’)) is spurious. Then, introducing v= 1 artificial term we modify A’ to

+ t-Ix + atqx-1 1 \
B(t,x)= 1 l+tx2 0).1 --t-2x4 1

1 2 3 4 5 s
FIG. 6. Combinatorial Newton diagram 1Q(A) of Example 8.1.
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Figure 7 illustrates )Q(B), where the genuine points due to the artificial term are
indicated by solid triangles (,).

9. Description of algorithm. In this section we give a complete description of the
proposed algorithm outlined in 4. The algorithm determines all possible first-order
approximations x--. yt-p to the solution of det A(t, x)=0 for A(t,x) of (1). The
statements in brackets [. are comments for readability, not needed in implementa-
tion. Recall that the bipartite graphs G(A; p) and G*(D) are defined in 3 and 6,
respectively. The finite termination and the complexity of the algorithm are considered
in the next section.

ALGORITHM.
Step 1 [initial point]

(1) Find a minimum assignment and potentials

u(p)= rR--ps (i 6 R),

for G(A; p) with p

(2) Aij (t, x):= 2 2 Aijrstr+r-rxs+s-s

D*:=A(t,X)lx=ol,=o;

(iR,jC);

[Ai,j,r+r-r,s+s-s := Aijrs, cf. (36)]

[cf. (38)]

2

-1 4 5 s
-1

-2

FIG. 7. Combinatorial Newton diagram 1Q(B) of Example 8.1. (A: points of artificial terms.)
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Find a maximal nonsingular submatrix D*[I, J];
u:= n-II I.

(3) If u 0, then
v n rank D*]

Aij( t, x) + cetqx-1
ao(t,x):=

ao(t,x)
ifj 7r(i), R -/,

otherwise

where 7r" R-I- C-J is a one-to-one correspondence. [cf. (39)]
(4) Find a minimum assignment M for G(A; p) with p

[P (s(M), r(M)) SW(1Q(A)) u(a)]

rma := n" max {r[Aor 0},

rmi := /’/" min { r lAor 0},

Pmax := rmax- rmin. [upper bound on p]
Step 2 [solution to relaxation]

[M is a minimum assignment in G(A; p); P= (s(M), r(M))6 N(A)]
(1) Solve a parametric assignment problem on G(A) to find

p := max {p’lM is a minimum assignment in G(A; p’)};
p is nondecreasing]

If p > Pmax then stop;
[Line through P with slope p tightly supports N(A); P’ := the rightmost

point in (’1 N(A)
Let u/ (i e R) u .c (j C) be potentials for G(A; p)

(2) O,(x):=2 {Aor.,x"[r-ps+ui-ujC.’=O} (iR,j C);
[cf. (22)]

Find a maximum assignment M’ and potentials v (i R), v (j C) for
G*(D);

[Av= s-coordinate of P’; cf. (16), (24)]
D* :=coefficiento ofx in Do(x (iR,jC). [cf. (18)]

Step 3.1 [genuine P’] If det D*# 0, do the following.
(1) Find all solutions x 3’ (#0) to det D(x) 0 and output x- 3/t -p, unless

p =-q. [p =-q arises from artificial terms]
(2) M:= M’ (with the understanding that E(G*(D))c_ E(G(A))).

[P:= P’]
(3) Go to Step 2.

Step 3.2 [spurious P’] If det D*= 0, do the following.
(1) Find w with minimal support such that wTD* =0; [Cf. (34)]

I,k t(’k)X*(’)wkA(t, X) if i= io,j C,
Aj( t, x)

A(t, x) otherwise
R =min{vw 0},where vio

RR p(io k)=p(io k)-(Uo-U)(io, k)= o-
[cf. (28), (5)]

(2) Go to Step 2.

Remark 9.1. For the parametric assignment problem there are a number of efficient
algorithms available. First note that the assignment problem on G(A; p) with a fixed
p can be solved by first finding min {r-ps Aijrs # 0} for each (i,j) and then applying
an algorithm for the assignment problem in a bipartite graph without parallel edges.
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Thus a minimum assignment in G(A; p) can be found in O([E(G)[)+ To(n) time,
where To(n) is O(n3) or O(n25).

The general scheme of Eisner and Severance [13] for linear parametric optimi-
zations can be specialized to our problem on G(A; p). It finds all breakpoints in a
specified open interval (p(1),p(2) of p by solving the (nonparametric) assignment
problem at most 2b + 2 times, where b is the number of breakpoints in this interval.
Let us assume the minimum assignments M(1) and M(2), respectively, for p p(1)+ e

and p(:)-e are known (e denotes a small positive number). A procedure is defined
p(2) (2))for (p( M(, M as follows

(1) If s(M()) s(M(-), then there is no breakpoint; otherwise let p’ be such that

r(M(’) p’s(m(’)) r(m(2)) p’s(m(2)) (-- c’).

(2) Find a minimum assignment M’ for p- p’.
(3) If c(M’)- c’ then p’ is the unique breakpoint in (p(1), p(e); otherwise apply

this procedure recursively to (p(), M(), p’, M’) and (p’, M’, p(), M(2).
In Step 2(1) we need to find the next larger breakpoint, and not all the breakpoints.

The general scheme of Gusfield [14], when specialized to our problem on G(A; p),
gives a polynomial time algorithm for this task, although its time complexity is roughly
the square of that for finding a minimum assignment in G(A; p) with a particular
value of p.

Finally, we mention the parametric network simplex method. The assignment
problem can be formulated as a linear programming problem, and the general method
known as parametric simplex method is applicable with additional advantage from
the underlying network structure (cf. [5], [8], [10]). In view of the anticycling and
antistalling schemes due to Cunningham [6], [7], this approach seems promising from
theoretical and practical points of view. Note that the pivots to find the next larger
breakpoint are degenerate.

Remark 9.2. In case no artificial terms are introduced in Step 1(3), the minimum
assignment M in Step 1(4) is essentially the same as the one, say M(), found in Step
1(1). The change of A in Step (2) does not affect the minimality of M(), although,
by our notational convention, the labels of the edges of G(A; p) are changed from
(ijrs) to i, j, r + rR r, s + s R SC), i.e., formally,

M={(i,j,r+rR--r: s + si s) ijrs) M(}.
Remark 9.3. In Step 3.1(1) the nonzero solutions to det D(x)- 0 are to be found.

The lowest and the highest degree of a nonzero term in det D(x) are given by the
s-coordinates of P and P’, respectively. It is more convenient to work with

D(y) =diag (y; vR) D(1/y) diag (y;-vc)
since each entry of D(y) is a polynomial in y and det D(0)= det D* 0. The degree
of F(y)= det D(y) is known as

degyF(y)=Av-s(m).
Note this is equal to the number of nonzero solutions to det D(x)= 0 if the underlying
field is the complex number field C, since F(0) 0. In some applications, the numerical
values of 3’ are not needed, but only the number of solutions corresponding to p is of
interest; this is given by Av-s(M). In other applications, the numerical solutions of
F(y) 0 are to be found either by symbolic-algebraic methods or by purely numerical
methods. In the latter case, simultaneous approximation-type methods (such as those
ascribed to Aberth, Durand, Ehrlich, Kerner, and Weierstrass [1], [12], [17], [22])
would be suitable if the underlying field is C; note that the degree of F is known.
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Remark 9.4. In Step 3.2(1) we have adopted the choice (35) of W for concreteness.
Other choices are also possible.

Remark 9.5. As explained in 2.1 the higher-order terms in the Puiseux-series
solution (4) are determined from (7). We can compute the second-order term following
"}/1 t-p’ by applying the above algorithm to A’(t, x) A(t, t-Pl(,,y + x)). Note, however,
that p <0 for higher order terms. The southwest point SW(N(A’)) is (almost) always
spurious and the artificial terms are needed.

10. Termination and complexity. In this section we consider the termination and
the complexity ofthe proposed algorithm. In the first place we consider the probabilistic
behavior of the algorithm. As already noted in 3 (cf. Proposition 3.1 in particular),
N(A) differs from N(A) only because of accidental numerical cancellation. Let us fix
the structure (i.e., the graph G(A)) of the input matrix A(t, x) A()(t, x) (A)(t, x))
and regard the numerical values of nonzero coefficients Aor as real- (or complex-)
valued independent random variables with continuous distributions. Then we have
IQ(A) N(A) with probability one, which means that all the exponents p of x--- yt-p

can be determined by finding all the breakpoints for G(A; p) without any modification
of the matrix A; in particular, Step 3.2 of our algorithm is not performed at all. Hence
we obtain the following statement.

PROPOSITION 10.1. The average time complexity of the algorithm per exponent p is

bounded by a polynomial in n, except for the numerical determination of the coefficients
y in Step 3.1.

We put

Eo I{(ijrs)l ._jrs O}l (--IE(O(A())]),
(o)Lo max {Isl, [rllAor #0}.

We denote by rde the least common multiple of the denominators of all r with A() # 0.
Let A(l(t, x)= (A(t, x)) denote the matrix A at the end of Step 1. In general

this matrix contains u artificial terms introduced in Step 1(3). To avoid inessential
complication in presentation, we treat the case where no artificial terms are involved.
Then it would be easy to see that the main results (Proposition 10.2(2), Proposition
10.3) remain true in the general case.

Define

Sma n. max

we assume Sma 2; also recall rma and rmi in Step 1(4). If we define E and L for
A(1) similarly to Eo and Lo with A() replaced by A(1), we see from (10) that

E Eo, L1 <-2nLo, max {Smax, rmax, Irmin]} nL

Obviously,

N(A(1)) ]Q(A(1)) {(s, r) lO< s<- Smax, rmin r rmax}.

Let us consider the matrix A in the loop of Steps 2, 3.1, and 3.2. Since N(A) is
invariant, the above inclusion implies

(40) N(a) {(s, r) lO<= s <= Sma, rmin<= r<= rmax}.

This shows that the slope p of a tightly supporting line of N(A) is not greater than
Pmax defined in Step 1(4). Hence the stopping criterion in Step 2(1).

By the definition of rden, the input matrix A(t, x) involves only integer powers
of " I/rden and x. We may further assume the integrality of potentials whenever the
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COSTS are integers (see 2.2). This implies that A also involves only integer powers
of - and x. Then it follows from (P5) in 7 that this property is inherited by all A,
and hence

/r(A)
_

{(s, r)ls Z, rdenr E Z}.

On the other hand, (P4) in 7 guarantees that 6*(A)<= 6"(A1), which implies

IQ(A) {(s, r)ls<=Smax}.
In Step 2(2) the rightmost point P’= (s’, r’) of fq N(A) is computed implicitly.

Namely, since the line with slope p passes through P (s(M), r(M))= (So, ro) and
P’, we have

s’ AV, r’= p(s’- So) ro,

where Av is defined by (16).
The following guarantees the finite termination of the algorithm for a general

input matrix with fractional powers of and gives a pseudopolynomial (i.e., polynomial
in n and Lo) bound on the number of steps in the whole algorithm for an input matrix
with integer powers of and x. Note that raen may not be pseudopolynomially bounded.

PROPOSITION 10.2. (1) When no artificial terms need be introduced, the points P’
produced by the algorithm are all distinct and belong to-- {(s, r)ls E Z, rdenr E Z, 0 S Smax, rminS r PmaxS}.

Hence the number of executions of Step 2 is bounded by

Il =< (Smax + 1)2(Pmax-- rmin + 1)rden(2n2to’+" 1)2(6n2Lo + 1)rde

(2) If the given matrix A A contains only integer powers of and x, the number
of executions of Step 2 is pseudopolynomially bounded by the input size. (This statement
does not preclude the case with artificial terms.)

Proof (1) Let us define a stage to be a series of executions of the loop of Steps
2 and 3.2 without interruption by Step 3.1. During a stage P (So, ro) is not changed;
0S0Smax, rmin<=ro<=rmax since PEN(A). Let P=(s,r) be the extreme point, if
any, of N(A) with next larger s-coordinate; P’ should coincide with P at the end of
the stage. We define p=(rl-ro)/(sl-so), or pl--Pmax if no such P exists.

The line rotates around P with nondecreasing slope p; while p is kept unchanged,
s’ decreases at least by one at each execution. Hence the points P’ produced in this
stage are all distinct and belong to

{(s, r) s z, rdenr E Z, po( s So) + ro < r <= pl s So) + ro s <= Smax} ,
where Po is the value of p at the beginning of the stage. This expression shows that
the points P’ are all distinct during the whole algorithm. A simple calculation shows
the bound on I 1.

(2) The claim follows from (1) if no artificial terms are introduced. The proof for
the general case is similar; note that q can be chosen to be pseudopolynomially large,
as shown in Proposition 8.1.

Finally we will show, for theoretical completeness, that the proposed algorithm
can be implemented so that its running time has a pseudopolynomial worst-case bound
if the input matrix A(t, x) involves only integer powers of and x. As stated in
Proposition 10.2, the number of iterations is pseudopolynomially bounded. The prob-
lem to be considered is that the transformation of the matrix A(t, x) in Step 3.2 may
cause an indefinite increase of the number of edges ]E(G(A))] in G(A), which is equal
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to the total number of nonzero terms in A(t, x). Recall that the complexity for finding
the next larger breakpoint for G(A) is bounded by a polynomial in n and IE(G(A))I.

To establish a pseudopolynomial bound, we will show that it suffices to keep only
a pseudopolynomial number of nonzero terms in A(t, x). To be more precise, we will
consider the case without artificial terms and show that, in that case, we may retain
only those terms Aijrstrx with

(41)

and

(42)

where

--Sma S Smax/n

O <-- r--ps nt- uiR uf <-- max

/max rmaxnt-2pmaxSmax--rmin(Smax + 1).

Note that the number of such terms is bounded by a polynomial in n, Eo, Lo, and rden.
Recall that, for each term Aor,trx" of A(t, x), or for each edge (ijrs) of G(A), in

Step 2, we have

(43) s<-6*(a)6*(a(1))=Smax/n
and (19)"

r-ps + ui u >-_ O.

Consider a particular term Aijr,trx of A(t, x) and denote by A’(t, x) the matrix with
this term deleted from A(t, x). Let M be a perfect matching in G(A) which contains
the edge (ijrs) corresponding to this term.

First suppose that s <--Smax, then s(M)< 0 by (43). This shows/Q(A)-(A’)
_

{(s, r)ls <0}, from which we see in view of (40) that the deletion of this term does not
affect the subsequent behavior of the algorithm. (Note, however, that N(A’) would
be different from N(A);. e.g., the point (s(M), r(M)), which is spurious for A, may
possibly become genuine for A’.) Therefore, we may throw away those terms which
do not lie in the range of (41).

Next suppose that

r--ps+ uiR-- U> flmax
It then follows from (19) that

r(M)-ps(M)+AU>max,

where Au is defined by (21). Since line (with equation r=ps-Au) passes through
P (So, ro) with 0_-< So -< Smax, rmin -< roe rmax, we have

Au pso ro <= PmaxSmax rmin.

Combining these two and using (41) and rmin p --< Pmax, we obtain

r(M) -Pmaxs(M) 3> (p -Pmax)s(M) Au -1-/max rmax"

This shows

/Q(A)-/Q(A’)
_

{(s, r) lr-pmaxS > rmax}

which implies, as before, that the deletion of this term does not affect the subsequent
behavior of the algorithm. Thus we have shown that we may also throw away those
terms which do not lie in the range of (42).
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The above arguments are readily extended to the general case with artificial terms
to establish the pseudopolynomiality of the proposed algorithm in case rde, is poly-
nomially bounded by n, Eo, and Lo; note that q can be chosen to be pseudopolynomially
large (cf. Proposition 8.1).

PROPOSITION 10.3. The proposed algorithm can be implemented to run in time

polynomial in n, Eo, Lo, and rden, exceptfor the numerical determination ofthe coefficients
y in Step 3.1.

11. Conclusion. Implementation details and practical efficiency of the proposed
algorithm will be reported later.

The author is thankful to Bill Cunningham and Dan Gusfield for indicating the
relevant references [13] and [14] concerning the parametric assignment problem, and
to Takao Asano, Masaaki Sugihara, Mike Trick, and the anonymous referee for helpful
comments.

Appendix. Notation.
A(t, x) (Aij(t, x))" Aij(t, x) Y.cz Yrco Aijrstrxs
atqx-l" artificial term
B(t, x) (Bo(t, x))" matrix with artificial terms
C" column set of matrices

Ce" cost for edge e in G (in general)
c,..j max {slDij #O}=degxDij(x)" cost in G*(D)

ei.(p)= r-ps" cost in G(A; p)
,r r-ps+u-uf
c(M)= G" cost of matching M (in general)
D(x) (Do(x))" Do(x) 2,z Dox
D(x)=(Do(x))" Do(x)=2 {aox[(s, )

D % if[=0,
D(x) ((x))" (x)

0 otherwise

[o otherwise

( , ())
( 8, (39))
( 8, (39))

(3)
( 2.2)
(6.1)

(17)
(3)
(19)

( 2.2)
(6.1)

(22)

(6.1)

((18), (38))

6(D)=degx det D(x)
g(D)" maximum cost of an assignment in G*(D)
6*(A) =max {degxA0(t, x)]i R,j C}

* +e: initial vertex o edge e

* -e: terminal vertex o edge e- o=l{(qr)l) #o}1
" E =l{(qrs)[A(1)

--ijrs e0}l
" Eo {(s, r)[ jr, =0, (ijrs) E(G)}. f(t,x)=detA(t,x)=,rfrtrx"
G= G(A)= G(A; p): bipartite graph for A (with multiple edges)
G*= G*(D): (simple) bipaite graph for D

* %: coefficients in (4)
l: supporting line of (combinatorial) Newton diagram. Lo max {Isl, Irl A(r 0}

o Ll=max {Isl, lrl[ArO}

(6.1)
(6.1)
(7)
(21)
(16)

( 2.2)
( 2.2)
( 10)
( 10)
(23)

( 1, (2))
(3)

(6.1)
(2.1)

(4,9)
( 10)
( 10)
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M" (perfect) matching
n" size of matrices

N(A) {(s, r)]fi 0}" Newton diagram for a
N(A)- {(s(m), r(m))]m: perfect matching in G(A)}"
combinatorial Newton diagram for A
u n- II1" (often) number of artificial terms
p" exponent p in (4), slope of
p" exponents in (4); p < 0 for i--> 2

Pmax ?’max Fmin

Pmax --/’max- rmin
P’ (s’, r’)" rightmost point of fq N(A)

" region for P’
7r" one-to-one correspondence R I--> C -J
R" row set of matrices
r* min {r] (s*, r)e N}" r-coordinate of southwest point
r0 ps0 u f +
r(s) min {rlfr 0}
raen" least common multiple of denominators of r

rmax n. max {r]Aij 0}
0 0}rmax n.max{rla’

rmi n. min {rlaij, 0}
rmin n. min {r]a’Or#O}
p(i, k)= ro-rj=p(vf-vf)-(uf-uf)
s* =min {sl(s r)e N}: s-coordinate of southwest point

Sma n" max
{slArO}Sma max

SW(N) (s*, r*)" southwest point
(i, k)= s,- s
uf, u" potentials for minimization (in G(A; p))

rf -mf rf -p f
vf, v" potentials for maximization (in G*(D))
w: vector in transformation matrix W
W: transformation matrix
X(t) T1 t-p + T2 I-p-p2 +"

( 2.2)
( , ())
( 3, (2))

( 3, (12))
(8)
(4)

(2.1)
(9)
(8)

(4,6.2)
( 10)
(8)
(3)
()
( 7)

( 1, 2)
( 10)
(9)
(8)
(9)
(8)
( 7)
()
( 7)
( 10)
(8)
(5)
( 7)

( 2.2, (8), 6.2)
( 2.2, (9), 6.1)

(34)
( 7, (35))

(4)
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